| /* SPDX-License-Identifier: GPL-2.0 OR MIT */ |
| /************************************************************************** |
| * |
| * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| /* |
| * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| */ |
| |
| #include <linux/vmalloc.h> |
| |
| #include <drm/ttm/ttm_bo.h> |
| #include <drm/ttm/ttm_placement.h> |
| #include <drm/ttm/ttm_tt.h> |
| |
| #include <drm/drm_cache.h> |
| |
| struct ttm_transfer_obj { |
| struct ttm_buffer_object base; |
| struct ttm_buffer_object *bo; |
| }; |
| |
| int ttm_mem_io_reserve(struct ttm_device *bdev, |
| struct ttm_resource *mem) |
| { |
| if (mem->bus.offset || mem->bus.addr) |
| return 0; |
| |
| mem->bus.is_iomem = false; |
| if (!bdev->funcs->io_mem_reserve) |
| return 0; |
| |
| return bdev->funcs->io_mem_reserve(bdev, mem); |
| } |
| |
| void ttm_mem_io_free(struct ttm_device *bdev, |
| struct ttm_resource *mem) |
| { |
| if (!mem) |
| return; |
| |
| if (!mem->bus.offset && !mem->bus.addr) |
| return; |
| |
| if (bdev->funcs->io_mem_free) |
| bdev->funcs->io_mem_free(bdev, mem); |
| |
| mem->bus.offset = 0; |
| mem->bus.addr = NULL; |
| } |
| |
| /** |
| * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. |
| * @clear: Whether to clear rather than copy. |
| * @num_pages: Number of pages of the operation. |
| * @dst_iter: A struct ttm_kmap_iter representing the destination resource. |
| * @src_iter: A struct ttm_kmap_iter representing the source resource. |
| * |
| * This function is intended to be able to move out async under a |
| * dma-fence if desired. |
| */ |
| void ttm_move_memcpy(bool clear, |
| u32 num_pages, |
| struct ttm_kmap_iter *dst_iter, |
| struct ttm_kmap_iter *src_iter) |
| { |
| const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; |
| const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; |
| struct iosys_map src_map, dst_map; |
| pgoff_t i; |
| |
| /* Single TTM move. NOP */ |
| if (dst_ops->maps_tt && src_ops->maps_tt) |
| return; |
| |
| /* Don't move nonexistent data. Clear destination instead. */ |
| if (clear) { |
| for (i = 0; i < num_pages; ++i) { |
| dst_ops->map_local(dst_iter, &dst_map, i); |
| if (dst_map.is_iomem) |
| memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); |
| else |
| memset(dst_map.vaddr, 0, PAGE_SIZE); |
| if (dst_ops->unmap_local) |
| dst_ops->unmap_local(dst_iter, &dst_map); |
| } |
| return; |
| } |
| |
| for (i = 0; i < num_pages; ++i) { |
| dst_ops->map_local(dst_iter, &dst_map, i); |
| src_ops->map_local(src_iter, &src_map, i); |
| |
| drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); |
| |
| if (src_ops->unmap_local) |
| src_ops->unmap_local(src_iter, &src_map); |
| if (dst_ops->unmap_local) |
| dst_ops->unmap_local(dst_iter, &dst_map); |
| } |
| } |
| EXPORT_SYMBOL(ttm_move_memcpy); |
| |
| /** |
| * ttm_bo_move_memcpy |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @ctx: operation context |
| * @dst_mem: struct ttm_resource indicating where to move. |
| * |
| * Fallback move function for a mappable buffer object in mappable memory. |
| * The function will, if successful, |
| * free any old aperture space, and set (@new_mem)->mm_node to NULL, |
| * and update the (@bo)->mem placement flags. If unsuccessful, the old |
| * data remains untouched, and it's up to the caller to free the |
| * memory space indicated by @new_mem. |
| * Returns: |
| * !0: Failure. |
| */ |
| int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_resource *dst_mem) |
| { |
| struct ttm_device *bdev = bo->bdev; |
| struct ttm_resource_manager *dst_man = |
| ttm_manager_type(bo->bdev, dst_mem->mem_type); |
| struct ttm_tt *ttm = bo->ttm; |
| struct ttm_resource *src_mem = bo->resource; |
| struct ttm_resource_manager *src_man; |
| union { |
| struct ttm_kmap_iter_tt tt; |
| struct ttm_kmap_iter_linear_io io; |
| } _dst_iter, _src_iter; |
| struct ttm_kmap_iter *dst_iter, *src_iter; |
| bool clear; |
| int ret = 0; |
| |
| if (WARN_ON(!src_mem)) |
| return -EINVAL; |
| |
| src_man = ttm_manager_type(bdev, src_mem->mem_type); |
| if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) || |
| dst_man->use_tt)) { |
| ret = ttm_tt_populate(bdev, ttm, ctx); |
| if (ret) |
| return ret; |
| } |
| |
| dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); |
| if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) |
| dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); |
| if (IS_ERR(dst_iter)) |
| return PTR_ERR(dst_iter); |
| |
| src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); |
| if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) |
| src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); |
| if (IS_ERR(src_iter)) { |
| ret = PTR_ERR(src_iter); |
| goto out_src_iter; |
| } |
| |
| clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm)); |
| if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) |
| ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter); |
| |
| if (!src_iter->ops->maps_tt) |
| ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); |
| ttm_bo_move_sync_cleanup(bo, dst_mem); |
| |
| out_src_iter: |
| if (!dst_iter->ops->maps_tt) |
| ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_memcpy); |
| |
| static void ttm_transfered_destroy(struct ttm_buffer_object *bo) |
| { |
| struct ttm_transfer_obj *fbo; |
| |
| fbo = container_of(bo, struct ttm_transfer_obj, base); |
| dma_resv_fini(&fbo->base.base._resv); |
| ttm_bo_put(fbo->bo); |
| kfree(fbo); |
| } |
| |
| /** |
| * ttm_buffer_object_transfer |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, |
| * holding the data of @bo with the old placement. |
| * |
| * This is a utility function that may be called after an accelerated move |
| * has been scheduled. A new buffer object is created as a placeholder for |
| * the old data while it's being copied. When that buffer object is idle, |
| * it can be destroyed, releasing the space of the old placement. |
| * Returns: |
| * !0: Failure. |
| */ |
| |
| static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, |
| struct ttm_buffer_object **new_obj) |
| { |
| struct ttm_transfer_obj *fbo; |
| int ret; |
| |
| fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); |
| if (!fbo) |
| return -ENOMEM; |
| |
| fbo->base = *bo; |
| |
| /** |
| * Fix up members that we shouldn't copy directly: |
| * TODO: Explicit member copy would probably be better here. |
| */ |
| |
| atomic_inc(&ttm_glob.bo_count); |
| drm_vma_node_reset(&fbo->base.base.vma_node); |
| |
| kref_init(&fbo->base.kref); |
| fbo->base.destroy = &ttm_transfered_destroy; |
| fbo->base.pin_count = 0; |
| if (bo->type != ttm_bo_type_sg) |
| fbo->base.base.resv = &fbo->base.base._resv; |
| |
| dma_resv_init(&fbo->base.base._resv); |
| fbo->base.base.dev = NULL; |
| ret = dma_resv_trylock(&fbo->base.base._resv); |
| WARN_ON(!ret); |
| |
| if (fbo->base.resource) { |
| ttm_resource_set_bo(fbo->base.resource, &fbo->base); |
| bo->resource = NULL; |
| ttm_bo_set_bulk_move(&fbo->base, NULL); |
| } else { |
| fbo->base.bulk_move = NULL; |
| } |
| |
| ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1); |
| if (ret) { |
| kfree(fbo); |
| return ret; |
| } |
| |
| ttm_bo_get(bo); |
| fbo->bo = bo; |
| |
| ttm_bo_move_to_lru_tail_unlocked(&fbo->base); |
| |
| *new_obj = &fbo->base; |
| return 0; |
| } |
| |
| /** |
| * ttm_io_prot |
| * |
| * @bo: ttm buffer object |
| * @res: ttm resource object |
| * @tmp: Page protection flag for a normal, cached mapping. |
| * |
| * Utility function that returns the pgprot_t that should be used for |
| * setting up a PTE with the caching model indicated by @c_state. |
| */ |
| pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, |
| pgprot_t tmp) |
| { |
| struct ttm_resource_manager *man; |
| enum ttm_caching caching; |
| |
| man = ttm_manager_type(bo->bdev, res->mem_type); |
| if (man->use_tt) { |
| caching = bo->ttm->caching; |
| if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED) |
| tmp = pgprot_decrypted(tmp); |
| } else { |
| caching = res->bus.caching; |
| } |
| |
| return ttm_prot_from_caching(caching, tmp); |
| } |
| EXPORT_SYMBOL(ttm_io_prot); |
| |
| static int ttm_bo_ioremap(struct ttm_buffer_object *bo, |
| unsigned long offset, |
| unsigned long size, |
| struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_resource *mem = bo->resource; |
| |
| if (bo->resource->bus.addr) { |
| map->bo_kmap_type = ttm_bo_map_premapped; |
| map->virtual = ((u8 *)bo->resource->bus.addr) + offset; |
| } else { |
| resource_size_t res = bo->resource->bus.offset + offset; |
| |
| map->bo_kmap_type = ttm_bo_map_iomap; |
| if (mem->bus.caching == ttm_write_combined) |
| map->virtual = ioremap_wc(res, size); |
| #ifdef CONFIG_X86 |
| else if (mem->bus.caching == ttm_cached) |
| map->virtual = ioremap_cache(res, size); |
| #endif |
| else |
| map->virtual = ioremap(res, size); |
| } |
| return (!map->virtual) ? -ENOMEM : 0; |
| } |
| |
| static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, |
| unsigned long start_page, |
| unsigned long num_pages, |
| struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_resource *mem = bo->resource; |
| struct ttm_operation_ctx ctx = { |
| .interruptible = false, |
| .no_wait_gpu = false |
| }; |
| struct ttm_tt *ttm = bo->ttm; |
| struct ttm_resource_manager *man = |
| ttm_manager_type(bo->bdev, bo->resource->mem_type); |
| pgprot_t prot; |
| int ret; |
| |
| BUG_ON(!ttm); |
| |
| ret = ttm_tt_populate(bo->bdev, ttm, &ctx); |
| if (ret) |
| return ret; |
| |
| if (num_pages == 1 && ttm->caching == ttm_cached && |
| !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) { |
| /* |
| * We're mapping a single page, and the desired |
| * page protection is consistent with the bo. |
| */ |
| |
| map->bo_kmap_type = ttm_bo_map_kmap; |
| map->page = ttm->pages[start_page]; |
| map->virtual = kmap(map->page); |
| } else { |
| /* |
| * We need to use vmap to get the desired page protection |
| * or to make the buffer object look contiguous. |
| */ |
| prot = ttm_io_prot(bo, mem, PAGE_KERNEL); |
| map->bo_kmap_type = ttm_bo_map_vmap; |
| map->virtual = vmap(ttm->pages + start_page, num_pages, |
| 0, prot); |
| } |
| return (!map->virtual) ? -ENOMEM : 0; |
| } |
| |
| /** |
| * ttm_bo_kmap |
| * |
| * @bo: The buffer object. |
| * @start_page: The first page to map. |
| * @num_pages: Number of pages to map. |
| * @map: pointer to a struct ttm_bo_kmap_obj representing the map. |
| * |
| * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the |
| * data in the buffer object. The ttm_kmap_obj_virtual function can then be |
| * used to obtain a virtual address to the data. |
| * |
| * Returns |
| * -ENOMEM: Out of memory. |
| * -EINVAL: Invalid range. |
| */ |
| int ttm_bo_kmap(struct ttm_buffer_object *bo, |
| unsigned long start_page, unsigned long num_pages, |
| struct ttm_bo_kmap_obj *map) |
| { |
| unsigned long offset, size; |
| int ret; |
| |
| map->virtual = NULL; |
| map->bo = bo; |
| if (num_pages > PFN_UP(bo->resource->size)) |
| return -EINVAL; |
| if ((start_page + num_pages) > PFN_UP(bo->resource->size)) |
| return -EINVAL; |
| |
| ret = ttm_mem_io_reserve(bo->bdev, bo->resource); |
| if (ret) |
| return ret; |
| if (!bo->resource->bus.is_iomem) { |
| return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); |
| } else { |
| offset = start_page << PAGE_SHIFT; |
| size = num_pages << PAGE_SHIFT; |
| return ttm_bo_ioremap(bo, offset, size, map); |
| } |
| } |
| EXPORT_SYMBOL(ttm_bo_kmap); |
| |
| /** |
| * ttm_bo_kunmap |
| * |
| * @map: Object describing the map to unmap. |
| * |
| * Unmaps a kernel map set up by ttm_bo_kmap. |
| */ |
| void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) |
| { |
| if (!map->virtual) |
| return; |
| switch (map->bo_kmap_type) { |
| case ttm_bo_map_iomap: |
| iounmap(map->virtual); |
| break; |
| case ttm_bo_map_vmap: |
| vunmap(map->virtual); |
| break; |
| case ttm_bo_map_kmap: |
| kunmap(map->page); |
| break; |
| case ttm_bo_map_premapped: |
| break; |
| default: |
| BUG(); |
| } |
| ttm_mem_io_free(map->bo->bdev, map->bo->resource); |
| map->virtual = NULL; |
| map->page = NULL; |
| } |
| EXPORT_SYMBOL(ttm_bo_kunmap); |
| |
| /** |
| * ttm_bo_vmap |
| * |
| * @bo: The buffer object. |
| * @map: pointer to a struct iosys_map representing the map. |
| * |
| * Sets up a kernel virtual mapping, using ioremap or vmap to the |
| * data in the buffer object. The parameter @map returns the virtual |
| * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap(). |
| * |
| * Returns |
| * -ENOMEM: Out of memory. |
| * -EINVAL: Invalid range. |
| */ |
| int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map) |
| { |
| struct ttm_resource *mem = bo->resource; |
| int ret; |
| |
| dma_resv_assert_held(bo->base.resv); |
| |
| ret = ttm_mem_io_reserve(bo->bdev, mem); |
| if (ret) |
| return ret; |
| |
| if (mem->bus.is_iomem) { |
| void __iomem *vaddr_iomem; |
| |
| if (mem->bus.addr) |
| vaddr_iomem = (void __iomem *)mem->bus.addr; |
| else if (mem->bus.caching == ttm_write_combined) |
| vaddr_iomem = ioremap_wc(mem->bus.offset, |
| bo->base.size); |
| #ifdef CONFIG_X86 |
| else if (mem->bus.caching == ttm_cached) |
| vaddr_iomem = ioremap_cache(mem->bus.offset, |
| bo->base.size); |
| #endif |
| else |
| vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); |
| |
| if (!vaddr_iomem) |
| return -ENOMEM; |
| |
| iosys_map_set_vaddr_iomem(map, vaddr_iomem); |
| |
| } else { |
| struct ttm_operation_ctx ctx = { |
| .interruptible = false, |
| .no_wait_gpu = false |
| }; |
| struct ttm_tt *ttm = bo->ttm; |
| pgprot_t prot; |
| void *vaddr; |
| |
| ret = ttm_tt_populate(bo->bdev, ttm, &ctx); |
| if (ret) |
| return ret; |
| |
| /* |
| * We need to use vmap to get the desired page protection |
| * or to make the buffer object look contiguous. |
| */ |
| prot = ttm_io_prot(bo, mem, PAGE_KERNEL); |
| vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); |
| if (!vaddr) |
| return -ENOMEM; |
| |
| iosys_map_set_vaddr(map, vaddr); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_vmap); |
| |
| /** |
| * ttm_bo_vunmap |
| * |
| * @bo: The buffer object. |
| * @map: Object describing the map to unmap. |
| * |
| * Unmaps a kernel map set up by ttm_bo_vmap(). |
| */ |
| void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map) |
| { |
| struct ttm_resource *mem = bo->resource; |
| |
| dma_resv_assert_held(bo->base.resv); |
| |
| if (iosys_map_is_null(map)) |
| return; |
| |
| if (!map->is_iomem) |
| vunmap(map->vaddr); |
| else if (!mem->bus.addr) |
| iounmap(map->vaddr_iomem); |
| iosys_map_clear(map); |
| |
| ttm_mem_io_free(bo->bdev, bo->resource); |
| } |
| EXPORT_SYMBOL(ttm_bo_vunmap); |
| |
| static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, |
| bool dst_use_tt) |
| { |
| long ret; |
| |
| ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, |
| false, 15 * HZ); |
| if (ret == 0) |
| return -EBUSY; |
| if (ret < 0) |
| return ret; |
| |
| if (!dst_use_tt) |
| ttm_bo_tt_destroy(bo); |
| ttm_resource_free(bo, &bo->resource); |
| return 0; |
| } |
| |
| static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, |
| struct dma_fence *fence, |
| bool dst_use_tt) |
| { |
| struct ttm_buffer_object *ghost_obj; |
| int ret; |
| |
| /** |
| * This should help pipeline ordinary buffer moves. |
| * |
| * Hang old buffer memory on a new buffer object, |
| * and leave it to be released when the GPU |
| * operation has completed. |
| */ |
| |
| ret = ttm_buffer_object_transfer(bo, &ghost_obj); |
| if (ret) |
| return ret; |
| |
| dma_resv_add_fence(&ghost_obj->base._resv, fence, |
| DMA_RESV_USAGE_KERNEL); |
| |
| /** |
| * If we're not moving to fixed memory, the TTM object |
| * needs to stay alive. Otherwhise hang it on the ghost |
| * bo to be unbound and destroyed. |
| */ |
| |
| if (dst_use_tt) |
| ghost_obj->ttm = NULL; |
| else |
| bo->ttm = NULL; |
| |
| dma_resv_unlock(&ghost_obj->base._resv); |
| ttm_bo_put(ghost_obj); |
| return 0; |
| } |
| |
| static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, |
| struct dma_fence *fence) |
| { |
| struct ttm_device *bdev = bo->bdev; |
| struct ttm_resource_manager *from; |
| |
| from = ttm_manager_type(bdev, bo->resource->mem_type); |
| |
| /** |
| * BO doesn't have a TTM we need to bind/unbind. Just remember |
| * this eviction and free up the allocation |
| */ |
| spin_lock(&from->move_lock); |
| if (!from->move || dma_fence_is_later(fence, from->move)) { |
| dma_fence_put(from->move); |
| from->move = dma_fence_get(fence); |
| } |
| spin_unlock(&from->move_lock); |
| |
| ttm_resource_free(bo, &bo->resource); |
| } |
| |
| /** |
| * ttm_bo_move_accel_cleanup - cleanup helper for hw copies |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @fence: A fence object that signals when moving is complete. |
| * @evict: This is an evict move. Don't return until the buffer is idle. |
| * @pipeline: evictions are to be pipelined. |
| * @new_mem: struct ttm_resource indicating where to move. |
| * |
| * Accelerated move function to be called when an accelerated move |
| * has been scheduled. The function will create a new temporary buffer object |
| * representing the old placement, and put the sync object on both buffer |
| * objects. After that the newly created buffer object is unref'd to be |
| * destroyed when the move is complete. This will help pipeline |
| * buffer moves. |
| */ |
| int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, |
| struct dma_fence *fence, |
| bool evict, |
| bool pipeline, |
| struct ttm_resource *new_mem) |
| { |
| struct ttm_device *bdev = bo->bdev; |
| struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); |
| struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); |
| int ret = 0; |
| |
| dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL); |
| if (!evict) |
| ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); |
| else if (!from->use_tt && pipeline) |
| ttm_bo_move_pipeline_evict(bo, fence); |
| else |
| ret = ttm_bo_wait_free_node(bo, man->use_tt); |
| |
| if (ret) |
| return ret; |
| |
| ttm_bo_assign_mem(bo, new_mem); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); |
| |
| /** |
| * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @new_mem: struct ttm_resource indicating where to move. |
| * |
| * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed |
| * by the caller to be idle. Typically used after memcpy buffer moves. |
| */ |
| void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo, |
| struct ttm_resource *new_mem) |
| { |
| struct ttm_device *bdev = bo->bdev; |
| struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); |
| int ret; |
| |
| ret = ttm_bo_wait_free_node(bo, man->use_tt); |
| if (WARN_ON(ret)) |
| return; |
| |
| ttm_bo_assign_mem(bo, new_mem); |
| } |
| EXPORT_SYMBOL(ttm_bo_move_sync_cleanup); |
| |
| /** |
| * ttm_bo_pipeline_gutting - purge the contents of a bo |
| * @bo: The buffer object |
| * |
| * Purge the contents of a bo, async if the bo is not idle. |
| * After a successful call, the bo is left unpopulated in |
| * system placement. The function may wait uninterruptible |
| * for idle on OOM. |
| * |
| * Return: 0 if successful, negative error code on failure. |
| */ |
| int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) |
| { |
| struct ttm_buffer_object *ghost; |
| struct ttm_tt *ttm; |
| int ret; |
| |
| /* If already idle, no need for ghost object dance. */ |
| if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) { |
| if (!bo->ttm) { |
| /* See comment below about clearing. */ |
| ret = ttm_tt_create(bo, true); |
| if (ret) |
| return ret; |
| } else { |
| ttm_tt_unpopulate(bo->bdev, bo->ttm); |
| if (bo->type == ttm_bo_type_device) |
| ttm_tt_mark_for_clear(bo->ttm); |
| } |
| ttm_resource_free(bo, &bo->resource); |
| return 0; |
| } |
| |
| /* |
| * We need an unpopulated ttm_tt after giving our current one, |
| * if any, to the ghost object. And we can't afford to fail |
| * creating one *after* the operation. If the bo subsequently gets |
| * resurrected, make sure it's cleared (if ttm_bo_type_device) |
| * to avoid leaking sensitive information to user-space. |
| */ |
| |
| ttm = bo->ttm; |
| bo->ttm = NULL; |
| ret = ttm_tt_create(bo, true); |
| swap(bo->ttm, ttm); |
| if (ret) |
| return ret; |
| |
| ret = ttm_buffer_object_transfer(bo, &ghost); |
| if (ret) |
| goto error_destroy_tt; |
| |
| ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); |
| /* Last resort, wait for the BO to be idle when we are OOM */ |
| if (ret) { |
| dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, |
| false, MAX_SCHEDULE_TIMEOUT); |
| } |
| |
| dma_resv_unlock(&ghost->base._resv); |
| ttm_bo_put(ghost); |
| bo->ttm = ttm; |
| return 0; |
| |
| error_destroy_tt: |
| ttm_tt_destroy(bo->bdev, ttm); |
| return ret; |
| } |
| |
| static bool ttm_lru_walk_trylock(struct ttm_lru_walk *walk, |
| struct ttm_buffer_object *bo, |
| bool *needs_unlock) |
| { |
| struct ttm_operation_ctx *ctx = walk->ctx; |
| |
| *needs_unlock = false; |
| |
| if (dma_resv_trylock(bo->base.resv)) { |
| *needs_unlock = true; |
| return true; |
| } |
| |
| if (bo->base.resv == ctx->resv && ctx->allow_res_evict) { |
| dma_resv_assert_held(bo->base.resv); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int ttm_lru_walk_ticketlock(struct ttm_lru_walk *walk, |
| struct ttm_buffer_object *bo, |
| bool *needs_unlock) |
| { |
| struct dma_resv *resv = bo->base.resv; |
| int ret; |
| |
| if (walk->ctx->interruptible) |
| ret = dma_resv_lock_interruptible(resv, walk->ticket); |
| else |
| ret = dma_resv_lock(resv, walk->ticket); |
| |
| if (!ret) { |
| *needs_unlock = true; |
| /* |
| * Only a single ticketlock per loop. Ticketlocks are prone |
| * to return -EDEADLK causing the eviction to fail, so |
| * after waiting for the ticketlock, revert back to |
| * trylocking for this walk. |
| */ |
| walk->ticket = NULL; |
| } else if (ret == -EDEADLK) { |
| /* Caller needs to exit the ww transaction. */ |
| ret = -ENOSPC; |
| } |
| |
| return ret; |
| } |
| |
| static void ttm_lru_walk_unlock(struct ttm_buffer_object *bo, bool locked) |
| { |
| if (locked) |
| dma_resv_unlock(bo->base.resv); |
| } |
| |
| /** |
| * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on |
| * valid items. |
| * @walk: describe the walks and actions taken |
| * @bdev: The TTM device. |
| * @man: The struct ttm_resource manager whose LRU lists we're walking. |
| * @target: The end condition for the walk. |
| * |
| * The LRU lists of @man are walk, and for each struct ttm_resource encountered, |
| * the corresponding ttm_buffer_object is locked and taken a reference on, and |
| * the LRU lock is dropped. the LRU lock may be dropped before locking and, in |
| * that case, it's verified that the item actually remains on the LRU list after |
| * the lock, and that the buffer object didn't switch resource in between. |
| * |
| * With a locked object, the actions indicated by @walk->process_bo are |
| * performed, and after that, the bo is unlocked, the refcount dropped and the |
| * next struct ttm_resource is processed. Here, the walker relies on |
| * TTM's restartable LRU list implementation. |
| * |
| * Typically @walk->process_bo() would return the number of pages evicted, |
| * swapped or shrunken, so that when the total exceeds @target, or when the |
| * LRU list has been walked in full, iteration is terminated. It's also terminated |
| * on error. Note that the definition of @target is done by the caller, it |
| * could have a different meaning than the number of pages. |
| * |
| * Note that the way dma_resv individualization is done, locking needs to be done |
| * either with the LRU lock held (trylocking only) or with a reference on the |
| * object. |
| * |
| * Return: The progress made towards target or negative error code on error. |
| */ |
| s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev, |
| struct ttm_resource_manager *man, s64 target) |
| { |
| struct ttm_resource_cursor cursor; |
| struct ttm_resource *res; |
| s64 progress = 0; |
| s64 lret; |
| |
| spin_lock(&bdev->lru_lock); |
| ttm_resource_manager_for_each_res(man, &cursor, res) { |
| struct ttm_buffer_object *bo = res->bo; |
| bool bo_needs_unlock = false; |
| bool bo_locked = false; |
| int mem_type; |
| |
| /* |
| * Attempt a trylock before taking a reference on the bo, |
| * since if we do it the other way around, and the trylock fails, |
| * we need to drop the lru lock to put the bo. |
| */ |
| if (ttm_lru_walk_trylock(walk, bo, &bo_needs_unlock)) |
| bo_locked = true; |
| else if (!walk->ticket || walk->ctx->no_wait_gpu || |
| walk->trylock_only) |
| continue; |
| |
| if (!ttm_bo_get_unless_zero(bo)) { |
| ttm_lru_walk_unlock(bo, bo_needs_unlock); |
| continue; |
| } |
| |
| mem_type = res->mem_type; |
| spin_unlock(&bdev->lru_lock); |
| |
| lret = 0; |
| if (!bo_locked) |
| lret = ttm_lru_walk_ticketlock(walk, bo, &bo_needs_unlock); |
| |
| /* |
| * Note that in between the release of the lru lock and the |
| * ticketlock, the bo may have switched resource, |
| * and also memory type, since the resource may have been |
| * freed and allocated again with a different memory type. |
| * In that case, just skip it. |
| */ |
| if (!lret && bo->resource && bo->resource->mem_type == mem_type) |
| lret = walk->ops->process_bo(walk, bo); |
| |
| ttm_lru_walk_unlock(bo, bo_needs_unlock); |
| ttm_bo_put(bo); |
| if (lret == -EBUSY || lret == -EALREADY) |
| lret = 0; |
| progress = (lret < 0) ? lret : progress + lret; |
| |
| spin_lock(&bdev->lru_lock); |
| if (progress < 0 || progress >= target) |
| break; |
| } |
| ttm_resource_cursor_fini(&cursor); |
| spin_unlock(&bdev->lru_lock); |
| |
| return progress; |
| } |