| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Local APIC handling, local APIC timers |
| * |
| * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> |
| * |
| * Fixes |
| * Maciej W. Rozycki : Bits for genuine 82489DX APICs; |
| * thanks to Eric Gilmore |
| * and Rolf G. Tews |
| * for testing these extensively. |
| * Maciej W. Rozycki : Various updates and fixes. |
| * Mikael Pettersson : Power Management for UP-APIC. |
| * Pavel Machek and |
| * Mikael Pettersson : PM converted to driver model. |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/acpi_pmtmr.h> |
| #include <linux/clockchips.h> |
| #include <linux/interrupt.h> |
| #include <linux/memblock.h> |
| #include <linux/ftrace.h> |
| #include <linux/ioport.h> |
| #include <linux/export.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/delay.h> |
| #include <linux/timex.h> |
| #include <linux/i8253.h> |
| #include <linux/dmar.h> |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <linux/dmi.h> |
| #include <linux/smp.h> |
| #include <linux/mm.h> |
| |
| #include <asm/trace/irq_vectors.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/perf_event.h> |
| #include <asm/x86_init.h> |
| #include <linux/atomic.h> |
| #include <asm/barrier.h> |
| #include <asm/mpspec.h> |
| #include <asm/i8259.h> |
| #include <asm/proto.h> |
| #include <asm/traps.h> |
| #include <asm/apic.h> |
| #include <asm/acpi.h> |
| #include <asm/io_apic.h> |
| #include <asm/desc.h> |
| #include <asm/hpet.h> |
| #include <asm/mtrr.h> |
| #include <asm/time.h> |
| #include <asm/smp.h> |
| #include <asm/mce.h> |
| #include <asm/tsc.h> |
| #include <asm/hypervisor.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/intel-family.h> |
| #include <asm/irq_regs.h> |
| |
| unsigned int num_processors; |
| |
| unsigned disabled_cpus; |
| |
| /* Processor that is doing the boot up */ |
| unsigned int boot_cpu_physical_apicid __ro_after_init = -1U; |
| EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); |
| |
| u8 boot_cpu_apic_version __ro_after_init; |
| |
| /* |
| * The highest APIC ID seen during enumeration. |
| */ |
| static unsigned int max_physical_apicid; |
| |
| /* |
| * Bitmask of physically existing CPUs: |
| */ |
| physid_mask_t phys_cpu_present_map; |
| |
| /* |
| * Processor to be disabled specified by kernel parameter |
| * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to |
| * avoid undefined behaviour caused by sending INIT from AP to BSP. |
| */ |
| static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID; |
| |
| /* |
| * This variable controls which CPUs receive external NMIs. By default, |
| * external NMIs are delivered only to the BSP. |
| */ |
| static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP; |
| |
| /* |
| * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID |
| */ |
| static bool virt_ext_dest_id __ro_after_init; |
| |
| /* |
| * Map cpu index to physical APIC ID |
| */ |
| DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); |
| DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); |
| DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); |
| EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); |
| EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); |
| EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); |
| |
| #ifdef CONFIG_X86_32 |
| |
| /* |
| * On x86_32, the mapping between cpu and logical apicid may vary |
| * depending on apic in use. The following early percpu variable is |
| * used for the mapping. This is where the behaviors of x86_64 and 32 |
| * actually diverge. Let's keep it ugly for now. |
| */ |
| DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); |
| |
| /* Local APIC was disabled by the BIOS and enabled by the kernel */ |
| static int enabled_via_apicbase __ro_after_init; |
| |
| /* |
| * Handle interrupt mode configuration register (IMCR). |
| * This register controls whether the interrupt signals |
| * that reach the BSP come from the master PIC or from the |
| * local APIC. Before entering Symmetric I/O Mode, either |
| * the BIOS or the operating system must switch out of |
| * PIC Mode by changing the IMCR. |
| */ |
| static inline void imcr_pic_to_apic(void) |
| { |
| /* select IMCR register */ |
| outb(0x70, 0x22); |
| /* NMI and 8259 INTR go through APIC */ |
| outb(0x01, 0x23); |
| } |
| |
| static inline void imcr_apic_to_pic(void) |
| { |
| /* select IMCR register */ |
| outb(0x70, 0x22); |
| /* NMI and 8259 INTR go directly to BSP */ |
| outb(0x00, 0x23); |
| } |
| #endif |
| |
| /* |
| * Knob to control our willingness to enable the local APIC. |
| * |
| * +1=force-enable |
| */ |
| static int force_enable_local_apic __initdata; |
| |
| /* |
| * APIC command line parameters |
| */ |
| static int __init parse_lapic(char *arg) |
| { |
| if (IS_ENABLED(CONFIG_X86_32) && !arg) |
| force_enable_local_apic = 1; |
| else if (arg && !strncmp(arg, "notscdeadline", 13)) |
| setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| return 0; |
| } |
| early_param("lapic", parse_lapic); |
| |
| #ifdef CONFIG_X86_64 |
| static int apic_calibrate_pmtmr __initdata; |
| static __init int setup_apicpmtimer(char *s) |
| { |
| apic_calibrate_pmtmr = 1; |
| notsc_setup(NULL); |
| return 0; |
| } |
| __setup("apicpmtimer", setup_apicpmtimer); |
| #endif |
| |
| unsigned long mp_lapic_addr __ro_after_init; |
| int disable_apic __ro_after_init; |
| /* Disable local APIC timer from the kernel commandline or via dmi quirk */ |
| static int disable_apic_timer __initdata; |
| /* Local APIC timer works in C2 */ |
| int local_apic_timer_c2_ok __ro_after_init; |
| EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); |
| |
| /* |
| * Debug level, exported for io_apic.c |
| */ |
| int apic_verbosity __ro_after_init; |
| |
| int pic_mode __ro_after_init; |
| |
| /* Have we found an MP table */ |
| int smp_found_config __ro_after_init; |
| |
| static struct resource lapic_resource = { |
| .name = "Local APIC", |
| .flags = IORESOURCE_MEM | IORESOURCE_BUSY, |
| }; |
| |
| unsigned int lapic_timer_period = 0; |
| |
| static void apic_pm_activate(void); |
| |
| static unsigned long apic_phys __ro_after_init; |
| |
| /* |
| * Get the LAPIC version |
| */ |
| static inline int lapic_get_version(void) |
| { |
| return GET_APIC_VERSION(apic_read(APIC_LVR)); |
| } |
| |
| /* |
| * Check, if the APIC is integrated or a separate chip |
| */ |
| static inline int lapic_is_integrated(void) |
| { |
| return APIC_INTEGRATED(lapic_get_version()); |
| } |
| |
| /* |
| * Check, whether this is a modern or a first generation APIC |
| */ |
| static int modern_apic(void) |
| { |
| /* AMD systems use old APIC versions, so check the CPU */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| boot_cpu_data.x86 >= 0xf) |
| return 1; |
| |
| /* Hygon systems use modern APIC */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) |
| return 1; |
| |
| return lapic_get_version() >= 0x14; |
| } |
| |
| /* |
| * right after this call apic become NOOP driven |
| * so apic->write/read doesn't do anything |
| */ |
| static void __init apic_disable(void) |
| { |
| pr_info("APIC: switched to apic NOOP\n"); |
| apic = &apic_noop; |
| } |
| |
| void native_apic_wait_icr_idle(void) |
| { |
| while (apic_read(APIC_ICR) & APIC_ICR_BUSY) |
| cpu_relax(); |
| } |
| |
| u32 native_safe_apic_wait_icr_idle(void) |
| { |
| u32 send_status; |
| int timeout; |
| |
| timeout = 0; |
| do { |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| if (!send_status) |
| break; |
| inc_irq_stat(icr_read_retry_count); |
| udelay(100); |
| } while (timeout++ < 1000); |
| |
| return send_status; |
| } |
| |
| void native_apic_icr_write(u32 low, u32 id) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); |
| apic_write(APIC_ICR, low); |
| local_irq_restore(flags); |
| } |
| |
| u64 native_apic_icr_read(void) |
| { |
| u32 icr1, icr2; |
| |
| icr2 = apic_read(APIC_ICR2); |
| icr1 = apic_read(APIC_ICR); |
| |
| return icr1 | ((u64)icr2 << 32); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /** |
| * get_physical_broadcast - Get number of physical broadcast IDs |
| */ |
| int get_physical_broadcast(void) |
| { |
| return modern_apic() ? 0xff : 0xf; |
| } |
| #endif |
| |
| /** |
| * lapic_get_maxlvt - get the maximum number of local vector table entries |
| */ |
| int lapic_get_maxlvt(void) |
| { |
| /* |
| * - we always have APIC integrated on 64bit mode |
| * - 82489DXs do not report # of LVT entries |
| */ |
| return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; |
| } |
| |
| /* |
| * Local APIC timer |
| */ |
| |
| /* Clock divisor */ |
| #define APIC_DIVISOR 16 |
| #define TSC_DIVISOR 8 |
| |
| /* |
| * This function sets up the local APIC timer, with a timeout of |
| * 'clocks' APIC bus clock. During calibration we actually call |
| * this function twice on the boot CPU, once with a bogus timeout |
| * value, second time for real. The other (noncalibrating) CPUs |
| * call this function only once, with the real, calibrated value. |
| * |
| * We do reads before writes even if unnecessary, to get around the |
| * P5 APIC double write bug. |
| */ |
| static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) |
| { |
| unsigned int lvtt_value, tmp_value; |
| |
| lvtt_value = LOCAL_TIMER_VECTOR; |
| if (!oneshot) |
| lvtt_value |= APIC_LVT_TIMER_PERIODIC; |
| else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; |
| |
| if (!lapic_is_integrated()) |
| lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); |
| |
| if (!irqen) |
| lvtt_value |= APIC_LVT_MASKED; |
| |
| apic_write(APIC_LVTT, lvtt_value); |
| |
| if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { |
| /* |
| * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, |
| * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. |
| * According to Intel, MFENCE can do the serialization here. |
| */ |
| asm volatile("mfence" : : : "memory"); |
| return; |
| } |
| |
| /* |
| * Divide PICLK by 16 |
| */ |
| tmp_value = apic_read(APIC_TDCR); |
| apic_write(APIC_TDCR, |
| (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | |
| APIC_TDR_DIV_16); |
| |
| if (!oneshot) |
| apic_write(APIC_TMICT, clocks / APIC_DIVISOR); |
| } |
| |
| /* |
| * Setup extended LVT, AMD specific |
| * |
| * Software should use the LVT offsets the BIOS provides. The offsets |
| * are determined by the subsystems using it like those for MCE |
| * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts |
| * are supported. Beginning with family 10h at least 4 offsets are |
| * available. |
| * |
| * Since the offsets must be consistent for all cores, we keep track |
| * of the LVT offsets in software and reserve the offset for the same |
| * vector also to be used on other cores. An offset is freed by |
| * setting the entry to APIC_EILVT_MASKED. |
| * |
| * If the BIOS is right, there should be no conflicts. Otherwise a |
| * "[Firmware Bug]: ..." error message is generated. However, if |
| * software does not properly determines the offsets, it is not |
| * necessarily a BIOS bug. |
| */ |
| |
| static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; |
| |
| static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) |
| { |
| return (old & APIC_EILVT_MASKED) |
| || (new == APIC_EILVT_MASKED) |
| || ((new & ~APIC_EILVT_MASKED) == old); |
| } |
| |
| static unsigned int reserve_eilvt_offset(int offset, unsigned int new) |
| { |
| unsigned int rsvd, vector; |
| |
| if (offset >= APIC_EILVT_NR_MAX) |
| return ~0; |
| |
| rsvd = atomic_read(&eilvt_offsets[offset]); |
| do { |
| vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ |
| if (vector && !eilvt_entry_is_changeable(vector, new)) |
| /* may not change if vectors are different */ |
| return rsvd; |
| rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new); |
| } while (rsvd != new); |
| |
| rsvd &= ~APIC_EILVT_MASKED; |
| if (rsvd && rsvd != vector) |
| pr_info("LVT offset %d assigned for vector 0x%02x\n", |
| offset, rsvd); |
| |
| return new; |
| } |
| |
| /* |
| * If mask=1, the LVT entry does not generate interrupts while mask=0 |
| * enables the vector. See also the BKDGs. Must be called with |
| * preemption disabled. |
| */ |
| |
| int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) |
| { |
| unsigned long reg = APIC_EILVTn(offset); |
| unsigned int new, old, reserved; |
| |
| new = (mask << 16) | (msg_type << 8) | vector; |
| old = apic_read(reg); |
| reserved = reserve_eilvt_offset(offset, new); |
| |
| if (reserved != new) { |
| pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " |
| "vector 0x%x, but the register is already in use for " |
| "vector 0x%x on another cpu\n", |
| smp_processor_id(), reg, offset, new, reserved); |
| return -EINVAL; |
| } |
| |
| if (!eilvt_entry_is_changeable(old, new)) { |
| pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " |
| "vector 0x%x, but the register is already in use for " |
| "vector 0x%x on this cpu\n", |
| smp_processor_id(), reg, offset, new, old); |
| return -EBUSY; |
| } |
| |
| apic_write(reg, new); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(setup_APIC_eilvt); |
| |
| /* |
| * Program the next event, relative to now |
| */ |
| static int lapic_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| apic_write(APIC_TMICT, delta); |
| return 0; |
| } |
| |
| static int lapic_next_deadline(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| u64 tsc; |
| |
| /* This MSR is special and need a special fence: */ |
| weak_wrmsr_fence(); |
| |
| tsc = rdtsc(); |
| wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); |
| return 0; |
| } |
| |
| static int lapic_timer_shutdown(struct clock_event_device *evt) |
| { |
| unsigned int v; |
| |
| /* Lapic used as dummy for broadcast ? */ |
| if (evt->features & CLOCK_EVT_FEAT_DUMMY) |
| return 0; |
| |
| v = apic_read(APIC_LVTT); |
| v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); |
| apic_write(APIC_LVTT, v); |
| apic_write(APIC_TMICT, 0); |
| return 0; |
| } |
| |
| static inline int |
| lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) |
| { |
| /* Lapic used as dummy for broadcast ? */ |
| if (evt->features & CLOCK_EVT_FEAT_DUMMY) |
| return 0; |
| |
| __setup_APIC_LVTT(lapic_timer_period, oneshot, 1); |
| return 0; |
| } |
| |
| static int lapic_timer_set_periodic(struct clock_event_device *evt) |
| { |
| return lapic_timer_set_periodic_oneshot(evt, false); |
| } |
| |
| static int lapic_timer_set_oneshot(struct clock_event_device *evt) |
| { |
| return lapic_timer_set_periodic_oneshot(evt, true); |
| } |
| |
| /* |
| * Local APIC timer broadcast function |
| */ |
| static void lapic_timer_broadcast(const struct cpumask *mask) |
| { |
| #ifdef CONFIG_SMP |
| apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); |
| #endif |
| } |
| |
| |
| /* |
| * The local apic timer can be used for any function which is CPU local. |
| */ |
| static struct clock_event_device lapic_clockevent = { |
| .name = "lapic", |
| .features = CLOCK_EVT_FEAT_PERIODIC | |
| CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP |
| | CLOCK_EVT_FEAT_DUMMY, |
| .shift = 32, |
| .set_state_shutdown = lapic_timer_shutdown, |
| .set_state_periodic = lapic_timer_set_periodic, |
| .set_state_oneshot = lapic_timer_set_oneshot, |
| .set_state_oneshot_stopped = lapic_timer_shutdown, |
| .set_next_event = lapic_next_event, |
| .broadcast = lapic_timer_broadcast, |
| .rating = 100, |
| .irq = -1, |
| }; |
| static DEFINE_PER_CPU(struct clock_event_device, lapic_events); |
| |
| static const struct x86_cpu_id deadline_match[] __initconst = { |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */ |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */ |
| |
| X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_X, 0x0b000020), |
| |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011), |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e), |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c), |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003), |
| |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136), |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014), |
| X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0), |
| |
| X86_MATCH_INTEL_FAM6_MODEL( HASWELL, 0x22), |
| X86_MATCH_INTEL_FAM6_MODEL( HASWELL_L, 0x20), |
| X86_MATCH_INTEL_FAM6_MODEL( HASWELL_G, 0x17), |
| |
| X86_MATCH_INTEL_FAM6_MODEL( BROADWELL, 0x25), |
| X86_MATCH_INTEL_FAM6_MODEL( BROADWELL_G, 0x17), |
| |
| X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE_L, 0xb2), |
| X86_MATCH_INTEL_FAM6_MODEL( SKYLAKE, 0xb2), |
| |
| X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE_L, 0x52), |
| X86_MATCH_INTEL_FAM6_MODEL( KABYLAKE, 0x52), |
| |
| {}, |
| }; |
| |
| static __init bool apic_validate_deadline_timer(void) |
| { |
| const struct x86_cpu_id *m; |
| u32 rev; |
| |
| if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| return false; |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| return true; |
| |
| m = x86_match_cpu(deadline_match); |
| if (!m) |
| return true; |
| |
| rev = (u32)m->driver_data; |
| |
| if (boot_cpu_data.microcode >= rev) |
| return true; |
| |
| setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " |
| "please update microcode to version: 0x%x (or later)\n", rev); |
| return false; |
| } |
| |
| /* |
| * Setup the local APIC timer for this CPU. Copy the initialized values |
| * of the boot CPU and register the clock event in the framework. |
| */ |
| static void setup_APIC_timer(void) |
| { |
| struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| |
| if (this_cpu_has(X86_FEATURE_ARAT)) { |
| lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; |
| /* Make LAPIC timer preferable over percpu HPET */ |
| lapic_clockevent.rating = 150; |
| } |
| |
| memcpy(levt, &lapic_clockevent, sizeof(*levt)); |
| levt->cpumask = cpumask_of(smp_processor_id()); |
| |
| if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { |
| levt->name = "lapic-deadline"; |
| levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | |
| CLOCK_EVT_FEAT_DUMMY); |
| levt->set_next_event = lapic_next_deadline; |
| clockevents_config_and_register(levt, |
| tsc_khz * (1000 / TSC_DIVISOR), |
| 0xF, ~0UL); |
| } else |
| clockevents_register_device(levt); |
| } |
| |
| /* |
| * Install the updated TSC frequency from recalibration at the TSC |
| * deadline clockevent devices. |
| */ |
| static void __lapic_update_tsc_freq(void *info) |
| { |
| struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| |
| if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| return; |
| |
| clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); |
| } |
| |
| void lapic_update_tsc_freq(void) |
| { |
| /* |
| * The clockevent device's ->mult and ->shift can both be |
| * changed. In order to avoid races, schedule the frequency |
| * update code on each CPU. |
| */ |
| on_each_cpu(__lapic_update_tsc_freq, NULL, 0); |
| } |
| |
| /* |
| * In this functions we calibrate APIC bus clocks to the external timer. |
| * |
| * We want to do the calibration only once since we want to have local timer |
| * irqs synchronous. CPUs connected by the same APIC bus have the very same bus |
| * frequency. |
| * |
| * This was previously done by reading the PIT/HPET and waiting for a wrap |
| * around to find out, that a tick has elapsed. I have a box, where the PIT |
| * readout is broken, so it never gets out of the wait loop again. This was |
| * also reported by others. |
| * |
| * Monitoring the jiffies value is inaccurate and the clockevents |
| * infrastructure allows us to do a simple substitution of the interrupt |
| * handler. |
| * |
| * The calibration routine also uses the pm_timer when possible, as the PIT |
| * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes |
| * back to normal later in the boot process). |
| */ |
| |
| #define LAPIC_CAL_LOOPS (HZ/10) |
| |
| static __initdata int lapic_cal_loops = -1; |
| static __initdata long lapic_cal_t1, lapic_cal_t2; |
| static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; |
| static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; |
| static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; |
| |
| /* |
| * Temporary interrupt handler and polled calibration function. |
| */ |
| static void __init lapic_cal_handler(struct clock_event_device *dev) |
| { |
| unsigned long long tsc = 0; |
| long tapic = apic_read(APIC_TMCCT); |
| unsigned long pm = acpi_pm_read_early(); |
| |
| if (boot_cpu_has(X86_FEATURE_TSC)) |
| tsc = rdtsc(); |
| |
| switch (lapic_cal_loops++) { |
| case 0: |
| lapic_cal_t1 = tapic; |
| lapic_cal_tsc1 = tsc; |
| lapic_cal_pm1 = pm; |
| lapic_cal_j1 = jiffies; |
| break; |
| |
| case LAPIC_CAL_LOOPS: |
| lapic_cal_t2 = tapic; |
| lapic_cal_tsc2 = tsc; |
| if (pm < lapic_cal_pm1) |
| pm += ACPI_PM_OVRRUN; |
| lapic_cal_pm2 = pm; |
| lapic_cal_j2 = jiffies; |
| break; |
| } |
| } |
| |
| static int __init |
| calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) |
| { |
| const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; |
| const long pm_thresh = pm_100ms / 100; |
| unsigned long mult; |
| u64 res; |
| |
| #ifndef CONFIG_X86_PM_TIMER |
| return -1; |
| #endif |
| |
| apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); |
| |
| /* Check, if the PM timer is available */ |
| if (!deltapm) |
| return -1; |
| |
| mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); |
| |
| if (deltapm > (pm_100ms - pm_thresh) && |
| deltapm < (pm_100ms + pm_thresh)) { |
| apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); |
| return 0; |
| } |
| |
| res = (((u64)deltapm) * mult) >> 22; |
| do_div(res, 1000000); |
| pr_warn("APIC calibration not consistent " |
| "with PM-Timer: %ldms instead of 100ms\n", (long)res); |
| |
| /* Correct the lapic counter value */ |
| res = (((u64)(*delta)) * pm_100ms); |
| do_div(res, deltapm); |
| pr_info("APIC delta adjusted to PM-Timer: " |
| "%lu (%ld)\n", (unsigned long)res, *delta); |
| *delta = (long)res; |
| |
| /* Correct the tsc counter value */ |
| if (boot_cpu_has(X86_FEATURE_TSC)) { |
| res = (((u64)(*deltatsc)) * pm_100ms); |
| do_div(res, deltapm); |
| apic_printk(APIC_VERBOSE, "TSC delta adjusted to " |
| "PM-Timer: %lu (%ld)\n", |
| (unsigned long)res, *deltatsc); |
| *deltatsc = (long)res; |
| } |
| |
| return 0; |
| } |
| |
| static int __init lapic_init_clockevent(void) |
| { |
| if (!lapic_timer_period) |
| return -1; |
| |
| /* Calculate the scaled math multiplication factor */ |
| lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR, |
| TICK_NSEC, lapic_clockevent.shift); |
| lapic_clockevent.max_delta_ns = |
| clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); |
| lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; |
| lapic_clockevent.min_delta_ns = |
| clockevent_delta2ns(0xF, &lapic_clockevent); |
| lapic_clockevent.min_delta_ticks = 0xF; |
| |
| return 0; |
| } |
| |
| bool __init apic_needs_pit(void) |
| { |
| /* |
| * If the frequencies are not known, PIT is required for both TSC |
| * and apic timer calibration. |
| */ |
| if (!tsc_khz || !cpu_khz) |
| return true; |
| |
| /* Is there an APIC at all or is it disabled? */ |
| if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic) |
| return true; |
| |
| /* |
| * If interrupt delivery mode is legacy PIC or virtual wire without |
| * configuration, the local APIC timer wont be set up. Make sure |
| * that the PIT is initialized. |
| */ |
| if (apic_intr_mode == APIC_PIC || |
| apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG) |
| return true; |
| |
| /* Virt guests may lack ARAT, but still have DEADLINE */ |
| if (!boot_cpu_has(X86_FEATURE_ARAT)) |
| return true; |
| |
| /* Deadline timer is based on TSC so no further PIT action required */ |
| if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| return false; |
| |
| /* APIC timer disabled? */ |
| if (disable_apic_timer) |
| return true; |
| /* |
| * The APIC timer frequency is known already, no PIT calibration |
| * required. If unknown, let the PIT be initialized. |
| */ |
| return lapic_timer_period == 0; |
| } |
| |
| static int __init calibrate_APIC_clock(void) |
| { |
| struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| u64 tsc_perj = 0, tsc_start = 0; |
| unsigned long jif_start; |
| unsigned long deltaj; |
| long delta, deltatsc; |
| int pm_referenced = 0; |
| |
| if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| return 0; |
| |
| /* |
| * Check if lapic timer has already been calibrated by platform |
| * specific routine, such as tsc calibration code. If so just fill |
| * in the clockevent structure and return. |
| */ |
| if (!lapic_init_clockevent()) { |
| apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", |
| lapic_timer_period); |
| /* |
| * Direct calibration methods must have an always running |
| * local APIC timer, no need for broadcast timer. |
| */ |
| lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; |
| return 0; |
| } |
| |
| apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" |
| "calibrating APIC timer ...\n"); |
| |
| /* |
| * There are platforms w/o global clockevent devices. Instead of |
| * making the calibration conditional on that, use a polling based |
| * approach everywhere. |
| */ |
| local_irq_disable(); |
| |
| /* |
| * Setup the APIC counter to maximum. There is no way the lapic |
| * can underflow in the 100ms detection time frame |
| */ |
| __setup_APIC_LVTT(0xffffffff, 0, 0); |
| |
| /* |
| * Methods to terminate the calibration loop: |
| * 1) Global clockevent if available (jiffies) |
| * 2) TSC if available and frequency is known |
| */ |
| jif_start = READ_ONCE(jiffies); |
| |
| if (tsc_khz) { |
| tsc_start = rdtsc(); |
| tsc_perj = div_u64((u64)tsc_khz * 1000, HZ); |
| } |
| |
| /* |
| * Enable interrupts so the tick can fire, if a global |
| * clockevent device is available |
| */ |
| local_irq_enable(); |
| |
| while (lapic_cal_loops <= LAPIC_CAL_LOOPS) { |
| /* Wait for a tick to elapse */ |
| while (1) { |
| if (tsc_khz) { |
| u64 tsc_now = rdtsc(); |
| if ((tsc_now - tsc_start) >= tsc_perj) { |
| tsc_start += tsc_perj; |
| break; |
| } |
| } else { |
| unsigned long jif_now = READ_ONCE(jiffies); |
| |
| if (time_after(jif_now, jif_start)) { |
| jif_start = jif_now; |
| break; |
| } |
| } |
| cpu_relax(); |
| } |
| |
| /* Invoke the calibration routine */ |
| local_irq_disable(); |
| lapic_cal_handler(NULL); |
| local_irq_enable(); |
| } |
| |
| local_irq_disable(); |
| |
| /* Build delta t1-t2 as apic timer counts down */ |
| delta = lapic_cal_t1 - lapic_cal_t2; |
| apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); |
| |
| deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); |
| |
| /* we trust the PM based calibration if possible */ |
| pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, |
| &delta, &deltatsc); |
| |
| lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; |
| lapic_init_clockevent(); |
| |
| apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); |
| apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); |
| apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", |
| lapic_timer_period); |
| |
| if (boot_cpu_has(X86_FEATURE_TSC)) { |
| apic_printk(APIC_VERBOSE, "..... CPU clock speed is " |
| "%ld.%04ld MHz.\n", |
| (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), |
| (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); |
| } |
| |
| apic_printk(APIC_VERBOSE, "..... host bus clock speed is " |
| "%u.%04u MHz.\n", |
| lapic_timer_period / (1000000 / HZ), |
| lapic_timer_period % (1000000 / HZ)); |
| |
| /* |
| * Do a sanity check on the APIC calibration result |
| */ |
| if (lapic_timer_period < (1000000 / HZ)) { |
| local_irq_enable(); |
| pr_warn("APIC frequency too slow, disabling apic timer\n"); |
| return -1; |
| } |
| |
| levt->features &= ~CLOCK_EVT_FEAT_DUMMY; |
| |
| /* |
| * PM timer calibration failed or not turned on so lets try APIC |
| * timer based calibration, if a global clockevent device is |
| * available. |
| */ |
| if (!pm_referenced && global_clock_event) { |
| apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); |
| |
| /* |
| * Setup the apic timer manually |
| */ |
| levt->event_handler = lapic_cal_handler; |
| lapic_timer_set_periodic(levt); |
| lapic_cal_loops = -1; |
| |
| /* Let the interrupts run */ |
| local_irq_enable(); |
| |
| while (lapic_cal_loops <= LAPIC_CAL_LOOPS) |
| cpu_relax(); |
| |
| /* Stop the lapic timer */ |
| local_irq_disable(); |
| lapic_timer_shutdown(levt); |
| |
| /* Jiffies delta */ |
| deltaj = lapic_cal_j2 - lapic_cal_j1; |
| apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); |
| |
| /* Check, if the jiffies result is consistent */ |
| if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) |
| apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); |
| else |
| levt->features |= CLOCK_EVT_FEAT_DUMMY; |
| } |
| local_irq_enable(); |
| |
| if (levt->features & CLOCK_EVT_FEAT_DUMMY) { |
| pr_warn("APIC timer disabled due to verification failure\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Setup the boot APIC |
| * |
| * Calibrate and verify the result. |
| */ |
| void __init setup_boot_APIC_clock(void) |
| { |
| /* |
| * The local apic timer can be disabled via the kernel |
| * commandline or from the CPU detection code. Register the lapic |
| * timer as a dummy clock event source on SMP systems, so the |
| * broadcast mechanism is used. On UP systems simply ignore it. |
| */ |
| if (disable_apic_timer) { |
| pr_info("Disabling APIC timer\n"); |
| /* No broadcast on UP ! */ |
| if (num_possible_cpus() > 1) { |
| lapic_clockevent.mult = 1; |
| setup_APIC_timer(); |
| } |
| return; |
| } |
| |
| if (calibrate_APIC_clock()) { |
| /* No broadcast on UP ! */ |
| if (num_possible_cpus() > 1) |
| setup_APIC_timer(); |
| return; |
| } |
| |
| /* |
| * If nmi_watchdog is set to IO_APIC, we need the |
| * PIT/HPET going. Otherwise register lapic as a dummy |
| * device. |
| */ |
| lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; |
| |
| /* Setup the lapic or request the broadcast */ |
| setup_APIC_timer(); |
| amd_e400_c1e_apic_setup(); |
| } |
| |
| void setup_secondary_APIC_clock(void) |
| { |
| setup_APIC_timer(); |
| amd_e400_c1e_apic_setup(); |
| } |
| |
| /* |
| * The guts of the apic timer interrupt |
| */ |
| static void local_apic_timer_interrupt(void) |
| { |
| struct clock_event_device *evt = this_cpu_ptr(&lapic_events); |
| |
| /* |
| * Normally we should not be here till LAPIC has been initialized but |
| * in some cases like kdump, its possible that there is a pending LAPIC |
| * timer interrupt from previous kernel's context and is delivered in |
| * new kernel the moment interrupts are enabled. |
| * |
| * Interrupts are enabled early and LAPIC is setup much later, hence |
| * its possible that when we get here evt->event_handler is NULL. |
| * Check for event_handler being NULL and discard the interrupt as |
| * spurious. |
| */ |
| if (!evt->event_handler) { |
| pr_warn("Spurious LAPIC timer interrupt on cpu %d\n", |
| smp_processor_id()); |
| /* Switch it off */ |
| lapic_timer_shutdown(evt); |
| return; |
| } |
| |
| /* |
| * the NMI deadlock-detector uses this. |
| */ |
| inc_irq_stat(apic_timer_irqs); |
| |
| evt->event_handler(evt); |
| } |
| |
| /* |
| * Local APIC timer interrupt. This is the most natural way for doing |
| * local interrupts, but local timer interrupts can be emulated by |
| * broadcast interrupts too. [in case the hw doesn't support APIC timers] |
| * |
| * [ if a single-CPU system runs an SMP kernel then we call the local |
| * interrupt as well. Thus we cannot inline the local irq ... ] |
| */ |
| DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| ack_APIC_irq(); |
| trace_local_timer_entry(LOCAL_TIMER_VECTOR); |
| local_apic_timer_interrupt(); |
| trace_local_timer_exit(LOCAL_TIMER_VECTOR); |
| |
| set_irq_regs(old_regs); |
| } |
| |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| |
| /* |
| * Local APIC start and shutdown |
| */ |
| |
| /** |
| * clear_local_APIC - shutdown the local APIC |
| * |
| * This is called, when a CPU is disabled and before rebooting, so the state of |
| * the local APIC has no dangling leftovers. Also used to cleanout any BIOS |
| * leftovers during boot. |
| */ |
| void clear_local_APIC(void) |
| { |
| int maxlvt; |
| u32 v; |
| |
| /* APIC hasn't been mapped yet */ |
| if (!x2apic_mode && !apic_phys) |
| return; |
| |
| maxlvt = lapic_get_maxlvt(); |
| /* |
| * Masking an LVT entry can trigger a local APIC error |
| * if the vector is zero. Mask LVTERR first to prevent this. |
| */ |
| if (maxlvt >= 3) { |
| v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ |
| apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); |
| } |
| /* |
| * Careful: we have to set masks only first to deassert |
| * any level-triggered sources. |
| */ |
| v = apic_read(APIC_LVTT); |
| apic_write(APIC_LVTT, v | APIC_LVT_MASKED); |
| v = apic_read(APIC_LVT0); |
| apic_write(APIC_LVT0, v | APIC_LVT_MASKED); |
| v = apic_read(APIC_LVT1); |
| apic_write(APIC_LVT1, v | APIC_LVT_MASKED); |
| if (maxlvt >= 4) { |
| v = apic_read(APIC_LVTPC); |
| apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); |
| } |
| |
| /* lets not touch this if we didn't frob it */ |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| if (maxlvt >= 5) { |
| v = apic_read(APIC_LVTTHMR); |
| apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); |
| } |
| #endif |
| #ifdef CONFIG_X86_MCE_INTEL |
| if (maxlvt >= 6) { |
| v = apic_read(APIC_LVTCMCI); |
| if (!(v & APIC_LVT_MASKED)) |
| apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); |
| } |
| #endif |
| |
| /* |
| * Clean APIC state for other OSs: |
| */ |
| apic_write(APIC_LVTT, APIC_LVT_MASKED); |
| apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| apic_write(APIC_LVT1, APIC_LVT_MASKED); |
| if (maxlvt >= 3) |
| apic_write(APIC_LVTERR, APIC_LVT_MASKED); |
| if (maxlvt >= 4) |
| apic_write(APIC_LVTPC, APIC_LVT_MASKED); |
| |
| /* Integrated APIC (!82489DX) ? */ |
| if (lapic_is_integrated()) { |
| if (maxlvt > 3) |
| /* Clear ESR due to Pentium errata 3AP and 11AP */ |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| } |
| |
| /** |
| * apic_soft_disable - Clears and software disables the local APIC on hotplug |
| * |
| * Contrary to disable_local_APIC() this does not touch the enable bit in |
| * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC |
| * bus would require a hardware reset as the APIC would lose track of bus |
| * arbitration. On systems with FSB delivery APICBASE could be disabled, |
| * but it has to be guaranteed that no interrupt is sent to the APIC while |
| * in that state and it's not clear from the SDM whether it still responds |
| * to INIT/SIPI messages. Stay on the safe side and use software disable. |
| */ |
| void apic_soft_disable(void) |
| { |
| u32 value; |
| |
| clear_local_APIC(); |
| |
| /* Soft disable APIC (implies clearing of registers for 82489DX!). */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_SPIV_APIC_ENABLED; |
| apic_write(APIC_SPIV, value); |
| } |
| |
| /** |
| * disable_local_APIC - clear and disable the local APIC |
| */ |
| void disable_local_APIC(void) |
| { |
| /* APIC hasn't been mapped yet */ |
| if (!x2apic_mode && !apic_phys) |
| return; |
| |
| apic_soft_disable(); |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * When LAPIC was disabled by the BIOS and enabled by the kernel, |
| * restore the disabled state. |
| */ |
| if (enabled_via_apicbase) { |
| unsigned int l, h; |
| |
| rdmsr(MSR_IA32_APICBASE, l, h); |
| l &= ~MSR_IA32_APICBASE_ENABLE; |
| wrmsr(MSR_IA32_APICBASE, l, h); |
| } |
| #endif |
| } |
| |
| /* |
| * If Linux enabled the LAPIC against the BIOS default disable it down before |
| * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and |
| * not power-off. Additionally clear all LVT entries before disable_local_APIC |
| * for the case where Linux didn't enable the LAPIC. |
| */ |
| void lapic_shutdown(void) |
| { |
| unsigned long flags; |
| |
| if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) |
| return; |
| |
| local_irq_save(flags); |
| |
| #ifdef CONFIG_X86_32 |
| if (!enabled_via_apicbase) |
| clear_local_APIC(); |
| else |
| #endif |
| disable_local_APIC(); |
| |
| |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * sync_Arb_IDs - synchronize APIC bus arbitration IDs |
| */ |
| void __init sync_Arb_IDs(void) |
| { |
| /* |
| * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not |
| * needed on AMD. |
| */ |
| if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) |
| return; |
| |
| /* |
| * Wait for idle. |
| */ |
| apic_wait_icr_idle(); |
| |
| apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); |
| apic_write(APIC_ICR, APIC_DEST_ALLINC | |
| APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| } |
| |
| enum apic_intr_mode_id apic_intr_mode __ro_after_init; |
| |
| static int __init __apic_intr_mode_select(void) |
| { |
| /* Check kernel option */ |
| if (disable_apic) { |
| pr_info("APIC disabled via kernel command line\n"); |
| return APIC_PIC; |
| } |
| |
| /* Check BIOS */ |
| #ifdef CONFIG_X86_64 |
| /* On 64-bit, the APIC must be integrated, Check local APIC only */ |
| if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| disable_apic = 1; |
| pr_info("APIC disabled by BIOS\n"); |
| return APIC_PIC; |
| } |
| #else |
| /* On 32-bit, the APIC may be integrated APIC or 82489DX */ |
| |
| /* Neither 82489DX nor integrated APIC ? */ |
| if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { |
| disable_apic = 1; |
| return APIC_PIC; |
| } |
| |
| /* If the BIOS pretends there is an integrated APIC ? */ |
| if (!boot_cpu_has(X86_FEATURE_APIC) && |
| APIC_INTEGRATED(boot_cpu_apic_version)) { |
| disable_apic = 1; |
| pr_err(FW_BUG "Local APIC %d not detected, force emulation\n", |
| boot_cpu_physical_apicid); |
| return APIC_PIC; |
| } |
| #endif |
| |
| /* Check MP table or ACPI MADT configuration */ |
| if (!smp_found_config) { |
| disable_ioapic_support(); |
| if (!acpi_lapic) { |
| pr_info("APIC: ACPI MADT or MP tables are not detected\n"); |
| return APIC_VIRTUAL_WIRE_NO_CONFIG; |
| } |
| return APIC_VIRTUAL_WIRE; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* If SMP should be disabled, then really disable it! */ |
| if (!setup_max_cpus) { |
| pr_info("APIC: SMP mode deactivated\n"); |
| return APIC_SYMMETRIC_IO_NO_ROUTING; |
| } |
| |
| if (read_apic_id() != boot_cpu_physical_apicid) { |
| panic("Boot APIC ID in local APIC unexpected (%d vs %d)", |
| read_apic_id(), boot_cpu_physical_apicid); |
| /* Or can we switch back to PIC here? */ |
| } |
| #endif |
| |
| return APIC_SYMMETRIC_IO; |
| } |
| |
| /* Select the interrupt delivery mode for the BSP */ |
| void __init apic_intr_mode_select(void) |
| { |
| apic_intr_mode = __apic_intr_mode_select(); |
| } |
| |
| /* |
| * An initial setup of the virtual wire mode. |
| */ |
| void __init init_bsp_APIC(void) |
| { |
| unsigned int value; |
| |
| /* |
| * Don't do the setup now if we have a SMP BIOS as the |
| * through-I/O-APIC virtual wire mode might be active. |
| */ |
| if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) |
| return; |
| |
| /* |
| * Do not trust the local APIC being empty at bootup. |
| */ |
| clear_local_APIC(); |
| |
| /* |
| * Enable APIC. |
| */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_VECTOR_MASK; |
| value |= APIC_SPIV_APIC_ENABLED; |
| |
| #ifdef CONFIG_X86_32 |
| /* This bit is reserved on P4/Xeon and should be cleared */ |
| if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && |
| (boot_cpu_data.x86 == 15)) |
| value &= ~APIC_SPIV_FOCUS_DISABLED; |
| else |
| #endif |
| value |= APIC_SPIV_FOCUS_DISABLED; |
| value |= SPURIOUS_APIC_VECTOR; |
| apic_write(APIC_SPIV, value); |
| |
| /* |
| * Set up the virtual wire mode. |
| */ |
| apic_write(APIC_LVT0, APIC_DM_EXTINT); |
| value = APIC_DM_NMI; |
| if (!lapic_is_integrated()) /* 82489DX */ |
| value |= APIC_LVT_LEVEL_TRIGGER; |
| if (apic_extnmi == APIC_EXTNMI_NONE) |
| value |= APIC_LVT_MASKED; |
| apic_write(APIC_LVT1, value); |
| } |
| |
| static void __init apic_bsp_setup(bool upmode); |
| |
| /* Init the interrupt delivery mode for the BSP */ |
| void __init apic_intr_mode_init(void) |
| { |
| bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); |
| |
| switch (apic_intr_mode) { |
| case APIC_PIC: |
| pr_info("APIC: Keep in PIC mode(8259)\n"); |
| return; |
| case APIC_VIRTUAL_WIRE: |
| pr_info("APIC: Switch to virtual wire mode setup\n"); |
| default_setup_apic_routing(); |
| break; |
| case APIC_VIRTUAL_WIRE_NO_CONFIG: |
| pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); |
| upmode = true; |
| default_setup_apic_routing(); |
| break; |
| case APIC_SYMMETRIC_IO: |
| pr_info("APIC: Switch to symmetric I/O mode setup\n"); |
| default_setup_apic_routing(); |
| break; |
| case APIC_SYMMETRIC_IO_NO_ROUTING: |
| pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); |
| break; |
| } |
| |
| if (x86_platform.apic_post_init) |
| x86_platform.apic_post_init(); |
| |
| apic_bsp_setup(upmode); |
| } |
| |
| static void lapic_setup_esr(void) |
| { |
| unsigned int oldvalue, value, maxlvt; |
| |
| if (!lapic_is_integrated()) { |
| pr_info("No ESR for 82489DX.\n"); |
| return; |
| } |
| |
| if (apic->disable_esr) { |
| /* |
| * Something untraceable is creating bad interrupts on |
| * secondary quads ... for the moment, just leave the |
| * ESR disabled - we can't do anything useful with the |
| * errors anyway - mbligh |
| */ |
| pr_info("Leaving ESR disabled.\n"); |
| return; |
| } |
| |
| maxlvt = lapic_get_maxlvt(); |
| if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| oldvalue = apic_read(APIC_ESR); |
| |
| /* enables sending errors */ |
| value = ERROR_APIC_VECTOR; |
| apic_write(APIC_LVTERR, value); |
| |
| /* |
| * spec says clear errors after enabling vector. |
| */ |
| if (maxlvt > 3) |
| apic_write(APIC_ESR, 0); |
| value = apic_read(APIC_ESR); |
| if (value != oldvalue) |
| apic_printk(APIC_VERBOSE, "ESR value before enabling " |
| "vector: 0x%08x after: 0x%08x\n", |
| oldvalue, value); |
| } |
| |
| #define APIC_IR_REGS APIC_ISR_NR |
| #define APIC_IR_BITS (APIC_IR_REGS * 32) |
| #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG) |
| |
| union apic_ir { |
| unsigned long map[APIC_IR_MAPSIZE]; |
| u32 regs[APIC_IR_REGS]; |
| }; |
| |
| static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr) |
| { |
| int i, bit; |
| |
| /* Read the IRRs */ |
| for (i = 0; i < APIC_IR_REGS; i++) |
| irr->regs[i] = apic_read(APIC_IRR + i * 0x10); |
| |
| /* Read the ISRs */ |
| for (i = 0; i < APIC_IR_REGS; i++) |
| isr->regs[i] = apic_read(APIC_ISR + i * 0x10); |
| |
| /* |
| * If the ISR map is not empty. ACK the APIC and run another round |
| * to verify whether a pending IRR has been unblocked and turned |
| * into a ISR. |
| */ |
| if (!bitmap_empty(isr->map, APIC_IR_BITS)) { |
| /* |
| * There can be multiple ISR bits set when a high priority |
| * interrupt preempted a lower priority one. Issue an ACK |
| * per set bit. |
| */ |
| for_each_set_bit(bit, isr->map, APIC_IR_BITS) |
| ack_APIC_irq(); |
| return true; |
| } |
| |
| return !bitmap_empty(irr->map, APIC_IR_BITS); |
| } |
| |
| /* |
| * After a crash, we no longer service the interrupts and a pending |
| * interrupt from previous kernel might still have ISR bit set. |
| * |
| * Most probably by now the CPU has serviced that pending interrupt and it |
| * might not have done the ack_APIC_irq() because it thought, interrupt |
| * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear |
| * the ISR bit and cpu thinks it has already serviced the interrupt. Hence |
| * a vector might get locked. It was noticed for timer irq (vector |
| * 0x31). Issue an extra EOI to clear ISR. |
| * |
| * If there are pending IRR bits they turn into ISR bits after a higher |
| * priority ISR bit has been acked. |
| */ |
| static void apic_pending_intr_clear(void) |
| { |
| union apic_ir irr, isr; |
| unsigned int i; |
| |
| /* 512 loops are way oversized and give the APIC a chance to obey. */ |
| for (i = 0; i < 512; i++) { |
| if (!apic_check_and_ack(&irr, &isr)) |
| return; |
| } |
| /* Dump the IRR/ISR content if that failed */ |
| pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map); |
| } |
| |
| /** |
| * setup_local_APIC - setup the local APIC |
| * |
| * Used to setup local APIC while initializing BSP or bringing up APs. |
| * Always called with preemption disabled. |
| */ |
| static void setup_local_APIC(void) |
| { |
| int cpu = smp_processor_id(); |
| unsigned int value; |
| |
| if (disable_apic) { |
| disable_ioapic_support(); |
| return; |
| } |
| |
| /* |
| * If this comes from kexec/kcrash the APIC might be enabled in |
| * SPIV. Soft disable it before doing further initialization. |
| */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_SPIV_APIC_ENABLED; |
| apic_write(APIC_SPIV, value); |
| |
| #ifdef CONFIG_X86_32 |
| /* Pound the ESR really hard over the head with a big hammer - mbligh */ |
| if (lapic_is_integrated() && apic->disable_esr) { |
| apic_write(APIC_ESR, 0); |
| apic_write(APIC_ESR, 0); |
| apic_write(APIC_ESR, 0); |
| apic_write(APIC_ESR, 0); |
| } |
| #endif |
| /* |
| * Double-check whether this APIC is really registered. |
| * This is meaningless in clustered apic mode, so we skip it. |
| */ |
| BUG_ON(!apic->apic_id_registered()); |
| |
| /* |
| * Intel recommends to set DFR, LDR and TPR before enabling |
| * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel |
| * document number 292116). So here it goes... |
| */ |
| apic->init_apic_ldr(); |
| |
| #ifdef CONFIG_X86_32 |
| if (apic->dest_mode_logical) { |
| int logical_apicid, ldr_apicid; |
| |
| /* |
| * APIC LDR is initialized. If logical_apicid mapping was |
| * initialized during get_smp_config(), make sure it matches |
| * the actual value. |
| */ |
| logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu); |
| ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); |
| if (logical_apicid != BAD_APICID) |
| WARN_ON(logical_apicid != ldr_apicid); |
| /* Always use the value from LDR. */ |
| early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid; |
| } |
| #endif |
| |
| /* |
| * Set Task Priority to 'accept all except vectors 0-31'. An APIC |
| * vector in the 16-31 range could be delivered if TPR == 0, but we |
| * would think it's an exception and terrible things will happen. We |
| * never change this later on. |
| */ |
| value = apic_read(APIC_TASKPRI); |
| value &= ~APIC_TPRI_MASK; |
| value |= 0x10; |
| apic_write(APIC_TASKPRI, value); |
| |
| /* Clear eventually stale ISR/IRR bits */ |
| apic_pending_intr_clear(); |
| |
| /* |
| * Now that we are all set up, enable the APIC |
| */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_VECTOR_MASK; |
| /* |
| * Enable APIC |
| */ |
| value |= APIC_SPIV_APIC_ENABLED; |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * Some unknown Intel IO/APIC (or APIC) errata is biting us with |
| * certain networking cards. If high frequency interrupts are |
| * happening on a particular IOAPIC pin, plus the IOAPIC routing |
| * entry is masked/unmasked at a high rate as well then sooner or |
| * later IOAPIC line gets 'stuck', no more interrupts are received |
| * from the device. If focus CPU is disabled then the hang goes |
| * away, oh well :-( |
| * |
| * [ This bug can be reproduced easily with a level-triggered |
| * PCI Ne2000 networking cards and PII/PIII processors, dual |
| * BX chipset. ] |
| */ |
| /* |
| * Actually disabling the focus CPU check just makes the hang less |
| * frequent as it makes the interrupt distribution model be more |
| * like LRU than MRU (the short-term load is more even across CPUs). |
| */ |
| |
| /* |
| * - enable focus processor (bit==0) |
| * - 64bit mode always use processor focus |
| * so no need to set it |
| */ |
| value &= ~APIC_SPIV_FOCUS_DISABLED; |
| #endif |
| |
| /* |
| * Set spurious IRQ vector |
| */ |
| value |= SPURIOUS_APIC_VECTOR; |
| apic_write(APIC_SPIV, value); |
| |
| perf_events_lapic_init(); |
| |
| /* |
| * Set up LVT0, LVT1: |
| * |
| * set up through-local-APIC on the boot CPU's LINT0. This is not |
| * strictly necessary in pure symmetric-IO mode, but sometimes |
| * we delegate interrupts to the 8259A. |
| */ |
| /* |
| * TODO: set up through-local-APIC from through-I/O-APIC? --macro |
| */ |
| value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; |
| if (!cpu && (pic_mode || !value || skip_ioapic_setup)) { |
| value = APIC_DM_EXTINT; |
| apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); |
| } else { |
| value = APIC_DM_EXTINT | APIC_LVT_MASKED; |
| apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); |
| } |
| apic_write(APIC_LVT0, value); |
| |
| /* |
| * Only the BSP sees the LINT1 NMI signal by default. This can be |
| * modified by apic_extnmi= boot option. |
| */ |
| if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || |
| apic_extnmi == APIC_EXTNMI_ALL) |
| value = APIC_DM_NMI; |
| else |
| value = APIC_DM_NMI | APIC_LVT_MASKED; |
| |
| /* Is 82489DX ? */ |
| if (!lapic_is_integrated()) |
| value |= APIC_LVT_LEVEL_TRIGGER; |
| apic_write(APIC_LVT1, value); |
| |
| #ifdef CONFIG_X86_MCE_INTEL |
| /* Recheck CMCI information after local APIC is up on CPU #0 */ |
| if (!cpu) |
| cmci_recheck(); |
| #endif |
| } |
| |
| static void end_local_APIC_setup(void) |
| { |
| lapic_setup_esr(); |
| |
| #ifdef CONFIG_X86_32 |
| { |
| unsigned int value; |
| /* Disable the local apic timer */ |
| value = apic_read(APIC_LVTT); |
| value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); |
| apic_write(APIC_LVTT, value); |
| } |
| #endif |
| |
| apic_pm_activate(); |
| } |
| |
| /* |
| * APIC setup function for application processors. Called from smpboot.c |
| */ |
| void apic_ap_setup(void) |
| { |
| setup_local_APIC(); |
| end_local_APIC_setup(); |
| } |
| |
| #ifdef CONFIG_X86_X2APIC |
| int x2apic_mode; |
| EXPORT_SYMBOL_GPL(x2apic_mode); |
| |
| enum { |
| X2APIC_OFF, |
| X2APIC_ON, |
| X2APIC_DISABLED, |
| }; |
| static int x2apic_state; |
| |
| static void __x2apic_disable(void) |
| { |
| u64 msr; |
| |
| if (!boot_cpu_has(X86_FEATURE_APIC)) |
| return; |
| |
| rdmsrl(MSR_IA32_APICBASE, msr); |
| if (!(msr & X2APIC_ENABLE)) |
| return; |
| /* Disable xapic and x2apic first and then reenable xapic mode */ |
| wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); |
| wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); |
| printk_once(KERN_INFO "x2apic disabled\n"); |
| } |
| |
| static void __x2apic_enable(void) |
| { |
| u64 msr; |
| |
| rdmsrl(MSR_IA32_APICBASE, msr); |
| if (msr & X2APIC_ENABLE) |
| return; |
| wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); |
| printk_once(KERN_INFO "x2apic enabled\n"); |
| } |
| |
| static int __init setup_nox2apic(char *str) |
| { |
| if (x2apic_enabled()) { |
| int apicid = native_apic_msr_read(APIC_ID); |
| |
| if (apicid >= 255) { |
| pr_warn("Apicid: %08x, cannot enforce nox2apic\n", |
| apicid); |
| return 0; |
| } |
| pr_warn("x2apic already enabled.\n"); |
| __x2apic_disable(); |
| } |
| setup_clear_cpu_cap(X86_FEATURE_X2APIC); |
| x2apic_state = X2APIC_DISABLED; |
| x2apic_mode = 0; |
| return 0; |
| } |
| early_param("nox2apic", setup_nox2apic); |
| |
| /* Called from cpu_init() to enable x2apic on (secondary) cpus */ |
| void x2apic_setup(void) |
| { |
| /* |
| * If x2apic is not in ON state, disable it if already enabled |
| * from BIOS. |
| */ |
| if (x2apic_state != X2APIC_ON) { |
| __x2apic_disable(); |
| return; |
| } |
| __x2apic_enable(); |
| } |
| |
| static __init void x2apic_disable(void) |
| { |
| u32 x2apic_id, state = x2apic_state; |
| |
| x2apic_mode = 0; |
| x2apic_state = X2APIC_DISABLED; |
| |
| if (state != X2APIC_ON) |
| return; |
| |
| x2apic_id = read_apic_id(); |
| if (x2apic_id >= 255) |
| panic("Cannot disable x2apic, id: %08x\n", x2apic_id); |
| |
| __x2apic_disable(); |
| register_lapic_address(mp_lapic_addr); |
| } |
| |
| static __init void x2apic_enable(void) |
| { |
| if (x2apic_state != X2APIC_OFF) |
| return; |
| |
| x2apic_mode = 1; |
| x2apic_state = X2APIC_ON; |
| __x2apic_enable(); |
| } |
| |
| static __init void try_to_enable_x2apic(int remap_mode) |
| { |
| if (x2apic_state == X2APIC_DISABLED) |
| return; |
| |
| if (remap_mode != IRQ_REMAP_X2APIC_MODE) { |
| u32 apic_limit = 255; |
| |
| /* |
| * Using X2APIC without IR is not architecturally supported |
| * on bare metal but may be supported in guests. |
| */ |
| if (!x86_init.hyper.x2apic_available()) { |
| pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); |
| x2apic_disable(); |
| return; |
| } |
| |
| /* |
| * If the hypervisor supports extended destination ID in |
| * MSI, that increases the maximum APIC ID that can be |
| * used for non-remapped IRQ domains. |
| */ |
| if (x86_init.hyper.msi_ext_dest_id()) { |
| virt_ext_dest_id = 1; |
| apic_limit = 32767; |
| } |
| |
| /* |
| * Without IR, all CPUs can be addressed by IOAPIC/MSI only |
| * in physical mode, and CPUs with an APIC ID that cannot |
| * be addressed must not be brought online. |
| */ |
| x2apic_set_max_apicid(apic_limit); |
| x2apic_phys = 1; |
| } |
| x2apic_enable(); |
| } |
| |
| void __init check_x2apic(void) |
| { |
| if (x2apic_enabled()) { |
| pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); |
| x2apic_mode = 1; |
| x2apic_state = X2APIC_ON; |
| } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { |
| x2apic_state = X2APIC_DISABLED; |
| } |
| } |
| #else /* CONFIG_X86_X2APIC */ |
| static int __init validate_x2apic(void) |
| { |
| if (!apic_is_x2apic_enabled()) |
| return 0; |
| /* |
| * Checkme: Can we simply turn off x2apic here instead of panic? |
| */ |
| panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); |
| } |
| early_initcall(validate_x2apic); |
| |
| static inline void try_to_enable_x2apic(int remap_mode) { } |
| static inline void __x2apic_enable(void) { } |
| #endif /* !CONFIG_X86_X2APIC */ |
| |
| void __init enable_IR_x2apic(void) |
| { |
| unsigned long flags; |
| int ret, ir_stat; |
| |
| if (skip_ioapic_setup) { |
| pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); |
| return; |
| } |
| |
| ir_stat = irq_remapping_prepare(); |
| if (ir_stat < 0 && !x2apic_supported()) |
| return; |
| |
| ret = save_ioapic_entries(); |
| if (ret) { |
| pr_info("Saving IO-APIC state failed: %d\n", ret); |
| return; |
| } |
| |
| local_irq_save(flags); |
| legacy_pic->mask_all(); |
| mask_ioapic_entries(); |
| |
| /* If irq_remapping_prepare() succeeded, try to enable it */ |
| if (ir_stat >= 0) |
| ir_stat = irq_remapping_enable(); |
| /* ir_stat contains the remap mode or an error code */ |
| try_to_enable_x2apic(ir_stat); |
| |
| if (ir_stat < 0) |
| restore_ioapic_entries(); |
| legacy_pic->restore_mask(); |
| local_irq_restore(flags); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Detect and enable local APICs on non-SMP boards. |
| * Original code written by Keir Fraser. |
| * On AMD64 we trust the BIOS - if it says no APIC it is likely |
| * not correctly set up (usually the APIC timer won't work etc.) |
| */ |
| static int __init detect_init_APIC(void) |
| { |
| if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| pr_info("No local APIC present\n"); |
| return -1; |
| } |
| |
| mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; |
| return 0; |
| } |
| #else |
| |
| static int __init apic_verify(void) |
| { |
| u32 features, h, l; |
| |
| /* |
| * The APIC feature bit should now be enabled |
| * in `cpuid' |
| */ |
| features = cpuid_edx(1); |
| if (!(features & (1 << X86_FEATURE_APIC))) { |
| pr_warn("Could not enable APIC!\n"); |
| return -1; |
| } |
| set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); |
| mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; |
| |
| /* The BIOS may have set up the APIC at some other address */ |
| if (boot_cpu_data.x86 >= 6) { |
| rdmsr(MSR_IA32_APICBASE, l, h); |
| if (l & MSR_IA32_APICBASE_ENABLE) |
| mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; |
| } |
| |
| pr_info("Found and enabled local APIC!\n"); |
| return 0; |
| } |
| |
| int __init apic_force_enable(unsigned long addr) |
| { |
| u32 h, l; |
| |
| if (disable_apic) |
| return -1; |
| |
| /* |
| * Some BIOSes disable the local APIC in the APIC_BASE |
| * MSR. This can only be done in software for Intel P6 or later |
| * and AMD K7 (Model > 1) or later. |
| */ |
| if (boot_cpu_data.x86 >= 6) { |
| rdmsr(MSR_IA32_APICBASE, l, h); |
| if (!(l & MSR_IA32_APICBASE_ENABLE)) { |
| pr_info("Local APIC disabled by BIOS -- reenabling.\n"); |
| l &= ~MSR_IA32_APICBASE_BASE; |
| l |= MSR_IA32_APICBASE_ENABLE | addr; |
| wrmsr(MSR_IA32_APICBASE, l, h); |
| enabled_via_apicbase = 1; |
| } |
| } |
| return apic_verify(); |
| } |
| |
| /* |
| * Detect and initialize APIC |
| */ |
| static int __init detect_init_APIC(void) |
| { |
| /* Disabled by kernel option? */ |
| if (disable_apic) |
| return -1; |
| |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_AMD: |
| if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || |
| (boot_cpu_data.x86 >= 15)) |
| break; |
| goto no_apic; |
| case X86_VENDOR_HYGON: |
| break; |
| case X86_VENDOR_INTEL: |
| if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || |
| (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) |
| break; |
| goto no_apic; |
| default: |
| goto no_apic; |
| } |
| |
| if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| /* |
| * Over-ride BIOS and try to enable the local APIC only if |
| * "lapic" specified. |
| */ |
| if (!force_enable_local_apic) { |
| pr_info("Local APIC disabled by BIOS -- " |
| "you can enable it with \"lapic\"\n"); |
| return -1; |
| } |
| if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) |
| return -1; |
| } else { |
| if (apic_verify()) |
| return -1; |
| } |
| |
| apic_pm_activate(); |
| |
| return 0; |
| |
| no_apic: |
| pr_info("No local APIC present or hardware disabled\n"); |
| return -1; |
| } |
| #endif |
| |
| /** |
| * init_apic_mappings - initialize APIC mappings |
| */ |
| void __init init_apic_mappings(void) |
| { |
| unsigned int new_apicid; |
| |
| if (apic_validate_deadline_timer()) |
| pr_info("TSC deadline timer available\n"); |
| |
| if (x2apic_mode) { |
| boot_cpu_physical_apicid = read_apic_id(); |
| return; |
| } |
| |
| /* If no local APIC can be found return early */ |
| if (!smp_found_config && detect_init_APIC()) { |
| /* lets NOP'ify apic operations */ |
| pr_info("APIC: disable apic facility\n"); |
| apic_disable(); |
| } else { |
| apic_phys = mp_lapic_addr; |
| |
| /* |
| * If the system has ACPI MADT tables or MP info, the LAPIC |
| * address is already registered. |
| */ |
| if (!acpi_lapic && !smp_found_config) |
| register_lapic_address(apic_phys); |
| } |
| |
| /* |
| * Fetch the APIC ID of the BSP in case we have a |
| * default configuration (or the MP table is broken). |
| */ |
| new_apicid = read_apic_id(); |
| if (boot_cpu_physical_apicid != new_apicid) { |
| boot_cpu_physical_apicid = new_apicid; |
| /* |
| * yeah -- we lie about apic_version |
| * in case if apic was disabled via boot option |
| * but it's not a problem for SMP compiled kernel |
| * since apic_intr_mode_select is prepared for such |
| * a case and disable smp mode |
| */ |
| boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); |
| } |
| } |
| |
| void __init register_lapic_address(unsigned long address) |
| { |
| mp_lapic_addr = address; |
| |
| if (!x2apic_mode) { |
| set_fixmap_nocache(FIX_APIC_BASE, address); |
| apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", |
| APIC_BASE, address); |
| } |
| if (boot_cpu_physical_apicid == -1U) { |
| boot_cpu_physical_apicid = read_apic_id(); |
| boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); |
| } |
| } |
| |
| /* |
| * Local APIC interrupts |
| */ |
| |
| /* |
| * Common handling code for spurious_interrupt and spurious_vector entry |
| * points below. No point in allowing the compiler to inline it twice. |
| */ |
| static noinline void handle_spurious_interrupt(u8 vector) |
| { |
| u32 v; |
| |
| trace_spurious_apic_entry(vector); |
| |
| inc_irq_stat(irq_spurious_count); |
| |
| /* |
| * If this is a spurious interrupt then do not acknowledge |
| */ |
| if (vector == SPURIOUS_APIC_VECTOR) { |
| /* See SDM vol 3 */ |
| pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n", |
| smp_processor_id()); |
| goto out; |
| } |
| |
| /* |
| * If it is a vectored one, verify it's set in the ISR. If set, |
| * acknowledge it. |
| */ |
| v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); |
| if (v & (1 << (vector & 0x1f))) { |
| pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n", |
| vector, smp_processor_id()); |
| ack_APIC_irq(); |
| } else { |
| pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n", |
| vector, smp_processor_id()); |
| } |
| out: |
| trace_spurious_apic_exit(vector); |
| } |
| |
| /** |
| * spurious_interrupt - Catch all for interrupts raised on unused vectors |
| * @regs: Pointer to pt_regs on stack |
| * @vector: The vector number |
| * |
| * This is invoked from ASM entry code to catch all interrupts which |
| * trigger on an entry which is routed to the common_spurious idtentry |
| * point. |
| */ |
| DEFINE_IDTENTRY_IRQ(spurious_interrupt) |
| { |
| handle_spurious_interrupt(vector); |
| } |
| |
| DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt) |
| { |
| handle_spurious_interrupt(SPURIOUS_APIC_VECTOR); |
| } |
| |
| /* |
| * This interrupt should never happen with our APIC/SMP architecture |
| */ |
| DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt) |
| { |
| static const char * const error_interrupt_reason[] = { |
| "Send CS error", /* APIC Error Bit 0 */ |
| "Receive CS error", /* APIC Error Bit 1 */ |
| "Send accept error", /* APIC Error Bit 2 */ |
| "Receive accept error", /* APIC Error Bit 3 */ |
| "Redirectable IPI", /* APIC Error Bit 4 */ |
| "Send illegal vector", /* APIC Error Bit 5 */ |
| "Received illegal vector", /* APIC Error Bit 6 */ |
| "Illegal register address", /* APIC Error Bit 7 */ |
| }; |
| u32 v, i = 0; |
| |
| trace_error_apic_entry(ERROR_APIC_VECTOR); |
| |
| /* First tickle the hardware, only then report what went on. -- REW */ |
| if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ |
| apic_write(APIC_ESR, 0); |
| v = apic_read(APIC_ESR); |
| ack_APIC_irq(); |
| atomic_inc(&irq_err_count); |
| |
| apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", |
| smp_processor_id(), v); |
| |
| v &= 0xff; |
| while (v) { |
| if (v & 0x1) |
| apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); |
| i++; |
| v >>= 1; |
| } |
| |
| apic_printk(APIC_DEBUG, KERN_CONT "\n"); |
| |
| trace_error_apic_exit(ERROR_APIC_VECTOR); |
| } |
| |
| /** |
| * connect_bsp_APIC - attach the APIC to the interrupt system |
| */ |
| static void __init connect_bsp_APIC(void) |
| { |
| #ifdef CONFIG_X86_32 |
| if (pic_mode) { |
| /* |
| * Do not trust the local APIC being empty at bootup. |
| */ |
| clear_local_APIC(); |
| /* |
| * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's |
| * local APIC to INT and NMI lines. |
| */ |
| apic_printk(APIC_VERBOSE, "leaving PIC mode, " |
| "enabling APIC mode.\n"); |
| imcr_pic_to_apic(); |
| } |
| #endif |
| } |
| |
| /** |
| * disconnect_bsp_APIC - detach the APIC from the interrupt system |
| * @virt_wire_setup: indicates, whether virtual wire mode is selected |
| * |
| * Virtual wire mode is necessary to deliver legacy interrupts even when the |
| * APIC is disabled. |
| */ |
| void disconnect_bsp_APIC(int virt_wire_setup) |
| { |
| unsigned int value; |
| |
| #ifdef CONFIG_X86_32 |
| if (pic_mode) { |
| /* |
| * Put the board back into PIC mode (has an effect only on |
| * certain older boards). Note that APIC interrupts, including |
| * IPIs, won't work beyond this point! The only exception are |
| * INIT IPIs. |
| */ |
| apic_printk(APIC_VERBOSE, "disabling APIC mode, " |
| "entering PIC mode.\n"); |
| imcr_apic_to_pic(); |
| return; |
| } |
| #endif |
| |
| /* Go back to Virtual Wire compatibility mode */ |
| |
| /* For the spurious interrupt use vector F, and enable it */ |
| value = apic_read(APIC_SPIV); |
| value &= ~APIC_VECTOR_MASK; |
| value |= APIC_SPIV_APIC_ENABLED; |
| value |= 0xf; |
| apic_write(APIC_SPIV, value); |
| |
| if (!virt_wire_setup) { |
| /* |
| * For LVT0 make it edge triggered, active high, |
| * external and enabled |
| */ |
| value = apic_read(APIC_LVT0); |
| value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); |
| apic_write(APIC_LVT0, value); |
| } else { |
| /* Disable LVT0 */ |
| apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| } |
| |
| /* |
| * For LVT1 make it edge triggered, active high, |
| * nmi and enabled |
| */ |
| value = apic_read(APIC_LVT1); |
| value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); |
| apic_write(APIC_LVT1, value); |
| } |
| |
| /* |
| * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated |
| * contiguously, it equals to current allocated max logical CPU ID plus 1. |
| * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, |
| * so the maximum of nr_logical_cpuids is nr_cpu_ids. |
| * |
| * NOTE: Reserve 0 for BSP. |
| */ |
| static int nr_logical_cpuids = 1; |
| |
| /* |
| * Used to store mapping between logical CPU IDs and APIC IDs. |
| */ |
| static int cpuid_to_apicid[] = { |
| [0 ... NR_CPUS - 1] = -1, |
| }; |
| |
| bool arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| { |
| return phys_id == cpuid_to_apicid[cpu]; |
| } |
| |
| #ifdef CONFIG_SMP |
| /** |
| * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread |
| * @apicid: APIC ID to check |
| */ |
| bool apic_id_is_primary_thread(unsigned int apicid) |
| { |
| u32 mask; |
| |
| if (smp_num_siblings == 1) |
| return true; |
| /* Isolate the SMT bit(s) in the APICID and check for 0 */ |
| mask = (1U << (fls(smp_num_siblings) - 1)) - 1; |
| return !(apicid & mask); |
| } |
| #endif |
| |
| /* |
| * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids |
| * and cpuid_to_apicid[] synchronized. |
| */ |
| static int allocate_logical_cpuid(int apicid) |
| { |
| int i; |
| |
| /* |
| * cpuid <-> apicid mapping is persistent, so when a cpu is up, |
| * check if the kernel has allocated a cpuid for it. |
| */ |
| for (i = 0; i < nr_logical_cpuids; i++) { |
| if (cpuid_to_apicid[i] == apicid) |
| return i; |
| } |
| |
| /* Allocate a new cpuid. */ |
| if (nr_logical_cpuids >= nr_cpu_ids) { |
| WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. " |
| "Processor %d/0x%x and the rest are ignored.\n", |
| nr_cpu_ids, nr_logical_cpuids, apicid); |
| return -EINVAL; |
| } |
| |
| cpuid_to_apicid[nr_logical_cpuids] = apicid; |
| return nr_logical_cpuids++; |
| } |
| |
| int generic_processor_info(int apicid, int version) |
| { |
| int cpu, max = nr_cpu_ids; |
| bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, |
| phys_cpu_present_map); |
| |
| /* |
| * boot_cpu_physical_apicid is designed to have the apicid |
| * returned by read_apic_id(), i.e, the apicid of the |
| * currently booting-up processor. However, on some platforms, |
| * it is temporarily modified by the apicid reported as BSP |
| * through MP table. Concretely: |
| * |
| * - arch/x86/kernel/mpparse.c: MP_processor_info() |
| * - arch/x86/mm/amdtopology.c: amd_numa_init() |
| * |
| * This function is executed with the modified |
| * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel |
| * parameter doesn't work to disable APs on kdump 2nd kernel. |
| * |
| * Since fixing handling of boot_cpu_physical_apicid requires |
| * another discussion and tests on each platform, we leave it |
| * for now and here we use read_apic_id() directly in this |
| * function, generic_processor_info(). |
| */ |
| if (disabled_cpu_apicid != BAD_APICID && |
| disabled_cpu_apicid != read_apic_id() && |
| disabled_cpu_apicid == apicid) { |
| int thiscpu = num_processors + disabled_cpus; |
| |
| pr_warn("APIC: Disabling requested cpu." |
| " Processor %d/0x%x ignored.\n", thiscpu, apicid); |
| |
| disabled_cpus++; |
| return -ENODEV; |
| } |
| |
| /* |
| * If boot cpu has not been detected yet, then only allow upto |
| * nr_cpu_ids - 1 processors and keep one slot free for boot cpu |
| */ |
| if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && |
| apicid != boot_cpu_physical_apicid) { |
| int thiscpu = max + disabled_cpus - 1; |
| |
| pr_warn("APIC: NR_CPUS/possible_cpus limit of %i almost" |
| " reached. Keeping one slot for boot cpu." |
| " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); |
| |
| disabled_cpus++; |
| return -ENODEV; |
| } |
| |
| if (num_processors >= nr_cpu_ids) { |
| int thiscpu = max + disabled_cpus; |
| |
| pr_warn("APIC: NR_CPUS/possible_cpus limit of %i reached. " |
| "Processor %d/0x%x ignored.\n", max, thiscpu, apicid); |
| |
| disabled_cpus++; |
| return -EINVAL; |
| } |
| |
| if (apicid == boot_cpu_physical_apicid) { |
| /* |
| * x86_bios_cpu_apicid is required to have processors listed |
| * in same order as logical cpu numbers. Hence the first |
| * entry is BSP, and so on. |
| * boot_cpu_init() already hold bit 0 in cpu_present_mask |
| * for BSP. |
| */ |
| cpu = 0; |
| |
| /* Logical cpuid 0 is reserved for BSP. */ |
| cpuid_to_apicid[0] = apicid; |
| } else { |
| cpu = allocate_logical_cpuid(apicid); |
| if (cpu < 0) { |
| disabled_cpus++; |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Validate version |
| */ |
| if (version == 0x0) { |
| pr_warn("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", |
| cpu, apicid); |
| version = 0x10; |
| } |
| |
| if (version != boot_cpu_apic_version) { |
| pr_warn("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", |
| boot_cpu_apic_version, cpu, version); |
| } |
| |
| if (apicid > max_physical_apicid) |
| max_physical_apicid = apicid; |
| |
| #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) |
| early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; |
| early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; |
| #endif |
| #ifdef CONFIG_X86_32 |
| early_per_cpu(x86_cpu_to_logical_apicid, cpu) = |
| apic->x86_32_early_logical_apicid(cpu); |
| #endif |
| set_cpu_possible(cpu, true); |
| physid_set(apicid, phys_cpu_present_map); |
| set_cpu_present(cpu, true); |
| num_processors++; |
| |
| return cpu; |
| } |
| |
| int hard_smp_processor_id(void) |
| { |
| return read_apic_id(); |
| } |
| |
| void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg, |
| bool dmar) |
| { |
| memset(msg, 0, sizeof(*msg)); |
| |
| msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; |
| msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical; |
| msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF; |
| |
| msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED; |
| msg->arch_data.vector = cfg->vector; |
| |
| msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; |
| /* |
| * Only the IOMMU itself can use the trick of putting destination |
| * APIC ID into the high bits of the address. Anything else would |
| * just be writing to memory if it tried that, and needs IR to |
| * address APICs which can't be addressed in the normal 32-bit |
| * address range at 0xFFExxxxx. That is typically just 8 bits, but |
| * some hypervisors allow the extended destination ID field in bits |
| * 5-11 to be used, giving support for 15 bits of APIC IDs in total. |
| */ |
| if (dmar) |
| msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8; |
| else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000) |
| msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8; |
| else |
| WARN_ON_ONCE(cfg->dest_apicid > 0xFF); |
| } |
| |
| u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid) |
| { |
| u32 dest = msg->arch_addr_lo.destid_0_7; |
| |
| if (extid) |
| dest |= msg->arch_addr_hi.destid_8_31 << 8; |
| return dest; |
| } |
| EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid); |
| |
| /* |
| * Override the generic EOI implementation with an optimized version. |
| * Only called during early boot when only one CPU is active and with |
| * interrupts disabled, so we know this does not race with actual APIC driver |
| * use. |
| */ |
| void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) |
| { |
| struct apic **drv; |
| |
| for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { |
| /* Should happen once for each apic */ |
| WARN_ON((*drv)->eoi_write == eoi_write); |
| (*drv)->native_eoi_write = (*drv)->eoi_write; |
| (*drv)->eoi_write = eoi_write; |
| } |
| } |
| |
| static void __init apic_bsp_up_setup(void) |
| { |
| #ifdef CONFIG_X86_64 |
| apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); |
| #else |
| /* |
| * Hack: In case of kdump, after a crash, kernel might be booting |
| * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid |
| * might be zero if read from MP tables. Get it from LAPIC. |
| */ |
| # ifdef CONFIG_CRASH_DUMP |
| boot_cpu_physical_apicid = read_apic_id(); |
| # endif |
| #endif |
| physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); |
| } |
| |
| /** |
| * apic_bsp_setup - Setup function for local apic and io-apic |
| * @upmode: Force UP mode (for APIC_init_uniprocessor) |
| */ |
| static void __init apic_bsp_setup(bool upmode) |
| { |
| connect_bsp_APIC(); |
| if (upmode) |
| apic_bsp_up_setup(); |
| setup_local_APIC(); |
| |
| enable_IO_APIC(); |
| end_local_APIC_setup(); |
| irq_remap_enable_fault_handling(); |
| setup_IO_APIC(); |
| lapic_update_legacy_vectors(); |
| } |
| |
| #ifdef CONFIG_UP_LATE_INIT |
| void __init up_late_init(void) |
| { |
| if (apic_intr_mode == APIC_PIC) |
| return; |
| |
| /* Setup local timer */ |
| x86_init.timers.setup_percpu_clockev(); |
| } |
| #endif |
| |
| /* |
| * Power management |
| */ |
| #ifdef CONFIG_PM |
| |
| static struct { |
| /* |
| * 'active' is true if the local APIC was enabled by us and |
| * not the BIOS; this signifies that we are also responsible |
| * for disabling it before entering apm/acpi suspend |
| */ |
| int active; |
| /* r/w apic fields */ |
| unsigned int apic_id; |
| unsigned int apic_taskpri; |
| unsigned int apic_ldr; |
| unsigned int apic_dfr; |
| unsigned int apic_spiv; |
| unsigned int apic_lvtt; |
| unsigned int apic_lvtpc; |
| unsigned int apic_lvt0; |
| unsigned int apic_lvt1; |
| unsigned int apic_lvterr; |
| unsigned int apic_tmict; |
| unsigned int apic_tdcr; |
| unsigned int apic_thmr; |
| unsigned int apic_cmci; |
| } apic_pm_state; |
| |
| static int lapic_suspend(void) |
| { |
| unsigned long flags; |
| int maxlvt; |
| |
| if (!apic_pm_state.active) |
| return 0; |
| |
| maxlvt = lapic_get_maxlvt(); |
| |
| apic_pm_state.apic_id = apic_read(APIC_ID); |
| apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); |
| apic_pm_state.apic_ldr = apic_read(APIC_LDR); |
| apic_pm_state.apic_dfr = apic_read(APIC_DFR); |
| apic_pm_state.apic_spiv = apic_read(APIC_SPIV); |
| apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); |
| if (maxlvt >= 4) |
| apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); |
| apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); |
| apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); |
| apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); |
| apic_pm_state.apic_tmict = apic_read(APIC_TMICT); |
| apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| if (maxlvt >= 5) |
| apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); |
| #endif |
| #ifdef CONFIG_X86_MCE_INTEL |
| if (maxlvt >= 6) |
| apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); |
| #endif |
| |
| local_irq_save(flags); |
| |
| /* |
| * Mask IOAPIC before disabling the local APIC to prevent stale IRR |
| * entries on some implementations. |
| */ |
| mask_ioapic_entries(); |
| |
| disable_local_APIC(); |
| |
| irq_remapping_disable(); |
| |
| local_irq_restore(flags); |
| return 0; |
| } |
| |
| static void lapic_resume(void) |
| { |
| unsigned int l, h; |
| unsigned long flags; |
| int maxlvt; |
| |
| if (!apic_pm_state.active) |
| return; |
| |
| local_irq_save(flags); |
| |
| /* |
| * IO-APIC and PIC have their own resume routines. |
| * We just mask them here to make sure the interrupt |
| * subsystem is completely quiet while we enable x2apic |
| * and interrupt-remapping. |
| */ |
| mask_ioapic_entries(); |
| legacy_pic->mask_all(); |
| |
| if (x2apic_mode) { |
| __x2apic_enable(); |
| } else { |
| /* |
| * Make sure the APICBASE points to the right address |
| * |
| * FIXME! This will be wrong if we ever support suspend on |
| * SMP! We'll need to do this as part of the CPU restore! |
| */ |
| if (boot_cpu_data.x86 >= 6) { |
| rdmsr(MSR_IA32_APICBASE, l, h); |
| l &= ~MSR_IA32_APICBASE_BASE; |
| l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; |
| wrmsr(MSR_IA32_APICBASE, l, h); |
| } |
| } |
| |
| maxlvt = lapic_get_maxlvt(); |
| apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); |
| apic_write(APIC_ID, apic_pm_state.apic_id); |
| apic_write(APIC_DFR, apic_pm_state.apic_dfr); |
| apic_write(APIC_LDR, apic_pm_state.apic_ldr); |
| apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); |
| apic_write(APIC_SPIV, apic_pm_state.apic_spiv); |
| apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); |
| apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| if (maxlvt >= 5) |
| apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); |
| #endif |
| #ifdef CONFIG_X86_MCE_INTEL |
| if (maxlvt >= 6) |
| apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); |
| #endif |
| if (maxlvt >= 4) |
| apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); |
| apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); |
| apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); |
| apic_write(APIC_TMICT, apic_pm_state.apic_tmict); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| |
| irq_remapping_reenable(x2apic_mode); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * This device has no shutdown method - fully functioning local APICs |
| * are needed on every CPU up until machine_halt/restart/poweroff. |
| */ |
| |
| static struct syscore_ops lapic_syscore_ops = { |
| .resume = lapic_resume, |
| .suspend = lapic_suspend, |
| }; |
| |
| static void apic_pm_activate(void) |
| { |
| apic_pm_state.active = 1; |
| } |
| |
| static int __init init_lapic_sysfs(void) |
| { |
| /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ |
| if (boot_cpu_has(X86_FEATURE_APIC)) |
| register_syscore_ops(&lapic_syscore_ops); |
| |
| return 0; |
| } |
| |
| /* local apic needs to resume before other devices access its registers. */ |
| core_initcall(init_lapic_sysfs); |
| |
| #else /* CONFIG_PM */ |
| |
| static void apic_pm_activate(void) { } |
| |
| #endif /* CONFIG_PM */ |
| |
| #ifdef CONFIG_X86_64 |
| |
| static int multi_checked; |
| static int multi; |
| |
| static int set_multi(const struct dmi_system_id *d) |
| { |
| if (multi) |
| return 0; |
| pr_info("APIC: %s detected, Multi Chassis\n", d->ident); |
| multi = 1; |
| return 0; |
| } |
| |
| static const struct dmi_system_id multi_dmi_table[] = { |
| { |
| .callback = set_multi, |
| .ident = "IBM System Summit2", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "IBM"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), |
| }, |
| }, |
| {} |
| }; |
| |
| static void dmi_check_multi(void) |
| { |
| if (multi_checked) |
| return; |
| |
| dmi_check_system(multi_dmi_table); |
| multi_checked = 1; |
| } |
| |
| /* |
| * apic_is_clustered_box() -- Check if we can expect good TSC |
| * |
| * Thus far, the major user of this is IBM's Summit2 series: |
| * Clustered boxes may have unsynced TSC problems if they are |
| * multi-chassis. |
| * Use DMI to check them |
| */ |
| int apic_is_clustered_box(void) |
| { |
| dmi_check_multi(); |
| return multi; |
| } |
| #endif |
| |
| /* |
| * APIC command line parameters |
| */ |
| static int __init setup_disableapic(char *arg) |
| { |
| disable_apic = 1; |
| setup_clear_cpu_cap(X86_FEATURE_APIC); |
| return 0; |
| } |
| early_param("disableapic", setup_disableapic); |
| |
| /* same as disableapic, for compatibility */ |
| static int __init setup_nolapic(char *arg) |
| { |
| return setup_disableapic(arg); |
| } |
| early_param("nolapic", setup_nolapic); |
| |
| static int __init parse_lapic_timer_c2_ok(char *arg) |
| { |
| local_apic_timer_c2_ok = 1; |
| return 0; |
| } |
| early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); |
| |
| static int __init parse_disable_apic_timer(char *arg) |
| { |
| disable_apic_timer = 1; |
| return 0; |
| } |
| early_param("noapictimer", parse_disable_apic_timer); |
| |
| static int __init parse_nolapic_timer(char *arg) |
| { |
| disable_apic_timer = 1; |
| return 0; |
| } |
| early_param("nolapic_timer", parse_nolapic_timer); |
| |
| static int __init apic_set_verbosity(char *arg) |
| { |
| if (!arg) { |
| #ifdef CONFIG_X86_64 |
| skip_ioapic_setup = 0; |
| return 0; |
| #endif |
| return -EINVAL; |
| } |
| |
| if (strcmp("debug", arg) == 0) |
| apic_verbosity = APIC_DEBUG; |
| else if (strcmp("verbose", arg) == 0) |
| apic_verbosity = APIC_VERBOSE; |
| #ifdef CONFIG_X86_64 |
| else { |
| pr_warn("APIC Verbosity level %s not recognised" |
| " use apic=verbose or apic=debug\n", arg); |
| return -EINVAL; |
| } |
| #endif |
| |
| return 0; |
| } |
| early_param("apic", apic_set_verbosity); |
| |
| static int __init lapic_insert_resource(void) |
| { |
| if (!apic_phys) |
| return -1; |
| |
| /* Put local APIC into the resource map. */ |
| lapic_resource.start = apic_phys; |
| lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; |
| insert_resource(&iomem_resource, &lapic_resource); |
| |
| return 0; |
| } |
| |
| /* |
| * need call insert after e820__reserve_resources() |
| * that is using request_resource |
| */ |
| late_initcall(lapic_insert_resource); |
| |
| static int __init apic_set_disabled_cpu_apicid(char *arg) |
| { |
| if (!arg || !get_option(&arg, &disabled_cpu_apicid)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); |
| |
| static int __init apic_set_extnmi(char *arg) |
| { |
| if (!arg) |
| return -EINVAL; |
| |
| if (!strncmp("all", arg, 3)) |
| apic_extnmi = APIC_EXTNMI_ALL; |
| else if (!strncmp("none", arg, 4)) |
| apic_extnmi = APIC_EXTNMI_NONE; |
| else if (!strncmp("bsp", arg, 3)) |
| apic_extnmi = APIC_EXTNMI_BSP; |
| else { |
| pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| early_param("apic_extnmi", apic_set_extnmi); |