| // SPDX-License-Identifier: GPL-2.0+ |
| // Copyright (c) 2016-2017 Hisilicon Limited. |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/etherdevice.h> |
| #include <linux/interrupt.h> |
| #ifdef CONFIG_RFS_ACCEL |
| #include <linux/cpu_rmap.h> |
| #endif |
| #include <linux/if_vlan.h> |
| #include <linux/irq.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/aer.h> |
| #include <linux/skbuff.h> |
| #include <linux/sctp.h> |
| #include <net/gre.h> |
| #include <net/gro.h> |
| #include <net/ip6_checksum.h> |
| #include <net/pkt_cls.h> |
| #include <net/tcp.h> |
| #include <net/vxlan.h> |
| #include <net/geneve.h> |
| |
| #include "hnae3.h" |
| #include "hns3_enet.h" |
| /* All hns3 tracepoints are defined by the include below, which |
| * must be included exactly once across the whole kernel with |
| * CREATE_TRACE_POINTS defined |
| */ |
| #define CREATE_TRACE_POINTS |
| #include "hns3_trace.h" |
| |
| #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift)) |
| #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE) |
| |
| #define hns3_rl_err(fmt, ...) \ |
| do { \ |
| if (net_ratelimit()) \ |
| netdev_err(fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| static void hns3_clear_all_ring(struct hnae3_handle *h, bool force); |
| |
| static const char hns3_driver_name[] = "hns3"; |
| static const char hns3_driver_string[] = |
| "Hisilicon Ethernet Network Driver for Hip08 Family"; |
| static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation."; |
| static struct hnae3_client client; |
| |
| static int debug = -1; |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, " Network interface message level setting"); |
| |
| static unsigned int tx_sgl = 1; |
| module_param(tx_sgl, uint, 0600); |
| MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping"); |
| |
| static bool page_pool_enabled = true; |
| module_param(page_pool_enabled, bool, 0400); |
| |
| #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \ |
| sizeof(struct sg_table)) |
| #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \ |
| dma_get_cache_alignment()) |
| |
| #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \ |
| NETIF_MSG_IFDOWN | NETIF_MSG_IFUP) |
| |
| #define HNS3_INNER_VLAN_TAG 1 |
| #define HNS3_OUTER_VLAN_TAG 2 |
| |
| #define HNS3_MIN_TX_LEN 33U |
| #define HNS3_MIN_TUN_PKT_LEN 65U |
| |
| /* hns3_pci_tbl - PCI Device ID Table |
| * |
| * Last entry must be all 0s |
| * |
| * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, |
| * Class, Class Mask, private data (not used) } |
| */ |
| static const struct pci_device_id hns3_pci_tbl[] = { |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, |
| {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), |
| HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, |
| /* required last entry */ |
| {0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, hns3_pci_tbl); |
| |
| #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \ |
| { ptype, \ |
| l, \ |
| CHECKSUM_##s, \ |
| HNS3_L3_TYPE_##t, \ |
| 1 } |
| |
| #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \ |
| { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 } |
| |
| static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = { |
| HNS3_RX_PTYPE_UNUSED_ENTRY(0), |
| HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP), |
| HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP), |
| HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP), |
| HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM), |
| HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(9), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(10), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(11), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(12), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(13), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(14), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(15), |
| HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(26), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(27), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(28), |
| HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(38), |
| HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(46), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(47), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(48), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(49), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(50), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(51), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(52), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(53), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(54), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(55), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(56), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(57), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(58), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(59), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(60), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(61), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(62), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(63), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(64), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(65), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(66), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(67), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(68), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(69), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(70), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(71), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(72), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(73), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(74), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(75), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(76), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(77), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(78), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(79), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(80), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(81), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(82), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(83), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(84), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(85), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(86), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(87), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(88), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(89), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(90), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(91), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(92), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(93), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(94), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(95), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(96), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(97), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(98), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(99), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(100), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(101), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(102), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(103), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(104), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(105), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(106), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(107), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(108), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(109), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(110), |
| HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(120), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(121), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(122), |
| HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL), |
| HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4), |
| HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(132), |
| HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6), |
| HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(140), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(141), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(142), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(143), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(144), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(145), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(146), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(147), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(148), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(149), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(150), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(151), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(152), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(153), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(154), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(155), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(156), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(157), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(158), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(159), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(160), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(161), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(162), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(163), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(164), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(165), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(166), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(167), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(168), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(169), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(170), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(171), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(172), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(173), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(174), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(175), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(176), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(177), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(178), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(179), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(180), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(181), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(182), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(183), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(184), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(185), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(186), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(187), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(188), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(189), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(190), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(191), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(192), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(193), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(194), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(195), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(196), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(197), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(198), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(199), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(200), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(201), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(202), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(203), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(204), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(205), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(206), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(207), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(208), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(209), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(210), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(211), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(212), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(213), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(214), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(215), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(216), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(217), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(218), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(219), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(220), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(221), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(222), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(223), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(224), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(225), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(226), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(227), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(228), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(229), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(230), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(231), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(232), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(233), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(234), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(235), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(236), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(237), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(238), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(239), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(240), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(241), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(242), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(243), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(244), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(245), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(246), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(247), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(248), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(249), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(250), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(251), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(252), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(253), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(254), |
| HNS3_RX_PTYPE_UNUSED_ENTRY(255), |
| }; |
| |
| #define HNS3_INVALID_PTYPE \ |
| ARRAY_SIZE(hns3_rx_ptype_tbl) |
| |
| static irqreturn_t hns3_irq_handle(int irq, void *vector) |
| { |
| struct hns3_enet_tqp_vector *tqp_vector = vector; |
| |
| napi_schedule_irqoff(&tqp_vector->napi); |
| tqp_vector->event_cnt++; |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv) |
| { |
| struct hns3_enet_tqp_vector *tqp_vectors; |
| unsigned int i; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vectors = &priv->tqp_vector[i]; |
| |
| if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED) |
| continue; |
| |
| /* clear the affinity mask */ |
| irq_set_affinity_hint(tqp_vectors->vector_irq, NULL); |
| |
| /* release the irq resource */ |
| free_irq(tqp_vectors->vector_irq, tqp_vectors); |
| tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED; |
| } |
| } |
| |
| static int hns3_nic_init_irq(struct hns3_nic_priv *priv) |
| { |
| struct hns3_enet_tqp_vector *tqp_vectors; |
| int txrx_int_idx = 0; |
| int rx_int_idx = 0; |
| int tx_int_idx = 0; |
| unsigned int i; |
| int ret; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vectors = &priv->tqp_vector[i]; |
| |
| if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED) |
| continue; |
| |
| if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) { |
| snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, |
| "%s-%s-%s-%d", hns3_driver_name, |
| pci_name(priv->ae_handle->pdev), |
| "TxRx", txrx_int_idx++); |
| txrx_int_idx++; |
| } else if (tqp_vectors->rx_group.ring) { |
| snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, |
| "%s-%s-%s-%d", hns3_driver_name, |
| pci_name(priv->ae_handle->pdev), |
| "Rx", rx_int_idx++); |
| } else if (tqp_vectors->tx_group.ring) { |
| snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, |
| "%s-%s-%s-%d", hns3_driver_name, |
| pci_name(priv->ae_handle->pdev), |
| "Tx", tx_int_idx++); |
| } else { |
| /* Skip this unused q_vector */ |
| continue; |
| } |
| |
| tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0'; |
| |
| irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN); |
| ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0, |
| tqp_vectors->name, tqp_vectors); |
| if (ret) { |
| netdev_err(priv->netdev, "request irq(%d) fail\n", |
| tqp_vectors->vector_irq); |
| hns3_nic_uninit_irq(priv); |
| return ret; |
| } |
| |
| irq_set_affinity_hint(tqp_vectors->vector_irq, |
| &tqp_vectors->affinity_mask); |
| |
| tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED; |
| } |
| |
| return 0; |
| } |
| |
| static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 mask_en) |
| { |
| writel(mask_en, tqp_vector->mask_addr); |
| } |
| |
| static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| napi_enable(&tqp_vector->napi); |
| enable_irq(tqp_vector->vector_irq); |
| |
| /* enable vector */ |
| hns3_mask_vector_irq(tqp_vector, 1); |
| } |
| |
| static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| /* disable vector */ |
| hns3_mask_vector_irq(tqp_vector, 0); |
| |
| disable_irq(tqp_vector->vector_irq); |
| napi_disable(&tqp_vector->napi); |
| cancel_work_sync(&tqp_vector->rx_group.dim.work); |
| cancel_work_sync(&tqp_vector->tx_group.dim.work); |
| } |
| |
| void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 rl_value) |
| { |
| u32 rl_reg = hns3_rl_usec_to_reg(rl_value); |
| |
| /* this defines the configuration for RL (Interrupt Rate Limiter). |
| * Rl defines rate of interrupts i.e. number of interrupts-per-second |
| * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing |
| */ |
| if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable && |
| !tqp_vector->rx_group.coal.adapt_enable) |
| /* According to the hardware, the range of rl_reg is |
| * 0-59 and the unit is 4. |
| */ |
| rl_reg |= HNS3_INT_RL_ENABLE_MASK; |
| |
| writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 gl_value) |
| { |
| u32 new_val; |
| |
| if (tqp_vector->rx_group.coal.unit_1us) |
| new_val = gl_value | HNS3_INT_GL_1US; |
| else |
| new_val = hns3_gl_usec_to_reg(gl_value); |
| |
| writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 gl_value) |
| { |
| u32 new_val; |
| |
| if (tqp_vector->tx_group.coal.unit_1us) |
| new_val = gl_value | HNS3_INT_GL_1US; |
| else |
| new_val = hns3_gl_usec_to_reg(gl_value); |
| |
| writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 ql_value) |
| { |
| writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET); |
| } |
| |
| void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector, |
| u32 ql_value) |
| { |
| writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET); |
| } |
| |
| static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector, |
| struct hns3_nic_priv *priv) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); |
| struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; |
| struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; |
| struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal; |
| struct hns3_enet_coalesce *prx_coal = &priv->rx_coal; |
| |
| tx_coal->adapt_enable = ptx_coal->adapt_enable; |
| rx_coal->adapt_enable = prx_coal->adapt_enable; |
| |
| tx_coal->int_gl = ptx_coal->int_gl; |
| rx_coal->int_gl = prx_coal->int_gl; |
| |
| rx_coal->flow_level = prx_coal->flow_level; |
| tx_coal->flow_level = ptx_coal->flow_level; |
| |
| /* device version above V3(include V3), GL can configure 1us |
| * unit, so uses 1us unit. |
| */ |
| if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) { |
| tx_coal->unit_1us = 1; |
| rx_coal->unit_1us = 1; |
| } |
| |
| if (ae_dev->dev_specs.int_ql_max) { |
| tx_coal->ql_enable = 1; |
| rx_coal->ql_enable = 1; |
| tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; |
| rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; |
| tx_coal->int_ql = ptx_coal->int_ql; |
| rx_coal->int_ql = prx_coal->int_ql; |
| } |
| } |
| |
| static void |
| hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector, |
| struct hns3_nic_priv *priv) |
| { |
| struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; |
| struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; |
| struct hnae3_handle *h = priv->ae_handle; |
| |
| hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl); |
| hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl); |
| hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting); |
| |
| if (tx_coal->ql_enable) |
| hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql); |
| |
| if (rx_coal->ql_enable) |
| hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql); |
| } |
| |
| static int hns3_nic_set_real_num_queue(struct net_device *netdev) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct hnae3_knic_private_info *kinfo = &h->kinfo; |
| struct hnae3_tc_info *tc_info = &kinfo->tc_info; |
| unsigned int queue_size = kinfo->num_tqps; |
| int i, ret; |
| |
| if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) { |
| netdev_reset_tc(netdev); |
| } else { |
| ret = netdev_set_num_tc(netdev, tc_info->num_tc); |
| if (ret) { |
| netdev_err(netdev, |
| "netdev_set_num_tc fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| for (i = 0; i < tc_info->num_tc; i++) |
| netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i], |
| tc_info->tqp_offset[i]); |
| } |
| |
| ret = netif_set_real_num_tx_queues(netdev, queue_size); |
| if (ret) { |
| netdev_err(netdev, |
| "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| ret = netif_set_real_num_rx_queues(netdev, queue_size); |
| if (ret) { |
| netdev_err(netdev, |
| "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| u16 hns3_get_max_available_channels(struct hnae3_handle *h) |
| { |
| u16 alloc_tqps, max_rss_size, rss_size; |
| |
| h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size); |
| rss_size = alloc_tqps / h->kinfo.tc_info.num_tc; |
| |
| return min_t(u16, rss_size, max_rss_size); |
| } |
| |
| static void hns3_tqp_enable(struct hnae3_queue *tqp) |
| { |
| u32 rcb_reg; |
| |
| rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); |
| rcb_reg |= BIT(HNS3_RING_EN_B); |
| hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); |
| } |
| |
| static void hns3_tqp_disable(struct hnae3_queue *tqp) |
| { |
| u32 rcb_reg; |
| |
| rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); |
| rcb_reg &= ~BIT(HNS3_RING_EN_B); |
| hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); |
| } |
| |
| static void hns3_free_rx_cpu_rmap(struct net_device *netdev) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| free_irq_cpu_rmap(netdev->rx_cpu_rmap); |
| netdev->rx_cpu_rmap = NULL; |
| #endif |
| } |
| |
| static int hns3_set_rx_cpu_rmap(struct net_device *netdev) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hns3_enet_tqp_vector *tqp_vector; |
| int i, ret; |
| |
| if (!netdev->rx_cpu_rmap) { |
| netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num); |
| if (!netdev->rx_cpu_rmap) |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vector = &priv->tqp_vector[i]; |
| ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap, |
| tqp_vector->vector_irq); |
| if (ret) { |
| hns3_free_rx_cpu_rmap(netdev); |
| return ret; |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| static int hns3_nic_net_up(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = priv->ae_handle; |
| int i, j; |
| int ret; |
| |
| ret = hns3_nic_reset_all_ring(h); |
| if (ret) |
| return ret; |
| |
| clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); |
| |
| /* enable the vectors */ |
| for (i = 0; i < priv->vector_num; i++) |
| hns3_vector_enable(&priv->tqp_vector[i]); |
| |
| /* enable rcb */ |
| for (j = 0; j < h->kinfo.num_tqps; j++) |
| hns3_tqp_enable(h->kinfo.tqp[j]); |
| |
| /* start the ae_dev */ |
| ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0; |
| if (ret) { |
| set_bit(HNS3_NIC_STATE_DOWN, &priv->state); |
| while (j--) |
| hns3_tqp_disable(h->kinfo.tqp[j]); |
| |
| for (j = i - 1; j >= 0; j--) |
| hns3_vector_disable(&priv->tqp_vector[j]); |
| } |
| |
| return ret; |
| } |
| |
| static void hns3_config_xps(struct hns3_nic_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i]; |
| struct hns3_enet_ring *ring = tqp_vector->tx_group.ring; |
| |
| while (ring) { |
| int ret; |
| |
| ret = netif_set_xps_queue(priv->netdev, |
| &tqp_vector->affinity_mask, |
| ring->tqp->tqp_index); |
| if (ret) |
| netdev_warn(priv->netdev, |
| "set xps queue failed: %d", ret); |
| |
| ring = ring->next; |
| } |
| } |
| } |
| |
| static int hns3_nic_net_open(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct hnae3_knic_private_info *kinfo; |
| int i, ret; |
| |
| if (hns3_nic_resetting(netdev)) |
| return -EBUSY; |
| |
| if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { |
| netdev_warn(netdev, "net open repeatedly!\n"); |
| return 0; |
| } |
| |
| netif_carrier_off(netdev); |
| |
| ret = hns3_nic_set_real_num_queue(netdev); |
| if (ret) |
| return ret; |
| |
| ret = hns3_nic_net_up(netdev); |
| if (ret) { |
| netdev_err(netdev, "net up fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| kinfo = &h->kinfo; |
| for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) |
| netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]); |
| |
| if (h->ae_algo->ops->set_timer_task) |
| h->ae_algo->ops->set_timer_task(priv->ae_handle, true); |
| |
| hns3_config_xps(priv); |
| |
| netif_dbg(h, drv, netdev, "net open\n"); |
| |
| return 0; |
| } |
| |
| static void hns3_reset_tx_queue(struct hnae3_handle *h) |
| { |
| struct net_device *ndev = h->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| struct netdev_queue *dev_queue; |
| u32 i; |
| |
| for (i = 0; i < h->kinfo.num_tqps; i++) { |
| dev_queue = netdev_get_tx_queue(ndev, |
| priv->ring[i].queue_index); |
| netdev_tx_reset_queue(dev_queue); |
| } |
| } |
| |
| static void hns3_nic_net_down(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| const struct hnae3_ae_ops *ops; |
| int i; |
| |
| /* disable vectors */ |
| for (i = 0; i < priv->vector_num; i++) |
| hns3_vector_disable(&priv->tqp_vector[i]); |
| |
| /* disable rcb */ |
| for (i = 0; i < h->kinfo.num_tqps; i++) |
| hns3_tqp_disable(h->kinfo.tqp[i]); |
| |
| /* stop ae_dev */ |
| ops = priv->ae_handle->ae_algo->ops; |
| if (ops->stop) |
| ops->stop(priv->ae_handle); |
| |
| /* delay ring buffer clearing to hns3_reset_notify_uninit_enet |
| * during reset process, because driver may not be able |
| * to disable the ring through firmware when downing the netdev. |
| */ |
| if (!hns3_nic_resetting(netdev)) |
| hns3_clear_all_ring(priv->ae_handle, false); |
| |
| hns3_reset_tx_queue(priv->ae_handle); |
| } |
| |
| static int hns3_nic_net_stop(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) |
| return 0; |
| |
| netif_dbg(h, drv, netdev, "net stop\n"); |
| |
| if (h->ae_algo->ops->set_timer_task) |
| h->ae_algo->ops->set_timer_task(priv->ae_handle, false); |
| |
| netif_carrier_off(netdev); |
| netif_tx_disable(netdev); |
| |
| hns3_nic_net_down(netdev); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_uc_sync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (h->ae_algo->ops->add_uc_addr) |
| return h->ae_algo->ops->add_uc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_uc_unsync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| /* need ignore the request of removing device address, because |
| * we store the device address and other addresses of uc list |
| * in the function's mac filter list. |
| */ |
| if (ether_addr_equal(addr, netdev->dev_addr)) |
| return 0; |
| |
| if (h->ae_algo->ops->rm_uc_addr) |
| return h->ae_algo->ops->rm_uc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_mc_sync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (h->ae_algo->ops->add_mc_addr) |
| return h->ae_algo->ops->add_mc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_mc_unsync(struct net_device *netdev, |
| const unsigned char *addr) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (h->ae_algo->ops->rm_mc_addr) |
| return h->ae_algo->ops->rm_mc_addr(h, addr); |
| |
| return 0; |
| } |
| |
| static u8 hns3_get_netdev_flags(struct net_device *netdev) |
| { |
| u8 flags = 0; |
| |
| if (netdev->flags & IFF_PROMISC) |
| flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE; |
| else if (netdev->flags & IFF_ALLMULTI) |
| flags = HNAE3_USER_MPE; |
| |
| return flags; |
| } |
| |
| static void hns3_nic_set_rx_mode(struct net_device *netdev) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| u8 new_flags; |
| |
| new_flags = hns3_get_netdev_flags(netdev); |
| |
| __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync); |
| __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync); |
| |
| /* User mode Promisc mode enable and vlan filtering is disabled to |
| * let all packets in. |
| */ |
| h->netdev_flags = new_flags; |
| hns3_request_update_promisc_mode(h); |
| } |
| |
| void hns3_request_update_promisc_mode(struct hnae3_handle *handle) |
| { |
| const struct hnae3_ae_ops *ops = handle->ae_algo->ops; |
| |
| if (ops->request_update_promisc_mode) |
| ops->request_update_promisc_mode(handle); |
| } |
| |
| static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| u32 ntc, ntu; |
| |
| /* This smp_load_acquire() pairs with smp_store_release() in |
| * hns3_tx_spare_update() called in tx desc cleaning process. |
| */ |
| ntc = smp_load_acquire(&tx_spare->last_to_clean); |
| ntu = tx_spare->next_to_use; |
| |
| if (ntc > ntu) |
| return ntc - ntu - 1; |
| |
| /* The free tx buffer is divided into two part, so pick the |
| * larger one. |
| */ |
| return max(ntc, tx_spare->len - ntu) - 1; |
| } |
| |
| static void hns3_tx_spare_update(struct hns3_enet_ring *ring) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| |
| if (!tx_spare || |
| tx_spare->last_to_clean == tx_spare->next_to_clean) |
| return; |
| |
| /* This smp_store_release() pairs with smp_load_acquire() in |
| * hns3_tx_spare_space() called in xmit process. |
| */ |
| smp_store_release(&tx_spare->last_to_clean, |
| tx_spare->next_to_clean); |
| } |
| |
| static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| u32 space) |
| { |
| u32 len = skb->len <= ring->tx_copybreak ? skb->len : |
| skb_headlen(skb); |
| |
| if (len > ring->tx_copybreak) |
| return false; |
| |
| if (ALIGN(len, dma_get_cache_alignment()) > space) { |
| hns3_ring_stats_update(ring, tx_spare_full); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| u32 space) |
| { |
| if (skb->len <= ring->tx_copybreak || !tx_sgl || |
| (!skb_has_frag_list(skb) && |
| skb_shinfo(skb)->nr_frags < tx_sgl)) |
| return false; |
| |
| if (space < HNS3_MAX_SGL_SIZE) { |
| hns3_ring_stats_update(ring, tx_spare_full); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring) |
| { |
| struct hns3_tx_spare *tx_spare; |
| struct page *page; |
| u32 alloc_size; |
| dma_addr_t dma; |
| int order; |
| |
| alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size; |
| if (!alloc_size) |
| return; |
| |
| order = get_order(alloc_size); |
| tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare), |
| GFP_KERNEL); |
| if (!tx_spare) { |
| /* The driver still work without the tx spare buffer */ |
| dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n"); |
| return; |
| } |
| |
| page = alloc_pages_node(dev_to_node(ring_to_dev(ring)), |
| GFP_KERNEL, order); |
| if (!page) { |
| dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n"); |
| devm_kfree(ring_to_dev(ring), tx_spare); |
| return; |
| } |
| |
| dma = dma_map_page(ring_to_dev(ring), page, 0, |
| PAGE_SIZE << order, DMA_TO_DEVICE); |
| if (dma_mapping_error(ring_to_dev(ring), dma)) { |
| dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n"); |
| put_page(page); |
| devm_kfree(ring_to_dev(ring), tx_spare); |
| return; |
| } |
| |
| tx_spare->dma = dma; |
| tx_spare->buf = page_address(page); |
| tx_spare->len = PAGE_SIZE << order; |
| ring->tx_spare = tx_spare; |
| } |
| |
| /* Use hns3_tx_spare_space() to make sure there is enough buffer |
| * before calling below function to allocate tx buffer. |
| */ |
| static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring, |
| unsigned int size, dma_addr_t *dma, |
| u32 *cb_len) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| u32 ntu = tx_spare->next_to_use; |
| |
| size = ALIGN(size, dma_get_cache_alignment()); |
| *cb_len = size; |
| |
| /* Tx spare buffer wraps back here because the end of |
| * freed tx buffer is not enough. |
| */ |
| if (ntu + size > tx_spare->len) { |
| *cb_len += (tx_spare->len - ntu); |
| ntu = 0; |
| } |
| |
| tx_spare->next_to_use = ntu + size; |
| if (tx_spare->next_to_use == tx_spare->len) |
| tx_spare->next_to_use = 0; |
| |
| *dma = tx_spare->dma + ntu; |
| |
| return tx_spare->buf + ntu; |
| } |
| |
| static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| |
| if (len > tx_spare->next_to_use) { |
| len -= tx_spare->next_to_use; |
| tx_spare->next_to_use = tx_spare->len - len; |
| } else { |
| tx_spare->next_to_use -= len; |
| } |
| } |
| |
| static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring, |
| struct hns3_desc_cb *cb) |
| { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| u32 ntc = tx_spare->next_to_clean; |
| u32 len = cb->length; |
| |
| tx_spare->next_to_clean += len; |
| |
| if (tx_spare->next_to_clean >= tx_spare->len) { |
| tx_spare->next_to_clean -= tx_spare->len; |
| |
| if (tx_spare->next_to_clean) { |
| ntc = 0; |
| len = tx_spare->next_to_clean; |
| } |
| } |
| |
| /* This tx spare buffer is only really reclaimed after calling |
| * hns3_tx_spare_update(), so it is still safe to use the info in |
| * the tx buffer to do the dma sync or sg unmapping after |
| * tx_spare->next_to_clean is moved forword. |
| */ |
| if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) { |
| dma_addr_t dma = tx_spare->dma + ntc; |
| |
| dma_sync_single_for_cpu(ring_to_dev(ring), dma, len, |
| DMA_TO_DEVICE); |
| } else { |
| struct sg_table *sgt = tx_spare->buf + ntc; |
| |
| dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, |
| DMA_TO_DEVICE); |
| } |
| } |
| |
| static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs, |
| u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes) |
| { |
| u32 l4_offset, hdr_len; |
| union l3_hdr_info l3; |
| union l4_hdr_info l4; |
| u32 l4_paylen; |
| int ret; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| ret = skb_cow_head(skb, 0); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| l3.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* Software should clear the IPv4's checksum field when tso is |
| * needed. |
| */ |
| if (l3.v4->version == 4) |
| l3.v4->check = 0; |
| |
| /* tunnel packet */ |
| if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | |
| SKB_GSO_GRE_CSUM | |
| SKB_GSO_UDP_TUNNEL | |
| SKB_GSO_UDP_TUNNEL_CSUM)) { |
| /* reset l3&l4 pointers from outer to inner headers */ |
| l3.hdr = skb_inner_network_header(skb); |
| l4.hdr = skb_inner_transport_header(skb); |
| |
| /* Software should clear the IPv4's checksum field when |
| * tso is needed. |
| */ |
| if (l3.v4->version == 4) |
| l3.v4->check = 0; |
| } |
| |
| /* normal or tunnel packet */ |
| l4_offset = l4.hdr - skb->data; |
| |
| /* remove payload length from inner pseudo checksum when tso */ |
| l4_paylen = skb->len - l4_offset; |
| |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| hdr_len = sizeof(*l4.udp) + l4_offset; |
| csum_replace_by_diff(&l4.udp->check, |
| (__force __wsum)htonl(l4_paylen)); |
| } else { |
| hdr_len = (l4.tcp->doff << 2) + l4_offset; |
| csum_replace_by_diff(&l4.tcp->check, |
| (__force __wsum)htonl(l4_paylen)); |
| } |
| |
| *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len; |
| |
| /* find the txbd field values */ |
| *paylen_fdop_ol4cs = skb->len - hdr_len; |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1); |
| |
| /* offload outer UDP header checksum */ |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) |
| hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1); |
| |
| /* get MSS for TSO */ |
| *mss = skb_shinfo(skb)->gso_size; |
| |
| trace_hns3_tso(skb); |
| |
| return 0; |
| } |
| |
| static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto, |
| u8 *il4_proto) |
| { |
| union l3_hdr_info l3; |
| unsigned char *l4_hdr; |
| unsigned char *exthdr; |
| u8 l4_proto_tmp; |
| __be16 frag_off; |
| |
| /* find outer header point */ |
| l3.hdr = skb_network_header(skb); |
| l4_hdr = skb_transport_header(skb); |
| |
| if (skb->protocol == htons(ETH_P_IPV6)) { |
| exthdr = l3.hdr + sizeof(*l3.v6); |
| l4_proto_tmp = l3.v6->nexthdr; |
| if (l4_hdr != exthdr) |
| ipv6_skip_exthdr(skb, exthdr - skb->data, |
| &l4_proto_tmp, &frag_off); |
| } else if (skb->protocol == htons(ETH_P_IP)) { |
| l4_proto_tmp = l3.v4->protocol; |
| } else { |
| return -EINVAL; |
| } |
| |
| *ol4_proto = l4_proto_tmp; |
| |
| /* tunnel packet */ |
| if (!skb->encapsulation) { |
| *il4_proto = 0; |
| return 0; |
| } |
| |
| /* find inner header point */ |
| l3.hdr = skb_inner_network_header(skb); |
| l4_hdr = skb_inner_transport_header(skb); |
| |
| if (l3.v6->version == 6) { |
| exthdr = l3.hdr + sizeof(*l3.v6); |
| l4_proto_tmp = l3.v6->nexthdr; |
| if (l4_hdr != exthdr) |
| ipv6_skip_exthdr(skb, exthdr - skb->data, |
| &l4_proto_tmp, &frag_off); |
| } else if (l3.v4->version == 4) { |
| l4_proto_tmp = l3.v4->protocol; |
| } |
| |
| *il4_proto = l4_proto_tmp; |
| |
| return 0; |
| } |
| |
| /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL |
| * and it is udp packet, which has a dest port as the IANA assigned. |
| * the hardware is expected to do the checksum offload, but the |
| * hardware will not do the checksum offload when udp dest port is |
| * 4789, 4790 or 6081. |
| */ |
| static bool hns3_tunnel_csum_bug(struct sk_buff *skb) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(skb->dev); |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); |
| union l4_hdr_info l4; |
| |
| /* device version above V3(include V3), the hardware can |
| * do this checksum offload. |
| */ |
| if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) |
| return false; |
| |
| l4.hdr = skb_transport_header(skb); |
| |
| if (!(!skb->encapsulation && |
| (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) || |
| l4.udp->dest == htons(GENEVE_UDP_PORT) || |
| l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT)))) |
| return false; |
| |
| return true; |
| } |
| |
| static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto, |
| u32 *ol_type_vlan_len_msec) |
| { |
| u32 l2_len, l3_len, l4_len; |
| unsigned char *il2_hdr; |
| union l3_hdr_info l3; |
| union l4_hdr_info l4; |
| |
| l3.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* compute OL2 header size, defined in 2 Bytes */ |
| l2_len = l3.hdr - skb->data; |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1); |
| |
| /* compute OL3 header size, defined in 4 Bytes */ |
| l3_len = l4.hdr - l3.hdr; |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2); |
| |
| il2_hdr = skb_inner_mac_header(skb); |
| /* compute OL4 header size, defined in 4 Bytes */ |
| l4_len = il2_hdr - l4.hdr; |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2); |
| |
| /* define outer network header type */ |
| if (skb->protocol == htons(ETH_P_IP)) { |
| if (skb_is_gso(skb)) |
| hns3_set_field(*ol_type_vlan_len_msec, |
| HNS3_TXD_OL3T_S, |
| HNS3_OL3T_IPV4_CSUM); |
| else |
| hns3_set_field(*ol_type_vlan_len_msec, |
| HNS3_TXD_OL3T_S, |
| HNS3_OL3T_IPV4_NO_CSUM); |
| } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, |
| HNS3_OL3T_IPV6); |
| } |
| |
| if (ol4_proto == IPPROTO_UDP) |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, |
| HNS3_TUN_MAC_IN_UDP); |
| else if (ol4_proto == IPPROTO_GRE) |
| hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, |
| HNS3_TUN_NVGRE); |
| } |
| |
| static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3, |
| u32 *type_cs_vlan_tso) |
| { |
| if (l3.v4->version == 4) { |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, |
| HNS3_L3T_IPV4); |
| |
| /* the stack computes the IP header already, the only time we |
| * need the hardware to recompute it is in the case of TSO. |
| */ |
| if (skb_is_gso(skb)) |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1); |
| } else if (l3.v6->version == 6) { |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, |
| HNS3_L3T_IPV6); |
| } |
| } |
| |
| static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4, |
| u32 l4_proto, u32 *type_cs_vlan_tso) |
| { |
| /* compute inner(/normal) L4 header size, defined in 4 Bytes */ |
| switch (l4_proto) { |
| case IPPROTO_TCP: |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, |
| HNS3_L4T_TCP); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, |
| l4.tcp->doff); |
| break; |
| case IPPROTO_UDP: |
| if (hns3_tunnel_csum_bug(skb)) { |
| int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN); |
| |
| return ret ? ret : skb_checksum_help(skb); |
| } |
| |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, |
| HNS3_L4T_UDP); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, |
| (sizeof(struct udphdr) >> 2)); |
| break; |
| case IPPROTO_SCTP: |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, |
| HNS3_L4T_SCTP); |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, |
| (sizeof(struct sctphdr) >> 2)); |
| break; |
| default: |
| /* drop the skb tunnel packet if hardware don't support, |
| * because hardware can't calculate csum when TSO. |
| */ |
| if (skb_is_gso(skb)) |
| return -EDOM; |
| |
| /* the stack computes the IP header already, |
| * driver calculate l4 checksum when not TSO. |
| */ |
| return skb_checksum_help(skb); |
| } |
| |
| return 0; |
| } |
| |
| static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto, |
| u8 il4_proto, u32 *type_cs_vlan_tso, |
| u32 *ol_type_vlan_len_msec) |
| { |
| unsigned char *l2_hdr = skb->data; |
| u32 l4_proto = ol4_proto; |
| union l4_hdr_info l4; |
| union l3_hdr_info l3; |
| u32 l2_len, l3_len; |
| |
| l4.hdr = skb_transport_header(skb); |
| l3.hdr = skb_network_header(skb); |
| |
| /* handle encapsulation skb */ |
| if (skb->encapsulation) { |
| /* If this is a not UDP/GRE encapsulation skb */ |
| if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) { |
| /* drop the skb tunnel packet if hardware don't support, |
| * because hardware can't calculate csum when TSO. |
| */ |
| if (skb_is_gso(skb)) |
| return -EDOM; |
| |
| /* the stack computes the IP header already, |
| * driver calculate l4 checksum when not TSO. |
| */ |
| return skb_checksum_help(skb); |
| } |
| |
| hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec); |
| |
| /* switch to inner header */ |
| l2_hdr = skb_inner_mac_header(skb); |
| l3.hdr = skb_inner_network_header(skb); |
| l4.hdr = skb_inner_transport_header(skb); |
| l4_proto = il4_proto; |
| } |
| |
| hns3_set_l3_type(skb, l3, type_cs_vlan_tso); |
| |
| /* compute inner(/normal) L2 header size, defined in 2 Bytes */ |
| l2_len = l3.hdr - l2_hdr; |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1); |
| |
| /* compute inner(/normal) L3 header size, defined in 4 Bytes */ |
| l3_len = l4.hdr - l3.hdr; |
| hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2); |
| |
| return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso); |
| } |
| |
| static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring, |
| struct sk_buff *skb) |
| { |
| struct hnae3_handle *handle = tx_ring->tqp->handle; |
| struct hnae3_ae_dev *ae_dev; |
| struct vlan_ethhdr *vhdr; |
| int rc; |
| |
| if (!(skb->protocol == htons(ETH_P_8021Q) || |
| skb_vlan_tag_present(skb))) |
| return 0; |
| |
| /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert |
| * VLAN enabled, only one VLAN header is allowed in skb, otherwise it |
| * will cause RAS error. |
| */ |
| ae_dev = pci_get_drvdata(handle->pdev); |
| if (unlikely(skb_vlan_tagged_multi(skb) && |
| ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && |
| handle->port_base_vlan_state == |
| HNAE3_PORT_BASE_VLAN_ENABLE)) |
| return -EINVAL; |
| |
| if (skb->protocol == htons(ETH_P_8021Q) && |
| !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { |
| /* When HW VLAN acceleration is turned off, and the stack |
| * sets the protocol to 802.1q, the driver just need to |
| * set the protocol to the encapsulated ethertype. |
| */ |
| skb->protocol = vlan_get_protocol(skb); |
| return 0; |
| } |
| |
| if (skb_vlan_tag_present(skb)) { |
| /* Based on hw strategy, use out_vtag in two layer tag case, |
| * and use inner_vtag in one tag case. |
| */ |
| if (skb->protocol == htons(ETH_P_8021Q) && |
| handle->port_base_vlan_state == |
| HNAE3_PORT_BASE_VLAN_DISABLE) |
| rc = HNS3_OUTER_VLAN_TAG; |
| else |
| rc = HNS3_INNER_VLAN_TAG; |
| |
| skb->protocol = vlan_get_protocol(skb); |
| return rc; |
| } |
| |
| rc = skb_cow_head(skb, 0); |
| if (unlikely(rc < 0)) |
| return rc; |
| |
| vhdr = (struct vlan_ethhdr *)skb->data; |
| vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT) |
| & VLAN_PRIO_MASK); |
| |
| skb->protocol = vlan_get_protocol(skb); |
| return 0; |
| } |
| |
| /* check if the hardware is capable of checksum offloading */ |
| static bool hns3_check_hw_tx_csum(struct sk_buff *skb) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(skb->dev); |
| |
| /* Kindly note, due to backward compatibility of the TX descriptor, |
| * HW checksum of the non-IP packets and GSO packets is handled at |
| * different place in the following code |
| */ |
| if (skb_csum_is_sctp(skb) || skb_is_gso(skb) || |
| !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state)) |
| return false; |
| |
| return true; |
| } |
| |
| struct hns3_desc_param { |
| u32 paylen_ol4cs; |
| u32 ol_type_vlan_len_msec; |
| u32 type_cs_vlan_tso; |
| u16 mss_hw_csum; |
| u16 inner_vtag; |
| u16 out_vtag; |
| }; |
| |
| static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa) |
| { |
| pa->paylen_ol4cs = skb->len; |
| pa->ol_type_vlan_len_msec = 0; |
| pa->type_cs_vlan_tso = 0; |
| pa->mss_hw_csum = 0; |
| pa->inner_vtag = 0; |
| pa->out_vtag = 0; |
| } |
| |
| static int hns3_handle_vlan_info(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| struct hns3_desc_param *param) |
| { |
| int ret; |
| |
| ret = hns3_handle_vtags(ring, skb); |
| if (unlikely(ret < 0)) { |
| hns3_ring_stats_update(ring, tx_vlan_err); |
| return ret; |
| } else if (ret == HNS3_INNER_VLAN_TAG) { |
| param->inner_vtag = skb_vlan_tag_get(skb); |
| param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & |
| VLAN_PRIO_MASK; |
| hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1); |
| } else if (ret == HNS3_OUTER_VLAN_TAG) { |
| param->out_vtag = skb_vlan_tag_get(skb); |
| param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & |
| VLAN_PRIO_MASK; |
| hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B, |
| 1); |
| } |
| return 0; |
| } |
| |
| static int hns3_handle_csum_partial(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| struct hns3_desc_cb *desc_cb, |
| struct hns3_desc_param *param) |
| { |
| u8 ol4_proto, il4_proto; |
| int ret; |
| |
| if (hns3_check_hw_tx_csum(skb)) { |
| /* set checksum start and offset, defined in 2 Bytes */ |
| hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S, |
| skb_checksum_start_offset(skb) >> 1); |
| hns3_set_field(param->ol_type_vlan_len_msec, |
| HNS3_TXD_CSUM_OFFSET_S, |
| skb->csum_offset >> 1); |
| param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B); |
| return 0; |
| } |
| |
| skb_reset_mac_len(skb); |
| |
| ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto); |
| if (unlikely(ret < 0)) { |
| hns3_ring_stats_update(ring, tx_l4_proto_err); |
| return ret; |
| } |
| |
| ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto, |
| ¶m->type_cs_vlan_tso, |
| ¶m->ol_type_vlan_len_msec); |
| if (unlikely(ret < 0)) { |
| hns3_ring_stats_update(ring, tx_l2l3l4_err); |
| return ret; |
| } |
| |
| ret = hns3_set_tso(skb, ¶m->paylen_ol4cs, ¶m->mss_hw_csum, |
| ¶m->type_cs_vlan_tso, &desc_cb->send_bytes); |
| if (unlikely(ret < 0)) { |
| hns3_ring_stats_update(ring, tx_tso_err); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int hns3_fill_skb_desc(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, struct hns3_desc *desc, |
| struct hns3_desc_cb *desc_cb) |
| { |
| struct hns3_desc_param param; |
| int ret; |
| |
| hns3_init_desc_data(skb, ¶m); |
| ret = hns3_handle_vlan_info(ring, skb, ¶m); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| desc_cb->send_bytes = skb->len; |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| ret = hns3_handle_csum_partial(ring, skb, desc_cb, ¶m); |
| if (ret) |
| return ret; |
| } |
| |
| /* Set txbd */ |
| desc->tx.ol_type_vlan_len_msec = |
| cpu_to_le32(param.ol_type_vlan_len_msec); |
| desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso); |
| desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs); |
| desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum); |
| desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag); |
| desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag); |
| |
| return 0; |
| } |
| |
| static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma, |
| unsigned int size) |
| { |
| #define HNS3_LIKELY_BD_NUM 1 |
| |
| struct hns3_desc *desc = &ring->desc[ring->next_to_use]; |
| unsigned int frag_buf_num; |
| int k, sizeoflast; |
| |
| if (likely(size <= HNS3_MAX_BD_SIZE)) { |
| desc->addr = cpu_to_le64(dma); |
| desc->tx.send_size = cpu_to_le16(size); |
| desc->tx.bdtp_fe_sc_vld_ra_ri = |
| cpu_to_le16(BIT(HNS3_TXD_VLD_B)); |
| |
| trace_hns3_tx_desc(ring, ring->next_to_use); |
| ring_ptr_move_fw(ring, next_to_use); |
| return HNS3_LIKELY_BD_NUM; |
| } |
| |
| frag_buf_num = hns3_tx_bd_count(size); |
| sizeoflast = size % HNS3_MAX_BD_SIZE; |
| sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE; |
| |
| /* When frag size is bigger than hardware limit, split this frag */ |
| for (k = 0; k < frag_buf_num; k++) { |
| /* now, fill the descriptor */ |
| desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k); |
| desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ? |
| (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE); |
| desc->tx.bdtp_fe_sc_vld_ra_ri = |
| cpu_to_le16(BIT(HNS3_TXD_VLD_B)); |
| |
| trace_hns3_tx_desc(ring, ring->next_to_use); |
| /* move ring pointer to next */ |
| ring_ptr_move_fw(ring, next_to_use); |
| |
| desc = &ring->desc[ring->next_to_use]; |
| } |
| |
| return frag_buf_num; |
| } |
| |
| static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv, |
| unsigned int type) |
| { |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| struct device *dev = ring_to_dev(ring); |
| unsigned int size; |
| dma_addr_t dma; |
| |
| if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) { |
| struct sk_buff *skb = (struct sk_buff *)priv; |
| |
| size = skb_headlen(skb); |
| if (!size) |
| return 0; |
| |
| dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); |
| } else if (type & DESC_TYPE_BOUNCE_HEAD) { |
| /* Head data has been filled in hns3_handle_tx_bounce(), |
| * just return 0 here. |
| */ |
| return 0; |
| } else { |
| skb_frag_t *frag = (skb_frag_t *)priv; |
| |
| size = skb_frag_size(frag); |
| if (!size) |
| return 0; |
| |
| dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); |
| } |
| |
| if (unlikely(dma_mapping_error(dev, dma))) { |
| hns3_ring_stats_update(ring, sw_err_cnt); |
| return -ENOMEM; |
| } |
| |
| desc_cb->priv = priv; |
| desc_cb->length = size; |
| desc_cb->dma = dma; |
| desc_cb->type = type; |
| |
| return hns3_fill_desc(ring, dma, size); |
| } |
| |
| static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size, |
| unsigned int bd_num) |
| { |
| unsigned int size; |
| int i; |
| |
| size = skb_headlen(skb); |
| while (size > HNS3_MAX_BD_SIZE) { |
| bd_size[bd_num++] = HNS3_MAX_BD_SIZE; |
| size -= HNS3_MAX_BD_SIZE; |
| |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| if (size) { |
| bd_size[bd_num++] = size; |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| size = skb_frag_size(frag); |
| if (!size) |
| continue; |
| |
| while (size > HNS3_MAX_BD_SIZE) { |
| bd_size[bd_num++] = HNS3_MAX_BD_SIZE; |
| size -= HNS3_MAX_BD_SIZE; |
| |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| bd_size[bd_num++] = size; |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| return bd_num; |
| } |
| |
| static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size, |
| u8 max_non_tso_bd_num, unsigned int bd_num, |
| unsigned int recursion_level) |
| { |
| #define HNS3_MAX_RECURSION_LEVEL 24 |
| |
| struct sk_buff *frag_skb; |
| |
| /* If the total len is within the max bd limit */ |
| if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level && |
| !skb_has_frag_list(skb) && |
| skb_shinfo(skb)->nr_frags < max_non_tso_bd_num)) |
| return skb_shinfo(skb)->nr_frags + 1U; |
| |
| if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL)) |
| return UINT_MAX; |
| |
| bd_num = hns3_skb_bd_num(skb, bd_size, bd_num); |
| if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| |
| skb_walk_frags(skb, frag_skb) { |
| bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num, |
| bd_num, recursion_level + 1); |
| if (bd_num > HNS3_MAX_TSO_BD_NUM) |
| return bd_num; |
| } |
| |
| return bd_num; |
| } |
| |
| static unsigned int hns3_gso_hdr_len(struct sk_buff *skb) |
| { |
| if (!skb->encapsulation) |
| return skb_transport_offset(skb) + tcp_hdrlen(skb); |
| |
| return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb); |
| } |
| |
| /* HW need every continuous max_non_tso_bd_num buffer data to be larger |
| * than MSS, we simplify it by ensuring skb_headlen + the first continuous |
| * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss, |
| * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger |
| * than MSS except the last max_non_tso_bd_num - 1 frags. |
| */ |
| static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size, |
| unsigned int bd_num, u8 max_non_tso_bd_num) |
| { |
| unsigned int tot_len = 0; |
| int i; |
| |
| for (i = 0; i < max_non_tso_bd_num - 1U; i++) |
| tot_len += bd_size[i]; |
| |
| /* ensure the first max_non_tso_bd_num frags is greater than |
| * mss + header |
| */ |
| if (tot_len + bd_size[max_non_tso_bd_num - 1U] < |
| skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb)) |
| return true; |
| |
| /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater |
| * than mss except the last one. |
| */ |
| for (i = 0; i < bd_num - max_non_tso_bd_num; i++) { |
| tot_len -= bd_size[i]; |
| tot_len += bd_size[i + max_non_tso_bd_num - 1U]; |
| |
| if (tot_len < skb_shinfo(skb)->gso_size) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_SKB_FRAGS; i++) |
| size[i] = skb_frag_size(&shinfo->frags[i]); |
| } |
| |
| static int hns3_skb_linearize(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| unsigned int bd_num) |
| { |
| /* 'bd_num == UINT_MAX' means the skb' fraglist has a |
| * recursion level of over HNS3_MAX_RECURSION_LEVEL. |
| */ |
| if (bd_num == UINT_MAX) { |
| hns3_ring_stats_update(ring, over_max_recursion); |
| return -ENOMEM; |
| } |
| |
| /* The skb->len has exceeded the hw limitation, linearization |
| * will not help. |
| */ |
| if (skb->len > HNS3_MAX_TSO_SIZE || |
| (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) { |
| hns3_ring_stats_update(ring, hw_limitation); |
| return -ENOMEM; |
| } |
| |
| if (__skb_linearize(skb)) { |
| hns3_ring_stats_update(ring, sw_err_cnt); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring, |
| struct net_device *netdev, |
| struct sk_buff *skb) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| u8 max_non_tso_bd_num = priv->max_non_tso_bd_num; |
| unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U]; |
| unsigned int bd_num; |
| |
| bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0); |
| if (unlikely(bd_num > max_non_tso_bd_num)) { |
| if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) && |
| !hns3_skb_need_linearized(skb, bd_size, bd_num, |
| max_non_tso_bd_num)) { |
| trace_hns3_over_max_bd(skb); |
| goto out; |
| } |
| |
| if (hns3_skb_linearize(ring, skb, bd_num)) |
| return -ENOMEM; |
| |
| bd_num = hns3_tx_bd_count(skb->len); |
| |
| hns3_ring_stats_update(ring, tx_copy); |
| } |
| |
| out: |
| if (likely(ring_space(ring) >= bd_num)) |
| return bd_num; |
| |
| netif_stop_subqueue(netdev, ring->queue_index); |
| smp_mb(); /* Memory barrier before checking ring_space */ |
| |
| /* Start queue in case hns3_clean_tx_ring has just made room |
| * available and has not seen the queue stopped state performed |
| * by netif_stop_subqueue above. |
| */ |
| if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) && |
| !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { |
| netif_start_subqueue(netdev, ring->queue_index); |
| return bd_num; |
| } |
| |
| hns3_ring_stats_update(ring, tx_busy); |
| |
| return -EBUSY; |
| } |
| |
| static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig) |
| { |
| struct device *dev = ring_to_dev(ring); |
| unsigned int i; |
| |
| for (i = 0; i < ring->desc_num; i++) { |
| struct hns3_desc *desc = &ring->desc[ring->next_to_use]; |
| struct hns3_desc_cb *desc_cb; |
| |
| memset(desc, 0, sizeof(*desc)); |
| |
| /* check if this is where we started */ |
| if (ring->next_to_use == next_to_use_orig) |
| break; |
| |
| /* rollback one */ |
| ring_ptr_move_bw(ring, next_to_use); |
| |
| desc_cb = &ring->desc_cb[ring->next_to_use]; |
| |
| if (!desc_cb->dma) |
| continue; |
| |
| /* unmap the descriptor dma address */ |
| if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) |
| dma_unmap_single(dev, desc_cb->dma, desc_cb->length, |
| DMA_TO_DEVICE); |
| else if (desc_cb->type & |
| (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) |
| hns3_tx_spare_rollback(ring, desc_cb->length); |
| else if (desc_cb->length) |
| dma_unmap_page(dev, desc_cb->dma, desc_cb->length, |
| DMA_TO_DEVICE); |
| |
| desc_cb->length = 0; |
| desc_cb->dma = 0; |
| desc_cb->type = DESC_TYPE_UNKNOWN; |
| } |
| } |
| |
| static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, unsigned int type) |
| { |
| struct sk_buff *frag_skb; |
| int i, ret, bd_num = 0; |
| |
| ret = hns3_map_and_fill_desc(ring, skb, type); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| } |
| |
| skb_walk_frags(skb, frag_skb) { |
| ret = hns3_fill_skb_to_desc(ring, frag_skb, |
| DESC_TYPE_FRAGLIST_SKB); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| } |
| |
| return bd_num; |
| } |
| |
| static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num, |
| bool doorbell) |
| { |
| ring->pending_buf += num; |
| |
| if (!doorbell) { |
| hns3_ring_stats_update(ring, tx_more); |
| return; |
| } |
| |
| if (!ring->pending_buf) |
| return; |
| |
| writel(ring->pending_buf, |
| ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG); |
| ring->pending_buf = 0; |
| WRITE_ONCE(ring->last_to_use, ring->next_to_use); |
| } |
| |
| static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb, |
| struct hns3_desc *desc) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (!(h->ae_algo->ops->set_tx_hwts_info && |
| h->ae_algo->ops->set_tx_hwts_info(h, skb))) |
| return; |
| |
| desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B)); |
| } |
| |
| static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring, |
| struct sk_buff *skb) |
| { |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| unsigned int type = DESC_TYPE_BOUNCE_HEAD; |
| unsigned int size = skb_headlen(skb); |
| dma_addr_t dma; |
| int bd_num = 0; |
| u32 cb_len; |
| void *buf; |
| int ret; |
| |
| if (skb->len <= ring->tx_copybreak) { |
| size = skb->len; |
| type = DESC_TYPE_BOUNCE_ALL; |
| } |
| |
| /* hns3_can_use_tx_bounce() is called to ensure the below |
| * function can always return the tx buffer. |
| */ |
| buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len); |
| |
| ret = skb_copy_bits(skb, 0, buf, size); |
| if (unlikely(ret < 0)) { |
| hns3_tx_spare_rollback(ring, cb_len); |
| hns3_ring_stats_update(ring, copy_bits_err); |
| return ret; |
| } |
| |
| desc_cb->priv = skb; |
| desc_cb->length = cb_len; |
| desc_cb->dma = dma; |
| desc_cb->type = type; |
| |
| bd_num += hns3_fill_desc(ring, dma, size); |
| |
| if (type == DESC_TYPE_BOUNCE_HEAD) { |
| ret = hns3_fill_skb_to_desc(ring, skb, |
| DESC_TYPE_BOUNCE_HEAD); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| bd_num += ret; |
| } |
| |
| dma_sync_single_for_device(ring_to_dev(ring), dma, size, |
| DMA_TO_DEVICE); |
| |
| hns3_ring_stats_update(ring, tx_bounce); |
| |
| return bd_num; |
| } |
| |
| static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring, |
| struct sk_buff *skb) |
| { |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| u32 nfrag = skb_shinfo(skb)->nr_frags + 1; |
| struct sg_table *sgt; |
| int i, bd_num = 0; |
| dma_addr_t dma; |
| u32 cb_len; |
| int nents; |
| |
| if (skb_has_frag_list(skb)) |
| nfrag = HNS3_MAX_TSO_BD_NUM; |
| |
| /* hns3_can_use_tx_sgl() is called to ensure the below |
| * function can always return the tx buffer. |
| */ |
| sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag), |
| &dma, &cb_len); |
| |
| /* scatterlist follows by the sg table */ |
| sgt->sgl = (struct scatterlist *)(sgt + 1); |
| sg_init_table(sgt->sgl, nfrag); |
| nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len); |
| if (unlikely(nents < 0)) { |
| hns3_tx_spare_rollback(ring, cb_len); |
| hns3_ring_stats_update(ring, skb2sgl_err); |
| return -ENOMEM; |
| } |
| |
| sgt->orig_nents = nents; |
| sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, |
| DMA_TO_DEVICE); |
| if (unlikely(!sgt->nents)) { |
| hns3_tx_spare_rollback(ring, cb_len); |
| hns3_ring_stats_update(ring, map_sg_err); |
| return -ENOMEM; |
| } |
| |
| desc_cb->priv = skb; |
| desc_cb->length = cb_len; |
| desc_cb->dma = dma; |
| desc_cb->type = DESC_TYPE_SGL_SKB; |
| |
| for (i = 0; i < sgt->nents; i++) |
| bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i), |
| sg_dma_len(sgt->sgl + i)); |
| hns3_ring_stats_update(ring, tx_sgl); |
| |
| return bd_num; |
| } |
| |
| static int hns3_handle_desc_filling(struct hns3_enet_ring *ring, |
| struct sk_buff *skb) |
| { |
| u32 space; |
| |
| if (!ring->tx_spare) |
| goto out; |
| |
| space = hns3_tx_spare_space(ring); |
| |
| if (hns3_can_use_tx_sgl(ring, skb, space)) |
| return hns3_handle_tx_sgl(ring, skb); |
| |
| if (hns3_can_use_tx_bounce(ring, skb, space)) |
| return hns3_handle_tx_bounce(ring, skb); |
| |
| out: |
| return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB); |
| } |
| |
| static int hns3_handle_skb_desc(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, |
| struct hns3_desc_cb *desc_cb, |
| int next_to_use_head) |
| { |
| int ret; |
| |
| ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use], |
| desc_cb); |
| if (unlikely(ret < 0)) |
| goto fill_err; |
| |
| /* 'ret < 0' means filling error, 'ret == 0' means skb->len is |
| * zero, which is unlikely, and 'ret > 0' means how many tx desc |
| * need to be notified to the hw. |
| */ |
| ret = hns3_handle_desc_filling(ring, skb); |
| if (likely(ret > 0)) |
| return ret; |
| |
| fill_err: |
| hns3_clear_desc(ring, next_to_use_head); |
| return ret; |
| } |
| |
| netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping]; |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; |
| struct netdev_queue *dev_queue; |
| int pre_ntu, ret; |
| bool doorbell; |
| |
| /* Hardware can only handle short frames above 32 bytes */ |
| if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) { |
| hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); |
| |
| hns3_ring_stats_update(ring, sw_err_cnt); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* Prefetch the data used later */ |
| prefetch(skb->data); |
| |
| ret = hns3_nic_maybe_stop_tx(ring, netdev, skb); |
| if (unlikely(ret <= 0)) { |
| if (ret == -EBUSY) { |
| hns3_tx_doorbell(ring, 0, true); |
| return NETDEV_TX_BUSY; |
| } |
| |
| hns3_rl_err(netdev, "xmit error: %d!\n", ret); |
| goto out_err_tx_ok; |
| } |
| |
| ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use); |
| if (unlikely(ret <= 0)) |
| goto out_err_tx_ok; |
| |
| pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) : |
| (ring->desc_num - 1); |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) |
| hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]); |
| |
| ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |= |
| cpu_to_le16(BIT(HNS3_TXD_FE_B)); |
| trace_hns3_tx_desc(ring, pre_ntu); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Complete translate all packets */ |
| dev_queue = netdev_get_tx_queue(netdev, ring->queue_index); |
| doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes, |
| netdev_xmit_more()); |
| hns3_tx_doorbell(ring, ret, doorbell); |
| |
| return NETDEV_TX_OK; |
| |
| out_err_tx_ok: |
| dev_kfree_skb_any(skb); |
| hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); |
| return NETDEV_TX_OK; |
| } |
| |
| static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p) |
| { |
| char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN]; |
| char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN]; |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct sockaddr *mac_addr = p; |
| int ret; |
| |
| if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) { |
| hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); |
| netdev_info(netdev, "already using mac address %s\n", |
| format_mac_addr_sa); |
| return 0; |
| } |
| |
| /* For VF device, if there is a perm_addr, then the user will not |
| * be allowed to change the address. |
| */ |
| if (!hns3_is_phys_func(h->pdev) && |
| !is_zero_ether_addr(netdev->perm_addr)) { |
| hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr); |
| hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); |
| netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n", |
| format_mac_addr_perm, format_mac_addr_sa); |
| return -EPERM; |
| } |
| |
| ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false); |
| if (ret) { |
| netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret); |
| return ret; |
| } |
| |
| eth_hw_addr_set(netdev, mac_addr->sa_data); |
| |
| return 0; |
| } |
| |
| static int hns3_nic_do_ioctl(struct net_device *netdev, |
| struct ifreq *ifr, int cmd) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (!netif_running(netdev)) |
| return -EINVAL; |
| |
| if (!h->ae_algo->ops->do_ioctl) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->do_ioctl(h, ifr, cmd); |
| } |
| |
| static int hns3_nic_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| netdev_features_t changed = netdev->features ^ features; |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct hnae3_handle *h = priv->ae_handle; |
| bool enable; |
| int ret; |
| |
| if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) { |
| enable = !!(features & NETIF_F_GRO_HW); |
| ret = h->ae_algo->ops->set_gro_en(h, enable); |
| if (ret) |
| return ret; |
| } |
| |
| if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && |
| h->ae_algo->ops->enable_hw_strip_rxvtag) { |
| enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); |
| ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable); |
| if (ret) |
| return ret; |
| } |
| |
| if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) { |
| enable = !!(features & NETIF_F_NTUPLE); |
| h->ae_algo->ops->enable_fd(h, enable); |
| } |
| |
| if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) && |
| h->ae_algo->ops->cls_flower_active(h)) { |
| netdev_err(netdev, |
| "there are offloaded TC filters active, cannot disable HW TC offload"); |
| return -EINVAL; |
| } |
| |
| if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) && |
| h->ae_algo->ops->enable_vlan_filter) { |
| enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); |
| ret = h->ae_algo->ops->enable_vlan_filter(h, enable); |
| if (ret) |
| return ret; |
| } |
| |
| netdev->features = features; |
| return 0; |
| } |
| |
| static netdev_features_t hns3_features_check(struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| #define HNS3_MAX_HDR_LEN 480U |
| #define HNS3_MAX_L4_HDR_LEN 60U |
| |
| size_t len; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return features; |
| |
| if (skb->encapsulation) |
| len = skb_inner_transport_header(skb) - skb->data; |
| else |
| len = skb_transport_header(skb) - skb->data; |
| |
| /* Assume L4 is 60 byte as TCP is the only protocol with a |
| * a flexible value, and it's max len is 60 bytes. |
| */ |
| len += HNS3_MAX_L4_HDR_LEN; |
| |
| /* Hardware only supports checksum on the skb with a max header |
| * len of 480 bytes. |
| */ |
| if (len > HNS3_MAX_HDR_LEN) |
| features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| |
| return features; |
| } |
| |
| static void hns3_fetch_stats(struct rtnl_link_stats64 *stats, |
| struct hns3_enet_ring *ring, bool is_tx) |
| { |
| unsigned int start; |
| |
| do { |
| start = u64_stats_fetch_begin_irq(&ring->syncp); |
| if (is_tx) { |
| stats->tx_bytes += ring->stats.tx_bytes; |
| stats->tx_packets += ring->stats.tx_pkts; |
| stats->tx_dropped += ring->stats.sw_err_cnt; |
| stats->tx_dropped += ring->stats.tx_vlan_err; |
| stats->tx_dropped += ring->stats.tx_l4_proto_err; |
| stats->tx_dropped += ring->stats.tx_l2l3l4_err; |
| stats->tx_dropped += ring->stats.tx_tso_err; |
| stats->tx_dropped += ring->stats.over_max_recursion; |
| stats->tx_dropped += ring->stats.hw_limitation; |
| stats->tx_dropped += ring->stats.copy_bits_err; |
| stats->tx_dropped += ring->stats.skb2sgl_err; |
| stats->tx_dropped += ring->stats.map_sg_err; |
| stats->tx_errors += ring->stats.sw_err_cnt; |
| stats->tx_errors += ring->stats.tx_vlan_err; |
| stats->tx_errors += ring->stats.tx_l4_proto_err; |
| stats->tx_errors += ring->stats.tx_l2l3l4_err; |
| stats->tx_errors += ring->stats.tx_tso_err; |
| stats->tx_errors += ring->stats.over_max_recursion; |
| stats->tx_errors += ring->stats.hw_limitation; |
| stats->tx_errors += ring->stats.copy_bits_err; |
| stats->tx_errors += ring->stats.skb2sgl_err; |
| stats->tx_errors += ring->stats.map_sg_err; |
| } else { |
| stats->rx_bytes += ring->stats.rx_bytes; |
| stats->rx_packets += ring->stats.rx_pkts; |
| stats->rx_dropped += ring->stats.l2_err; |
| stats->rx_errors += ring->stats.l2_err; |
| stats->rx_errors += ring->stats.l3l4_csum_err; |
| stats->rx_crc_errors += ring->stats.l2_err; |
| stats->multicast += ring->stats.rx_multicast; |
| stats->rx_length_errors += ring->stats.err_pkt_len; |
| } |
| } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); |
| } |
| |
| static void hns3_nic_get_stats64(struct net_device *netdev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| int queue_num = priv->ae_handle->kinfo.num_tqps; |
| struct hnae3_handle *handle = priv->ae_handle; |
| struct rtnl_link_stats64 ring_total_stats; |
| struct hns3_enet_ring *ring; |
| unsigned int idx; |
| |
| if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) |
| return; |
| |
| handle->ae_algo->ops->update_stats(handle, &netdev->stats); |
| |
| memset(&ring_total_stats, 0, sizeof(ring_total_stats)); |
| for (idx = 0; idx < queue_num; idx++) { |
| /* fetch the tx stats */ |
| ring = &priv->ring[idx]; |
| hns3_fetch_stats(&ring_total_stats, ring, true); |
| |
| /* fetch the rx stats */ |
| ring = &priv->ring[idx + queue_num]; |
| hns3_fetch_stats(&ring_total_stats, ring, false); |
| } |
| |
| stats->tx_bytes = ring_total_stats.tx_bytes; |
| stats->tx_packets = ring_total_stats.tx_packets; |
| stats->rx_bytes = ring_total_stats.rx_bytes; |
| stats->rx_packets = ring_total_stats.rx_packets; |
| |
| stats->rx_errors = ring_total_stats.rx_errors; |
| stats->multicast = ring_total_stats.multicast; |
| stats->rx_length_errors = ring_total_stats.rx_length_errors; |
| stats->rx_crc_errors = ring_total_stats.rx_crc_errors; |
| stats->rx_missed_errors = netdev->stats.rx_missed_errors; |
| |
| stats->tx_errors = ring_total_stats.tx_errors; |
| stats->rx_dropped = ring_total_stats.rx_dropped; |
| stats->tx_dropped = ring_total_stats.tx_dropped; |
| stats->collisions = netdev->stats.collisions; |
| stats->rx_over_errors = netdev->stats.rx_over_errors; |
| stats->rx_frame_errors = netdev->stats.rx_frame_errors; |
| stats->rx_fifo_errors = netdev->stats.rx_fifo_errors; |
| stats->tx_aborted_errors = netdev->stats.tx_aborted_errors; |
| stats->tx_carrier_errors = netdev->stats.tx_carrier_errors; |
| stats->tx_fifo_errors = netdev->stats.tx_fifo_errors; |
| stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors; |
| stats->tx_window_errors = netdev->stats.tx_window_errors; |
| stats->rx_compressed = netdev->stats.rx_compressed; |
| stats->tx_compressed = netdev->stats.tx_compressed; |
| } |
| |
| static int hns3_setup_tc(struct net_device *netdev, void *type_data) |
| { |
| struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; |
| struct hnae3_knic_private_info *kinfo; |
| u8 tc = mqprio_qopt->qopt.num_tc; |
| u16 mode = mqprio_qopt->mode; |
| u8 hw = mqprio_qopt->qopt.hw; |
| struct hnae3_handle *h; |
| |
| if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS && |
| mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0))) |
| return -EOPNOTSUPP; |
| |
| if (tc > HNAE3_MAX_TC) |
| return -EINVAL; |
| |
| if (!netdev) |
| return -EINVAL; |
| |
| h = hns3_get_handle(netdev); |
| kinfo = &h->kinfo; |
| |
| netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc); |
| |
| return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ? |
| kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP; |
| } |
| |
| static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv, |
| struct flow_cls_offload *flow) |
| { |
| int tc = tc_classid_to_hwtc(priv->netdev, flow->classid); |
| struct hnae3_handle *h = hns3_get_handle(priv->netdev); |
| |
| switch (flow->command) { |
| case FLOW_CLS_REPLACE: |
| if (h->ae_algo->ops->add_cls_flower) |
| return h->ae_algo->ops->add_cls_flower(h, flow, tc); |
| break; |
| case FLOW_CLS_DESTROY: |
| if (h->ae_algo->ops->del_cls_flower) |
| return h->ae_algo->ops->del_cls_flower(h, flow); |
| break; |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data, |
| void *cb_priv) |
| { |
| struct hns3_nic_priv *priv = cb_priv; |
| |
| if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data)) |
| return -EOPNOTSUPP; |
| |
| switch (type) { |
| case TC_SETUP_CLSFLOWER: |
| return hns3_setup_tc_cls_flower(priv, type_data); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static LIST_HEAD(hns3_block_cb_list); |
| |
| static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type, |
| void *type_data) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(dev); |
| int ret; |
| |
| switch (type) { |
| case TC_SETUP_QDISC_MQPRIO: |
| ret = hns3_setup_tc(dev, type_data); |
| break; |
| case TC_SETUP_BLOCK: |
| ret = flow_block_cb_setup_simple(type_data, |
| &hns3_block_cb_list, |
| hns3_setup_tc_block_cb, |
| priv, priv, true); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return ret; |
| } |
| |
| static int hns3_vlan_rx_add_vid(struct net_device *netdev, |
| __be16 proto, u16 vid) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret = -EIO; |
| |
| if (h->ae_algo->ops->set_vlan_filter) |
| ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false); |
| |
| return ret; |
| } |
| |
| static int hns3_vlan_rx_kill_vid(struct net_device *netdev, |
| __be16 proto, u16 vid) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret = -EIO; |
| |
| if (h->ae_algo->ops->set_vlan_filter) |
| ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true); |
| |
| return ret; |
| } |
| |
| static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, |
| u8 qos, __be16 vlan_proto) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret = -EIO; |
| |
| netif_dbg(h, drv, netdev, |
| "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n", |
| vf, vlan, qos, ntohs(vlan_proto)); |
| |
| if (h->ae_algo->ops->set_vf_vlan_filter) |
| ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan, |
| qos, vlan_proto); |
| |
| return ret; |
| } |
| |
| static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable) |
| { |
| struct hnae3_handle *handle = hns3_get_handle(netdev); |
| |
| if (hns3_nic_resetting(netdev)) |
| return -EBUSY; |
| |
| if (!handle->ae_algo->ops->set_vf_spoofchk) |
| return -EOPNOTSUPP; |
| |
| return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable); |
| } |
| |
| static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable) |
| { |
| struct hnae3_handle *handle = hns3_get_handle(netdev); |
| |
| if (!handle->ae_algo->ops->set_vf_trust) |
| return -EOPNOTSUPP; |
| |
| return handle->ae_algo->ops->set_vf_trust(handle, vf, enable); |
| } |
| |
| static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret; |
| |
| if (hns3_nic_resetting(netdev)) |
| return -EBUSY; |
| |
| if (!h->ae_algo->ops->set_mtu) |
| return -EOPNOTSUPP; |
| |
| netif_dbg(h, drv, netdev, |
| "change mtu from %u to %d\n", netdev->mtu, new_mtu); |
| |
| ret = h->ae_algo->ops->set_mtu(h, new_mtu); |
| if (ret) |
| netdev_err(netdev, "failed to change MTU in hardware %d\n", |
| ret); |
| else |
| netdev->mtu = new_mtu; |
| |
| return ret; |
| } |
| |
| static int hns3_get_timeout_queue(struct net_device *ndev) |
| { |
| int i; |
| |
| /* Find the stopped queue the same way the stack does */ |
| for (i = 0; i < ndev->num_tx_queues; i++) { |
| struct netdev_queue *q; |
| unsigned long trans_start; |
| |
| q = netdev_get_tx_queue(ndev, i); |
| trans_start = READ_ONCE(q->trans_start); |
| if (netif_xmit_stopped(q) && |
| time_after(jiffies, |
| (trans_start + ndev->watchdog_timeo))) { |
| #ifdef CONFIG_BQL |
| struct dql *dql = &q->dql; |
| |
| netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n", |
| dql->last_obj_cnt, dql->num_queued, |
| dql->adj_limit, dql->num_completed); |
| #endif |
| netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n", |
| q->state, |
| jiffies_to_msecs(jiffies - trans_start)); |
| break; |
| } |
| } |
| |
| return i; |
| } |
| |
| static void hns3_dump_queue_stats(struct net_device *ndev, |
| struct hns3_enet_ring *tx_ring, |
| int timeout_queue) |
| { |
| struct napi_struct *napi = &tx_ring->tqp_vector->napi; |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| |
| netdev_info(ndev, |
| "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n", |
| priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use, |
| tx_ring->next_to_clean, napi->state); |
| |
| netdev_info(ndev, |
| "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n", |
| tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes, |
| tx_ring->stats.sw_err_cnt, tx_ring->pending_buf); |
| |
| netdev_info(ndev, |
| "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n", |
| tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more, |
| tx_ring->stats.restart_queue, tx_ring->stats.tx_busy); |
| } |
| |
| static void hns3_dump_queue_reg(struct net_device *ndev, |
| struct hns3_enet_ring *tx_ring) |
| { |
| netdev_info(ndev, |
| "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n", |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG), |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG), |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG), |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG), |
| readl(tx_ring->tqp_vector->mask_addr)); |
| netdev_info(ndev, |
| "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n", |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG), |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG), |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG), |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG), |
| hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG), |
| hns3_tqp_read_reg(tx_ring, |
| HNS3_RING_TX_RING_EBD_OFFSET_REG)); |
| } |
| |
| static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| struct hns3_enet_ring *tx_ring; |
| int timeout_queue; |
| |
| timeout_queue = hns3_get_timeout_queue(ndev); |
| if (timeout_queue >= ndev->num_tx_queues) { |
| netdev_info(ndev, |
| "no netdev TX timeout queue found, timeout count: %llu\n", |
| priv->tx_timeout_count); |
| return false; |
| } |
| |
| priv->tx_timeout_count++; |
| |
| tx_ring = &priv->ring[timeout_queue]; |
| hns3_dump_queue_stats(ndev, tx_ring, timeout_queue); |
| |
| /* When mac received many pause frames continuous, it's unable to send |
| * packets, which may cause tx timeout |
| */ |
| if (h->ae_algo->ops->get_mac_stats) { |
| struct hns3_mac_stats mac_stats; |
| |
| h->ae_algo->ops->get_mac_stats(h, &mac_stats); |
| netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n", |
| mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt); |
| } |
| |
| hns3_dump_queue_reg(ndev, tx_ring); |
| |
| return true; |
| } |
| |
| static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| struct hnae3_handle *h = priv->ae_handle; |
| |
| if (!hns3_get_tx_timeo_queue_info(ndev)) |
| return; |
| |
| /* request the reset, and let the hclge to determine |
| * which reset level should be done |
| */ |
| if (h->ae_algo->ops->reset_event) |
| h->ae_algo->ops->reset_event(h->pdev, h); |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, |
| u16 rxq_index, u32 flow_id) |
| { |
| struct hnae3_handle *h = hns3_get_handle(dev); |
| struct flow_keys fkeys; |
| |
| if (!h->ae_algo->ops->add_arfs_entry) |
| return -EOPNOTSUPP; |
| |
| if (skb->encapsulation) |
| return -EPROTONOSUPPORT; |
| |
| if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0)) |
| return -EPROTONOSUPPORT; |
| |
| if ((fkeys.basic.n_proto != htons(ETH_P_IP) && |
| fkeys.basic.n_proto != htons(ETH_P_IPV6)) || |
| (fkeys.basic.ip_proto != IPPROTO_TCP && |
| fkeys.basic.ip_proto != IPPROTO_UDP)) |
| return -EPROTONOSUPPORT; |
| |
| return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys); |
| } |
| #endif |
| |
| static int hns3_nic_get_vf_config(struct net_device *ndev, int vf, |
| struct ifla_vf_info *ivf) |
| { |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| |
| if (!h->ae_algo->ops->get_vf_config) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->get_vf_config(h, vf, ivf); |
| } |
| |
| static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf, |
| int link_state) |
| { |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| |
| if (!h->ae_algo->ops->set_vf_link_state) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->set_vf_link_state(h, vf, link_state); |
| } |
| |
| static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf, |
| int min_tx_rate, int max_tx_rate) |
| { |
| struct hnae3_handle *h = hns3_get_handle(ndev); |
| |
| if (!h->ae_algo->ops->set_vf_rate) |
| return -EOPNOTSUPP; |
| |
| return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate, |
| false); |
| } |
| |
| static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; |
| |
| if (!h->ae_algo->ops->set_vf_mac) |
| return -EOPNOTSUPP; |
| |
| if (is_multicast_ether_addr(mac)) { |
| hnae3_format_mac_addr(format_mac_addr, mac); |
| netdev_err(netdev, |
| "Invalid MAC:%s specified. Could not set MAC\n", |
| format_mac_addr); |
| return -EINVAL; |
| } |
| |
| return h->ae_algo->ops->set_vf_mac(h, vf_id, mac); |
| } |
| |
| static const struct net_device_ops hns3_nic_netdev_ops = { |
| .ndo_open = hns3_nic_net_open, |
| .ndo_stop = hns3_nic_net_stop, |
| .ndo_start_xmit = hns3_nic_net_xmit, |
| .ndo_tx_timeout = hns3_nic_net_timeout, |
| .ndo_set_mac_address = hns3_nic_net_set_mac_address, |
| .ndo_eth_ioctl = hns3_nic_do_ioctl, |
| .ndo_change_mtu = hns3_nic_change_mtu, |
| .ndo_set_features = hns3_nic_set_features, |
| .ndo_features_check = hns3_features_check, |
| .ndo_get_stats64 = hns3_nic_get_stats64, |
| .ndo_setup_tc = hns3_nic_setup_tc, |
| .ndo_set_rx_mode = hns3_nic_set_rx_mode, |
| .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid, |
| .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan, |
| .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk, |
| .ndo_set_vf_trust = hns3_set_vf_trust, |
| #ifdef CONFIG_RFS_ACCEL |
| .ndo_rx_flow_steer = hns3_rx_flow_steer, |
| #endif |
| .ndo_get_vf_config = hns3_nic_get_vf_config, |
| .ndo_set_vf_link_state = hns3_nic_set_vf_link_state, |
| .ndo_set_vf_rate = hns3_nic_set_vf_rate, |
| .ndo_set_vf_mac = hns3_nic_set_vf_mac, |
| }; |
| |
| bool hns3_is_phys_func(struct pci_dev *pdev) |
| { |
| u32 dev_id = pdev->device; |
| |
| switch (dev_id) { |
| case HNAE3_DEV_ID_GE: |
| case HNAE3_DEV_ID_25GE: |
| case HNAE3_DEV_ID_25GE_RDMA: |
| case HNAE3_DEV_ID_25GE_RDMA_MACSEC: |
| case HNAE3_DEV_ID_50GE_RDMA: |
| case HNAE3_DEV_ID_50GE_RDMA_MACSEC: |
| case HNAE3_DEV_ID_100G_RDMA_MACSEC: |
| case HNAE3_DEV_ID_200G_RDMA: |
| return true; |
| case HNAE3_DEV_ID_VF: |
| case HNAE3_DEV_ID_RDMA_DCB_PFC_VF: |
| return false; |
| default: |
| dev_warn(&pdev->dev, "un-recognized pci device-id %u", |
| dev_id); |
| } |
| |
| return false; |
| } |
| |
| static void hns3_disable_sriov(struct pci_dev *pdev) |
| { |
| /* If our VFs are assigned we cannot shut down SR-IOV |
| * without causing issues, so just leave the hardware |
| * available but disabled |
| */ |
| if (pci_vfs_assigned(pdev)) { |
| dev_warn(&pdev->dev, |
| "disabling driver while VFs are assigned\n"); |
| return; |
| } |
| |
| pci_disable_sriov(pdev); |
| } |
| |
| /* hns3_probe - Device initialization routine |
| * @pdev: PCI device information struct |
| * @ent: entry in hns3_pci_tbl |
| * |
| * hns3_probe initializes a PF identified by a pci_dev structure. |
| * The OS initialization, configuring of the PF private structure, |
| * and a hardware reset occur. |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct hnae3_ae_dev *ae_dev; |
| int ret; |
| |
| ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL); |
| if (!ae_dev) |
| return -ENOMEM; |
| |
| ae_dev->pdev = pdev; |
| ae_dev->flag = ent->driver_data; |
| pci_set_drvdata(pdev, ae_dev); |
| |
| ret = hnae3_register_ae_dev(ae_dev); |
| if (ret) |
| pci_set_drvdata(pdev, NULL); |
| |
| return ret; |
| } |
| |
| /* hns3_remove - Device removal routine |
| * @pdev: PCI device information struct |
| */ |
| static void hns3_remove(struct pci_dev *pdev) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV)) |
| hns3_disable_sriov(pdev); |
| |
| hnae3_unregister_ae_dev(ae_dev); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| /** |
| * hns3_pci_sriov_configure |
| * @pdev: pointer to a pci_dev structure |
| * @num_vfs: number of VFs to allocate |
| * |
| * Enable or change the number of VFs. Called when the user updates the number |
| * of VFs in sysfs. |
| **/ |
| static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) |
| { |
| int ret; |
| |
| if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) { |
| dev_warn(&pdev->dev, "Can not config SRIOV\n"); |
| return -EINVAL; |
| } |
| |
| if (num_vfs) { |
| ret = pci_enable_sriov(pdev, num_vfs); |
| if (ret) |
| dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret); |
| else |
| return num_vfs; |
| } else if (!pci_vfs_assigned(pdev)) { |
| pci_disable_sriov(pdev); |
| } else { |
| dev_warn(&pdev->dev, |
| "Unable to free VFs because some are assigned to VMs.\n"); |
| } |
| |
| return 0; |
| } |
| |
| static void hns3_shutdown(struct pci_dev *pdev) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| hnae3_unregister_ae_dev(ae_dev); |
| pci_set_drvdata(pdev, NULL); |
| |
| if (system_state == SYSTEM_POWER_OFF) |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| static int __maybe_unused hns3_suspend(struct device *dev) |
| { |
| struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); |
| |
| if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { |
| dev_info(dev, "Begin to suspend.\n"); |
| if (ae_dev->ops && ae_dev->ops->reset_prepare) |
| ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET); |
| } |
| |
| return 0; |
| } |
| |
| static int __maybe_unused hns3_resume(struct device *dev) |
| { |
| struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); |
| |
| if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { |
| dev_info(dev, "Begin to resume.\n"); |
| if (ae_dev->ops && ae_dev->ops->reset_done) |
| ae_dev->ops->reset_done(ae_dev); |
| } |
| |
| return 0; |
| } |
| |
| static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| pci_ers_result_t ret; |
| |
| dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| if (!ae_dev || !ae_dev->ops) { |
| dev_err(&pdev->dev, |
| "Can't recover - error happened before device initialized\n"); |
| return PCI_ERS_RESULT_NONE; |
| } |
| |
| if (ae_dev->ops->handle_hw_ras_error) |
| ret = ae_dev->ops->handle_hw_ras_error(ae_dev); |
| else |
| return PCI_ERS_RESULT_NONE; |
| |
| return ret; |
| } |
| |
| static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| const struct hnae3_ae_ops *ops; |
| enum hnae3_reset_type reset_type; |
| struct device *dev = &pdev->dev; |
| |
| if (!ae_dev || !ae_dev->ops) |
| return PCI_ERS_RESULT_NONE; |
| |
| ops = ae_dev->ops; |
| /* request the reset */ |
| if (ops->reset_event && ops->get_reset_level && |
| ops->set_default_reset_request) { |
| if (ae_dev->hw_err_reset_req) { |
| reset_type = ops->get_reset_level(ae_dev, |
| &ae_dev->hw_err_reset_req); |
| ops->set_default_reset_request(ae_dev, reset_type); |
| dev_info(dev, "requesting reset due to PCI error\n"); |
| ops->reset_event(pdev, NULL); |
| } |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| |
| static void hns3_reset_prepare(struct pci_dev *pdev) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| dev_info(&pdev->dev, "FLR prepare\n"); |
| if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare) |
| ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET); |
| } |
| |
| static void hns3_reset_done(struct pci_dev *pdev) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| dev_info(&pdev->dev, "FLR done\n"); |
| if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done) |
| ae_dev->ops->reset_done(ae_dev); |
| } |
| |
| static const struct pci_error_handlers hns3_err_handler = { |
| .error_detected = hns3_error_detected, |
| .slot_reset = hns3_slot_reset, |
| .reset_prepare = hns3_reset_prepare, |
| .reset_done = hns3_reset_done, |
| }; |
| |
| static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume); |
| |
| static struct pci_driver hns3_driver = { |
| .name = hns3_driver_name, |
| .id_table = hns3_pci_tbl, |
| .probe = hns3_probe, |
| .remove = hns3_remove, |
| .shutdown = hns3_shutdown, |
| .driver.pm = &hns3_pm_ops, |
| .sriov_configure = hns3_pci_sriov_configure, |
| .err_handler = &hns3_err_handler, |
| }; |
| |
| /* set default feature to hns3 */ |
| static void hns3_set_default_feature(struct net_device *netdev) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct pci_dev *pdev = h->pdev; |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| netdev->priv_flags |= IFF_UNICAST_FLT; |
| |
| netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; |
| |
| netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | |
| NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | |
| NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | |
| NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | |
| NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; |
| |
| if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { |
| netdev->features |= NETIF_F_GRO_HW; |
| |
| if (!(h->flags & HNAE3_SUPPORT_VF)) |
| netdev->features |= NETIF_F_NTUPLE; |
| } |
| |
| if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) |
| netdev->features |= NETIF_F_GSO_UDP_L4; |
| |
| if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) |
| netdev->features |= NETIF_F_HW_CSUM; |
| else |
| netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; |
| |
| if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) |
| netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; |
| |
| if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) |
| netdev->features |= NETIF_F_HW_TC; |
| |
| netdev->hw_features |= netdev->features; |
| if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) |
| netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; |
| |
| netdev->vlan_features |= netdev->features & |
| ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | |
| NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE | |
| NETIF_F_HW_TC); |
| |
| netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID; |
| } |
| |
| static int hns3_alloc_buffer(struct hns3_enet_ring *ring, |
| struct hns3_desc_cb *cb) |
| { |
| unsigned int order = hns3_page_order(ring); |
| struct page *p; |
| |
| if (ring->page_pool) { |
| p = page_pool_dev_alloc_frag(ring->page_pool, |
| &cb->page_offset, |
| hns3_buf_size(ring)); |
| if (unlikely(!p)) |
| return -ENOMEM; |
| |
| cb->priv = p; |
| cb->buf = page_address(p); |
| cb->dma = page_pool_get_dma_addr(p); |
| cb->type = DESC_TYPE_PP_FRAG; |
| cb->reuse_flag = 0; |
| return 0; |
| } |
| |
| p = dev_alloc_pages(order); |
| if (!p) |
| return -ENOMEM; |
| |
| cb->priv = p; |
| cb->page_offset = 0; |
| cb->reuse_flag = 0; |
| cb->buf = page_address(p); |
| cb->length = hns3_page_size(ring); |
| cb->type = DESC_TYPE_PAGE; |
| page_ref_add(p, USHRT_MAX - 1); |
| cb->pagecnt_bias = USHRT_MAX; |
| |
| return 0; |
| } |
| |
| static void hns3_free_buffer(struct hns3_enet_ring *ring, |
| struct hns3_desc_cb *cb, int budget) |
| { |
| if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD | |
| DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB)) |
| napi_consume_skb(cb->priv, budget); |
| else if (!HNAE3_IS_TX_RING(ring)) { |
| if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias) |
| __page_frag_cache_drain(cb->priv, cb->pagecnt_bias); |
| else if (cb->type & DESC_TYPE_PP_FRAG) |
| page_pool_put_full_page(ring->page_pool, cb->priv, |
| false); |
| } |
| memset(cb, 0, sizeof(*cb)); |
| } |
| |
| static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) |
| { |
| cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0, |
| cb->length, ring_to_dma_dir(ring)); |
| |
| if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma))) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void hns3_unmap_buffer(struct hns3_enet_ring *ring, |
| struct hns3_desc_cb *cb) |
| { |
| if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) |
| dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length, |
| ring_to_dma_dir(ring)); |
| else if ((cb->type & DESC_TYPE_PAGE) && cb->length) |
| dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length, |
| ring_to_dma_dir(ring)); |
| else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD | |
| DESC_TYPE_SGL_SKB)) |
| hns3_tx_spare_reclaim_cb(ring, cb); |
| } |
| |
| static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i) |
| { |
| hns3_unmap_buffer(ring, &ring->desc_cb[i]); |
| ring->desc[i].addr = 0; |
| ring->desc_cb[i].refill = 0; |
| } |
| |
| static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i, |
| int budget) |
| { |
| struct hns3_desc_cb *cb = &ring->desc_cb[i]; |
| |
| if (!ring->desc_cb[i].dma) |
| return; |
| |
| hns3_buffer_detach(ring, i); |
| hns3_free_buffer(ring, cb, budget); |
| } |
| |
| static void hns3_free_buffers(struct hns3_enet_ring *ring) |
| { |
| int i; |
| |
| for (i = 0; i < ring->desc_num; i++) |
| hns3_free_buffer_detach(ring, i, 0); |
| } |
| |
| /* free desc along with its attached buffer */ |
| static void hns3_free_desc(struct hns3_enet_ring *ring) |
| { |
| int size = ring->desc_num * sizeof(ring->desc[0]); |
| |
| hns3_free_buffers(ring); |
| |
| if (ring->desc) { |
| dma_free_coherent(ring_to_dev(ring), size, |
| ring->desc, ring->desc_dma_addr); |
| ring->desc = NULL; |
| } |
| } |
| |
| static int hns3_alloc_desc(struct hns3_enet_ring *ring) |
| { |
| int size = ring->desc_num * sizeof(ring->desc[0]); |
| |
| ring->desc = dma_alloc_coherent(ring_to_dev(ring), size, |
| &ring->desc_dma_addr, GFP_KERNEL); |
| if (!ring->desc) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring, |
| struct hns3_desc_cb *cb) |
| { |
| int ret; |
| |
| ret = hns3_alloc_buffer(ring, cb); |
| if (ret || ring->page_pool) |
| goto out; |
| |
| ret = hns3_map_buffer(ring, cb); |
| if (ret) |
| goto out_with_buf; |
| |
| return 0; |
| |
| out_with_buf: |
| hns3_free_buffer(ring, cb, 0); |
| out: |
| return ret; |
| } |
| |
| static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i) |
| { |
| int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]); |
| |
| if (ret) |
| return ret; |
| |
| ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + |
| ring->desc_cb[i].page_offset); |
| ring->desc_cb[i].refill = 1; |
| |
| return 0; |
| } |
| |
| /* Allocate memory for raw pkg, and map with dma */ |
| static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring) |
| { |
| int i, j, ret; |
| |
| for (i = 0; i < ring->desc_num; i++) { |
| ret = hns3_alloc_and_attach_buffer(ring, i); |
| if (ret) |
| goto out_buffer_fail; |
| } |
| |
| return 0; |
| |
| out_buffer_fail: |
| for (j = i - 1; j >= 0; j--) |
| hns3_free_buffer_detach(ring, j, 0); |
| return ret; |
| } |
| |
| /* detach a in-used buffer and replace with a reserved one */ |
| static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i, |
| struct hns3_desc_cb *res_cb) |
| { |
| hns3_unmap_buffer(ring, &ring->desc_cb[i]); |
| ring->desc_cb[i] = *res_cb; |
| ring->desc_cb[i].refill = 1; |
| ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + |
| ring->desc_cb[i].page_offset); |
| ring->desc[i].rx.bd_base_info = 0; |
| } |
| |
| static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i) |
| { |
| ring->desc_cb[i].reuse_flag = 0; |
| ring->desc_cb[i].refill = 1; |
| ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + |
| ring->desc_cb[i].page_offset); |
| ring->desc[i].rx.bd_base_info = 0; |
| |
| dma_sync_single_for_device(ring_to_dev(ring), |
| ring->desc_cb[i].dma + ring->desc_cb[i].page_offset, |
| hns3_buf_size(ring), |
| DMA_FROM_DEVICE); |
| } |
| |
| static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, |
| int *bytes, int *pkts, int budget) |
| { |
| /* pair with ring->last_to_use update in hns3_tx_doorbell(), |
| * smp_store_release() is not used in hns3_tx_doorbell() because |
| * the doorbell operation already have the needed barrier operation. |
| */ |
| int ltu = smp_load_acquire(&ring->last_to_use); |
| int ntc = ring->next_to_clean; |
| struct hns3_desc_cb *desc_cb; |
| bool reclaimed = false; |
| struct hns3_desc *desc; |
| |
| while (ltu != ntc) { |
| desc = &ring->desc[ntc]; |
| |
| if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) & |
| BIT(HNS3_TXD_VLD_B)) |
| break; |
| |
| desc_cb = &ring->desc_cb[ntc]; |
| |
| if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL | |
| DESC_TYPE_BOUNCE_HEAD | |
| DESC_TYPE_SGL_SKB)) { |
| (*pkts)++; |
| (*bytes) += desc_cb->send_bytes; |
| } |
| |
| /* desc_cb will be cleaned, after hnae3_free_buffer_detach */ |
| hns3_free_buffer_detach(ring, ntc, budget); |
| |
| if (++ntc == ring->desc_num) |
| ntc = 0; |
| |
| /* Issue prefetch for next Tx descriptor */ |
| prefetch(&ring->desc_cb[ntc]); |
| reclaimed = true; |
| } |
| |
| if (unlikely(!reclaimed)) |
| return false; |
| |
| /* This smp_store_release() pairs with smp_load_acquire() in |
| * ring_space called by hns3_nic_net_xmit. |
| */ |
| smp_store_release(&ring->next_to_clean, ntc); |
| |
| hns3_tx_spare_update(ring); |
| |
| return true; |
| } |
| |
| void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget) |
| { |
| struct net_device *netdev = ring_to_netdev(ring); |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| struct netdev_queue *dev_queue; |
| int bytes, pkts; |
| |
| bytes = 0; |
| pkts = 0; |
| |
| if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget))) |
| return; |
| |
| ring->tqp_vector->tx_group.total_bytes += bytes; |
| ring->tqp_vector->tx_group.total_packets += pkts; |
| |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.tx_bytes += bytes; |
| ring->stats.tx_pkts += pkts; |
| u64_stats_update_end(&ring->syncp); |
| |
| dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index); |
| netdev_tx_completed_queue(dev_queue, pkts, bytes); |
| |
| if (unlikely(netif_carrier_ok(netdev) && |
| ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| if (netif_tx_queue_stopped(dev_queue) && |
| !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { |
| netif_tx_wake_queue(dev_queue); |
| ring->stats.restart_queue++; |
| } |
| } |
| } |
| |
| static int hns3_desc_unused(struct hns3_enet_ring *ring) |
| { |
| int ntc = ring->next_to_clean; |
| int ntu = ring->next_to_use; |
| |
| if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill)) |
| return ring->desc_num; |
| |
| return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; |
| } |
| |
| /* Return true if there is any allocation failure */ |
| static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, |
| int cleand_count) |
| { |
| struct hns3_desc_cb *desc_cb; |
| struct hns3_desc_cb res_cbs; |
| int i, ret; |
| |
| for (i = 0; i < cleand_count; i++) { |
| desc_cb = &ring->desc_cb[ring->next_to_use]; |
| if (desc_cb->reuse_flag) { |
| hns3_ring_stats_update(ring, reuse_pg_cnt); |
| |
| hns3_reuse_buffer(ring, ring->next_to_use); |
| } else { |
| ret = hns3_alloc_and_map_buffer(ring, &res_cbs); |
| if (ret) { |
| hns3_ring_stats_update(ring, sw_err_cnt); |
| |
| hns3_rl_err(ring_to_netdev(ring), |
| "alloc rx buffer failed: %d\n", |
| ret); |
| |
| writel(i, ring->tqp->io_base + |
| HNS3_RING_RX_RING_HEAD_REG); |
| return true; |
| } |
| hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); |
| |
| hns3_ring_stats_update(ring, non_reuse_pg); |
| } |
| |
| ring_ptr_move_fw(ring, next_to_use); |
| } |
| |
| writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG); |
| return false; |
| } |
| |
| static bool hns3_can_reuse_page(struct hns3_desc_cb *cb) |
| { |
| return page_count(cb->priv) == cb->pagecnt_bias; |
| } |
| |
| static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i, |
| struct hns3_enet_ring *ring, |
| int pull_len, |
| struct hns3_desc_cb *desc_cb) |
| { |
| struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; |
| u32 frag_offset = desc_cb->page_offset + pull_len; |
| int size = le16_to_cpu(desc->rx.size); |
| u32 frag_size = size - pull_len; |
| void *frag = napi_alloc_frag(frag_size); |
| |
| if (unlikely(!frag)) { |
| hns3_ring_stats_update(ring, frag_alloc_err); |
| |
| hns3_rl_err(ring_to_netdev(ring), |
| "failed to allocate rx frag\n"); |
| return -ENOMEM; |
| } |
| |
| desc_cb->reuse_flag = 1; |
| memcpy(frag, desc_cb->buf + frag_offset, frag_size); |
| skb_add_rx_frag(skb, i, virt_to_page(frag), |
| offset_in_page(frag), frag_size, frag_size); |
| |
| hns3_ring_stats_update(ring, frag_alloc); |
| return 0; |
| } |
| |
| static void hns3_nic_reuse_page(struct sk_buff *skb, int i, |
| struct hns3_enet_ring *ring, int pull_len, |
| struct hns3_desc_cb *desc_cb) |
| { |
| struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; |
| u32 frag_offset = desc_cb->page_offset + pull_len; |
| int size = le16_to_cpu(desc->rx.size); |
| u32 truesize = hns3_buf_size(ring); |
| u32 frag_size = size - pull_len; |
| int ret = 0; |
| bool reused; |
| |
| if (ring->page_pool) { |
| skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, |
| frag_size, truesize); |
| return; |
| } |
| |
| /* Avoid re-using remote or pfmem page */ |
| if (unlikely(!dev_page_is_reusable(desc_cb->priv))) |
| goto out; |
| |
| reused = hns3_can_reuse_page(desc_cb); |
| |
| /* Rx page can be reused when: |
| * 1. Rx page is only owned by the driver when page_offset |
| * is zero, which means 0 @ truesize will be used by |
| * stack after skb_add_rx_frag() is called, and the rest |
| * of rx page can be reused by driver. |
| * Or |
| * 2. Rx page is only owned by the driver when page_offset |
| * is non-zero, which means page_offset @ truesize will |
| * be used by stack after skb_add_rx_frag() is called, |
| * and 0 @ truesize can be reused by driver. |
| */ |
| if ((!desc_cb->page_offset && reused) || |
| ((desc_cb->page_offset + truesize + truesize) <= |
| hns3_page_size(ring) && desc_cb->page_offset)) { |
| desc_cb->page_offset += truesize; |
| desc_cb->reuse_flag = 1; |
| } else if (desc_cb->page_offset && reused) { |
| desc_cb->page_offset = 0; |
| desc_cb->reuse_flag = 1; |
| } else if (frag_size <= ring->rx_copybreak) { |
| ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| desc_cb->pagecnt_bias--; |
| |
| if (unlikely(!desc_cb->pagecnt_bias)) { |
| page_ref_add(desc_cb->priv, USHRT_MAX); |
| desc_cb->pagecnt_bias = USHRT_MAX; |
| } |
| |
| skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, |
| frag_size, truesize); |
| |
| if (unlikely(!desc_cb->reuse_flag)) |
| __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias); |
| } |
| |
| static int hns3_gro_complete(struct sk_buff *skb, u32 l234info) |
| { |
| __be16 type = skb->protocol; |
| struct tcphdr *th; |
| int depth = 0; |
| |
| while (eth_type_vlan(type)) { |
| struct vlan_hdr *vh; |
| |
| if ((depth + VLAN_HLEN) > skb_headlen(skb)) |
| return -EFAULT; |
| |
| vh = (struct vlan_hdr *)(skb->data + depth); |
| type = vh->h_vlan_encapsulated_proto; |
| depth += VLAN_HLEN; |
| } |
| |
| skb_set_network_header(skb, depth); |
| |
| if (type == htons(ETH_P_IP)) { |
| const struct iphdr *iph = ip_hdr(skb); |
| |
| depth += sizeof(struct iphdr); |
| skb_set_transport_header(skb, depth); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v4_check(skb->len - depth, iph->saddr, |
| iph->daddr, 0); |
| } else if (type == htons(ETH_P_IPV6)) { |
| const struct ipv6hdr *iph = ipv6_hdr(skb); |
| |
| depth += sizeof(struct ipv6hdr); |
| skb_set_transport_header(skb, depth); |
| th = tcp_hdr(skb); |
| th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr, |
| &iph->daddr, 0); |
| } else { |
| hns3_rl_err(skb->dev, |
| "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n", |
| be16_to_cpu(type), depth); |
| return -EFAULT; |
| } |
| |
| skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; |
| if (th->cwr) |
| skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; |
| |
| if (l234info & BIT(HNS3_RXD_GRO_FIXID_B)) |
| skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID; |
| |
| skb->csum_start = (unsigned char *)th - skb->head; |
| skb->csum_offset = offsetof(struct tcphdr, check); |
| skb->ip_summed = CHECKSUM_PARTIAL; |
| |
| trace_hns3_gro(skb); |
| |
| return 0; |
| } |
| |
| static bool hns3_checksum_complete(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, u32 ptype, u16 csum) |
| { |
| if (ptype == HNS3_INVALID_PTYPE || |
| hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE) |
| return false; |
| |
| hns3_ring_stats_update(ring, csum_complete); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| skb->csum = csum_unfold((__force __sum16)csum); |
| |
| return true; |
| } |
| |
| static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info, |
| u32 ol_info, u32 ptype) |
| { |
| int l3_type, l4_type; |
| int ol4_type; |
| |
| if (ptype != HNS3_INVALID_PTYPE) { |
| skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level; |
| skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed; |
| |
| return; |
| } |
| |
| ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M, |
| HNS3_RXD_OL4ID_S); |
| switch (ol4_type) { |
| case HNS3_OL4_TYPE_MAC_IN_UDP: |
| case HNS3_OL4_TYPE_NVGRE: |
| skb->csum_level = 1; |
| fallthrough; |
| case HNS3_OL4_TYPE_NO_TUN: |
| l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, |
| HNS3_RXD_L3ID_S); |
| l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, |
| HNS3_RXD_L4ID_S); |
| /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */ |
| if ((l3_type == HNS3_L3_TYPE_IPV4 || |
| l3_type == HNS3_L3_TYPE_IPV6) && |
| (l4_type == HNS3_L4_TYPE_UDP || |
| l4_type == HNS3_L4_TYPE_TCP || |
| l4_type == HNS3_L4_TYPE_SCTP)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, |
| u32 l234info, u32 bd_base_info, u32 ol_info, |
| u16 csum) |
| { |
| struct net_device *netdev = ring_to_netdev(ring); |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| u32 ptype = HNS3_INVALID_PTYPE; |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| skb_checksum_none_assert(skb); |
| |
| if (!(netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) |
| ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, |
| HNS3_RXD_PTYPE_S); |
| |
| if (hns3_checksum_complete(ring, skb, ptype, csum)) |
| return; |
| |
| /* check if hardware has done checksum */ |
| if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) |
| return; |
| |
| if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) | |
| BIT(HNS3_RXD_OL3E_B) | |
| BIT(HNS3_RXD_OL4E_B)))) { |
| hns3_ring_stats_update(ring, l3l4_csum_err); |
| |
| return; |
| } |
| |
| hns3_rx_handle_csum(skb, l234info, ol_info, ptype); |
| } |
| |
| static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb) |
| { |
| if (skb_has_frag_list(skb)) |
| napi_gro_flush(&ring->tqp_vector->napi, false); |
| |
| napi_gro_receive(&ring->tqp_vector->napi, skb); |
| } |
| |
| static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring, |
| struct hns3_desc *desc, u32 l234info, |
| u16 *vlan_tag) |
| { |
| struct hnae3_handle *handle = ring->tqp->handle; |
| struct pci_dev *pdev = ring->tqp->handle->pdev; |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| |
| if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) { |
| *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); |
| if (!(*vlan_tag & VLAN_VID_MASK)) |
| *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); |
| |
| return (*vlan_tag != 0); |
| } |
| |
| #define HNS3_STRP_OUTER_VLAN 0x1 |
| #define HNS3_STRP_INNER_VLAN 0x2 |
| #define HNS3_STRP_BOTH 0x3 |
| |
| /* Hardware always insert VLAN tag into RX descriptor when |
| * remove the tag from packet, driver needs to determine |
| * reporting which tag to stack. |
| */ |
| switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M, |
| HNS3_RXD_STRP_TAGP_S)) { |
| case HNS3_STRP_OUTER_VLAN: |
| if (handle->port_base_vlan_state != |
| HNAE3_PORT_BASE_VLAN_DISABLE) |
| return false; |
| |
| *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); |
| return true; |
| case HNS3_STRP_INNER_VLAN: |
| if (handle->port_base_vlan_state != |
| HNAE3_PORT_BASE_VLAN_DISABLE) |
| return false; |
| |
| *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); |
| return true; |
| case HNS3_STRP_BOTH: |
| if (handle->port_base_vlan_state == |
| HNAE3_PORT_BASE_VLAN_DISABLE) |
| *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); |
| else |
| *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); |
| |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring) |
| { |
| ring->desc[ring->next_to_clean].rx.bd_base_info &= |
| cpu_to_le32(~BIT(HNS3_RXD_VLD_B)); |
| ring->desc_cb[ring->next_to_clean].refill = 0; |
| ring->next_to_clean += 1; |
| |
| if (unlikely(ring->next_to_clean == ring->desc_num)) |
| ring->next_to_clean = 0; |
| } |
| |
| static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length, |
| unsigned char *va) |
| { |
| struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; |
| struct net_device *netdev = ring_to_netdev(ring); |
| struct sk_buff *skb; |
| |
| ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE); |
| skb = ring->skb; |
| if (unlikely(!skb)) { |
| hns3_rl_err(netdev, "alloc rx skb fail\n"); |
| hns3_ring_stats_update(ring, sw_err_cnt); |
| |
| return -ENOMEM; |
| } |
| |
| trace_hns3_rx_desc(ring); |
| prefetchw(skb->data); |
| |
| ring->pending_buf = 1; |
| ring->frag_num = 0; |
| ring->tail_skb = NULL; |
| if (length <= HNS3_RX_HEAD_SIZE) { |
| memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); |
| |
| /* We can reuse buffer as-is, just make sure it is reusable */ |
| if (dev_page_is_reusable(desc_cb->priv)) |
| desc_cb->reuse_flag = 1; |
| else if (desc_cb->type & DESC_TYPE_PP_FRAG) |
| page_pool_put_full_page(ring->page_pool, desc_cb->priv, |
| false); |
| else /* This page cannot be reused so discard it */ |
| __page_frag_cache_drain(desc_cb->priv, |
| desc_cb->pagecnt_bias); |
| |
| hns3_rx_ring_move_fw(ring); |
| return 0; |
| } |
| |
| if (ring->page_pool) |
| skb_mark_for_recycle(skb); |
| |
| hns3_ring_stats_update(ring, seg_pkt_cnt); |
| |
| ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE); |
| __skb_put(skb, ring->pull_len); |
| hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len, |
| desc_cb); |
| hns3_rx_ring_move_fw(ring); |
| |
| return 0; |
| } |
| |
| static int hns3_add_frag(struct hns3_enet_ring *ring) |
| { |
| struct sk_buff *skb = ring->skb; |
| struct sk_buff *head_skb = skb; |
| struct sk_buff *new_skb; |
| struct hns3_desc_cb *desc_cb; |
| struct hns3_desc *desc; |
| u32 bd_base_info; |
| |
| do { |
| desc = &ring->desc[ring->next_to_clean]; |
| desc_cb = &ring->desc_cb[ring->next_to_clean]; |
| bd_base_info = le32_to_cpu(desc->rx.bd_base_info); |
| /* make sure HW write desc complete */ |
| dma_rmb(); |
| if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) |
| return -ENXIO; |
| |
| if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) { |
| new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0); |
| if (unlikely(!new_skb)) { |
| hns3_rl_err(ring_to_netdev(ring), |
| "alloc rx fraglist skb fail\n"); |
| return -ENXIO; |
| } |
| |
| if (ring->page_pool) |
| skb_mark_for_recycle(new_skb); |
| |
| ring->frag_num = 0; |
| |
| if (ring->tail_skb) { |
| ring->tail_skb->next = new_skb; |
| ring->tail_skb = new_skb; |
| } else { |
| skb_shinfo(skb)->frag_list = new_skb; |
| ring->tail_skb = new_skb; |
| } |
| } |
| |
| if (ring->tail_skb) { |
| head_skb->truesize += hns3_buf_size(ring); |
| head_skb->data_len += le16_to_cpu(desc->rx.size); |
| head_skb->len += le16_to_cpu(desc->rx.size); |
| skb = ring->tail_skb; |
| } |
| |
| dma_sync_single_for_cpu(ring_to_dev(ring), |
| desc_cb->dma + desc_cb->page_offset, |
| hns3_buf_size(ring), |
| DMA_FROM_DEVICE); |
| |
| hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb); |
| trace_hns3_rx_desc(ring); |
| hns3_rx_ring_move_fw(ring); |
| ring->pending_buf++; |
| } while (!(bd_base_info & BIT(HNS3_RXD_FE_B))); |
| |
| return 0; |
| } |
| |
| static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, u32 l234info, |
| u32 bd_base_info, u32 ol_info, u16 csum) |
| { |
| struct net_device *netdev = ring_to_netdev(ring); |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| u32 l3_type; |
| |
| skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info, |
| HNS3_RXD_GRO_SIZE_M, |
| HNS3_RXD_GRO_SIZE_S); |
| /* if there is no HW GRO, do not set gro params */ |
| if (!skb_shinfo(skb)->gso_size) { |
| hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info, |
| csum); |
| return 0; |
| } |
| |
| NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info, |
| HNS3_RXD_GRO_COUNT_M, |
| HNS3_RXD_GRO_COUNT_S); |
| |
| if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { |
| u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, |
| HNS3_RXD_PTYPE_S); |
| |
| l3_type = hns3_rx_ptype_tbl[ptype].l3_type; |
| } else { |
| l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, |
| HNS3_RXD_L3ID_S); |
| } |
| |
| if (l3_type == HNS3_L3_TYPE_IPV4) |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; |
| else if (l3_type == HNS3_L3_TYPE_IPV6) |
| skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; |
| else |
| return -EFAULT; |
| |
| return hns3_gro_complete(skb, l234info); |
| } |
| |
| static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring, |
| struct sk_buff *skb, u32 rss_hash) |
| { |
| struct hnae3_handle *handle = ring->tqp->handle; |
| enum pkt_hash_types rss_type; |
| |
| if (rss_hash) |
| rss_type = handle->kinfo.rss_type; |
| else |
| rss_type = PKT_HASH_TYPE_NONE; |
| |
| skb_set_hash(skb, rss_hash, rss_type); |
| } |
| |
| static void hns3_handle_rx_ts_info(struct net_device *netdev, |
| struct hns3_desc *desc, struct sk_buff *skb, |
| u32 bd_base_info) |
| { |
| if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| u32 nsec = le32_to_cpu(desc->ts_nsec); |
| u32 sec = le32_to_cpu(desc->ts_sec); |
| |
| if (h->ae_algo->ops->get_rx_hwts) |
| h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec); |
| } |
| } |
| |
| static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring, |
| struct hns3_desc *desc, struct sk_buff *skb, |
| u32 l234info) |
| { |
| struct net_device *netdev = ring_to_netdev(ring); |
| |
| /* Based on hw strategy, the tag offloaded will be stored at |
| * ot_vlan_tag in two layer tag case, and stored at vlan_tag |
| * in one layer tag case. |
| */ |
| if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { |
| u16 vlan_tag; |
| |
| if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag)) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| vlan_tag); |
| } |
| } |
| |
| static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb) |
| { |
| struct net_device *netdev = ring_to_netdev(ring); |
| enum hns3_pkt_l2t_type l2_frame_type; |
| u32 bd_base_info, l234info, ol_info; |
| struct hns3_desc *desc; |
| unsigned int len; |
| int pre_ntc, ret; |
| u16 csum; |
| |
| /* bdinfo handled below is only valid on the last BD of the |
| * current packet, and ring->next_to_clean indicates the first |
| * descriptor of next packet, so need - 1 below. |
| */ |
| pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) : |
| (ring->desc_num - 1); |
| desc = &ring->desc[pre_ntc]; |
| bd_base_info = le32_to_cpu(desc->rx.bd_base_info); |
| l234info = le32_to_cpu(desc->rx.l234_info); |
| ol_info = le32_to_cpu(desc->rx.ol_info); |
| csum = le16_to_cpu(desc->csum); |
| |
| hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info); |
| |
| hns3_handle_rx_vlan_tag(ring, desc, skb, l234info); |
| |
| if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) | |
| BIT(HNS3_RXD_L2E_B))))) { |
| u64_stats_update_begin(&ring->syncp); |
| if (l234info & BIT(HNS3_RXD_L2E_B)) |
| ring->stats.l2_err++; |
| else |
| ring->stats.err_pkt_len++; |
| u64_stats_update_end(&ring->syncp); |
| |
| return -EFAULT; |
| } |
| |
| len = skb->len; |
| |
| /* Do update ip stack process */ |
| skb->protocol = eth_type_trans(skb, netdev); |
| |
| /* This is needed in order to enable forwarding support */ |
| ret = hns3_set_gro_and_checksum(ring, skb, l234info, |
| bd_base_info, ol_info, csum); |
| if (unlikely(ret)) { |
| hns3_ring_stats_update(ring, rx_err_cnt); |
| return ret; |
| } |
| |
| l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M, |
| HNS3_RXD_DMAC_S); |
| |
| u64_stats_update_begin(&ring->syncp); |
| ring->stats.rx_pkts++; |
| ring->stats.rx_bytes += len; |
| |
| if (l2_frame_type == HNS3_L2_TYPE_MULTICAST) |
| ring->stats.rx_multicast++; |
| |
| u64_stats_update_end(&ring->syncp); |
| |
| ring->tqp_vector->rx_group.total_bytes += len; |
| |
| hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash)); |
| return 0; |
| } |
| |
| static int hns3_handle_rx_bd(struct hns3_enet_ring *ring) |
| { |
| struct sk_buff *skb = ring->skb; |
| struct hns3_desc_cb *desc_cb; |
| struct hns3_desc *desc; |
| unsigned int length; |
| u32 bd_base_info; |
| int ret; |
| |
| desc = &ring->desc[ring->next_to_clean]; |
| desc_cb = &ring->desc_cb[ring->next_to_clean]; |
| |
| prefetch(desc); |
| |
| if (!skb) { |
| bd_base_info = le32_to_cpu(desc->rx.bd_base_info); |
| /* Check valid BD */ |
| if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) |
| return -ENXIO; |
| |
| dma_rmb(); |
| length = le16_to_cpu(desc->rx.size); |
| |
| ring->va = desc_cb->buf + desc_cb->page_offset; |
| |
| dma_sync_single_for_cpu(ring_to_dev(ring), |
| desc_cb->dma + desc_cb->page_offset, |
| hns3_buf_size(ring), |
| DMA_FROM_DEVICE); |
| |
| /* Prefetch first cache line of first page. |
| * Idea is to cache few bytes of the header of the packet. |
| * Our L1 Cache line size is 64B so need to prefetch twice to make |
| * it 128B. But in actual we can have greater size of caches with |
| * 128B Level 1 cache lines. In such a case, single fetch would |
| * suffice to cache in the relevant part of the header. |
| */ |
| net_prefetch(ring->va); |
| |
| ret = hns3_alloc_skb(ring, length, ring->va); |
| skb = ring->skb; |
| |
| if (ret < 0) /* alloc buffer fail */ |
| return ret; |
| if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */ |
| ret = hns3_add_frag(ring); |
| if (ret) |
| return ret; |
| } |
| } else { |
| ret = hns3_add_frag(ring); |
| if (ret) |
| return ret; |
| } |
| |
| /* As the head data may be changed when GRO enable, copy |
| * the head data in after other data rx completed |
| */ |
| if (skb->len > HNS3_RX_HEAD_SIZE) |
| memcpy(skb->data, ring->va, |
| ALIGN(ring->pull_len, sizeof(long))); |
| |
| ret = hns3_handle_bdinfo(ring, skb); |
| if (unlikely(ret)) { |
| dev_kfree_skb_any(skb); |
| return ret; |
| } |
| |
| skb_record_rx_queue(skb, ring->tqp->tqp_index); |
| return 0; |
| } |
| |
| int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget, |
| void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *)) |
| { |
| #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 |
| int unused_count = hns3_desc_unused(ring); |
| bool failure = false; |
| int recv_pkts = 0; |
| int err; |
| |
| unused_count -= ring->pending_buf; |
| |
| while (recv_pkts < budget) { |
| /* Reuse or realloc buffers */ |
| if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { |
| failure = failure || |
| hns3_nic_alloc_rx_buffers(ring, unused_count); |
| unused_count = 0; |
| } |
| |
| /* Poll one pkt */ |
| err = hns3_handle_rx_bd(ring); |
| /* Do not get FE for the packet or failed to alloc skb */ |
| if (unlikely(!ring->skb || err == -ENXIO)) { |
| goto out; |
| } else if (likely(!err)) { |
| rx_fn(ring, ring->skb); |
| recv_pkts++; |
| } |
| |
| unused_count += ring->pending_buf; |
| ring->skb = NULL; |
| ring->pending_buf = 0; |
| } |
| |
| out: |
| /* sync head pointer before exiting, since hardware will calculate |
| * FBD number with head pointer |
| */ |
| if (unused_count > 0) |
| failure = failure || |
| hns3_nic_alloc_rx_buffers(ring, unused_count); |
| |
| return failure ? budget : recv_pkts; |
| } |
| |
| static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group; |
| struct dim_sample sample = {}; |
| |
| if (!rx_group->coal.adapt_enable) |
| return; |
| |
| dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets, |
| rx_group->total_bytes, &sample); |
| net_dim(&rx_group->dim, sample); |
| } |
| |
| static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group; |
| struct dim_sample sample = {}; |
| |
| if (!tx_group->coal.adapt_enable) |
| return; |
| |
| dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets, |
| tx_group->total_bytes, &sample); |
| net_dim(&tx_group->dim, sample); |
| } |
| |
| static int hns3_nic_common_poll(struct napi_struct *napi, int budget) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(napi->dev); |
| struct hns3_enet_ring *ring; |
| int rx_pkt_total = 0; |
| |
| struct hns3_enet_tqp_vector *tqp_vector = |
| container_of(napi, struct hns3_enet_tqp_vector, napi); |
| bool clean_complete = true; |
| int rx_budget = budget; |
| |
| if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { |
| napi_complete(napi); |
| return 0; |
| } |
| |
| /* Since the actual Tx work is minimal, we can give the Tx a larger |
| * budget and be more aggressive about cleaning up the Tx descriptors. |
| */ |
| hns3_for_each_ring(ring, tqp_vector->tx_group) |
| hns3_clean_tx_ring(ring, budget); |
| |
| /* make sure rx ring budget not smaller than 1 */ |
| if (tqp_vector->num_tqps > 1) |
| rx_budget = max(budget / tqp_vector->num_tqps, 1); |
| |
| hns3_for_each_ring(ring, tqp_vector->rx_group) { |
| int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget, |
| hns3_rx_skb); |
| if (rx_cleaned >= rx_budget) |
| clean_complete = false; |
| |
| rx_pkt_total += rx_cleaned; |
| } |
| |
| tqp_vector->rx_group.total_packets += rx_pkt_total; |
| |
| if (!clean_complete) |
| return budget; |
| |
| if (napi_complete(napi) && |
| likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { |
| hns3_update_rx_int_coalesce(tqp_vector); |
| hns3_update_tx_int_coalesce(tqp_vector); |
| |
| hns3_mask_vector_irq(tqp_vector, 1); |
| } |
| |
| return rx_pkt_total; |
| } |
| |
| static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, |
| struct hnae3_ring_chain_node **head, |
| bool is_tx) |
| { |
| u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX; |
| u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX; |
| struct hnae3_ring_chain_node *cur_chain = *head; |
| struct pci_dev *pdev = tqp_vector->handle->pdev; |
| struct hnae3_ring_chain_node *chain; |
| struct hns3_enet_ring *ring; |
| |
| ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring; |
| |
| if (cur_chain) { |
| while (cur_chain->next) |
| cur_chain = cur_chain->next; |
| } |
| |
| while (ring) { |
| chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL); |
| if (!chain) |
| return -ENOMEM; |
| if (cur_chain) |
| cur_chain->next = chain; |
| else |
| *head = chain; |
| chain->tqp_index = ring->tqp->tqp_index; |
| hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B, |
| bit_value); |
| hnae3_set_field(chain->int_gl_idx, |
| HNAE3_RING_GL_IDX_M, |
| HNAE3_RING_GL_IDX_S, field_value); |
| |
| cur_chain = chain; |
| |
| ring = ring->next; |
| } |
| |
| return 0; |
| } |
| |
| static struct hnae3_ring_chain_node * |
| hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| struct pci_dev *pdev = tqp_vector->handle->pdev; |
| struct hnae3_ring_chain_node *cur_chain = NULL; |
| struct hnae3_ring_chain_node *chain; |
| |
| if (hns3_create_ring_chain(tqp_vector, &cur_chain, true)) |
| goto err_free_chain; |
| |
| if (hns3_create_ring_chain(tqp_vector, &cur_chain, false)) |
| goto err_free_chain; |
| |
| return cur_chain; |
| |
| err_free_chain: |
| while (cur_chain) { |
| chain = cur_chain->next; |
| devm_kfree(&pdev->dev, cur_chain); |
| cur_chain = chain; |
| } |
| |
| return NULL; |
| } |
| |
| static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, |
| struct hnae3_ring_chain_node *head) |
| { |
| struct pci_dev *pdev = tqp_vector->handle->pdev; |
| struct hnae3_ring_chain_node *chain_tmp, *chain; |
| |
| chain = head; |
| |
| while (chain) { |
| chain_tmp = chain->next; |
| devm_kfree(&pdev->dev, chain); |
| chain = chain_tmp; |
| } |
| } |
| |
| static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group, |
| struct hns3_enet_ring *ring) |
| { |
| ring->next = group->ring; |
| group->ring = ring; |
| |
| group->count++; |
| } |
| |
| static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv) |
| { |
| struct pci_dev *pdev = priv->ae_handle->pdev; |
| struct hns3_enet_tqp_vector *tqp_vector; |
| int num_vectors = priv->vector_num; |
| int numa_node; |
| int vector_i; |
| |
| numa_node = dev_to_node(&pdev->dev); |
| |
| for (vector_i = 0; vector_i < num_vectors; vector_i++) { |
| tqp_vector = &priv->tqp_vector[vector_i]; |
| cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node), |
| &tqp_vector->affinity_mask); |
| } |
| } |
| |
| static void hns3_rx_dim_work(struct work_struct *work) |
| { |
| struct dim *dim = container_of(work, struct dim, work); |
| struct hns3_enet_ring_group *group = container_of(dim, |
| struct hns3_enet_ring_group, dim); |
| struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; |
| struct dim_cq_moder cur_moder = |
| net_dim_get_rx_moderation(dim->mode, dim->profile_ix); |
| |
| hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec); |
| tqp_vector->rx_group.coal.int_gl = cur_moder.usec; |
| |
| if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) { |
| hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts); |
| tqp_vector->rx_group.coal.int_ql = cur_moder.pkts; |
| } |
| |
| dim->state = DIM_START_MEASURE; |
| } |
| |
| static void hns3_tx_dim_work(struct work_struct *work) |
| { |
| struct dim *dim = container_of(work, struct dim, work); |
| struct hns3_enet_ring_group *group = container_of(dim, |
| struct hns3_enet_ring_group, dim); |
| struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; |
| struct dim_cq_moder cur_moder = |
| net_dim_get_tx_moderation(dim->mode, dim->profile_ix); |
| |
| hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec); |
| tqp_vector->tx_group.coal.int_gl = cur_moder.usec; |
| |
| if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) { |
| hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts); |
| tqp_vector->tx_group.coal.int_ql = cur_moder.pkts; |
| } |
| |
| dim->state = DIM_START_MEASURE; |
| } |
| |
| static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector) |
| { |
| INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work); |
| INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work); |
| } |
| |
| static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_handle *h = priv->ae_handle; |
| struct hns3_enet_tqp_vector *tqp_vector; |
| int ret; |
| int i; |
| |
| hns3_nic_set_cpumask(priv); |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vector = &priv->tqp_vector[i]; |
| hns3_vector_coalesce_init_hw(tqp_vector, priv); |
| tqp_vector->num_tqps = 0; |
| hns3_nic_init_dim(tqp_vector); |
| } |
| |
| for (i = 0; i < h->kinfo.num_tqps; i++) { |
| u16 vector_i = i % priv->vector_num; |
| u16 tqp_num = h->kinfo.num_tqps; |
| |
| tqp_vector = &priv->tqp_vector[vector_i]; |
| |
| hns3_add_ring_to_group(&tqp_vector->tx_group, |
| &priv->ring[i]); |
| |
| hns3_add_ring_to_group(&tqp_vector->rx_group, |
| &priv->ring[i + tqp_num]); |
| |
| priv->ring[i].tqp_vector = tqp_vector; |
| priv->ring[i + tqp_num].tqp_vector = tqp_vector; |
| tqp_vector->num_tqps++; |
| } |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| struct hnae3_ring_chain_node *vector_ring_chain; |
| |
| tqp_vector = &priv->tqp_vector[i]; |
| |
| tqp_vector->rx_group.total_bytes = 0; |
| tqp_vector->rx_group.total_packets = 0; |
| tqp_vector->tx_group.total_bytes = 0; |
| tqp_vector->tx_group.total_packets = 0; |
| tqp_vector->handle = h; |
| |
| vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); |
| if (!vector_ring_chain) { |
| ret = -ENOMEM; |
| goto map_ring_fail; |
| } |
| |
| ret = h->ae_algo->ops->map_ring_to_vector(h, |
| tqp_vector->vector_irq, vector_ring_chain); |
| |
| hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); |
| |
| if (ret) |
| goto map_ring_fail; |
| |
| netif_napi_add(priv->netdev, &tqp_vector->napi, |
| hns3_nic_common_poll, NAPI_POLL_WEIGHT); |
| } |
| |
| return 0; |
| |
| map_ring_fail: |
| while (i--) |
| netif_napi_del(&priv->tqp_vector[i].napi); |
| |
| return ret; |
| } |
| |
| static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); |
| struct hns3_enet_coalesce *tx_coal = &priv->tx_coal; |
| struct hns3_enet_coalesce *rx_coal = &priv->rx_coal; |
| |
| /* initialize the configuration for interrupt coalescing. |
| * 1. GL (Interrupt Gap Limiter) |
| * 2. RL (Interrupt Rate Limiter) |
| * 3. QL (Interrupt Quantity Limiter) |
| * |
| * Default: enable interrupt coalescing self-adaptive and GL |
| */ |
| tx_coal->adapt_enable = 1; |
| rx_coal->adapt_enable = 1; |
| |
| tx_coal->int_gl = HNS3_INT_GL_50K; |
| rx_coal->int_gl = HNS3_INT_GL_50K; |
| |
| rx_coal->flow_level = HNS3_FLOW_LOW; |
| tx_coal->flow_level = HNS3_FLOW_LOW; |
| |
| if (ae_dev->dev_specs.int_ql_max) { |
| tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; |
| rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; |
| } |
| } |
| |
| static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_handle *h = priv->ae_handle; |
| struct hns3_enet_tqp_vector *tqp_vector; |
| struct hnae3_vector_info *vector; |
| struct pci_dev *pdev = h->pdev; |
| u16 tqp_num = h->kinfo.num_tqps; |
| u16 vector_num; |
| int ret = 0; |
| u16 i; |
| |
| /* RSS size, cpu online and vector_num should be the same */ |
| /* Should consider 2p/4p later */ |
| vector_num = min_t(u16, num_online_cpus(), tqp_num); |
| |
| vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector), |
| GFP_KERNEL); |
| if (!vector) |
| return -ENOMEM; |
| |
| /* save the actual available vector number */ |
| vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector); |
| |
| priv->vector_num = vector_num; |
| priv->tqp_vector = (struct hns3_enet_tqp_vector *) |
| devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector), |
| GFP_KERNEL); |
| if (!priv->tqp_vector) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vector = &priv->tqp_vector[i]; |
| tqp_vector->idx = i; |
| tqp_vector->mask_addr = vector[i].io_addr; |
| tqp_vector->vector_irq = vector[i].vector; |
| hns3_vector_coalesce_init(tqp_vector, priv); |
| } |
| |
| out: |
| devm_kfree(&pdev->dev, vector); |
| return ret; |
| } |
| |
| static void hns3_clear_ring_group(struct hns3_enet_ring_group *group) |
| { |
| group->ring = NULL; |
| group->count = 0; |
| } |
| |
| static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_ring_chain_node *vector_ring_chain; |
| struct hnae3_handle *h = priv->ae_handle; |
| struct hns3_enet_tqp_vector *tqp_vector; |
| int i; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| tqp_vector = &priv->tqp_vector[i]; |
| |
| if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring) |
| continue; |
| |
| /* Since the mapping can be overwritten, when fail to get the |
| * chain between vector and ring, we should go on to deal with |
| * the remaining options. |
| */ |
| vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); |
| if (!vector_ring_chain) |
| dev_warn(priv->dev, "failed to get ring chain\n"); |
| |
| h->ae_algo->ops->unmap_ring_from_vector(h, |
| tqp_vector->vector_irq, vector_ring_chain); |
| |
| hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); |
| |
| hns3_clear_ring_group(&tqp_vector->rx_group); |
| hns3_clear_ring_group(&tqp_vector->tx_group); |
| netif_napi_del(&priv->tqp_vector[i].napi); |
| } |
| } |
| |
| static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_handle *h = priv->ae_handle; |
| struct pci_dev *pdev = h->pdev; |
| int i, ret; |
| |
| for (i = 0; i < priv->vector_num; i++) { |
| struct hns3_enet_tqp_vector *tqp_vector; |
| |
| tqp_vector = &priv->tqp_vector[i]; |
| ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq); |
| if (ret) |
| return; |
| } |
| |
| devm_kfree(&pdev->dev, priv->tqp_vector); |
| } |
| |
| static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv, |
| unsigned int ring_type) |
| { |
| int queue_num = priv->ae_handle->kinfo.num_tqps; |
| struct hns3_enet_ring *ring; |
| int desc_num; |
| |
| if (ring_type == HNAE3_RING_TYPE_TX) { |
| ring = &priv->ring[q->tqp_index]; |
| desc_num = priv->ae_handle->kinfo.num_tx_desc; |
| ring->queue_index = q->tqp_index; |
| ring->tx_copybreak = priv->tx_copybreak; |
| ring->last_to_use = 0; |
| } else { |
| ring = &priv->ring[q->tqp_index + queue_num]; |
| desc_num = priv->ae_handle->kinfo.num_rx_desc; |
| ring->queue_index = q->tqp_index; |
| ring->rx_copybreak = priv->rx_copybreak; |
| } |
| |
| hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type); |
| |
| ring->tqp = q; |
| ring->desc = NULL; |
| ring->desc_cb = NULL; |
| ring->dev = priv->dev; |
| ring->desc_dma_addr = 0; |
| ring->buf_size = q->buf_size; |
| ring->desc_num = desc_num; |
| ring->next_to_use = 0; |
| ring->next_to_clean = 0; |
| } |
| |
| static void hns3_queue_to_ring(struct hnae3_queue *tqp, |
| struct hns3_nic_priv *priv) |
| { |
| hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX); |
| hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX); |
| } |
| |
| static int hns3_get_ring_config(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_handle *h = priv->ae_handle; |
| struct pci_dev *pdev = h->pdev; |
| int i; |
| |
| priv->ring = devm_kzalloc(&pdev->dev, |
| array3_size(h->kinfo.num_tqps, |
| sizeof(*priv->ring), 2), |
| GFP_KERNEL); |
| if (!priv->ring) |
| return -ENOMEM; |
| |
| for (i = 0; i < h->kinfo.num_tqps; i++) |
| hns3_queue_to_ring(h->kinfo.tqp[i], priv); |
| |
| return 0; |
| } |
| |
| static void hns3_put_ring_config(struct hns3_nic_priv *priv) |
| { |
| if (!priv->ring) |
| return; |
| |
| devm_kfree(priv->dev, priv->ring); |
| priv->ring = NULL; |
| } |
| |
| static void hns3_alloc_page_pool(struct hns3_enet_ring *ring) |
| { |
| struct page_pool_params pp_params = { |
| .flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG | |
| PP_FLAG_DMA_SYNC_DEV, |
| .order = hns3_page_order(ring), |
| .pool_size = ring->desc_num * hns3_buf_size(ring) / |
| (PAGE_SIZE << hns3_page_order(ring)), |
| .nid = dev_to_node(ring_to_dev(ring)), |
| .dev = ring_to_dev(ring), |
| .dma_dir = DMA_FROM_DEVICE, |
| .offset = 0, |
| .max_len = PAGE_SIZE << hns3_page_order(ring), |
| }; |
| |
| ring->page_pool = page_pool_create(&pp_params); |
| if (IS_ERR(ring->page_pool)) { |
| dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n", |
| PTR_ERR(ring->page_pool)); |
| ring->page_pool = NULL; |
| } |
| } |
| |
| static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring) |
| { |
| int ret; |
| |
| if (ring->desc_num <= 0 || ring->buf_size <= 0) |
| return -EINVAL; |
| |
| ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num, |
| sizeof(ring->desc_cb[0]), GFP_KERNEL); |
| if (!ring->desc_cb) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = hns3_alloc_desc(ring); |
| if (ret) |
| goto out_with_desc_cb; |
| |
| if (!HNAE3_IS_TX_RING(ring)) { |
| if (page_pool_enabled) |
| hns3_alloc_page_pool(ring); |
| |
| ret = hns3_alloc_ring_buffers(ring); |
| if (ret) |
| goto out_with_desc; |
| } else { |
| hns3_init_tx_spare_buffer(ring); |
| } |
| |
| return 0; |
| |
| out_with_desc: |
| hns3_free_desc(ring); |
| out_with_desc_cb: |
| devm_kfree(ring_to_dev(ring), ring->desc_cb); |
| ring->desc_cb = NULL; |
| out: |
| return ret; |
| } |
| |
| void hns3_fini_ring(struct hns3_enet_ring *ring) |
| { |
| hns3_free_desc(ring); |
| devm_kfree(ring_to_dev(ring), ring->desc_cb); |
| ring->desc_cb = NULL; |
| ring->next_to_clean = 0; |
| ring->next_to_use = 0; |
| ring->last_to_use = 0; |
| ring->pending_buf = 0; |
| if (!HNAE3_IS_TX_RING(ring) && ring->skb) { |
| dev_kfree_skb_any(ring->skb); |
| ring->skb = NULL; |
| } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) { |
| struct hns3_tx_spare *tx_spare = ring->tx_spare; |
| |
| dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len, |
| DMA_TO_DEVICE); |
| free_pages((unsigned long)tx_spare->buf, |
| get_order(tx_spare->len)); |
| devm_kfree(ring_to_dev(ring), tx_spare); |
| ring->tx_spare = NULL; |
| } |
| |
| if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) { |
| page_pool_destroy(ring->page_pool); |
| ring->page_pool = NULL; |
| } |
| } |
| |
| static int hns3_buf_size2type(u32 buf_size) |
| { |
| int bd_size_type; |
| |
| switch (buf_size) { |
| case 512: |
| bd_size_type = HNS3_BD_SIZE_512_TYPE; |
| break; |
| case 1024: |
| bd_size_type = HNS3_BD_SIZE_1024_TYPE; |
| break; |
| case 2048: |
| bd_size_type = HNS3_BD_SIZE_2048_TYPE; |
| break; |
| case 4096: |
| bd_size_type = HNS3_BD_SIZE_4096_TYPE; |
| break; |
| default: |
| bd_size_type = HNS3_BD_SIZE_2048_TYPE; |
| } |
| |
| return bd_size_type; |
| } |
| |
| static void hns3_init_ring_hw(struct hns3_enet_ring *ring) |
| { |
| dma_addr_t dma = ring->desc_dma_addr; |
| struct hnae3_queue *q = ring->tqp; |
| |
| if (!HNAE3_IS_TX_RING(ring)) { |
| hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma); |
| hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG, |
| (u32)((dma >> 31) >> 1)); |
| |
| hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG, |
| hns3_buf_size2type(ring->buf_size)); |
| hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG, |
| ring->desc_num / 8 - 1); |
| } else { |
| hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG, |
| (u32)dma); |
| hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG, |
| (u32)((dma >> 31) >> 1)); |
| |
| hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG, |
| ring->desc_num / 8 - 1); |
| } |
| } |
| |
| static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; |
| struct hnae3_tc_info *tc_info = &kinfo->tc_info; |
| int i; |
| |
| for (i = 0; i < tc_info->num_tc; i++) { |
| int j; |
| |
| for (j = 0; j < tc_info->tqp_count[i]; j++) { |
| struct hnae3_queue *q; |
| |
| q = priv->ring[tc_info->tqp_offset[i] + j].tqp; |
| hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i); |
| } |
| } |
| } |
| |
| int hns3_init_all_ring(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_handle *h = priv->ae_handle; |
| int ring_num = h->kinfo.num_tqps * 2; |
| int i, j; |
| int ret; |
| |
| for (i = 0; i < ring_num; i++) { |
| ret = hns3_alloc_ring_memory(&priv->ring[i]); |
| if (ret) { |
| dev_err(priv->dev, |
| "Alloc ring memory fail! ret=%d\n", ret); |
| goto out_when_alloc_ring_memory; |
| } |
| |
| u64_stats_init(&priv->ring[i].syncp); |
| } |
| |
| return 0; |
| |
| out_when_alloc_ring_memory: |
| for (j = i - 1; j >= 0; j--) |
| hns3_fini_ring(&priv->ring[j]); |
| |
| return -ENOMEM; |
| } |
| |
| static void hns3_uninit_all_ring(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_handle *h = priv->ae_handle; |
| int i; |
| |
| for (i = 0; i < h->kinfo.num_tqps; i++) { |
| hns3_fini_ring(&priv->ring[i]); |
| hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]); |
| } |
| } |
| |
| /* Set mac addr if it is configured. or leave it to the AE driver */ |
| static int hns3_init_mac_addr(struct net_device *netdev) |
| { |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; |
| struct hnae3_handle *h = priv->ae_handle; |
| u8 mac_addr_temp[ETH_ALEN]; |
| int ret = 0; |
| |
| if (h->ae_algo->ops->get_mac_addr) |
| h->ae_algo->ops->get_mac_addr(h, mac_addr_temp); |
| |
| /* Check if the MAC address is valid, if not get a random one */ |
| if (!is_valid_ether_addr(mac_addr_temp)) { |
| eth_hw_addr_random(netdev); |
| hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr); |
| dev_warn(priv->dev, "using random MAC address %s\n", |
| format_mac_addr); |
| } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) { |
| eth_hw_addr_set(netdev, mac_addr_temp); |
| ether_addr_copy(netdev->perm_addr, mac_addr_temp); |
| } else { |
| return 0; |
| } |
| |
| if (h->ae_algo->ops->set_mac_addr) |
| ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true); |
| |
| return ret; |
| } |
| |
| static int hns3_init_phy(struct net_device *netdev) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| int ret = 0; |
| |
| if (h->ae_algo->ops->mac_connect_phy) |
| ret = h->ae_algo->ops->mac_connect_phy(h); |
| |
| return ret; |
| } |
| |
| static void hns3_uninit_phy(struct net_device *netdev) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| |
| if (h->ae_algo->ops->mac_disconnect_phy) |
| h->ae_algo->ops->mac_disconnect_phy(h); |
| } |
| |
| static int hns3_client_start(struct hnae3_handle *handle) |
| { |
| if (!handle->ae_algo->ops->client_start) |
| return 0; |
| |
| return handle->ae_algo->ops->client_start(handle); |
| } |
| |
| static void hns3_client_stop(struct hnae3_handle *handle) |
| { |
| if (!handle->ae_algo->ops->client_stop) |
| return; |
| |
| handle->ae_algo->ops->client_stop(handle); |
| } |
| |
| static void hns3_info_show(struct hns3_nic_priv *priv) |
| { |
| struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; |
| char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; |
| |
| hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr); |
| dev_info(priv->dev, "MAC address: %s\n", format_mac_addr); |
| dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps); |
| dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size); |
| dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size); |
| dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len); |
| dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc); |
| dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc); |
| dev_info(priv->dev, "Total number of enabled TCs: %u\n", |
| kinfo->tc_info.num_tc); |
| dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu); |
| } |
| |
| static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv, |
| enum dim_cq_period_mode mode, bool is_tx) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); |
| struct hnae3_handle *handle = priv->ae_handle; |
| int i; |
| |
| if (is_tx) { |
| priv->tx_cqe_mode = mode; |
| |
| for (i = 0; i < priv->vector_num; i++) |
| priv->tqp_vector[i].tx_group.dim.mode = mode; |
| } else { |
| priv->rx_cqe_mode = mode; |
| |
| for (i = 0; i < priv->vector_num; i++) |
| priv->tqp_vector[i].rx_group.dim.mode = mode; |
| } |
| |
| /* only device version above V3(include V3), GL can switch CQ/EQ |
| * period mode. |
| */ |
| if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) { |
| u32 new_mode; |
| u64 reg; |
| |
| new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ? |
| HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE; |
| reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG; |
| |
| writel(new_mode, handle->kinfo.io_base + reg); |
| } |
| } |
| |
| void hns3_cq_period_mode_init(struct hns3_nic_priv *priv, |
| enum dim_cq_period_mode tx_mode, |
| enum dim_cq_period_mode rx_mode) |
| { |
| hns3_set_cq_period_mode(priv, tx_mode, true); |
| hns3_set_cq_period_mode(priv, rx_mode, false); |
| } |
| |
| static void hns3_state_init(struct hnae3_handle *handle) |
| { |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); |
| struct net_device *netdev = handle->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| |
| set_bit(HNS3_NIC_STATE_INITED, &priv->state); |
| |
| if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) |
| set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags); |
| |
| if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) |
| set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state); |
| |
| if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev)) |
| set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state); |
| } |
| |
| static int hns3_client_init(struct hnae3_handle *handle) |
| { |
| struct pci_dev *pdev = handle->pdev; |
| struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); |
| u16 alloc_tqps, max_rss_size; |
| struct hns3_nic_priv *priv; |
| struct net_device *netdev; |
| int ret; |
| |
| handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps, |
| &max_rss_size); |
| netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps); |
| if (!netdev) |
| return -ENOMEM; |
| |
| priv = netdev_priv(netdev); |
| priv->dev = &pdev->dev; |
| priv->netdev = netdev; |
| priv->ae_handle = handle; |
| priv->tx_timeout_count = 0; |
| priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num; |
| set_bit(HNS3_NIC_STATE_DOWN, &priv->state); |
| |
| handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL); |
| |
| handle->kinfo.netdev = netdev; |
| handle->priv = (void *)priv; |
| |
| hns3_init_mac_addr(netdev); |
| |
| hns3_set_default_feature(netdev); |
| |
| netdev->watchdog_timeo = HNS3_TX_TIMEOUT; |
| netdev->priv_flags |= IFF_UNICAST_FLT; |
| netdev->netdev_ops = &hns3_nic_netdev_ops; |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| hns3_ethtool_set_ops(netdev); |
| |
| /* Carrier off reporting is important to ethtool even BEFORE open */ |
| netif_carrier_off(netdev); |
| |
| ret = hns3_get_ring_config(priv); |
| if (ret) { |
| ret = -ENOMEM; |
| goto out_get_ring_cfg; |
| } |
| |
| hns3_nic_init_coal_cfg(priv); |
| |
| ret = hns3_nic_alloc_vector_data(priv); |
| if (ret) { |
| ret = -ENOMEM; |
| goto out_alloc_vector_data; |
| } |
| |
| ret = hns3_nic_init_vector_data(priv); |
| if (ret) { |
| ret = -ENOMEM; |
| goto out_init_vector_data; |
| } |
| |
| ret = hns3_init_all_ring(priv); |
| if (ret) { |
| ret = -ENOMEM; |
| goto out_init_ring; |
| } |
| |
| hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE, |
| DIM_CQ_PERIOD_MODE_START_FROM_EQE); |
| |
| ret = hns3_init_phy(netdev); |
| if (ret) |
| goto out_init_phy; |
| |
| /* the device can work without cpu rmap, only aRFS needs it */ |
| ret = hns3_set_rx_cpu_rmap(netdev); |
| if (ret) |
| dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); |
| |
| ret = hns3_nic_init_irq(priv); |
| if (ret) { |
| dev_err(priv->dev, "init irq failed! ret=%d\n", ret); |
| hns3_free_rx_cpu_rmap(netdev); |
| goto out_init_irq_fail; |
| } |
| |
| ret = hns3_client_start(handle); |
| if (ret) { |
| dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); |
| goto out_client_start; |
| } |
| |
| hns3_dcbnl_setup(handle); |
| |
| ret = hns3_dbg_init(handle); |
| if (ret) { |
| dev_err(priv->dev, "failed to init debugfs, ret = %d\n", |
| ret); |
| goto out_client_start; |
| } |
| |
| netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size); |
| |
| hns3_state_init(handle); |
| |
| ret = register_netdev(netdev); |
| if (ret) { |
| dev_err(priv->dev, "probe register netdev fail!\n"); |
| goto out_reg_netdev_fail; |
| } |
| |
| if (netif_msg_drv(handle)) |
| hns3_info_show(priv); |
| |
| return ret; |
| |
| out_reg_netdev_fail: |
| hns3_dbg_uninit(handle); |
| out_client_start: |
| hns3_free_rx_cpu_rmap(netdev); |
| hns3_nic_uninit_irq(priv); |
| out_init_irq_fail: |
| hns3_uninit_phy(netdev); |
| out_init_phy: |
| hns3_uninit_all_ring(priv); |
| out_init_ring: |
| hns3_nic_uninit_vector_data(priv); |
| out_init_vector_data: |
| hns3_nic_dealloc_vector_data(priv); |
| out_alloc_vector_data: |
| priv->ring = NULL; |
| out_get_ring_cfg: |
| priv->ae_handle = NULL; |
| free_netdev(netdev); |
| return ret; |
| } |
| |
| static void hns3_client_uninit(struct hnae3_handle *handle, bool reset) |
| { |
| struct net_device *netdev = handle->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| |
| if (netdev->reg_state != NETREG_UNINITIALIZED) |
| unregister_netdev(netdev); |
| |
| hns3_client_stop(handle); |
| |
| hns3_uninit_phy(netdev); |
| |
| if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { |
| netdev_warn(netdev, "already uninitialized\n"); |
| goto out_netdev_free; |
| } |
| |
| hns3_free_rx_cpu_rmap(netdev); |
| |
| hns3_nic_uninit_irq(priv); |
| |
| hns3_clear_all_ring(handle, true); |
| |
| hns3_nic_uninit_vector_data(priv); |
| |
| hns3_nic_dealloc_vector_data(priv); |
| |
| hns3_uninit_all_ring(priv); |
| |
| hns3_put_ring_config(priv); |
| |
| out_netdev_free: |
| hns3_dbg_uninit(handle); |
| free_netdev(netdev); |
| } |
| |
| static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup) |
| { |
| struct net_device *netdev = handle->kinfo.netdev; |
| |
| if (!netdev) |
| return; |
| |
| if (linkup) { |
| netif_tx_wake_all_queues(netdev); |
| netif_carrier_on(netdev); |
| if (netif_msg_link(handle)) |
| netdev_info(netdev, "link up\n"); |
| } else { |
| netif_carrier_off(netdev); |
| netif_tx_stop_all_queues(netdev); |
| if (netif_msg_link(handle)) |
| netdev_info(netdev, "link down\n"); |
| } |
| } |
| |
| static void hns3_clear_tx_ring(struct hns3_enet_ring *ring) |
| { |
| while (ring->next_to_clean != ring->next_to_use) { |
| ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0; |
| hns3_free_buffer_detach(ring, ring->next_to_clean, 0); |
| ring_ptr_move_fw(ring, next_to_clean); |
| } |
| |
| ring->pending_buf = 0; |
| } |
| |
| static int hns3_clear_rx_ring(struct hns3_enet_ring *ring) |
| { |
| struct hns3_desc_cb res_cbs; |
| int ret; |
| |
| while (ring->next_to_use != ring->next_to_clean) { |
| /* When a buffer is not reused, it's memory has been |
| * freed in hns3_handle_rx_bd or will be freed by |
| * stack, so we need to replace the buffer here. |
| */ |
| if (!ring->desc_cb[ring->next_to_use].reuse_flag) { |
| ret = hns3_alloc_and_map_buffer(ring, &res_cbs); |
| if (ret) { |
| hns3_ring_stats_update(ring, sw_err_cnt); |
| /* if alloc new buffer fail, exit directly |
| * and reclear in up flow. |
| */ |
| netdev_warn(ring_to_netdev(ring), |
| "reserve buffer map failed, ret = %d\n", |
| ret); |
| return ret; |
| } |
| hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); |
| } |
| ring_ptr_move_fw(ring, next_to_use); |
| } |
| |
| /* Free the pending skb in rx ring */ |
| if (ring->skb) { |
| dev_kfree_skb_any(ring->skb); |
| ring->skb = NULL; |
| ring->pending_buf = 0; |
| } |
| |
| return 0; |
| } |
| |
| static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring) |
| { |
| while (ring->next_to_use != ring->next_to_clean) { |
| /* When a buffer is not reused, it's memory has been |
| * freed in hns3_handle_rx_bd or will be freed by |
| * stack, so only need to unmap the buffer here. |
| */ |
| if (!ring->desc_cb[ring->next_to_use].reuse_flag) { |
| hns3_unmap_buffer(ring, |
| &ring->desc_cb[ring->next_to_use]); |
| ring->desc_cb[ring->next_to_use].dma = 0; |
| } |
| |
| ring_ptr_move_fw(ring, next_to_use); |
| } |
| } |
| |
| static void hns3_clear_all_ring(struct hnae3_handle *h, bool force) |
| { |
| struct net_device *ndev = h->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| u32 i; |
| |
| for (i = 0; i < h->kinfo.num_tqps; i++) { |
| struct hns3_enet_ring *ring; |
| |
| ring = &priv->ring[i]; |
| hns3_clear_tx_ring(ring); |
| |
| ring = &priv->ring[i + h->kinfo.num_tqps]; |
| /* Continue to clear other rings even if clearing some |
| * rings failed. |
| */ |
| if (force) |
| hns3_force_clear_rx_ring(ring); |
| else |
| hns3_clear_rx_ring(ring); |
| } |
| } |
| |
| int hns3_nic_reset_all_ring(struct hnae3_handle *h) |
| { |
| struct net_device *ndev = h->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| struct hns3_enet_ring *rx_ring; |
| int i, j; |
| int ret; |
| |
| ret = h->ae_algo->ops->reset_queue(h); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < h->kinfo.num_tqps; i++) { |
| hns3_init_ring_hw(&priv->ring[i]); |
| |
| /* We need to clear tx ring here because self test will |
| * use the ring and will not run down before up |
| */ |
| hns3_clear_tx_ring(&priv->ring[i]); |
| priv->ring[i].next_to_clean = 0; |
| priv->ring[i].next_to_use = 0; |
| priv->ring[i].last_to_use = 0; |
| |
| rx_ring = &priv->ring[i + h->kinfo.num_tqps]; |
| hns3_init_ring_hw(rx_ring); |
| ret = hns3_clear_rx_ring(rx_ring); |
| if (ret) |
| return ret; |
| |
| /* We can not know the hardware head and tail when this |
| * function is called in reset flow, so we reuse all desc. |
| */ |
| for (j = 0; j < rx_ring->desc_num; j++) |
| hns3_reuse_buffer(rx_ring, j); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| } |
| |
| hns3_init_tx_ring_tc(priv); |
| |
| return 0; |
| } |
| |
| static int hns3_reset_notify_down_enet(struct hnae3_handle *handle) |
| { |
| struct hnae3_knic_private_info *kinfo = &handle->kinfo; |
| struct net_device *ndev = kinfo->netdev; |
| struct hns3_nic_priv *priv = netdev_priv(ndev); |
| |
| if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state)) |
| return 0; |
| |
| if (!netif_running(ndev)) |
| return 0; |
| |
| return hns3_nic_net_stop(ndev); |
| } |
| |
| static int hns3_reset_notify_up_enet(struct hnae3_handle *handle) |
| { |
| struct hnae3_knic_private_info *kinfo = &handle->kinfo; |
| struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev); |
| int ret = 0; |
| |
| if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) { |
| netdev_err(kinfo->netdev, "device is not initialized yet\n"); |
| return -EFAULT; |
| } |
| |
| clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state); |
| |
| if (netif_running(kinfo->netdev)) { |
| ret = hns3_nic_net_open(kinfo->netdev); |
| if (ret) { |
| set_bit(HNS3_NIC_STATE_RESETTING, &priv->state); |
| netdev_err(kinfo->netdev, |
| "net up fail, ret=%d!\n", ret); |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int hns3_reset_notify_init_enet(struct hnae3_handle *handle) |
| { |
| struct net_device *netdev = handle->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| int ret; |
| |
| /* Carrier off reporting is important to ethtool even BEFORE open */ |
| netif_carrier_off(netdev); |
| |
| ret = hns3_get_ring_config(priv); |
| if (ret) |
| return ret; |
| |
| ret = hns3_nic_alloc_vector_data(priv); |
| if (ret) |
| goto err_put_ring; |
| |
| ret = hns3_nic_init_vector_data(priv); |
| if (ret) |
| goto err_dealloc_vector; |
| |
| ret = hns3_init_all_ring(priv); |
| if (ret) |
| goto err_uninit_vector; |
| |
| hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode); |
| |
| /* the device can work without cpu rmap, only aRFS needs it */ |
| ret = hns3_set_rx_cpu_rmap(netdev); |
| if (ret) |
| dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); |
| |
| ret = hns3_nic_init_irq(priv); |
| if (ret) { |
| dev_err(priv->dev, "init irq failed! ret=%d\n", ret); |
| hns3_free_rx_cpu_rmap(netdev); |
| goto err_init_irq_fail; |
| } |
| |
| if (!hns3_is_phys_func(handle->pdev)) |
| hns3_init_mac_addr(netdev); |
| |
| ret = hns3_client_start(handle); |
| if (ret) { |
| dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); |
| goto err_client_start_fail; |
| } |
| |
| set_bit(HNS3_NIC_STATE_INITED, &priv->state); |
| |
| return ret; |
| |
| err_client_start_fail: |
| hns3_free_rx_cpu_rmap(netdev); |
| hns3_nic_uninit_irq(priv); |
| err_init_irq_fail: |
| hns3_uninit_all_ring(priv); |
| err_uninit_vector: |
| hns3_nic_uninit_vector_data(priv); |
| err_dealloc_vector: |
| hns3_nic_dealloc_vector_data(priv); |
| err_put_ring: |
| hns3_put_ring_config(priv); |
| |
| return ret; |
| } |
| |
| static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle) |
| { |
| struct net_device *netdev = handle->kinfo.netdev; |
| struct hns3_nic_priv *priv = netdev_priv(netdev); |
| |
| if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { |
| netdev_warn(netdev, "already uninitialized\n"); |
| return 0; |
| } |
| |
| hns3_free_rx_cpu_rmap(netdev); |
| hns3_nic_uninit_irq(priv); |
| hns3_clear_all_ring(handle, true); |
| hns3_reset_tx_queue(priv->ae_handle); |
| |
| hns3_nic_uninit_vector_data(priv); |
| |
| hns3_nic_dealloc_vector_data(priv); |
| |
| hns3_uninit_all_ring(priv); |
| |
| hns3_put_ring_config(priv); |
| |
| return 0; |
| } |
| |
| int hns3_reset_notify(struct hnae3_handle *handle, |
| enum hnae3_reset_notify_type type) |
| { |
| int ret = 0; |
| |
| switch (type) { |
| case HNAE3_UP_CLIENT: |
| ret = hns3_reset_notify_up_enet(handle); |
| break; |
| case HNAE3_DOWN_CLIENT: |
| ret = hns3_reset_notify_down_enet(handle); |
| break; |
| case HNAE3_INIT_CLIENT: |
| ret = hns3_reset_notify_init_enet(handle); |
| break; |
| case HNAE3_UNINIT_CLIENT: |
| ret = hns3_reset_notify_uninit_enet(handle); |
| break; |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num, |
| bool rxfh_configured) |
| { |
| int ret; |
| |
| ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num, |
| rxfh_configured); |
| if (ret) { |
| dev_err(&handle->pdev->dev, |
| "Change tqp num(%u) fail.\n", new_tqp_num); |
| return ret; |
| } |
| |
| ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT); |
| if (ret) |
| return ret; |
| |
| ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT); |
| if (ret) |
| hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT); |
| |
| return ret; |
| } |
| |
| int hns3_set_channels(struct net_device *netdev, |
| struct ethtool_channels *ch) |
| { |
| struct hnae3_handle *h = hns3_get_handle(netdev); |
| struct hnae3_knic_private_info *kinfo = &h->kinfo; |
| bool rxfh_configured = netif_is_rxfh_configured(netdev); |
| u32 new_tqp_num = ch->combined_count; |
| u16 org_tqp_num; |
| int ret; |
| |
| if (hns3_nic_resetting(netdev)) |
| return -EBUSY; |
| |
| if (ch->rx_count || ch->tx_count) |
| return -EINVAL; |
| |
| if (kinfo->tc_info.mqprio_active) { |
| dev_err(&netdev->dev, |
| "it's not allowed to set channels via ethtool when MQPRIO mode is on\n"); |
| return -EINVAL; |
| } |
| |
| if (new_tqp_num > hns3_get_max_available_channels(h) || |
| new_tqp_num < 1) { |
| dev_err(&netdev->dev, |
| "Change tqps fail, the tqp range is from 1 to %u", |
| hns3_get_max_available_channels(h)); |
| return -EINVAL; |
| } |
| |
| if (kinfo->rss_size == new_tqp_num) |
| return 0; |
| |
| netif_dbg(h, drv, netdev, |
| "set channels: tqp_num=%u, rxfh=%d\n", |
| new_tqp_num, rxfh_configured); |
| |
| ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT); |
| if (ret) |
| return ret; |
| |
| ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT); |
| if (ret) |
| return ret; |
| |
| org_tqp_num = h->kinfo.num_tqps; |
| ret = hns3_change_channels(h, new_tqp_num, rxfh_configured); |
| if (ret) { |
| int ret1; |
| |
| netdev_warn(netdev, |
| "Change channels fail, revert to old value\n"); |
| ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured); |
| if (ret1) { |
| netdev_err(netdev, |
| "revert to old channel fail\n"); |
| return ret1; |
| } |
| |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct hns3_hw_error_info hns3_hw_err[] = { |
| { .type = HNAE3_PPU_POISON_ERROR, |
| .msg = "PPU poison" }, |
| { .type = HNAE3_CMDQ_ECC_ERROR, |
| .msg = "IMP CMDQ error" }, |
| { .type = HNAE3_IMP_RD_POISON_ERROR, |
| .msg = "IMP RD poison" }, |
| { .type = HNAE3_ROCEE_AXI_RESP_ERROR, |
| .msg = "ROCEE AXI RESP error" }, |
| }; |
| |
| static void hns3_process_hw_error(struct hnae3_handle *handle, |
| enum hnae3_hw_error_type type) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) { |
| if (hns3_hw_err[i].type == type) { |
| dev_err(&handle->pdev->dev, "Detected %s!\n", |
| hns3_hw_err[i].msg); |
| break; |
| } |
| } |
| } |
| |
| static const struct hnae3_client_ops client_ops = { |
| .init_instance = hns3_client_init, |
| .uninit_instance = hns3_client_uninit, |
| .link_status_change = hns3_link_status_change, |
| .reset_notify = hns3_reset_notify, |
| .process_hw_error = hns3_process_hw_error, |
| }; |
| |
| /* hns3_init_module - Driver registration routine |
| * hns3_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| */ |
| static int __init hns3_init_module(void) |
| { |
| int ret; |
| |
| pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string); |
| pr_info("%s: %s\n", hns3_driver_name, hns3_copyright); |
| |
| client.type = HNAE3_CLIENT_KNIC; |
| snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s", |
| hns3_driver_name); |
| |
| client.ops = &client_ops; |
| |
| INIT_LIST_HEAD(&client.node); |
| |
| hns3_dbg_register_debugfs(hns3_driver_name); |
| |
| ret = hnae3_register_client(&client); |
| if (ret) |
| goto err_reg_client; |
| |
| ret = pci_register_driver(&hns3_driver); |
| if (ret) |
| goto err_reg_driver; |
| |
| return ret; |
| |
| err_reg_driver: |
| hnae3_unregister_client(&client); |
| err_reg_client: |
| hns3_dbg_unregister_debugfs(); |
| return ret; |
| } |
| module_init(hns3_init_module); |
| |
| /* hns3_exit_module - Driver exit cleanup routine |
| * hns3_exit_module is called just before the driver is removed |
| * from memory. |
| */ |
| static void __exit hns3_exit_module(void) |
| { |
| pci_unregister_driver(&hns3_driver); |
| hnae3_unregister_client(&client); |
| hns3_dbg_unregister_debugfs(); |
| } |
| module_exit(hns3_exit_module); |
| |
| MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver"); |
| MODULE_AUTHOR("Huawei Tech. Co., Ltd."); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("pci:hns-nic"); |