| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (C) 2005-2014, 2018-2021 Intel Corporation |
| * Copyright (C) 2013-2015 Intel Mobile Communications GmbH |
| * Copyright (C) 2016-2017 Intel Deutschland GmbH |
| */ |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/etherdevice.h> |
| #include <linux/pci.h> |
| #include <linux/firmware.h> |
| |
| #include "iwl-drv.h" |
| #include "iwl-modparams.h" |
| #include "iwl-nvm-parse.h" |
| #include "iwl-prph.h" |
| #include "iwl-io.h" |
| #include "iwl-csr.h" |
| #include "fw/acpi.h" |
| #include "fw/api/nvm-reg.h" |
| #include "fw/api/commands.h" |
| #include "fw/api/cmdhdr.h" |
| #include "fw/img.h" |
| #include "mei/iwl-mei.h" |
| |
| /* NVM offsets (in words) definitions */ |
| enum nvm_offsets { |
| /* NVM HW-Section offset (in words) definitions */ |
| SUBSYSTEM_ID = 0x0A, |
| HW_ADDR = 0x15, |
| |
| /* NVM SW-Section offset (in words) definitions */ |
| NVM_SW_SECTION = 0x1C0, |
| NVM_VERSION = 0, |
| RADIO_CFG = 1, |
| SKU = 2, |
| N_HW_ADDRS = 3, |
| NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, |
| |
| /* NVM calibration section offset (in words) definitions */ |
| NVM_CALIB_SECTION = 0x2B8, |
| XTAL_CALIB = 0x316 - NVM_CALIB_SECTION, |
| |
| /* NVM REGULATORY -Section offset (in words) definitions */ |
| NVM_CHANNELS_SDP = 0, |
| }; |
| |
| enum ext_nvm_offsets { |
| /* NVM HW-Section offset (in words) definitions */ |
| MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, |
| |
| /* NVM SW-Section offset (in words) definitions */ |
| NVM_VERSION_EXT_NVM = 0, |
| N_HW_ADDRS_FAMILY_8000 = 3, |
| |
| /* NVM PHY_SKU-Section offset (in words) definitions */ |
| RADIO_CFG_FAMILY_EXT_NVM = 0, |
| SKU_FAMILY_8000 = 2, |
| |
| /* NVM REGULATORY -Section offset (in words) definitions */ |
| NVM_CHANNELS_EXTENDED = 0, |
| NVM_LAR_OFFSET_OLD = 0x4C7, |
| NVM_LAR_OFFSET = 0x507, |
| NVM_LAR_ENABLED = 0x7, |
| }; |
| |
| /* SKU Capabilities (actual values from NVM definition) */ |
| enum nvm_sku_bits { |
| NVM_SKU_CAP_BAND_24GHZ = BIT(0), |
| NVM_SKU_CAP_BAND_52GHZ = BIT(1), |
| NVM_SKU_CAP_11N_ENABLE = BIT(2), |
| NVM_SKU_CAP_11AC_ENABLE = BIT(3), |
| NVM_SKU_CAP_MIMO_DISABLE = BIT(5), |
| }; |
| |
| /* |
| * These are the channel numbers in the order that they are stored in the NVM |
| */ |
| static const u16 iwl_nvm_channels[] = { |
| /* 2.4 GHz */ |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| /* 5 GHz */ |
| 36, 40, 44 , 48, 52, 56, 60, 64, |
| 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, |
| 149, 153, 157, 161, 165 |
| }; |
| |
| static const u16 iwl_ext_nvm_channels[] = { |
| /* 2.4 GHz */ |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| /* 5 GHz */ |
| 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, |
| 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, |
| 149, 153, 157, 161, 165, 169, 173, 177, 181 |
| }; |
| |
| static const u16 iwl_uhb_nvm_channels[] = { |
| /* 2.4 GHz */ |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| /* 5 GHz */ |
| 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, |
| 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, |
| 149, 153, 157, 161, 165, 169, 173, 177, 181, |
| /* 6-7 GHz */ |
| 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, |
| 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, |
| 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, |
| 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 |
| }; |
| |
| #define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) |
| #define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) |
| #define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels) |
| #define NUM_2GHZ_CHANNELS 14 |
| #define NUM_5GHZ_CHANNELS 37 |
| #define FIRST_2GHZ_HT_MINUS 5 |
| #define LAST_2GHZ_HT_PLUS 9 |
| #define N_HW_ADDR_MASK 0xF |
| |
| /* rate data (static) */ |
| static struct ieee80211_rate iwl_cfg80211_rates[] = { |
| { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, |
| { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, |
| { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, |
| { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, |
| { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, |
| { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, |
| { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, |
| { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, |
| { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, |
| { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, |
| { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, |
| { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, |
| }; |
| #define RATES_24_OFFS 0 |
| #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) |
| #define RATES_52_OFFS 4 |
| #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) |
| |
| /** |
| * enum iwl_nvm_channel_flags - channel flags in NVM |
| * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo |
| * @NVM_CHANNEL_IBSS: usable as an IBSS channel |
| * @NVM_CHANNEL_ACTIVE: active scanning allowed |
| * @NVM_CHANNEL_RADAR: radar detection required |
| * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed |
| * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS |
| * on same channel on 2.4 or same UNII band on 5.2 |
| * @NVM_CHANNEL_UNIFORM: uniform spreading required |
| * @NVM_CHANNEL_20MHZ: 20 MHz channel okay |
| * @NVM_CHANNEL_40MHZ: 40 MHz channel okay |
| * @NVM_CHANNEL_80MHZ: 80 MHz channel okay |
| * @NVM_CHANNEL_160MHZ: 160 MHz channel okay |
| * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) |
| */ |
| enum iwl_nvm_channel_flags { |
| NVM_CHANNEL_VALID = BIT(0), |
| NVM_CHANNEL_IBSS = BIT(1), |
| NVM_CHANNEL_ACTIVE = BIT(3), |
| NVM_CHANNEL_RADAR = BIT(4), |
| NVM_CHANNEL_INDOOR_ONLY = BIT(5), |
| NVM_CHANNEL_GO_CONCURRENT = BIT(6), |
| NVM_CHANNEL_UNIFORM = BIT(7), |
| NVM_CHANNEL_20MHZ = BIT(8), |
| NVM_CHANNEL_40MHZ = BIT(9), |
| NVM_CHANNEL_80MHZ = BIT(10), |
| NVM_CHANNEL_160MHZ = BIT(11), |
| NVM_CHANNEL_DC_HIGH = BIT(12), |
| }; |
| |
| /** |
| * enum iwl_reg_capa_flags - global flags applied for the whole regulatory |
| * domain. |
| * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the |
| * 2.4Ghz band is allowed. |
| * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the |
| * 5Ghz band is allowed. |
| * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed |
| * for this regulatory domain (valid only in 5Ghz). |
| * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed |
| * for this regulatory domain (valid only in 5Ghz). |
| * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. |
| * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. |
| * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden |
| * for this regulatory domain (valid only in 5Ghz). |
| * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed. |
| * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain. |
| */ |
| enum iwl_reg_capa_flags { |
| REG_CAPA_BF_CCD_LOW_BAND = BIT(0), |
| REG_CAPA_BF_CCD_HIGH_BAND = BIT(1), |
| REG_CAPA_160MHZ_ALLOWED = BIT(2), |
| REG_CAPA_80MHZ_ALLOWED = BIT(3), |
| REG_CAPA_MCS_8_ALLOWED = BIT(4), |
| REG_CAPA_MCS_9_ALLOWED = BIT(5), |
| REG_CAPA_40MHZ_FORBIDDEN = BIT(7), |
| REG_CAPA_DC_HIGH_ENABLED = BIT(9), |
| REG_CAPA_11AX_DISABLED = BIT(10), |
| }; |
| |
| /** |
| * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory |
| * domain (version 2). |
| * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are |
| * disabled. |
| * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the |
| * 2.4Ghz band is allowed. |
| * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the |
| * 5Ghz band is allowed. |
| * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed |
| * for this regulatory domain (valid only in 5Ghz). |
| * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed |
| * for this regulatory domain (valid only in 5Ghz). |
| * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. |
| * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. |
| * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118, |
| * 126, 122) are disabled. |
| * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed |
| * for this regulatory domain (uvalid only in 5Ghz). |
| * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain. |
| */ |
| enum iwl_reg_capa_flags_v2 { |
| REG_CAPA_V2_STRADDLE_DISABLED = BIT(0), |
| REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1), |
| REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2), |
| REG_CAPA_V2_160MHZ_ALLOWED = BIT(3), |
| REG_CAPA_V2_80MHZ_ALLOWED = BIT(4), |
| REG_CAPA_V2_MCS_8_ALLOWED = BIT(5), |
| REG_CAPA_V2_MCS_9_ALLOWED = BIT(6), |
| REG_CAPA_V2_WEATHER_DISABLED = BIT(7), |
| REG_CAPA_V2_40MHZ_ALLOWED = BIT(8), |
| REG_CAPA_V2_11AX_DISABLED = BIT(10), |
| }; |
| |
| /* |
| * API v2 for reg_capa_flags is relevant from version 6 and onwards of the |
| * MCC update command response. |
| */ |
| #define REG_CAPA_V2_RESP_VER 6 |
| |
| /** |
| * struct iwl_reg_capa - struct for global regulatory capabilities, Used for |
| * handling the different APIs of reg_capa_flags. |
| * |
| * @allow_40mhz: 11n channel with a width of 40Mhz is allowed |
| * for this regulatory domain (valid only in 5Ghz). |
| * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed |
| * for this regulatory domain (valid only in 5Ghz). |
| * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed |
| * for this regulatory domain (valid only in 5Ghz). |
| * @disable_11ax: 11ax is forbidden for this regulatory domain. |
| */ |
| struct iwl_reg_capa { |
| u16 allow_40mhz; |
| u16 allow_80mhz; |
| u16 allow_160mhz; |
| u16 disable_11ax; |
| }; |
| |
| static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, |
| int chan, u32 flags) |
| { |
| #define CHECK_AND_PRINT_I(x) \ |
| ((flags & NVM_CHANNEL_##x) ? " " #x : "") |
| |
| if (!(flags & NVM_CHANNEL_VALID)) { |
| IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", |
| chan, flags); |
| return; |
| } |
| |
| /* Note: already can print up to 101 characters, 110 is the limit! */ |
| IWL_DEBUG_DEV(dev, level, |
| "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", |
| chan, flags, |
| CHECK_AND_PRINT_I(VALID), |
| CHECK_AND_PRINT_I(IBSS), |
| CHECK_AND_PRINT_I(ACTIVE), |
| CHECK_AND_PRINT_I(RADAR), |
| CHECK_AND_PRINT_I(INDOOR_ONLY), |
| CHECK_AND_PRINT_I(GO_CONCURRENT), |
| CHECK_AND_PRINT_I(UNIFORM), |
| CHECK_AND_PRINT_I(20MHZ), |
| CHECK_AND_PRINT_I(40MHZ), |
| CHECK_AND_PRINT_I(80MHZ), |
| CHECK_AND_PRINT_I(160MHZ), |
| CHECK_AND_PRINT_I(DC_HIGH)); |
| #undef CHECK_AND_PRINT_I |
| } |
| |
| static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band, |
| u32 nvm_flags, const struct iwl_cfg *cfg) |
| { |
| u32 flags = IEEE80211_CHAN_NO_HT40; |
| |
| if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) { |
| if (ch_num <= LAST_2GHZ_HT_PLUS) |
| flags &= ~IEEE80211_CHAN_NO_HT40PLUS; |
| if (ch_num >= FIRST_2GHZ_HT_MINUS) |
| flags &= ~IEEE80211_CHAN_NO_HT40MINUS; |
| } else if (nvm_flags & NVM_CHANNEL_40MHZ) { |
| if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) |
| flags &= ~IEEE80211_CHAN_NO_HT40PLUS; |
| else |
| flags &= ~IEEE80211_CHAN_NO_HT40MINUS; |
| } |
| if (!(nvm_flags & NVM_CHANNEL_80MHZ)) |
| flags |= IEEE80211_CHAN_NO_80MHZ; |
| if (!(nvm_flags & NVM_CHANNEL_160MHZ)) |
| flags |= IEEE80211_CHAN_NO_160MHZ; |
| |
| if (!(nvm_flags & NVM_CHANNEL_IBSS)) |
| flags |= IEEE80211_CHAN_NO_IR; |
| |
| if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) |
| flags |= IEEE80211_CHAN_NO_IR; |
| |
| if (nvm_flags & NVM_CHANNEL_RADAR) |
| flags |= IEEE80211_CHAN_RADAR; |
| |
| if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) |
| flags |= IEEE80211_CHAN_INDOOR_ONLY; |
| |
| /* Set the GO concurrent flag only in case that NO_IR is set. |
| * Otherwise it is meaningless |
| */ |
| if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && |
| (flags & IEEE80211_CHAN_NO_IR)) |
| flags |= IEEE80211_CHAN_IR_CONCURRENT; |
| |
| return flags; |
| } |
| |
| static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx) |
| { |
| if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) { |
| return NL80211_BAND_6GHZ; |
| } |
| |
| if (ch_idx >= NUM_2GHZ_CHANNELS) |
| return NL80211_BAND_5GHZ; |
| return NL80211_BAND_2GHZ; |
| } |
| |
| static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, |
| const void * const nvm_ch_flags, |
| u32 sbands_flags, bool v4) |
| { |
| int ch_idx; |
| int n_channels = 0; |
| struct ieee80211_channel *channel; |
| u32 ch_flags; |
| int num_of_ch; |
| const u16 *nvm_chan; |
| |
| if (cfg->uhb_supported) { |
| num_of_ch = IWL_NVM_NUM_CHANNELS_UHB; |
| nvm_chan = iwl_uhb_nvm_channels; |
| } else if (cfg->nvm_type == IWL_NVM_EXT) { |
| num_of_ch = IWL_NVM_NUM_CHANNELS_EXT; |
| nvm_chan = iwl_ext_nvm_channels; |
| } else { |
| num_of_ch = IWL_NVM_NUM_CHANNELS; |
| nvm_chan = iwl_nvm_channels; |
| } |
| |
| for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { |
| enum nl80211_band band = |
| iwl_nl80211_band_from_channel_idx(ch_idx); |
| |
| if (v4) |
| ch_flags = |
| __le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx); |
| else |
| ch_flags = |
| __le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx); |
| |
| if (band == NL80211_BAND_5GHZ && |
| !data->sku_cap_band_52ghz_enable) |
| continue; |
| |
| /* workaround to disable wide channels in 5GHz */ |
| if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && |
| band == NL80211_BAND_5GHZ) { |
| ch_flags &= ~(NVM_CHANNEL_40MHZ | |
| NVM_CHANNEL_80MHZ | |
| NVM_CHANNEL_160MHZ); |
| } |
| |
| if (ch_flags & NVM_CHANNEL_160MHZ) |
| data->vht160_supported = true; |
| |
| if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && |
| !(ch_flags & NVM_CHANNEL_VALID)) { |
| /* |
| * Channels might become valid later if lar is |
| * supported, hence we still want to add them to |
| * the list of supported channels to cfg80211. |
| */ |
| iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, |
| nvm_chan[ch_idx], ch_flags); |
| continue; |
| } |
| |
| channel = &data->channels[n_channels]; |
| n_channels++; |
| |
| channel->hw_value = nvm_chan[ch_idx]; |
| channel->band = band; |
| channel->center_freq = |
| ieee80211_channel_to_frequency( |
| channel->hw_value, channel->band); |
| |
| /* Initialize regulatory-based run-time data */ |
| |
| /* |
| * Default value - highest tx power value. max_power |
| * is not used in mvm, and is used for backwards compatibility |
| */ |
| channel->max_power = IWL_DEFAULT_MAX_TX_POWER; |
| |
| /* don't put limitations in case we're using LAR */ |
| if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR)) |
| channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], |
| ch_idx, band, |
| ch_flags, cfg); |
| else |
| channel->flags = 0; |
| |
| /* TODO: Don't put limitations on UHB devices as we still don't |
| * have NVM for them |
| */ |
| if (cfg->uhb_supported) |
| channel->flags = 0; |
| iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, |
| channel->hw_value, ch_flags); |
| IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", |
| channel->hw_value, channel->max_power); |
| } |
| |
| return n_channels; |
| } |
| |
| static void iwl_init_vht_hw_capab(struct iwl_trans *trans, |
| struct iwl_nvm_data *data, |
| struct ieee80211_sta_vht_cap *vht_cap, |
| u8 tx_chains, u8 rx_chains) |
| { |
| const struct iwl_cfg *cfg = trans->cfg; |
| int num_rx_ants = num_of_ant(rx_chains); |
| int num_tx_ants = num_of_ant(tx_chains); |
| |
| vht_cap->vht_supported = true; |
| |
| vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | |
| IEEE80211_VHT_CAP_RXSTBC_1 | |
| IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | |
| 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | |
| IEEE80211_VHT_MAX_AMPDU_1024K << |
| IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; |
| |
| if (data->vht160_supported) |
| vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | |
| IEEE80211_VHT_CAP_SHORT_GI_160; |
| |
| if (cfg->vht_mu_mimo_supported) |
| vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; |
| |
| if (cfg->ht_params->ldpc) |
| vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; |
| |
| if (data->sku_cap_mimo_disabled) { |
| num_rx_ants = 1; |
| num_tx_ants = 1; |
| } |
| |
| if (num_tx_ants > 1) |
| vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; |
| else |
| vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; |
| |
| switch (iwlwifi_mod_params.amsdu_size) { |
| case IWL_AMSDU_DEF: |
| if (trans->trans_cfg->mq_rx_supported) |
| vht_cap->cap |= |
| IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; |
| else |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; |
| break; |
| case IWL_AMSDU_2K: |
| if (trans->trans_cfg->mq_rx_supported) |
| vht_cap->cap |= |
| IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; |
| else |
| WARN(1, "RB size of 2K is not supported by this device\n"); |
| break; |
| case IWL_AMSDU_4K: |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; |
| break; |
| case IWL_AMSDU_8K: |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; |
| break; |
| case IWL_AMSDU_12K: |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; |
| break; |
| default: |
| break; |
| } |
| |
| vht_cap->vht_mcs.rx_mcs_map = |
| cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | |
| IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); |
| |
| if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { |
| vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; |
| /* this works because NOT_SUPPORTED == 3 */ |
| vht_cap->vht_mcs.rx_mcs_map |= |
| cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); |
| } |
| |
| vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; |
| |
| vht_cap->vht_mcs.tx_highest |= |
| cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); |
| } |
| |
| static const u8 iwl_vendor_caps[] = { |
| 0xdd, /* vendor element */ |
| 0x06, /* length */ |
| 0x00, 0x17, 0x35, /* Intel OUI */ |
| 0x08, /* type (Intel Capabilities) */ |
| /* followed by 16 bits of capabilities */ |
| #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0) |
| IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE, |
| 0x00 |
| }; |
| |
| static const struct ieee80211_sband_iftype_data iwl_he_capa[] = { |
| { |
| .types_mask = BIT(NL80211_IFTYPE_STATION), |
| .he_cap = { |
| .has_he = true, |
| .he_cap_elem = { |
| .mac_cap_info[0] = |
| IEEE80211_HE_MAC_CAP0_HTC_HE | |
| IEEE80211_HE_MAC_CAP0_TWT_REQ, |
| .mac_cap_info[1] = |
| IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | |
| IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, |
| .mac_cap_info[2] = |
| IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP, |
| .mac_cap_info[3] = |
| IEEE80211_HE_MAC_CAP3_OMI_CONTROL | |
| IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS, |
| .mac_cap_info[4] = |
| IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU | |
| IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39, |
| .mac_cap_info[5] = |
| IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 | |
| IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 | |
| IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | |
| IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS | |
| IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX, |
| .phy_cap_info[0] = |
| IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | |
| IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | |
| IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G, |
| .phy_cap_info[1] = |
| IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | |
| IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | |
| IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, |
| .phy_cap_info[2] = |
| IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | |
| IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ, |
| .phy_cap_info[3] = |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, |
| .phy_cap_info[4] = |
| IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | |
| IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | |
| IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, |
| .phy_cap_info[6] = |
| IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | |
| IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | |
| IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, |
| .phy_cap_info[7] = |
| IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | |
| IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, |
| .phy_cap_info[8] = |
| IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | |
| IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | |
| IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | |
| IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | |
| IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, |
| .phy_cap_info[9] = |
| IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | |
| IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | |
| (IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED << |
| IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS), |
| .phy_cap_info[10] = |
| IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF, |
| }, |
| /* |
| * Set default Tx/Rx HE MCS NSS Support field. |
| * Indicate support for up to 2 spatial streams and all |
| * MCS, without any special cases |
| */ |
| .he_mcs_nss_supp = { |
| .rx_mcs_80 = cpu_to_le16(0xfffa), |
| .tx_mcs_80 = cpu_to_le16(0xfffa), |
| .rx_mcs_160 = cpu_to_le16(0xfffa), |
| .tx_mcs_160 = cpu_to_le16(0xfffa), |
| .rx_mcs_80p80 = cpu_to_le16(0xffff), |
| .tx_mcs_80p80 = cpu_to_le16(0xffff), |
| }, |
| /* |
| * Set default PPE thresholds, with PPET16 set to 0, |
| * PPET8 set to 7 |
| */ |
| .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, |
| }, |
| }, |
| { |
| .types_mask = BIT(NL80211_IFTYPE_AP), |
| .he_cap = { |
| .has_he = true, |
| .he_cap_elem = { |
| .mac_cap_info[0] = |
| IEEE80211_HE_MAC_CAP0_HTC_HE, |
| .mac_cap_info[1] = |
| IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | |
| IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, |
| .mac_cap_info[3] = |
| IEEE80211_HE_MAC_CAP3_OMI_CONTROL, |
| .phy_cap_info[0] = |
| IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | |
| IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G, |
| .phy_cap_info[1] = |
| IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, |
| .phy_cap_info[2] = |
| IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | |
| IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, |
| .phy_cap_info[3] = |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | |
| IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, |
| .phy_cap_info[6] = |
| IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, |
| .phy_cap_info[7] = |
| IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, |
| .phy_cap_info[8] = |
| IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | |
| IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, |
| .phy_cap_info[9] = |
| IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED |
| << IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS, |
| }, |
| /* |
| * Set default Tx/Rx HE MCS NSS Support field. |
| * Indicate support for up to 2 spatial streams and all |
| * MCS, without any special cases |
| */ |
| .he_mcs_nss_supp = { |
| .rx_mcs_80 = cpu_to_le16(0xfffa), |
| .tx_mcs_80 = cpu_to_le16(0xfffa), |
| .rx_mcs_160 = cpu_to_le16(0xfffa), |
| .tx_mcs_160 = cpu_to_le16(0xfffa), |
| .rx_mcs_80p80 = cpu_to_le16(0xffff), |
| .tx_mcs_80p80 = cpu_to_le16(0xffff), |
| }, |
| /* |
| * Set default PPE thresholds, with PPET16 set to 0, |
| * PPET8 set to 7 |
| */ |
| .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, |
| }, |
| }, |
| }; |
| |
| static void iwl_init_he_6ghz_capa(struct iwl_trans *trans, |
| struct iwl_nvm_data *data, |
| struct ieee80211_supported_band *sband, |
| u8 tx_chains, u8 rx_chains) |
| { |
| struct ieee80211_sta_ht_cap ht_cap; |
| struct ieee80211_sta_vht_cap vht_cap = {}; |
| struct ieee80211_sband_iftype_data *iftype_data; |
| u16 he_6ghz_capa = 0; |
| u32 exp; |
| int i; |
| |
| if (sband->band != NL80211_BAND_6GHZ) |
| return; |
| |
| /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */ |
| iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ, |
| tx_chains, rx_chains); |
| WARN_ON(!ht_cap.ht_supported); |
| iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains); |
| WARN_ON(!vht_cap.vht_supported); |
| |
| he_6ghz_capa |= |
| u16_encode_bits(ht_cap.ampdu_density, |
| IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); |
| exp = u32_get_bits(vht_cap.cap, |
| IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); |
| he_6ghz_capa |= |
| u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); |
| exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); |
| he_6ghz_capa |= |
| u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); |
| /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */ |
| if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) |
| he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; |
| if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) |
| he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; |
| |
| IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa); |
| |
| /* we know it's writable - we set it before ourselves */ |
| iftype_data = (void *)sband->iftype_data; |
| for (i = 0; i < sband->n_iftype_data; i++) |
| iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa); |
| } |
| |
| static void |
| iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans, |
| struct ieee80211_supported_band *sband, |
| struct ieee80211_sband_iftype_data *iftype_data, |
| u8 tx_chains, u8 rx_chains, |
| const struct iwl_fw *fw) |
| { |
| bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP); |
| |
| /* Advertise an A-MPDU exponent extension based on |
| * operating band |
| */ |
| if (sband->band != NL80211_BAND_2GHZ) |
| iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= |
| IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1; |
| else |
| iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= |
| IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; |
| |
| if (is_ap && iwlwifi_mod_params.nvm_file) |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |= |
| IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; |
| |
| if ((tx_chains & rx_chains) == ANT_AB) { |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |= |
| IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ; |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |= |
| IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | |
| IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2; |
| if (!is_ap) |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= |
| IEEE80211_HE_PHY_CAP7_MAX_NC_2; |
| } else if (!is_ap) { |
| /* If not 2x2, we need to indicate 1x1 in the |
| * Midamble RX Max NSTS - but not for AP mode |
| */ |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &= |
| ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS; |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &= |
| ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS; |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= |
| IEEE80211_HE_PHY_CAP7_MAX_NC_1; |
| } |
| |
| switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) { |
| case IWL_CFG_RF_TYPE_GF: |
| case IWL_CFG_RF_TYPE_MR: |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= |
| IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; |
| if (!is_ap) |
| iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= |
| IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; |
| break; |
| } |
| |
| if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT)) |
| iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |= |
| IEEE80211_HE_MAC_CAP2_BCAST_TWT; |
| |
| if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 && |
| !is_ap) { |
| iftype_data->vendor_elems.data = iwl_vendor_caps; |
| iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps); |
| } |
| } |
| |
| static void iwl_init_he_hw_capab(struct iwl_trans *trans, |
| struct iwl_nvm_data *data, |
| struct ieee80211_supported_band *sband, |
| u8 tx_chains, u8 rx_chains, |
| const struct iwl_fw *fw) |
| { |
| struct ieee80211_sband_iftype_data *iftype_data; |
| int i; |
| |
| /* should only initialize once */ |
| if (WARN_ON(sband->iftype_data)) |
| return; |
| |
| BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa)); |
| BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa)); |
| |
| switch (sband->band) { |
| case NL80211_BAND_2GHZ: |
| iftype_data = data->iftd.low; |
| break; |
| case NL80211_BAND_5GHZ: |
| case NL80211_BAND_6GHZ: |
| iftype_data = data->iftd.high; |
| break; |
| default: |
| WARN_ON(1); |
| return; |
| } |
| |
| memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa)); |
| |
| sband->iftype_data = iftype_data; |
| sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa); |
| |
| for (i = 0; i < sband->n_iftype_data; i++) |
| iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i], |
| tx_chains, rx_chains, fw); |
| |
| iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains); |
| } |
| |
| static void iwl_init_sbands(struct iwl_trans *trans, |
| struct iwl_nvm_data *data, |
| const void *nvm_ch_flags, u8 tx_chains, |
| u8 rx_chains, u32 sbands_flags, bool v4, |
| const struct iwl_fw *fw) |
| { |
| struct device *dev = trans->dev; |
| const struct iwl_cfg *cfg = trans->cfg; |
| int n_channels; |
| int n_used = 0; |
| struct ieee80211_supported_band *sband; |
| |
| n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, |
| sbands_flags, v4); |
| sband = &data->bands[NL80211_BAND_2GHZ]; |
| sband->band = NL80211_BAND_2GHZ; |
| sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; |
| sband->n_bitrates = N_RATES_24; |
| n_used += iwl_init_sband_channels(data, sband, n_channels, |
| NL80211_BAND_2GHZ); |
| iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, |
| tx_chains, rx_chains); |
| |
| if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) |
| iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, |
| fw); |
| |
| sband = &data->bands[NL80211_BAND_5GHZ]; |
| sband->band = NL80211_BAND_5GHZ; |
| sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; |
| sband->n_bitrates = N_RATES_52; |
| n_used += iwl_init_sband_channels(data, sband, n_channels, |
| NL80211_BAND_5GHZ); |
| iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, |
| tx_chains, rx_chains); |
| if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) |
| iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, |
| tx_chains, rx_chains); |
| |
| if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) |
| iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, |
| fw); |
| |
| /* 6GHz band. */ |
| sband = &data->bands[NL80211_BAND_6GHZ]; |
| sband->band = NL80211_BAND_6GHZ; |
| /* use the same rates as 5GHz band */ |
| sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; |
| sband->n_bitrates = N_RATES_52; |
| n_used += iwl_init_sband_channels(data, sband, n_channels, |
| NL80211_BAND_6GHZ); |
| |
| if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) |
| iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, |
| fw); |
| else |
| sband->n_channels = 0; |
| if (n_channels != n_used) |
| IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", |
| n_used, n_channels); |
| } |
| |
| static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, |
| const __le16 *phy_sku) |
| { |
| if (cfg->nvm_type != IWL_NVM_EXT) |
| return le16_to_cpup(nvm_sw + SKU); |
| |
| return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); |
| } |
| |
| static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) |
| { |
| if (cfg->nvm_type != IWL_NVM_EXT) |
| return le16_to_cpup(nvm_sw + NVM_VERSION); |
| else |
| return le32_to_cpup((__le32 *)(nvm_sw + |
| NVM_VERSION_EXT_NVM)); |
| } |
| |
| static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, |
| const __le16 *phy_sku) |
| { |
| if (cfg->nvm_type != IWL_NVM_EXT) |
| return le16_to_cpup(nvm_sw + RADIO_CFG); |
| |
| return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); |
| |
| } |
| |
| static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) |
| { |
| int n_hw_addr; |
| |
| if (cfg->nvm_type != IWL_NVM_EXT) |
| return le16_to_cpup(nvm_sw + N_HW_ADDRS); |
| |
| n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); |
| |
| return n_hw_addr & N_HW_ADDR_MASK; |
| } |
| |
| static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, |
| u32 radio_cfg) |
| { |
| if (cfg->nvm_type != IWL_NVM_EXT) { |
| data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); |
| data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); |
| data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); |
| data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); |
| return; |
| } |
| |
| /* set the radio configuration for family 8000 */ |
| data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); |
| data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); |
| data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); |
| data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); |
| data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); |
| data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); |
| } |
| |
| static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) |
| { |
| const u8 *hw_addr; |
| |
| hw_addr = (const u8 *)&mac_addr0; |
| dest[0] = hw_addr[3]; |
| dest[1] = hw_addr[2]; |
| dest[2] = hw_addr[1]; |
| dest[3] = hw_addr[0]; |
| |
| hw_addr = (const u8 *)&mac_addr1; |
| dest[4] = hw_addr[1]; |
| dest[5] = hw_addr[0]; |
| } |
| |
| static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, |
| struct iwl_nvm_data *data) |
| { |
| __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, |
| CSR_MAC_ADDR0_STRAP(trans))); |
| __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, |
| CSR_MAC_ADDR1_STRAP(trans))); |
| |
| iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); |
| /* |
| * If the OEM fused a valid address, use it instead of the one in the |
| * OTP |
| */ |
| if (is_valid_ether_addr(data->hw_addr)) |
| return; |
| |
| mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans))); |
| mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans))); |
| |
| iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); |
| } |
| |
| static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, |
| const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, |
| const __le16 *mac_override, |
| const __be16 *nvm_hw) |
| { |
| const u8 *hw_addr; |
| |
| if (mac_override) { |
| static const u8 reserved_mac[] = { |
| 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 |
| }; |
| |
| hw_addr = (const u8 *)(mac_override + |
| MAC_ADDRESS_OVERRIDE_EXT_NVM); |
| |
| /* |
| * Store the MAC address from MAO section. |
| * No byte swapping is required in MAO section |
| */ |
| memcpy(data->hw_addr, hw_addr, ETH_ALEN); |
| |
| /* |
| * Force the use of the OTP MAC address in case of reserved MAC |
| * address in the NVM, or if address is given but invalid. |
| */ |
| if (is_valid_ether_addr(data->hw_addr) && |
| memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) |
| return; |
| |
| IWL_ERR(trans, |
| "mac address from nvm override section is not valid\n"); |
| } |
| |
| if (nvm_hw) { |
| /* read the mac address from WFMP registers */ |
| __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, |
| WFMP_MAC_ADDR_0)); |
| __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, |
| WFMP_MAC_ADDR_1)); |
| |
| iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); |
| |
| return; |
| } |
| |
| IWL_ERR(trans, "mac address is not found\n"); |
| } |
| |
| static int iwl_set_hw_address(struct iwl_trans *trans, |
| const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, const __be16 *nvm_hw, |
| const __le16 *mac_override) |
| { |
| if (cfg->mac_addr_from_csr) { |
| iwl_set_hw_address_from_csr(trans, data); |
| } else if (cfg->nvm_type != IWL_NVM_EXT) { |
| const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); |
| |
| /* The byte order is little endian 16 bit, meaning 214365 */ |
| data->hw_addr[0] = hw_addr[1]; |
| data->hw_addr[1] = hw_addr[0]; |
| data->hw_addr[2] = hw_addr[3]; |
| data->hw_addr[3] = hw_addr[2]; |
| data->hw_addr[4] = hw_addr[5]; |
| data->hw_addr[5] = hw_addr[4]; |
| } else { |
| iwl_set_hw_address_family_8000(trans, cfg, data, |
| mac_override, nvm_hw); |
| } |
| |
| if (!is_valid_ether_addr(data->hw_addr)) { |
| IWL_ERR(trans, "no valid mac address was found\n"); |
| return -EINVAL; |
| } |
| |
| IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); |
| |
| return 0; |
| } |
| |
| static bool |
| iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg, |
| const __be16 *nvm_hw) |
| { |
| /* |
| * Workaround a bug in Indonesia SKUs where the regulatory in |
| * some 7000-family OTPs erroneously allow wide channels in |
| * 5GHz. To check for Indonesia, we take the SKU value from |
| * bits 1-4 in the subsystem ID and check if it is either 5 or |
| * 9. In those cases, we need to force-disable wide channels |
| * in 5GHz otherwise the FW will throw a sysassert when we try |
| * to use them. |
| */ |
| if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) { |
| /* |
| * Unlike the other sections in the NVM, the hw |
| * section uses big-endian. |
| */ |
| u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); |
| u8 sku = (subsystem_id & 0x1e) >> 1; |
| |
| if (sku == 5 || sku == 9) { |
| IWL_DEBUG_EEPROM(trans->dev, |
| "disabling wide channels in 5GHz (0x%0x %d)\n", |
| subsystem_id, sku); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| struct iwl_nvm_data * |
| iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, |
| const struct iwl_mei_nvm *mei_nvm, |
| const struct iwl_fw *fw) |
| { |
| struct iwl_nvm_data *data; |
| u32 sbands_flags = 0; |
| u8 rx_chains = fw->valid_rx_ant; |
| u8 tx_chains = fw->valid_rx_ant; |
| |
| if (cfg->uhb_supported) |
| data = kzalloc(struct_size(data, channels, |
| IWL_NVM_NUM_CHANNELS_UHB), |
| GFP_KERNEL); |
| else |
| data = kzalloc(struct_size(data, channels, |
| IWL_NVM_NUM_CHANNELS_EXT), |
| GFP_KERNEL); |
| if (!data) |
| return NULL; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) != |
| IWL_NVM_NUM_CHANNELS_UHB); |
| data->nvm_version = mei_nvm->nvm_version; |
| |
| iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg); |
| if (data->valid_tx_ant) |
| tx_chains &= data->valid_tx_ant; |
| if (data->valid_rx_ant) |
| rx_chains &= data->valid_rx_ant; |
| |
| data->sku_cap_mimo_disabled = false; |
| data->sku_cap_band_24ghz_enable = true; |
| data->sku_cap_band_52ghz_enable = true; |
| data->sku_cap_11n_enable = |
| !(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL); |
| data->sku_cap_11ac_enable = true; |
| data->sku_cap_11ax_enable = |
| mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT; |
| |
| data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT; |
| |
| data->n_hw_addrs = mei_nvm->n_hw_addrs; |
| /* If no valid mac address was found - bail out */ |
| if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) { |
| kfree(data); |
| return NULL; |
| } |
| |
| if (data->lar_enabled && |
| fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) |
| sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; |
| |
| iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains, |
| sbands_flags, true, fw); |
| |
| return data; |
| } |
| IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data); |
| |
| struct iwl_nvm_data * |
| iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, |
| const struct iwl_fw *fw, |
| const __be16 *nvm_hw, const __le16 *nvm_sw, |
| const __le16 *nvm_calib, const __le16 *regulatory, |
| const __le16 *mac_override, const __le16 *phy_sku, |
| u8 tx_chains, u8 rx_chains) |
| { |
| struct iwl_nvm_data *data; |
| bool lar_enabled; |
| u32 sku, radio_cfg; |
| u32 sbands_flags = 0; |
| u16 lar_config; |
| const __le16 *ch_section; |
| |
| if (cfg->uhb_supported) |
| data = kzalloc(struct_size(data, channels, |
| IWL_NVM_NUM_CHANNELS_UHB), |
| GFP_KERNEL); |
| else if (cfg->nvm_type != IWL_NVM_EXT) |
| data = kzalloc(struct_size(data, channels, |
| IWL_NVM_NUM_CHANNELS), |
| GFP_KERNEL); |
| else |
| data = kzalloc(struct_size(data, channels, |
| IWL_NVM_NUM_CHANNELS_EXT), |
| GFP_KERNEL); |
| if (!data) |
| return NULL; |
| |
| data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); |
| |
| radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); |
| iwl_set_radio_cfg(cfg, data, radio_cfg); |
| if (data->valid_tx_ant) |
| tx_chains &= data->valid_tx_ant; |
| if (data->valid_rx_ant) |
| rx_chains &= data->valid_rx_ant; |
| |
| sku = iwl_get_sku(cfg, nvm_sw, phy_sku); |
| data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; |
| data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; |
| data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; |
| if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) |
| data->sku_cap_11n_enable = false; |
| data->sku_cap_11ac_enable = data->sku_cap_11n_enable && |
| (sku & NVM_SKU_CAP_11AC_ENABLE); |
| data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; |
| |
| data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); |
| |
| if (cfg->nvm_type != IWL_NVM_EXT) { |
| /* Checking for required sections */ |
| if (!nvm_calib) { |
| IWL_ERR(trans, |
| "Can't parse empty Calib NVM sections\n"); |
| kfree(data); |
| return NULL; |
| } |
| |
| ch_section = cfg->nvm_type == IWL_NVM_SDP ? |
| ®ulatory[NVM_CHANNELS_SDP] : |
| &nvm_sw[NVM_CHANNELS]; |
| |
| /* in family 8000 Xtal calibration values moved to OTP */ |
| data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); |
| data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); |
| lar_enabled = true; |
| } else { |
| u16 lar_offset = data->nvm_version < 0xE39 ? |
| NVM_LAR_OFFSET_OLD : |
| NVM_LAR_OFFSET; |
| |
| lar_config = le16_to_cpup(regulatory + lar_offset); |
| data->lar_enabled = !!(lar_config & |
| NVM_LAR_ENABLED); |
| lar_enabled = data->lar_enabled; |
| ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; |
| } |
| |
| /* If no valid mac address was found - bail out */ |
| if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { |
| kfree(data); |
| return NULL; |
| } |
| |
| if (lar_enabled && |
| fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) |
| sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; |
| |
| if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw)) |
| sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ; |
| |
| iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, |
| sbands_flags, false, fw); |
| data->calib_version = 255; |
| |
| return data; |
| } |
| IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); |
| |
| static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan, |
| int ch_idx, u16 nvm_flags, |
| struct iwl_reg_capa reg_capa, |
| const struct iwl_cfg *cfg) |
| { |
| u32 flags = NL80211_RRF_NO_HT40; |
| |
| if (ch_idx < NUM_2GHZ_CHANNELS && |
| (nvm_flags & NVM_CHANNEL_40MHZ)) { |
| if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) |
| flags &= ~NL80211_RRF_NO_HT40PLUS; |
| if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) |
| flags &= ~NL80211_RRF_NO_HT40MINUS; |
| } else if (nvm_flags & NVM_CHANNEL_40MHZ) { |
| if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) |
| flags &= ~NL80211_RRF_NO_HT40PLUS; |
| else |
| flags &= ~NL80211_RRF_NO_HT40MINUS; |
| } |
| |
| if (!(nvm_flags & NVM_CHANNEL_80MHZ)) |
| flags |= NL80211_RRF_NO_80MHZ; |
| if (!(nvm_flags & NVM_CHANNEL_160MHZ)) |
| flags |= NL80211_RRF_NO_160MHZ; |
| |
| if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) |
| flags |= NL80211_RRF_NO_IR; |
| |
| if (nvm_flags & NVM_CHANNEL_RADAR) |
| flags |= NL80211_RRF_DFS; |
| |
| if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) |
| flags |= NL80211_RRF_NO_OUTDOOR; |
| |
| /* Set the GO concurrent flag only in case that NO_IR is set. |
| * Otherwise it is meaningless |
| */ |
| if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && |
| (flags & NL80211_RRF_NO_IR)) |
| flags |= NL80211_RRF_GO_CONCURRENT; |
| |
| /* |
| * reg_capa is per regulatory domain so apply it for every channel |
| */ |
| if (ch_idx >= NUM_2GHZ_CHANNELS) { |
| if (!reg_capa.allow_40mhz) |
| flags |= NL80211_RRF_NO_HT40; |
| |
| if (!reg_capa.allow_80mhz) |
| flags |= NL80211_RRF_NO_80MHZ; |
| |
| if (!reg_capa.allow_160mhz) |
| flags |= NL80211_RRF_NO_160MHZ; |
| } |
| if (reg_capa.disable_11ax) |
| flags |= NL80211_RRF_NO_HE; |
| |
| return flags; |
| } |
| |
| static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver) |
| { |
| struct iwl_reg_capa reg_capa; |
| |
| if (resp_ver >= REG_CAPA_V2_RESP_VER) { |
| reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED; |
| reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED; |
| reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED; |
| reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED; |
| } else { |
| reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN); |
| reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED; |
| reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED; |
| reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED; |
| } |
| return reg_capa; |
| } |
| |
| struct ieee80211_regdomain * |
| iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, |
| int num_of_ch, __le32 *channels, u16 fw_mcc, |
| u16 geo_info, u16 cap, u8 resp_ver) |
| { |
| int ch_idx; |
| u16 ch_flags; |
| u32 reg_rule_flags, prev_reg_rule_flags = 0; |
| const u16 *nvm_chan; |
| struct ieee80211_regdomain *regd, *copy_rd; |
| struct ieee80211_reg_rule *rule; |
| enum nl80211_band band; |
| int center_freq, prev_center_freq = 0; |
| int valid_rules = 0; |
| bool new_rule; |
| int max_num_ch; |
| struct iwl_reg_capa reg_capa; |
| |
| if (cfg->uhb_supported) { |
| max_num_ch = IWL_NVM_NUM_CHANNELS_UHB; |
| nvm_chan = iwl_uhb_nvm_channels; |
| } else if (cfg->nvm_type == IWL_NVM_EXT) { |
| max_num_ch = IWL_NVM_NUM_CHANNELS_EXT; |
| nvm_chan = iwl_ext_nvm_channels; |
| } else { |
| max_num_ch = IWL_NVM_NUM_CHANNELS; |
| nvm_chan = iwl_nvm_channels; |
| } |
| |
| if (WARN_ON(num_of_ch > max_num_ch)) |
| num_of_ch = max_num_ch; |
| |
| if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) |
| return ERR_PTR(-EINVAL); |
| |
| IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", |
| num_of_ch); |
| |
| /* build a regdomain rule for every valid channel */ |
| regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL); |
| if (!regd) |
| return ERR_PTR(-ENOMEM); |
| |
| /* set alpha2 from FW. */ |
| regd->alpha2[0] = fw_mcc >> 8; |
| regd->alpha2[1] = fw_mcc & 0xff; |
| |
| /* parse regulatory capability flags */ |
| reg_capa = iwl_get_reg_capa(cap, resp_ver); |
| |
| for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { |
| ch_flags = (u16)__le32_to_cpup(channels + ch_idx); |
| band = iwl_nl80211_band_from_channel_idx(ch_idx); |
| center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], |
| band); |
| new_rule = false; |
| |
| if (!(ch_flags & NVM_CHANNEL_VALID)) { |
| iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, |
| nvm_chan[ch_idx], ch_flags); |
| continue; |
| } |
| |
| reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, |
| ch_flags, reg_capa, |
| cfg); |
| |
| /* we can't continue the same rule */ |
| if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || |
| center_freq - prev_center_freq > 20) { |
| valid_rules++; |
| new_rule = true; |
| } |
| |
| rule = ®d->reg_rules[valid_rules - 1]; |
| |
| if (new_rule) |
| rule->freq_range.start_freq_khz = |
| MHZ_TO_KHZ(center_freq - 10); |
| |
| rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); |
| |
| /* this doesn't matter - not used by FW */ |
| rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); |
| rule->power_rule.max_eirp = |
| DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); |
| |
| rule->flags = reg_rule_flags; |
| |
| /* rely on auto-calculation to merge BW of contiguous chans */ |
| rule->flags |= NL80211_RRF_AUTO_BW; |
| rule->freq_range.max_bandwidth_khz = 0; |
| |
| prev_center_freq = center_freq; |
| prev_reg_rule_flags = reg_rule_flags; |
| |
| iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, |
| nvm_chan[ch_idx], ch_flags); |
| |
| if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || |
| band == NL80211_BAND_2GHZ) |
| continue; |
| |
| reg_query_regdb_wmm(regd->alpha2, center_freq, rule); |
| } |
| |
| /* |
| * Certain firmware versions might report no valid channels |
| * if booted in RF-kill, i.e. not all calibrations etc. are |
| * running. We'll get out of this situation later when the |
| * rfkill is removed and we update the regdomain again, but |
| * since cfg80211 doesn't accept an empty regdomain, add a |
| * dummy (unusable) rule here in this case so we can init. |
| */ |
| if (!valid_rules) { |
| valid_rules = 1; |
| rule = ®d->reg_rules[valid_rules - 1]; |
| rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412); |
| rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413); |
| rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1); |
| rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); |
| rule->power_rule.max_eirp = |
| DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); |
| } |
| |
| regd->n_reg_rules = valid_rules; |
| |
| /* |
| * Narrow down regdom for unused regulatory rules to prevent hole |
| * between reg rules to wmm rules. |
| */ |
| copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules), |
| GFP_KERNEL); |
| if (!copy_rd) |
| copy_rd = ERR_PTR(-ENOMEM); |
| |
| kfree(regd); |
| return copy_rd; |
| } |
| IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); |
| |
| #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 |
| #define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc |
| #define MAX_NVM_FILE_LEN 16384 |
| |
| void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data, |
| unsigned int len) |
| { |
| #define IWL_4165_DEVICE_ID 0x5501 |
| #define NVM_SKU_CAP_MIMO_DISABLE BIT(5) |
| |
| if (section == NVM_SECTION_TYPE_PHY_SKU && |
| hw_id == IWL_4165_DEVICE_ID && data && len >= 5 && |
| (data[4] & NVM_SKU_CAP_MIMO_DISABLE)) |
| /* OTP 0x52 bug work around: it's a 1x1 device */ |
| data[3] = ANT_B | (ANT_B << 4); |
| } |
| IWL_EXPORT_SYMBOL(iwl_nvm_fixups); |
| |
| /* |
| * Reads external NVM from a file into mvm->nvm_sections |
| * |
| * HOW TO CREATE THE NVM FILE FORMAT: |
| * ------------------------------ |
| * 1. create hex file, format: |
| * 3800 -> header |
| * 0000 -> header |
| * 5a40 -> data |
| * |
| * rev - 6 bit (word1) |
| * len - 10 bit (word1) |
| * id - 4 bit (word2) |
| * rsv - 12 bit (word2) |
| * |
| * 2. flip 8bits with 8 bits per line to get the right NVM file format |
| * |
| * 3. create binary file from the hex file |
| * |
| * 4. save as "iNVM_xxx.bin" under /lib/firmware |
| */ |
| int iwl_read_external_nvm(struct iwl_trans *trans, |
| const char *nvm_file_name, |
| struct iwl_nvm_section *nvm_sections) |
| { |
| int ret, section_size; |
| u16 section_id; |
| const struct firmware *fw_entry; |
| const struct { |
| __le16 word1; |
| __le16 word2; |
| u8 data[]; |
| } *file_sec; |
| const u8 *eof; |
| u8 *temp; |
| int max_section_size; |
| const __le32 *dword_buff; |
| |
| #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) |
| #define NVM_WORD2_ID(x) (x >> 12) |
| #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8)) |
| #define EXT_NVM_WORD1_ID(x) ((x) >> 4) |
| #define NVM_HEADER_0 (0x2A504C54) |
| #define NVM_HEADER_1 (0x4E564D2A) |
| #define NVM_HEADER_SIZE (4 * sizeof(u32)) |
| |
| IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n"); |
| |
| /* Maximal size depends on NVM version */ |
| if (trans->cfg->nvm_type != IWL_NVM_EXT) |
| max_section_size = IWL_MAX_NVM_SECTION_SIZE; |
| else |
| max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE; |
| |
| /* |
| * Obtain NVM image via request_firmware. Since we already used |
| * request_firmware_nowait() for the firmware binary load and only |
| * get here after that we assume the NVM request can be satisfied |
| * synchronously. |
| */ |
| ret = request_firmware(&fw_entry, nvm_file_name, trans->dev); |
| if (ret) { |
| IWL_ERR(trans, "ERROR: %s isn't available %d\n", |
| nvm_file_name, ret); |
| return ret; |
| } |
| |
| IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", |
| nvm_file_name, fw_entry->size); |
| |
| if (fw_entry->size > MAX_NVM_FILE_LEN) { |
| IWL_ERR(trans, "NVM file too large\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| eof = fw_entry->data + fw_entry->size; |
| dword_buff = (__le32 *)fw_entry->data; |
| |
| /* some NVM file will contain a header. |
| * The header is identified by 2 dwords header as follow: |
| * dword[0] = 0x2A504C54 |
| * dword[1] = 0x4E564D2A |
| * |
| * This header must be skipped when providing the NVM data to the FW. |
| */ |
| if (fw_entry->size > NVM_HEADER_SIZE && |
| dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && |
| dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { |
| file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE); |
| IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); |
| IWL_INFO(trans, "NVM Manufacturing date %08X\n", |
| le32_to_cpu(dword_buff[3])); |
| |
| /* nvm file validation, dword_buff[2] holds the file version */ |
| if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 && |
| trans->hw_rev_step == SILICON_C_STEP && |
| le32_to_cpu(dword_buff[2]) < 0xE4A) { |
| ret = -EFAULT; |
| goto out; |
| } |
| } else { |
| file_sec = (void *)fw_entry->data; |
| } |
| |
| while (true) { |
| if (file_sec->data > eof) { |
| IWL_ERR(trans, |
| "ERROR - NVM file too short for section header\n"); |
| ret = -EINVAL; |
| break; |
| } |
| |
| /* check for EOF marker */ |
| if (!file_sec->word1 && !file_sec->word2) { |
| ret = 0; |
| break; |
| } |
| |
| if (trans->cfg->nvm_type != IWL_NVM_EXT) { |
| section_size = |
| 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); |
| section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); |
| } else { |
| section_size = 2 * EXT_NVM_WORD2_LEN( |
| le16_to_cpu(file_sec->word2)); |
| section_id = EXT_NVM_WORD1_ID( |
| le16_to_cpu(file_sec->word1)); |
| } |
| |
| if (section_size > max_section_size) { |
| IWL_ERR(trans, "ERROR - section too large (%d)\n", |
| section_size); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (!section_size) { |
| IWL_ERR(trans, "ERROR - section empty\n"); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (file_sec->data + section_size > eof) { |
| IWL_ERR(trans, |
| "ERROR - NVM file too short for section (%d bytes)\n", |
| section_size); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, |
| "Invalid NVM section ID %d\n", section_id)) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); |
| if (!temp) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size); |
| |
| kfree(nvm_sections[section_id].data); |
| nvm_sections[section_id].data = temp; |
| nvm_sections[section_id].length = section_size; |
| |
| /* advance to the next section */ |
| file_sec = (void *)(file_sec->data + section_size); |
| } |
| out: |
| release_firmware(fw_entry); |
| return ret; |
| } |
| IWL_EXPORT_SYMBOL(iwl_read_external_nvm); |
| |
| struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans, |
| const struct iwl_fw *fw) |
| { |
| struct iwl_nvm_get_info cmd = {}; |
| struct iwl_nvm_data *nvm; |
| struct iwl_host_cmd hcmd = { |
| .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, |
| .data = { &cmd, }, |
| .len = { sizeof(cmd) }, |
| .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO) |
| }; |
| int ret; |
| bool empty_otp; |
| u32 mac_flags; |
| u32 sbands_flags = 0; |
| /* |
| * All the values in iwl_nvm_get_info_rsp v4 are the same as |
| * in v3, except for the channel profile part of the |
| * regulatory. So we can just access the new struct, with the |
| * exception of the latter. |
| */ |
| struct iwl_nvm_get_info_rsp *rsp; |
| struct iwl_nvm_get_info_rsp_v3 *rsp_v3; |
| bool v4 = fw_has_api(&fw->ucode_capa, |
| IWL_UCODE_TLV_API_REGULATORY_NVM_INFO); |
| size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); |
| void *channel_profile; |
| |
| ret = iwl_trans_send_cmd(trans, &hcmd); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size, |
| "Invalid payload len in NVM response from FW %d", |
| iwl_rx_packet_payload_len(hcmd.resp_pkt))) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| rsp = (void *)hcmd.resp_pkt->data; |
| empty_otp = !!(le32_to_cpu(rsp->general.flags) & |
| NVM_GENERAL_FLAGS_EMPTY_OTP); |
| if (empty_otp) |
| IWL_INFO(trans, "OTP is empty\n"); |
| |
| nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL); |
| if (!nvm) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| iwl_set_hw_address_from_csr(trans, nvm); |
| /* TODO: if platform NVM has MAC address - override it here */ |
| |
| if (!is_valid_ether_addr(nvm->hw_addr)) { |
| IWL_ERR(trans, "no valid mac address was found\n"); |
| ret = -EINVAL; |
| goto err_free; |
| } |
| |
| IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr); |
| |
| /* Initialize general data */ |
| nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version); |
| nvm->n_hw_addrs = rsp->general.n_hw_addrs; |
| if (nvm->n_hw_addrs == 0) |
| IWL_WARN(trans, |
| "Firmware declares no reserved mac addresses. OTP is empty: %d\n", |
| empty_otp); |
| |
| /* Initialize MAC sku data */ |
| mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags); |
| nvm->sku_cap_11ac_enable = |
| !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); |
| nvm->sku_cap_11n_enable = |
| !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED); |
| nvm->sku_cap_11ax_enable = |
| !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); |
| nvm->sku_cap_band_24ghz_enable = |
| !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); |
| nvm->sku_cap_band_52ghz_enable = |
| !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); |
| nvm->sku_cap_mimo_disabled = |
| !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED); |
| |
| /* Initialize PHY sku data */ |
| nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains); |
| nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains); |
| |
| if (le32_to_cpu(rsp->regulatory.lar_enabled) && |
| fw_has_capa(&fw->ucode_capa, |
| IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) { |
| nvm->lar_enabled = true; |
| sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; |
| } |
| |
| rsp_v3 = (void *)rsp; |
| channel_profile = v4 ? (void *)rsp->regulatory.channel_profile : |
| (void *)rsp_v3->regulatory.channel_profile; |
| |
| iwl_init_sbands(trans, nvm, |
| channel_profile, |
| nvm->valid_tx_ant & fw->valid_tx_ant, |
| nvm->valid_rx_ant & fw->valid_rx_ant, |
| sbands_flags, v4, fw); |
| |
| iwl_free_resp(&hcmd); |
| return nvm; |
| |
| err_free: |
| kfree(nvm); |
| out: |
| iwl_free_resp(&hcmd); |
| return ERR_PTR(ret); |
| } |
| IWL_EXPORT_SYMBOL(iwl_get_nvm); |