| /* |
| BlueZ - Bluetooth protocol stack for Linux |
| |
| Copyright (C) 2014 Intel Corporation |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License version 2 as |
| published by the Free Software Foundation; |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. |
| IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY |
| CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, |
| COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS |
| SOFTWARE IS DISCLAIMED. |
| */ |
| |
| #include <linux/sched/signal.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| #include <net/bluetooth/mgmt.h> |
| |
| #include "smp.h" |
| #include "hci_request.h" |
| #include "msft.h" |
| #include "eir.h" |
| |
| void hci_req_init(struct hci_request *req, struct hci_dev *hdev) |
| { |
| skb_queue_head_init(&req->cmd_q); |
| req->hdev = hdev; |
| req->err = 0; |
| } |
| |
| void hci_req_purge(struct hci_request *req) |
| { |
| skb_queue_purge(&req->cmd_q); |
| } |
| |
| bool hci_req_status_pend(struct hci_dev *hdev) |
| { |
| return hdev->req_status == HCI_REQ_PEND; |
| } |
| |
| static int req_run(struct hci_request *req, hci_req_complete_t complete, |
| hci_req_complete_skb_t complete_skb) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| unsigned long flags; |
| |
| bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); |
| |
| /* If an error occurred during request building, remove all HCI |
| * commands queued on the HCI request queue. |
| */ |
| if (req->err) { |
| skb_queue_purge(&req->cmd_q); |
| return req->err; |
| } |
| |
| /* Do not allow empty requests */ |
| if (skb_queue_empty(&req->cmd_q)) |
| return -ENODATA; |
| |
| skb = skb_peek_tail(&req->cmd_q); |
| if (complete) { |
| bt_cb(skb)->hci.req_complete = complete; |
| } else if (complete_skb) { |
| bt_cb(skb)->hci.req_complete_skb = complete_skb; |
| bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; |
| } |
| |
| spin_lock_irqsave(&hdev->cmd_q.lock, flags); |
| skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); |
| spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); |
| |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| |
| return 0; |
| } |
| |
| int hci_req_run(struct hci_request *req, hci_req_complete_t complete) |
| { |
| return req_run(req, complete, NULL); |
| } |
| |
| int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) |
| { |
| return req_run(req, NULL, complete); |
| } |
| |
| void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, |
| struct sk_buff *skb) |
| { |
| bt_dev_dbg(hdev, "result 0x%2.2x", result); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| hdev->req_result = result; |
| hdev->req_status = HCI_REQ_DONE; |
| if (skb) |
| hdev->req_skb = skb_get(skb); |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| } |
| |
| void hci_req_sync_cancel(struct hci_dev *hdev, int err) |
| { |
| bt_dev_dbg(hdev, "err 0x%2.2x", err); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| hdev->req_result = err; |
| hdev->req_status = HCI_REQ_CANCELED; |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| } |
| |
| /* Execute request and wait for completion. */ |
| int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, |
| unsigned long opt), |
| unsigned long opt, u32 timeout, u8 *hci_status) |
| { |
| struct hci_request req; |
| int err = 0; |
| |
| bt_dev_dbg(hdev, "start"); |
| |
| hci_req_init(&req, hdev); |
| |
| hdev->req_status = HCI_REQ_PEND; |
| |
| err = func(&req, opt); |
| if (err) { |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| return err; |
| } |
| |
| err = hci_req_run_skb(&req, hci_req_sync_complete); |
| if (err < 0) { |
| hdev->req_status = 0; |
| |
| /* ENODATA means the HCI request command queue is empty. |
| * This can happen when a request with conditionals doesn't |
| * trigger any commands to be sent. This is normal behavior |
| * and should not trigger an error return. |
| */ |
| if (err == -ENODATA) { |
| if (hci_status) |
| *hci_status = 0; |
| return 0; |
| } |
| |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| |
| return err; |
| } |
| |
| err = wait_event_interruptible_timeout(hdev->req_wait_q, |
| hdev->req_status != HCI_REQ_PEND, timeout); |
| |
| if (err == -ERESTARTSYS) |
| return -EINTR; |
| |
| switch (hdev->req_status) { |
| case HCI_REQ_DONE: |
| err = -bt_to_errno(hdev->req_result); |
| if (hci_status) |
| *hci_status = hdev->req_result; |
| break; |
| |
| case HCI_REQ_CANCELED: |
| err = -hdev->req_result; |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| break; |
| |
| default: |
| err = -ETIMEDOUT; |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| break; |
| } |
| |
| kfree_skb(hdev->req_skb); |
| hdev->req_skb = NULL; |
| hdev->req_status = hdev->req_result = 0; |
| |
| bt_dev_dbg(hdev, "end: err %d", err); |
| |
| return err; |
| } |
| |
| int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, |
| unsigned long opt), |
| unsigned long opt, u32 timeout, u8 *hci_status) |
| { |
| int ret; |
| |
| /* Serialize all requests */ |
| hci_req_sync_lock(hdev); |
| /* check the state after obtaing the lock to protect the HCI_UP |
| * against any races from hci_dev_do_close when the controller |
| * gets removed. |
| */ |
| if (test_bit(HCI_UP, &hdev->flags)) |
| ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); |
| else |
| ret = -ENETDOWN; |
| hci_req_sync_unlock(hdev); |
| |
| return ret; |
| } |
| |
| struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param) |
| { |
| int len = HCI_COMMAND_HDR_SIZE + plen; |
| struct hci_command_hdr *hdr; |
| struct sk_buff *skb; |
| |
| skb = bt_skb_alloc(len, GFP_ATOMIC); |
| if (!skb) |
| return NULL; |
| |
| hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); |
| hdr->opcode = cpu_to_le16(opcode); |
| hdr->plen = plen; |
| |
| if (plen) |
| skb_put_data(skb, param, plen); |
| |
| bt_dev_dbg(hdev, "skb len %d", skb->len); |
| |
| hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; |
| hci_skb_opcode(skb) = opcode; |
| |
| return skb; |
| } |
| |
| /* Queue a command to an asynchronous HCI request */ |
| void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, |
| const void *param, u8 event) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| |
| bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); |
| |
| /* If an error occurred during request building, there is no point in |
| * queueing the HCI command. We can simply return. |
| */ |
| if (req->err) |
| return; |
| |
| skb = hci_prepare_cmd(hdev, opcode, plen, param); |
| if (!skb) { |
| bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", |
| opcode); |
| req->err = -ENOMEM; |
| return; |
| } |
| |
| if (skb_queue_empty(&req->cmd_q)) |
| bt_cb(skb)->hci.req_flags |= HCI_REQ_START; |
| |
| bt_cb(skb)->hci.req_event = event; |
| |
| skb_queue_tail(&req->cmd_q, skb); |
| } |
| |
| void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, |
| const void *param) |
| { |
| hci_req_add_ev(req, opcode, plen, param, 0); |
| } |
| |
| void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_page_scan_activity acp; |
| u8 type; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return; |
| |
| if (hdev->hci_ver < BLUETOOTH_VER_1_2) |
| return; |
| |
| if (enable) { |
| type = PAGE_SCAN_TYPE_INTERLACED; |
| |
| /* 160 msec page scan interval */ |
| acp.interval = cpu_to_le16(0x0100); |
| } else { |
| type = hdev->def_page_scan_type; |
| acp.interval = cpu_to_le16(hdev->def_page_scan_int); |
| } |
| |
| acp.window = cpu_to_le16(hdev->def_page_scan_window); |
| |
| if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || |
| __cpu_to_le16(hdev->page_scan_window) != acp.window) |
| hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, |
| sizeof(acp), &acp); |
| |
| if (hdev->page_scan_type != type) |
| hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); |
| } |
| |
| static void start_interleave_scan(struct hci_dev *hdev) |
| { |
| hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->interleave_scan, 0); |
| } |
| |
| static bool is_interleave_scanning(struct hci_dev *hdev) |
| { |
| return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; |
| } |
| |
| static void cancel_interleave_scan(struct hci_dev *hdev) |
| { |
| bt_dev_dbg(hdev, "cancelling interleave scan"); |
| |
| cancel_delayed_work_sync(&hdev->interleave_scan); |
| |
| hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; |
| } |
| |
| /* Return true if interleave_scan wasn't started until exiting this function, |
| * otherwise, return false |
| */ |
| static bool __hci_update_interleaved_scan(struct hci_dev *hdev) |
| { |
| /* Do interleaved scan only if all of the following are true: |
| * - There is at least one ADV monitor |
| * - At least one pending LE connection or one device to be scanned for |
| * - Monitor offloading is not supported |
| * If so, we should alternate between allowlist scan and one without |
| * any filters to save power. |
| */ |
| bool use_interleaving = hci_is_adv_monitoring(hdev) && |
| !(list_empty(&hdev->pend_le_conns) && |
| list_empty(&hdev->pend_le_reports)) && |
| hci_get_adv_monitor_offload_ext(hdev) == |
| HCI_ADV_MONITOR_EXT_NONE; |
| bool is_interleaving = is_interleave_scanning(hdev); |
| |
| if (use_interleaving && !is_interleaving) { |
| start_interleave_scan(hdev); |
| bt_dev_dbg(hdev, "starting interleave scan"); |
| return true; |
| } |
| |
| if (!use_interleaving && is_interleaving) |
| cancel_interleave_scan(hdev); |
| |
| return false; |
| } |
| |
| void __hci_req_update_name(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_local_name cp; |
| |
| memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); |
| |
| hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); |
| } |
| |
| void __hci_req_update_eir(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_eir cp; |
| |
| if (!hdev_is_powered(hdev)) |
| return; |
| |
| if (!lmp_ext_inq_capable(hdev)) |
| return; |
| |
| if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| return; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| eir_create(hdev, cp.data); |
| |
| if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) |
| return; |
| |
| memcpy(hdev->eir, cp.data, sizeof(cp.data)); |
| |
| hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); |
| } |
| |
| void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| if (hdev->scanning_paused) { |
| bt_dev_dbg(hdev, "Scanning is paused for suspend"); |
| return; |
| } |
| |
| if (use_ext_scan(hdev)) { |
| struct hci_cp_le_set_ext_scan_enable cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = LE_SCAN_DISABLE; |
| hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), |
| &cp); |
| } else { |
| struct hci_cp_le_set_scan_enable cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = LE_SCAN_DISABLE; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); |
| } |
| |
| /* Disable address resolution */ |
| if (hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) { |
| __u8 enable = 0x00; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); |
| } |
| } |
| |
| static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr, |
| u8 bdaddr_type) |
| { |
| struct hci_cp_le_del_from_accept_list cp; |
| |
| cp.bdaddr_type = bdaddr_type; |
| bacpy(&cp.bdaddr, bdaddr); |
| |
| bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr, |
| cp.bdaddr_type); |
| hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp); |
| |
| if (use_ll_privacy(req->hdev)) { |
| struct smp_irk *irk; |
| |
| irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type); |
| if (irk) { |
| struct hci_cp_le_del_from_resolv_list cp; |
| |
| cp.bdaddr_type = bdaddr_type; |
| bacpy(&cp.bdaddr, bdaddr); |
| |
| hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST, |
| sizeof(cp), &cp); |
| } |
| } |
| } |
| |
| /* Adds connection to accept list if needed. On error, returns -1. */ |
| static int add_to_accept_list(struct hci_request *req, |
| struct hci_conn_params *params, u8 *num_entries, |
| bool allow_rpa) |
| { |
| struct hci_cp_le_add_to_accept_list cp; |
| struct hci_dev *hdev = req->hdev; |
| |
| /* Already in accept list */ |
| if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, |
| params->addr_type)) |
| return 0; |
| |
| /* Select filter policy to accept all advertising */ |
| if (*num_entries >= hdev->le_accept_list_size) |
| return -1; |
| |
| /* Accept list can not be used with RPAs */ |
| if (!allow_rpa && |
| !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && |
| hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { |
| return -1; |
| } |
| |
| /* During suspend, only wakeable devices can be in accept list */ |
| if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, |
| params->current_flags)) |
| return 0; |
| |
| *num_entries += 1; |
| cp.bdaddr_type = params->addr_type; |
| bacpy(&cp.bdaddr, ¶ms->addr); |
| |
| bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr, |
| cp.bdaddr_type); |
| hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp); |
| |
| if (use_ll_privacy(hdev)) { |
| struct smp_irk *irk; |
| |
| irk = hci_find_irk_by_addr(hdev, ¶ms->addr, |
| params->addr_type); |
| if (irk) { |
| struct hci_cp_le_add_to_resolv_list cp; |
| |
| cp.bdaddr_type = params->addr_type; |
| bacpy(&cp.bdaddr, ¶ms->addr); |
| memcpy(cp.peer_irk, irk->val, 16); |
| |
| if (hci_dev_test_flag(hdev, HCI_PRIVACY)) |
| memcpy(cp.local_irk, hdev->irk, 16); |
| else |
| memset(cp.local_irk, 0, 16); |
| |
| hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST, |
| sizeof(cp), &cp); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static u8 update_accept_list(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_conn_params *params; |
| struct bdaddr_list *b; |
| u8 num_entries = 0; |
| bool pend_conn, pend_report; |
| /* We allow usage of accept list even with RPAs in suspend. In the worst |
| * case, we won't be able to wake from devices that use the privacy1.2 |
| * features. Additionally, once we support privacy1.2 and IRK |
| * offloading, we can update this to also check for those conditions. |
| */ |
| bool allow_rpa = hdev->suspended; |
| |
| if (use_ll_privacy(hdev)) |
| allow_rpa = true; |
| |
| /* Go through the current accept list programmed into the |
| * controller one by one and check if that address is still |
| * in the list of pending connections or list of devices to |
| * report. If not present in either list, then queue the |
| * command to remove it from the controller. |
| */ |
| list_for_each_entry(b, &hdev->le_accept_list, list) { |
| pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, |
| &b->bdaddr, |
| b->bdaddr_type); |
| pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, |
| &b->bdaddr, |
| b->bdaddr_type); |
| |
| /* If the device is not likely to connect or report, |
| * remove it from the accept list. |
| */ |
| if (!pend_conn && !pend_report) { |
| del_from_accept_list(req, &b->bdaddr, b->bdaddr_type); |
| continue; |
| } |
| |
| /* Accept list can not be used with RPAs */ |
| if (!allow_rpa && |
| !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && |
| hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { |
| return 0x00; |
| } |
| |
| num_entries++; |
| } |
| |
| /* Since all no longer valid accept list entries have been |
| * removed, walk through the list of pending connections |
| * and ensure that any new device gets programmed into |
| * the controller. |
| * |
| * If the list of the devices is larger than the list of |
| * available accept list entries in the controller, then |
| * just abort and return filer policy value to not use the |
| * accept list. |
| */ |
| list_for_each_entry(params, &hdev->pend_le_conns, action) { |
| if (add_to_accept_list(req, params, &num_entries, allow_rpa)) |
| return 0x00; |
| } |
| |
| /* After adding all new pending connections, walk through |
| * the list of pending reports and also add these to the |
| * accept list if there is still space. Abort if space runs out. |
| */ |
| list_for_each_entry(params, &hdev->pend_le_reports, action) { |
| if (add_to_accept_list(req, params, &num_entries, allow_rpa)) |
| return 0x00; |
| } |
| |
| /* Use the allowlist unless the following conditions are all true: |
| * - We are not currently suspending |
| * - There are 1 or more ADV monitors registered and it's not offloaded |
| * - Interleaved scanning is not currently using the allowlist |
| */ |
| if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && |
| hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && |
| hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) |
| return 0x00; |
| |
| /* Select filter policy to use accept list */ |
| return 0x01; |
| } |
| |
| static bool scan_use_rpa(struct hci_dev *hdev) |
| { |
| return hci_dev_test_flag(hdev, HCI_PRIVACY); |
| } |
| |
| static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, |
| u16 window, u8 own_addr_type, u8 filter_policy, |
| bool filter_dup, bool addr_resolv) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| if (hdev->scanning_paused) { |
| bt_dev_dbg(hdev, "Scanning is paused for suspend"); |
| return; |
| } |
| |
| if (use_ll_privacy(hdev) && addr_resolv) { |
| u8 enable = 0x01; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); |
| } |
| |
| /* Use ext scanning if set ext scan param and ext scan enable is |
| * supported |
| */ |
| if (use_ext_scan(hdev)) { |
| struct hci_cp_le_set_ext_scan_params *ext_param_cp; |
| struct hci_cp_le_set_ext_scan_enable ext_enable_cp; |
| struct hci_cp_le_scan_phy_params *phy_params; |
| u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; |
| u32 plen; |
| |
| ext_param_cp = (void *)data; |
| phy_params = (void *)ext_param_cp->data; |
| |
| memset(ext_param_cp, 0, sizeof(*ext_param_cp)); |
| ext_param_cp->own_addr_type = own_addr_type; |
| ext_param_cp->filter_policy = filter_policy; |
| |
| plen = sizeof(*ext_param_cp); |
| |
| if (scan_1m(hdev) || scan_2m(hdev)) { |
| ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; |
| |
| memset(phy_params, 0, sizeof(*phy_params)); |
| phy_params->type = type; |
| phy_params->interval = cpu_to_le16(interval); |
| phy_params->window = cpu_to_le16(window); |
| |
| plen += sizeof(*phy_params); |
| phy_params++; |
| } |
| |
| if (scan_coded(hdev)) { |
| ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; |
| |
| memset(phy_params, 0, sizeof(*phy_params)); |
| phy_params->type = type; |
| phy_params->interval = cpu_to_le16(interval); |
| phy_params->window = cpu_to_le16(window); |
| |
| plen += sizeof(*phy_params); |
| phy_params++; |
| } |
| |
| hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, |
| plen, ext_param_cp); |
| |
| memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); |
| ext_enable_cp.enable = LE_SCAN_ENABLE; |
| ext_enable_cp.filter_dup = filter_dup; |
| |
| hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, |
| sizeof(ext_enable_cp), &ext_enable_cp); |
| } else { |
| struct hci_cp_le_set_scan_param param_cp; |
| struct hci_cp_le_set_scan_enable enable_cp; |
| |
| memset(¶m_cp, 0, sizeof(param_cp)); |
| param_cp.type = type; |
| param_cp.interval = cpu_to_le16(interval); |
| param_cp.window = cpu_to_le16(window); |
| param_cp.own_address_type = own_addr_type; |
| param_cp.filter_policy = filter_policy; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), |
| ¶m_cp); |
| |
| memset(&enable_cp, 0, sizeof(enable_cp)); |
| enable_cp.enable = LE_SCAN_ENABLE; |
| enable_cp.filter_dup = filter_dup; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), |
| &enable_cp); |
| } |
| } |
| |
| /* Returns true if an le connection is in the scanning state */ |
| static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) |
| { |
| struct hci_conn_hash *h = &hdev->conn_hash; |
| struct hci_conn *c; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(c, &h->list, list) { |
| if (c->type == LE_LINK && c->state == BT_CONNECT && |
| test_bit(HCI_CONN_SCANNING, &c->flags)) { |
| rcu_read_unlock(); |
| return true; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| return false; |
| } |
| |
| /* Ensure to call hci_req_add_le_scan_disable() first to disable the |
| * controller based address resolution to be able to reconfigure |
| * resolving list. |
| */ |
| void hci_req_add_le_passive_scan(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 own_addr_type; |
| u8 filter_policy; |
| u16 window, interval; |
| /* Default is to enable duplicates filter */ |
| u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| /* Background scanning should run with address resolution */ |
| bool addr_resolv = true; |
| |
| if (hdev->scanning_paused) { |
| bt_dev_dbg(hdev, "Scanning is paused for suspend"); |
| return; |
| } |
| |
| /* Set require_privacy to false since no SCAN_REQ are send |
| * during passive scanning. Not using an non-resolvable address |
| * here is important so that peer devices using direct |
| * advertising with our address will be correctly reported |
| * by the controller. |
| */ |
| if (hci_update_random_address(req, false, scan_use_rpa(hdev), |
| &own_addr_type)) |
| return; |
| |
| if (hdev->enable_advmon_interleave_scan && |
| __hci_update_interleaved_scan(hdev)) |
| return; |
| |
| bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); |
| /* Adding or removing entries from the accept list must |
| * happen before enabling scanning. The controller does |
| * not allow accept list modification while scanning. |
| */ |
| filter_policy = update_accept_list(req); |
| |
| /* When the controller is using random resolvable addresses and |
| * with that having LE privacy enabled, then controllers with |
| * Extended Scanner Filter Policies support can now enable support |
| * for handling directed advertising. |
| * |
| * So instead of using filter polices 0x00 (no accept list) |
| * and 0x01 (accept list enabled) use the new filter policies |
| * 0x02 (no accept list) and 0x03 (accept list enabled). |
| */ |
| if (hci_dev_test_flag(hdev, HCI_PRIVACY) && |
| (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) |
| filter_policy |= 0x02; |
| |
| if (hdev->suspended) { |
| window = hdev->le_scan_window_suspend; |
| interval = hdev->le_scan_int_suspend; |
| } else if (hci_is_le_conn_scanning(hdev)) { |
| window = hdev->le_scan_window_connect; |
| interval = hdev->le_scan_int_connect; |
| } else if (hci_is_adv_monitoring(hdev)) { |
| window = hdev->le_scan_window_adv_monitor; |
| interval = hdev->le_scan_int_adv_monitor; |
| |
| /* Disable duplicates filter when scanning for advertisement |
| * monitor for the following reasons. |
| * |
| * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm |
| * controllers ignore RSSI_Sampling_Period when the duplicates |
| * filter is enabled. |
| * |
| * For SW pattern filtering, when we're not doing interleaved |
| * scanning, it is necessary to disable duplicates filter, |
| * otherwise hosts can only receive one advertisement and it's |
| * impossible to know if a peer is still in range. |
| */ |
| filter_dup = LE_SCAN_FILTER_DUP_DISABLE; |
| } else { |
| window = hdev->le_scan_window; |
| interval = hdev->le_scan_interval; |
| } |
| |
| bt_dev_dbg(hdev, "LE passive scan with accept list = %d", |
| filter_policy); |
| hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window, |
| own_addr_type, filter_policy, filter_dup, |
| addr_resolv); |
| } |
| |
| static void cancel_adv_timeout(struct hci_dev *hdev) |
| { |
| if (hdev->adv_instance_timeout) { |
| hdev->adv_instance_timeout = 0; |
| cancel_delayed_work(&hdev->adv_instance_expire); |
| } |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| void __hci_req_pause_adv_instances(struct hci_request *req) |
| { |
| bt_dev_dbg(req->hdev, "Pausing advertising instances"); |
| |
| /* Call to disable any advertisements active on the controller. |
| * This will succeed even if no advertisements are configured. |
| */ |
| __hci_req_disable_advertising(req); |
| |
| /* If we are using software rotation, pause the loop */ |
| if (!ext_adv_capable(req->hdev)) |
| cancel_adv_timeout(req->hdev); |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| static void __hci_req_resume_adv_instances(struct hci_request *req) |
| { |
| struct adv_info *adv; |
| |
| bt_dev_dbg(req->hdev, "Resuming advertising instances"); |
| |
| if (ext_adv_capable(req->hdev)) { |
| /* Call for each tracked instance to be re-enabled */ |
| list_for_each_entry(adv, &req->hdev->adv_instances, list) { |
| __hci_req_enable_ext_advertising(req, |
| adv->instance); |
| } |
| |
| } else { |
| /* Schedule for most recent instance to be restarted and begin |
| * the software rotation loop |
| */ |
| __hci_req_schedule_adv_instance(req, |
| req->hdev->cur_adv_instance, |
| true); |
| } |
| } |
| |
| /* This function requires the caller holds hdev->lock */ |
| int hci_req_resume_adv_instances(struct hci_dev *hdev) |
| { |
| struct hci_request req; |
| |
| hci_req_init(&req, hdev); |
| __hci_req_resume_adv_instances(&req); |
| |
| return hci_req_run(&req, NULL); |
| } |
| |
| static bool adv_cur_instance_is_scannable(struct hci_dev *hdev) |
| { |
| return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance); |
| } |
| |
| void __hci_req_disable_advertising(struct hci_request *req) |
| { |
| if (ext_adv_capable(req->hdev)) { |
| __hci_req_disable_ext_adv_instance(req, 0x00); |
| |
| } else { |
| u8 enable = 0x00; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); |
| } |
| } |
| |
| static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) |
| { |
| /* If privacy is not enabled don't use RPA */ |
| if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) |
| return false; |
| |
| /* If basic privacy mode is enabled use RPA */ |
| if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) |
| return true; |
| |
| /* If limited privacy mode is enabled don't use RPA if we're |
| * both discoverable and bondable. |
| */ |
| if ((flags & MGMT_ADV_FLAG_DISCOV) && |
| hci_dev_test_flag(hdev, HCI_BONDABLE)) |
| return false; |
| |
| /* We're neither bondable nor discoverable in the limited |
| * privacy mode, therefore use RPA. |
| */ |
| return true; |
| } |
| |
| static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) |
| { |
| /* If there is no connection we are OK to advertise. */ |
| if (hci_conn_num(hdev, LE_LINK) == 0) |
| return true; |
| |
| /* Check le_states if there is any connection in peripheral role. */ |
| if (hdev->conn_hash.le_num_peripheral > 0) { |
| /* Peripheral connection state and non connectable mode bit 20. |
| */ |
| if (!connectable && !(hdev->le_states[2] & 0x10)) |
| return false; |
| |
| /* Peripheral connection state and connectable mode bit 38 |
| * and scannable bit 21. |
| */ |
| if (connectable && (!(hdev->le_states[4] & 0x40) || |
| !(hdev->le_states[2] & 0x20))) |
| return false; |
| } |
| |
| /* Check le_states if there is any connection in central role. */ |
| if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { |
| /* Central connection state and non connectable mode bit 18. */ |
| if (!connectable && !(hdev->le_states[2] & 0x02)) |
| return false; |
| |
| /* Central connection state and connectable mode bit 35 and |
| * scannable 19. |
| */ |
| if (connectable && (!(hdev->le_states[4] & 0x08) || |
| !(hdev->le_states[2] & 0x08))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void __hci_req_enable_advertising(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct adv_info *adv; |
| struct hci_cp_le_set_adv_param cp; |
| u8 own_addr_type, enable = 0x01; |
| bool connectable; |
| u16 adv_min_interval, adv_max_interval; |
| u32 flags; |
| |
| flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); |
| adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance); |
| |
| /* If the "connectable" instance flag was not set, then choose between |
| * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. |
| */ |
| connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || |
| mgmt_get_connectable(hdev); |
| |
| if (!is_advertising_allowed(hdev, connectable)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| __hci_req_disable_advertising(req); |
| |
| /* Clear the HCI_LE_ADV bit temporarily so that the |
| * hci_update_random_address knows that it's safe to go ahead |
| * and write a new random address. The flag will be set back on |
| * as soon as the SET_ADV_ENABLE HCI command completes. |
| */ |
| hci_dev_clear_flag(hdev, HCI_LE_ADV); |
| |
| /* Set require_privacy to true only when non-connectable |
| * advertising is used. In that case it is fine to use a |
| * non-resolvable private address. |
| */ |
| if (hci_update_random_address(req, !connectable, |
| adv_use_rpa(hdev, flags), |
| &own_addr_type) < 0) |
| return; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (adv) { |
| adv_min_interval = adv->min_interval; |
| adv_max_interval = adv->max_interval; |
| } else { |
| adv_min_interval = hdev->le_adv_min_interval; |
| adv_max_interval = hdev->le_adv_max_interval; |
| } |
| |
| if (connectable) { |
| cp.type = LE_ADV_IND; |
| } else { |
| if (adv_cur_instance_is_scannable(hdev)) |
| cp.type = LE_ADV_SCAN_IND; |
| else |
| cp.type = LE_ADV_NONCONN_IND; |
| |
| if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || |
| hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { |
| adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; |
| adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; |
| } |
| } |
| |
| cp.min_interval = cpu_to_le16(adv_min_interval); |
| cp.max_interval = cpu_to_le16(adv_max_interval); |
| cp.own_address_type = own_addr_type; |
| cp.channel_map = hdev->le_adv_channel_map; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); |
| } |
| |
| void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 len; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return; |
| |
| if (ext_adv_capable(hdev)) { |
| struct { |
| struct hci_cp_le_set_ext_scan_rsp_data cp; |
| u8 data[HCI_MAX_EXT_AD_LENGTH]; |
| } pdu; |
| |
| memset(&pdu, 0, sizeof(pdu)); |
| |
| len = eir_create_scan_rsp(hdev, instance, pdu.data); |
| |
| if (hdev->scan_rsp_data_len == len && |
| !memcmp(pdu.data, hdev->scan_rsp_data, len)) |
| return; |
| |
| memcpy(hdev->scan_rsp_data, pdu.data, len); |
| hdev->scan_rsp_data_len = len; |
| |
| pdu.cp.handle = instance; |
| pdu.cp.length = len; |
| pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; |
| pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; |
| |
| hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, |
| sizeof(pdu.cp) + len, &pdu.cp); |
| } else { |
| struct hci_cp_le_set_scan_rsp_data cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| len = eir_create_scan_rsp(hdev, instance, cp.data); |
| |
| if (hdev->scan_rsp_data_len == len && |
| !memcmp(cp.data, hdev->scan_rsp_data, len)) |
| return; |
| |
| memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); |
| hdev->scan_rsp_data_len = len; |
| |
| cp.length = len; |
| |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); |
| } |
| } |
| |
| void __hci_req_update_adv_data(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 len; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return; |
| |
| if (ext_adv_capable(hdev)) { |
| struct { |
| struct hci_cp_le_set_ext_adv_data cp; |
| u8 data[HCI_MAX_EXT_AD_LENGTH]; |
| } pdu; |
| |
| memset(&pdu, 0, sizeof(pdu)); |
| |
| len = eir_create_adv_data(hdev, instance, pdu.data); |
| |
| /* There's nothing to do if the data hasn't changed */ |
| if (hdev->adv_data_len == len && |
| memcmp(pdu.data, hdev->adv_data, len) == 0) |
| return; |
| |
| memcpy(hdev->adv_data, pdu.data, len); |
| hdev->adv_data_len = len; |
| |
| pdu.cp.length = len; |
| pdu.cp.handle = instance; |
| pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; |
| pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; |
| |
| hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, |
| sizeof(pdu.cp) + len, &pdu.cp); |
| } else { |
| struct hci_cp_le_set_adv_data cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| len = eir_create_adv_data(hdev, instance, cp.data); |
| |
| /* There's nothing to do if the data hasn't changed */ |
| if (hdev->adv_data_len == len && |
| memcmp(cp.data, hdev->adv_data, len) == 0) |
| return; |
| |
| memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); |
| hdev->adv_data_len = len; |
| |
| cp.length = len; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); |
| } |
| } |
| |
| int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_request req; |
| |
| hci_req_init(&req, hdev); |
| __hci_req_update_adv_data(&req, instance); |
| |
| return hci_req_run(&req, NULL); |
| } |
| |
| static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status, |
| u16 opcode) |
| { |
| BT_DBG("%s status %u", hdev->name, status); |
| } |
| |
| void hci_req_disable_address_resolution(struct hci_dev *hdev) |
| { |
| struct hci_request req; |
| __u8 enable = 0x00; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) |
| return; |
| |
| hci_req_init(&req, hdev); |
| |
| hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); |
| |
| hci_req_run(&req, enable_addr_resolution_complete); |
| } |
| |
| static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) |
| { |
| bt_dev_dbg(hdev, "status %u", status); |
| } |
| |
| void hci_req_reenable_advertising(struct hci_dev *hdev) |
| { |
| struct hci_request req; |
| |
| if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && |
| list_empty(&hdev->adv_instances)) |
| return; |
| |
| hci_req_init(&req, hdev); |
| |
| if (hdev->cur_adv_instance) { |
| __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, |
| true); |
| } else { |
| if (ext_adv_capable(hdev)) { |
| __hci_req_start_ext_adv(&req, 0x00); |
| } else { |
| __hci_req_update_adv_data(&req, 0x00); |
| __hci_req_update_scan_rsp_data(&req, 0x00); |
| __hci_req_enable_advertising(&req); |
| } |
| } |
| |
| hci_req_run(&req, adv_enable_complete); |
| } |
| |
| static void adv_timeout_expire(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| adv_instance_expire.work); |
| |
| struct hci_request req; |
| u8 instance; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| hci_dev_lock(hdev); |
| |
| hdev->adv_instance_timeout = 0; |
| |
| instance = hdev->cur_adv_instance; |
| if (instance == 0x00) |
| goto unlock; |
| |
| hci_req_init(&req, hdev); |
| |
| hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); |
| |
| if (list_empty(&hdev->adv_instances)) |
| __hci_req_disable_advertising(&req); |
| |
| hci_req_run(&req, NULL); |
| |
| unlock: |
| hci_dev_unlock(hdev); |
| } |
| |
| static int hci_req_add_le_interleaved_scan(struct hci_request *req, |
| unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| int ret = 0; |
| |
| hci_dev_lock(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| hci_req_add_le_scan_disable(req, false); |
| hci_req_add_le_passive_scan(req); |
| |
| switch (hdev->interleave_scan_state) { |
| case INTERLEAVE_SCAN_ALLOWLIST: |
| bt_dev_dbg(hdev, "next state: allowlist"); |
| hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; |
| break; |
| case INTERLEAVE_SCAN_NO_FILTER: |
| bt_dev_dbg(hdev, "next state: no filter"); |
| hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; |
| break; |
| case INTERLEAVE_SCAN_NONE: |
| BT_ERR("unexpected error"); |
| ret = -1; |
| } |
| |
| hci_dev_unlock(hdev); |
| |
| return ret; |
| } |
| |
| static void interleave_scan_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| interleave_scan.work); |
| u8 status; |
| unsigned long timeout; |
| |
| if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { |
| timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); |
| } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { |
| timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); |
| } else { |
| bt_dev_err(hdev, "unexpected error"); |
| return; |
| } |
| |
| hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0, |
| HCI_CMD_TIMEOUT, &status); |
| |
| /* Don't continue interleaving if it was canceled */ |
| if (is_interleave_scanning(hdev)) |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->interleave_scan, timeout); |
| } |
| |
| int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, |
| bool use_rpa, struct adv_info *adv_instance, |
| u8 *own_addr_type, bdaddr_t *rand_addr) |
| { |
| int err; |
| |
| bacpy(rand_addr, BDADDR_ANY); |
| |
| /* If privacy is enabled use a resolvable private address. If |
| * current RPA has expired then generate a new one. |
| */ |
| if (use_rpa) { |
| /* If Controller supports LL Privacy use own address type is |
| * 0x03 |
| */ |
| if (use_ll_privacy(hdev)) |
| *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; |
| else |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| |
| if (adv_instance) { |
| if (adv_rpa_valid(adv_instance)) |
| return 0; |
| } else { |
| if (rpa_valid(hdev)) |
| return 0; |
| } |
| |
| err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); |
| if (err < 0) { |
| bt_dev_err(hdev, "failed to generate new RPA"); |
| return err; |
| } |
| |
| bacpy(rand_addr, &hdev->rpa); |
| |
| return 0; |
| } |
| |
| /* In case of required privacy without resolvable private address, |
| * use an non-resolvable private address. This is useful for |
| * non-connectable advertising. |
| */ |
| if (require_privacy) { |
| bdaddr_t nrpa; |
| |
| while (true) { |
| /* The non-resolvable private address is generated |
| * from random six bytes with the two most significant |
| * bits cleared. |
| */ |
| get_random_bytes(&nrpa, 6); |
| nrpa.b[5] &= 0x3f; |
| |
| /* The non-resolvable private address shall not be |
| * equal to the public address. |
| */ |
| if (bacmp(&hdev->bdaddr, &nrpa)) |
| break; |
| } |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| bacpy(rand_addr, &nrpa); |
| |
| return 0; |
| } |
| |
| /* No privacy so use a public address. */ |
| *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| return 0; |
| } |
| |
| void __hci_req_clear_ext_adv_sets(struct hci_request *req) |
| { |
| hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); |
| } |
| |
| static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* If we're advertising or initiating an LE connection we can't |
| * go ahead and change the random address at this time. This is |
| * because the eventual initiator address used for the |
| * subsequently created connection will be undefined (some |
| * controllers use the new address and others the one we had |
| * when the operation started). |
| * |
| * In this kind of scenario skip the update and let the random |
| * address be updated at the next cycle. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_ADV) || |
| hci_lookup_le_connect(hdev)) { |
| bt_dev_dbg(hdev, "Deferring random address update"); |
| hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); |
| return; |
| } |
| |
| hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); |
| } |
| |
| int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) |
| { |
| struct hci_cp_le_set_ext_adv_params cp; |
| struct hci_dev *hdev = req->hdev; |
| bool connectable; |
| u32 flags; |
| bdaddr_t random_addr; |
| u8 own_addr_type; |
| int err; |
| struct adv_info *adv_instance; |
| bool secondary_adv; |
| |
| if (instance > 0) { |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| if (!adv_instance) |
| return -EINVAL; |
| } else { |
| adv_instance = NULL; |
| } |
| |
| flags = hci_adv_instance_flags(hdev, instance); |
| |
| /* If the "connectable" instance flag was not set, then choose between |
| * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. |
| */ |
| connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || |
| mgmt_get_connectable(hdev); |
| |
| if (!is_advertising_allowed(hdev, connectable)) |
| return -EPERM; |
| |
| /* Set require_privacy to true only when non-connectable |
| * advertising is used. In that case it is fine to use a |
| * non-resolvable private address. |
| */ |
| err = hci_get_random_address(hdev, !connectable, |
| adv_use_rpa(hdev, flags), adv_instance, |
| &own_addr_type, &random_addr); |
| if (err < 0) |
| return err; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (adv_instance) { |
| hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval); |
| hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval); |
| cp.tx_power = adv_instance->tx_power; |
| } else { |
| hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); |
| hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); |
| cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; |
| } |
| |
| secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); |
| |
| if (connectable) { |
| if (secondary_adv) |
| cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); |
| else |
| cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); |
| } else if (hci_adv_instance_is_scannable(hdev, instance) || |
| (flags & MGMT_ADV_PARAM_SCAN_RSP)) { |
| if (secondary_adv) |
| cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); |
| else |
| cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); |
| } else { |
| if (secondary_adv) |
| cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); |
| else |
| cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); |
| } |
| |
| cp.own_addr_type = own_addr_type; |
| cp.channel_map = hdev->le_adv_channel_map; |
| cp.handle = instance; |
| |
| if (flags & MGMT_ADV_FLAG_SEC_2M) { |
| cp.primary_phy = HCI_ADV_PHY_1M; |
| cp.secondary_phy = HCI_ADV_PHY_2M; |
| } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { |
| cp.primary_phy = HCI_ADV_PHY_CODED; |
| cp.secondary_phy = HCI_ADV_PHY_CODED; |
| } else { |
| /* In all other cases use 1M */ |
| cp.primary_phy = HCI_ADV_PHY_1M; |
| cp.secondary_phy = HCI_ADV_PHY_1M; |
| } |
| |
| hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); |
| |
| if ((own_addr_type == ADDR_LE_DEV_RANDOM || |
| own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && |
| bacmp(&random_addr, BDADDR_ANY)) { |
| struct hci_cp_le_set_adv_set_rand_addr cp; |
| |
| /* Check if random address need to be updated */ |
| if (adv_instance) { |
| if (!bacmp(&random_addr, &adv_instance->random_addr)) |
| return 0; |
| } else { |
| if (!bacmp(&random_addr, &hdev->random_addr)) |
| return 0; |
| /* Instance 0x00 doesn't have an adv_info, instead it |
| * uses hdev->random_addr to track its address so |
| * whenever it needs to be updated this also set the |
| * random address since hdev->random_addr is shared with |
| * scan state machine. |
| */ |
| set_random_addr(req, &random_addr); |
| } |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| cp.handle = instance; |
| bacpy(&cp.bdaddr, &random_addr); |
| |
| hci_req_add(req, |
| HCI_OP_LE_SET_ADV_SET_RAND_ADDR, |
| sizeof(cp), &cp); |
| } |
| |
| return 0; |
| } |
| |
| int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_le_set_ext_adv_enable *cp; |
| struct hci_cp_ext_adv_set *adv_set; |
| u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; |
| struct adv_info *adv_instance; |
| |
| if (instance > 0) { |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| if (!adv_instance) |
| return -EINVAL; |
| } else { |
| adv_instance = NULL; |
| } |
| |
| cp = (void *) data; |
| adv_set = (void *) cp->data; |
| |
| memset(cp, 0, sizeof(*cp)); |
| |
| cp->enable = 0x01; |
| cp->num_of_sets = 0x01; |
| |
| memset(adv_set, 0, sizeof(*adv_set)); |
| |
| adv_set->handle = instance; |
| |
| /* Set duration per instance since controller is responsible for |
| * scheduling it. |
| */ |
| if (adv_instance && adv_instance->duration) { |
| u16 duration = adv_instance->timeout * MSEC_PER_SEC; |
| |
| /* Time = N * 10 ms */ |
| adv_set->duration = cpu_to_le16(duration / 10); |
| } |
| |
| hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, |
| sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, |
| data); |
| |
| return 0; |
| } |
| |
| int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_le_set_ext_adv_enable *cp; |
| struct hci_cp_ext_adv_set *adv_set; |
| u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; |
| u8 req_size; |
| |
| /* If request specifies an instance that doesn't exist, fail */ |
| if (instance > 0 && !hci_find_adv_instance(hdev, instance)) |
| return -EINVAL; |
| |
| memset(data, 0, sizeof(data)); |
| |
| cp = (void *)data; |
| adv_set = (void *)cp->data; |
| |
| /* Instance 0x00 indicates all advertising instances will be disabled */ |
| cp->num_of_sets = !!instance; |
| cp->enable = 0x00; |
| |
| adv_set->handle = instance; |
| |
| req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets; |
| hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data); |
| |
| return 0; |
| } |
| |
| int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* If request specifies an instance that doesn't exist, fail */ |
| if (instance > 0 && !hci_find_adv_instance(hdev, instance)) |
| return -EINVAL; |
| |
| hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance); |
| |
| return 0; |
| } |
| |
| int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance); |
| int err; |
| |
| /* If instance isn't pending, the chip knows about it, and it's safe to |
| * disable |
| */ |
| if (adv_instance && !adv_instance->pending) |
| __hci_req_disable_ext_adv_instance(req, instance); |
| |
| err = __hci_req_setup_ext_adv_instance(req, instance); |
| if (err < 0) |
| return err; |
| |
| __hci_req_update_scan_rsp_data(req, instance); |
| __hci_req_enable_ext_advertising(req, instance); |
| |
| return 0; |
| } |
| |
| int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, |
| bool force) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct adv_info *adv_instance = NULL; |
| u16 timeout; |
| |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| list_empty(&hdev->adv_instances)) |
| return -EPERM; |
| |
| if (hdev->adv_instance_timeout) |
| return -EBUSY; |
| |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| if (!adv_instance) |
| return -ENOENT; |
| |
| /* A zero timeout means unlimited advertising. As long as there is |
| * only one instance, duration should be ignored. We still set a timeout |
| * in case further instances are being added later on. |
| * |
| * If the remaining lifetime of the instance is more than the duration |
| * then the timeout corresponds to the duration, otherwise it will be |
| * reduced to the remaining instance lifetime. |
| */ |
| if (adv_instance->timeout == 0 || |
| adv_instance->duration <= adv_instance->remaining_time) |
| timeout = adv_instance->duration; |
| else |
| timeout = adv_instance->remaining_time; |
| |
| /* The remaining time is being reduced unless the instance is being |
| * advertised without time limit. |
| */ |
| if (adv_instance->timeout) |
| adv_instance->remaining_time = |
| adv_instance->remaining_time - timeout; |
| |
| /* Only use work for scheduling instances with legacy advertising */ |
| if (!ext_adv_capable(hdev)) { |
| hdev->adv_instance_timeout = timeout; |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->adv_instance_expire, |
| msecs_to_jiffies(timeout * 1000)); |
| } |
| |
| /* If we're just re-scheduling the same instance again then do not |
| * execute any HCI commands. This happens when a single instance is |
| * being advertised. |
| */ |
| if (!force && hdev->cur_adv_instance == instance && |
| hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| return 0; |
| |
| hdev->cur_adv_instance = instance; |
| if (ext_adv_capable(hdev)) { |
| __hci_req_start_ext_adv(req, instance); |
| } else { |
| __hci_req_update_adv_data(req, instance); |
| __hci_req_update_scan_rsp_data(req, instance); |
| __hci_req_enable_advertising(req); |
| } |
| |
| return 0; |
| } |
| |
| /* For a single instance: |
| * - force == true: The instance will be removed even when its remaining |
| * lifetime is not zero. |
| * - force == false: the instance will be deactivated but kept stored unless |
| * the remaining lifetime is zero. |
| * |
| * For instance == 0x00: |
| * - force == true: All instances will be removed regardless of their timeout |
| * setting. |
| * - force == false: Only instances that have a timeout will be removed. |
| */ |
| void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, |
| struct hci_request *req, u8 instance, |
| bool force) |
| { |
| struct adv_info *adv_instance, *n, *next_instance = NULL; |
| int err; |
| u8 rem_inst; |
| |
| /* Cancel any timeout concerning the removed instance(s). */ |
| if (!instance || hdev->cur_adv_instance == instance) |
| cancel_adv_timeout(hdev); |
| |
| /* Get the next instance to advertise BEFORE we remove |
| * the current one. This can be the same instance again |
| * if there is only one instance. |
| */ |
| if (instance && hdev->cur_adv_instance == instance) |
| next_instance = hci_get_next_instance(hdev, instance); |
| |
| if (instance == 0x00) { |
| list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, |
| list) { |
| if (!(force || adv_instance->timeout)) |
| continue; |
| |
| rem_inst = adv_instance->instance; |
| err = hci_remove_adv_instance(hdev, rem_inst); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, rem_inst); |
| } |
| } else { |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| |
| if (force || (adv_instance && adv_instance->timeout && |
| !adv_instance->remaining_time)) { |
| /* Don't advertise a removed instance. */ |
| if (next_instance && |
| next_instance->instance == instance) |
| next_instance = NULL; |
| |
| err = hci_remove_adv_instance(hdev, instance); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, instance); |
| } |
| } |
| |
| if (!req || !hdev_is_powered(hdev) || |
| hci_dev_test_flag(hdev, HCI_ADVERTISING)) |
| return; |
| |
| if (next_instance && !ext_adv_capable(hdev)) |
| __hci_req_schedule_adv_instance(req, next_instance->instance, |
| false); |
| } |
| |
| int hci_update_random_address(struct hci_request *req, bool require_privacy, |
| bool use_rpa, u8 *own_addr_type) |
| { |
| struct hci_dev *hdev = req->hdev; |
| int err; |
| |
| /* If privacy is enabled use a resolvable private address. If |
| * current RPA has expired or there is something else than |
| * the current RPA in use, then generate a new one. |
| */ |
| if (use_rpa) { |
| /* If Controller supports LL Privacy use own address type is |
| * 0x03 |
| */ |
| if (use_ll_privacy(hdev)) |
| *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; |
| else |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| |
| if (rpa_valid(hdev)) |
| return 0; |
| |
| err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); |
| if (err < 0) { |
| bt_dev_err(hdev, "failed to generate new RPA"); |
| return err; |
| } |
| |
| set_random_addr(req, &hdev->rpa); |
| |
| return 0; |
| } |
| |
| /* In case of required privacy without resolvable private address, |
| * use an non-resolvable private address. This is useful for active |
| * scanning and non-connectable advertising. |
| */ |
| if (require_privacy) { |
| bdaddr_t nrpa; |
| |
| while (true) { |
| /* The non-resolvable private address is generated |
| * from random six bytes with the two most significant |
| * bits cleared. |
| */ |
| get_random_bytes(&nrpa, 6); |
| nrpa.b[5] &= 0x3f; |
| |
| /* The non-resolvable private address shall not be |
| * equal to the public address. |
| */ |
| if (bacmp(&hdev->bdaddr, &nrpa)) |
| break; |
| } |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| set_random_addr(req, &nrpa); |
| return 0; |
| } |
| |
| /* If forcing static address is in use or there is no public |
| * address use the static address as random address (but skip |
| * the HCI command if the current random address is already the |
| * static one. |
| * |
| * In case BR/EDR has been disabled on a dual-mode controller |
| * and a static address has been configured, then use that |
| * address instead of the public BR/EDR address. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || |
| !bacmp(&hdev->bdaddr, BDADDR_ANY) || |
| (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && |
| bacmp(&hdev->static_addr, BDADDR_ANY))) { |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| if (bacmp(&hdev->static_addr, &hdev->random_addr)) |
| hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, |
| &hdev->static_addr); |
| return 0; |
| } |
| |
| /* Neither privacy nor static address is being used so use a |
| * public address. |
| */ |
| *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| return 0; |
| } |
| |
| static bool disconnected_accept_list_entries(struct hci_dev *hdev) |
| { |
| struct bdaddr_list *b; |
| |
| list_for_each_entry(b, &hdev->accept_list, list) { |
| struct hci_conn *conn; |
| |
| conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); |
| if (!conn) |
| return true; |
| |
| if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void __hci_req_update_scan(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 scan; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return; |
| |
| if (!hdev_is_powered(hdev)) |
| return; |
| |
| if (mgmt_powering_down(hdev)) |
| return; |
| |
| if (hdev->scanning_paused) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || |
| disconnected_accept_list_entries(hdev)) |
| scan = SCAN_PAGE; |
| else |
| scan = SCAN_DISABLED; |
| |
| if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| scan |= SCAN_INQUIRY; |
| |
| if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && |
| test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) |
| return; |
| |
| hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); |
| } |
| |
| static int update_scan(struct hci_request *req, unsigned long opt) |
| { |
| hci_dev_lock(req->hdev); |
| __hci_req_update_scan(req); |
| hci_dev_unlock(req->hdev); |
| return 0; |
| } |
| |
| static void scan_update_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); |
| |
| hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); |
| } |
| |
| static u8 get_service_classes(struct hci_dev *hdev) |
| { |
| struct bt_uuid *uuid; |
| u8 val = 0; |
| |
| list_for_each_entry(uuid, &hdev->uuids, list) |
| val |= uuid->svc_hint; |
| |
| return val; |
| } |
| |
| void __hci_req_update_class(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 cod[3]; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| if (!hdev_is_powered(hdev)) |
| return; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| return; |
| |
| cod[0] = hdev->minor_class; |
| cod[1] = hdev->major_class; |
| cod[2] = get_service_classes(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) |
| cod[1] |= 0x20; |
| |
| if (memcmp(cod, hdev->dev_class, 3) == 0) |
| return; |
| |
| hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); |
| } |
| |
| static void write_iac(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_current_iac_lap cp; |
| |
| if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { |
| /* Limited discoverable mode */ |
| cp.num_iac = min_t(u8, hdev->num_iac, 2); |
| cp.iac_lap[0] = 0x00; /* LIAC */ |
| cp.iac_lap[1] = 0x8b; |
| cp.iac_lap[2] = 0x9e; |
| cp.iac_lap[3] = 0x33; /* GIAC */ |
| cp.iac_lap[4] = 0x8b; |
| cp.iac_lap[5] = 0x9e; |
| } else { |
| /* General discoverable mode */ |
| cp.num_iac = 1; |
| cp.iac_lap[0] = 0x33; /* GIAC */ |
| cp.iac_lap[1] = 0x8b; |
| cp.iac_lap[2] = 0x9e; |
| } |
| |
| hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, |
| (cp.num_iac * 3) + 1, &cp); |
| } |
| |
| static int discoverable_update(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| hci_dev_lock(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { |
| write_iac(req); |
| __hci_req_update_scan(req); |
| __hci_req_update_class(req); |
| } |
| |
| /* Advertising instances don't use the global discoverable setting, so |
| * only update AD if advertising was enabled using Set Advertising. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { |
| __hci_req_update_adv_data(req, 0x00); |
| |
| /* Discoverable mode affects the local advertising |
| * address in limited privacy mode. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { |
| if (ext_adv_capable(hdev)) |
| __hci_req_start_ext_adv(req, 0x00); |
| else |
| __hci_req_enable_advertising(req); |
| } |
| } |
| |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, |
| u8 reason) |
| { |
| switch (conn->state) { |
| case BT_CONNECTED: |
| case BT_CONFIG: |
| if (conn->type == AMP_LINK) { |
| struct hci_cp_disconn_phy_link cp; |
| |
| cp.phy_handle = HCI_PHY_HANDLE(conn->handle); |
| cp.reason = reason; |
| hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), |
| &cp); |
| } else { |
| struct hci_cp_disconnect dc; |
| |
| dc.handle = cpu_to_le16(conn->handle); |
| dc.reason = reason; |
| hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); |
| } |
| |
| conn->state = BT_DISCONN; |
| |
| break; |
| case BT_CONNECT: |
| if (conn->type == LE_LINK) { |
| if (test_bit(HCI_CONN_SCANNING, &conn->flags)) |
| break; |
| hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, |
| 0, NULL); |
| } else if (conn->type == ACL_LINK) { |
| if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) |
| break; |
| hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, |
| 6, &conn->dst); |
| } |
| break; |
| case BT_CONNECT2: |
| if (conn->type == ACL_LINK) { |
| struct hci_cp_reject_conn_req rej; |
| |
| bacpy(&rej.bdaddr, &conn->dst); |
| rej.reason = reason; |
| |
| hci_req_add(req, HCI_OP_REJECT_CONN_REQ, |
| sizeof(rej), &rej); |
| } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { |
| struct hci_cp_reject_sync_conn_req rej; |
| |
| bacpy(&rej.bdaddr, &conn->dst); |
| |
| /* SCO rejection has its own limited set of |
| * allowed error values (0x0D-0x0F) which isn't |
| * compatible with most values passed to this |
| * function. To be safe hard-code one of the |
| * values that's suitable for SCO. |
| */ |
| rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; |
| |
| hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, |
| sizeof(rej), &rej); |
| } |
| break; |
| default: |
| conn->state = BT_CLOSED; |
| break; |
| } |
| } |
| |
| static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) |
| { |
| if (status) |
| bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status); |
| } |
| |
| int hci_abort_conn(struct hci_conn *conn, u8 reason) |
| { |
| struct hci_request req; |
| int err; |
| |
| hci_req_init(&req, conn->hdev); |
| |
| __hci_abort_conn(&req, conn, reason); |
| |
| err = hci_req_run(&req, abort_conn_complete); |
| if (err && err != -ENODATA) { |
| bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int le_scan_disable(struct hci_request *req, unsigned long opt) |
| { |
| hci_req_add_le_scan_disable(req, false); |
| return 0; |
| } |
| |
| static int bredr_inquiry(struct hci_request *req, unsigned long opt) |
| { |
| u8 length = opt; |
| const u8 giac[3] = { 0x33, 0x8b, 0x9e }; |
| const u8 liac[3] = { 0x00, 0x8b, 0x9e }; |
| struct hci_cp_inquiry cp; |
| |
| if (test_bit(HCI_INQUIRY, &req->hdev->flags)) |
| return 0; |
| |
| bt_dev_dbg(req->hdev, ""); |
| |
| hci_dev_lock(req->hdev); |
| hci_inquiry_cache_flush(req->hdev); |
| hci_dev_unlock(req->hdev); |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (req->hdev->discovery.limited) |
| memcpy(&cp.lap, liac, sizeof(cp.lap)); |
| else |
| memcpy(&cp.lap, giac, sizeof(cp.lap)); |
| |
| cp.length = length; |
| |
| hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); |
| |
| return 0; |
| } |
| |
| static void le_scan_disable_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| le_scan_disable.work); |
| u8 status; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| return; |
| |
| cancel_delayed_work(&hdev->le_scan_restart); |
| |
| hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); |
| if (status) { |
| bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", |
| status); |
| return; |
| } |
| |
| hdev->discovery.scan_start = 0; |
| |
| /* If we were running LE only scan, change discovery state. If |
| * we were running both LE and BR/EDR inquiry simultaneously, |
| * and BR/EDR inquiry is already finished, stop discovery, |
| * otherwise BR/EDR inquiry will stop discovery when finished. |
| * If we will resolve remote device name, do not change |
| * discovery state. |
| */ |
| |
| if (hdev->discovery.type == DISCOV_TYPE_LE) |
| goto discov_stopped; |
| |
| if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) |
| return; |
| |
| if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { |
| if (!test_bit(HCI_INQUIRY, &hdev->flags) && |
| hdev->discovery.state != DISCOVERY_RESOLVING) |
| goto discov_stopped; |
| |
| return; |
| } |
| |
| hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, |
| HCI_CMD_TIMEOUT, &status); |
| if (status) { |
| bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); |
| goto discov_stopped; |
| } |
| |
| return; |
| |
| discov_stopped: |
| hci_dev_lock(hdev); |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| hci_dev_unlock(hdev); |
| } |
| |
| static int le_scan_restart(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* If controller is not scanning we are done. */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| return 0; |
| |
| if (hdev->scanning_paused) { |
| bt_dev_dbg(hdev, "Scanning is paused for suspend"); |
| return 0; |
| } |
| |
| hci_req_add_le_scan_disable(req, false); |
| |
| if (use_ext_scan(hdev)) { |
| struct hci_cp_le_set_ext_scan_enable ext_enable_cp; |
| |
| memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); |
| ext_enable_cp.enable = LE_SCAN_ENABLE; |
| ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| |
| hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, |
| sizeof(ext_enable_cp), &ext_enable_cp); |
| } else { |
| struct hci_cp_le_set_scan_enable cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = LE_SCAN_ENABLE; |
| cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); |
| } |
| |
| return 0; |
| } |
| |
| static void le_scan_restart_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| le_scan_restart.work); |
| unsigned long timeout, duration, scan_start, now; |
| u8 status; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); |
| if (status) { |
| bt_dev_err(hdev, "failed to restart LE scan: status %d", |
| status); |
| return; |
| } |
| |
| hci_dev_lock(hdev); |
| |
| if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || |
| !hdev->discovery.scan_start) |
| goto unlock; |
| |
| /* When the scan was started, hdev->le_scan_disable has been queued |
| * after duration from scan_start. During scan restart this job |
| * has been canceled, and we need to queue it again after proper |
| * timeout, to make sure that scan does not run indefinitely. |
| */ |
| duration = hdev->discovery.scan_duration; |
| scan_start = hdev->discovery.scan_start; |
| now = jiffies; |
| if (now - scan_start <= duration) { |
| int elapsed; |
| |
| if (now >= scan_start) |
| elapsed = now - scan_start; |
| else |
| elapsed = ULONG_MAX - scan_start + now; |
| |
| timeout = duration - elapsed; |
| } else { |
| timeout = 0; |
| } |
| |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->le_scan_disable, timeout); |
| |
| unlock: |
| hci_dev_unlock(hdev); |
| } |
| |
| static int active_scan(struct hci_request *req, unsigned long opt) |
| { |
| uint16_t interval = opt; |
| struct hci_dev *hdev = req->hdev; |
| u8 own_addr_type; |
| /* Accept list is not used for discovery */ |
| u8 filter_policy = 0x00; |
| /* Default is to enable duplicates filter */ |
| u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| /* Discovery doesn't require controller address resolution */ |
| bool addr_resolv = false; |
| int err; |
| |
| bt_dev_dbg(hdev, ""); |
| |
| /* If controller is scanning, it means the background scanning is |
| * running. Thus, we should temporarily stop it in order to set the |
| * discovery scanning parameters. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| hci_req_add_le_scan_disable(req, false); |
| cancel_interleave_scan(hdev); |
| } |
| |
| /* All active scans will be done with either a resolvable private |
| * address (when privacy feature has been enabled) or non-resolvable |
| * private address. |
| */ |
| err = hci_update_random_address(req, true, scan_use_rpa(hdev), |
| &own_addr_type); |
| if (err < 0) |
| own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| if (hci_is_adv_monitoring(hdev)) { |
| /* Duplicate filter should be disabled when some advertisement |
| * monitor is activated, otherwise AdvMon can only receive one |
| * advertisement for one peer(*) during active scanning, and |
| * might report loss to these peers. |
| * |
| * Note that different controllers have different meanings of |
| * |duplicate|. Some of them consider packets with the same |
| * address as duplicate, and others consider packets with the |
| * same address and the same RSSI as duplicate. Although in the |
| * latter case we don't need to disable duplicate filter, but |
| * it is common to have active scanning for a short period of |
| * time, the power impact should be neglectable. |
| */ |
| filter_dup = LE_SCAN_FILTER_DUP_DISABLE; |
| } |
| |
| hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, |
| hdev->le_scan_window_discovery, own_addr_type, |
| filter_policy, filter_dup, addr_resolv); |
| return 0; |
| } |
| |
| static int interleaved_discov(struct hci_request *req, unsigned long opt) |
| { |
| int err; |
| |
| bt_dev_dbg(req->hdev, ""); |
| |
| err = active_scan(req, opt); |
| if (err) |
| return err; |
| |
| return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); |
| } |
| |
| static void start_discovery(struct hci_dev *hdev, u8 *status) |
| { |
| unsigned long timeout; |
| |
| bt_dev_dbg(hdev, "type %u", hdev->discovery.type); |
| |
| switch (hdev->discovery.type) { |
| case DISCOV_TYPE_BREDR: |
| if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) |
| hci_req_sync(hdev, bredr_inquiry, |
| DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, |
| status); |
| return; |
| case DISCOV_TYPE_INTERLEAVED: |
| /* When running simultaneous discovery, the LE scanning time |
| * should occupy the whole discovery time sine BR/EDR inquiry |
| * and LE scanning are scheduled by the controller. |
| * |
| * For interleaving discovery in comparison, BR/EDR inquiry |
| * and LE scanning are done sequentially with separate |
| * timeouts. |
| */ |
| if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, |
| &hdev->quirks)) { |
| timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| /* During simultaneous discovery, we double LE scan |
| * interval. We must leave some time for the controller |
| * to do BR/EDR inquiry. |
| */ |
| hci_req_sync(hdev, interleaved_discov, |
| hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT, |
| status); |
| break; |
| } |
| |
| timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); |
| hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, |
| HCI_CMD_TIMEOUT, status); |
| break; |
| case DISCOV_TYPE_LE: |
| timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, |
| HCI_CMD_TIMEOUT, status); |
| break; |
| default: |
| *status = HCI_ERROR_UNSPECIFIED; |
| return; |
| } |
| |
| if (*status) |
| return; |
| |
| bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); |
| |
| /* When service discovery is used and the controller has a |
| * strict duplicate filter, it is important to remember the |
| * start and duration of the scan. This is required for |
| * restarting scanning during the discovery phase. |
| */ |
| if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && |
| hdev->discovery.result_filtering) { |
| hdev->discovery.scan_start = jiffies; |
| hdev->discovery.scan_duration = timeout; |
| } |
| |
| queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, |
| timeout); |
| } |
| |
| bool hci_req_stop_discovery(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct discovery_state *d = &hdev->discovery; |
| struct hci_cp_remote_name_req_cancel cp; |
| struct inquiry_entry *e; |
| bool ret = false; |
| |
| bt_dev_dbg(hdev, "state %u", hdev->discovery.state); |
| |
| if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { |
| if (test_bit(HCI_INQUIRY, &hdev->flags)) |
| hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| cancel_delayed_work(&hdev->le_scan_disable); |
| cancel_delayed_work(&hdev->le_scan_restart); |
| hci_req_add_le_scan_disable(req, false); |
| } |
| |
| ret = true; |
| } else { |
| /* Passive scanning */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| hci_req_add_le_scan_disable(req, false); |
| ret = true; |
| } |
| } |
| |
| /* No further actions needed for LE-only discovery */ |
| if (d->type == DISCOV_TYPE_LE) |
| return ret; |
| |
| if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { |
| e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, |
| NAME_PENDING); |
| if (!e) |
| return ret; |
| |
| bacpy(&cp.bdaddr, &e->data.bdaddr); |
| hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), |
| &cp); |
| ret = true; |
| } |
| |
| return ret; |
| } |
| |
| static void config_data_path_complete(struct hci_dev *hdev, u8 status, |
| u16 opcode) |
| { |
| bt_dev_dbg(hdev, "status %u", status); |
| } |
| |
| int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec) |
| { |
| struct hci_request req; |
| int err; |
| __u8 vnd_len, *vnd_data = NULL; |
| struct hci_op_configure_data_path *cmd = NULL; |
| |
| hci_req_init(&req, hdev); |
| |
| err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len, |
| &vnd_data); |
| if (err < 0) |
| goto error; |
| |
| cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL); |
| if (!cmd) { |
| err = -ENOMEM; |
| goto error; |
| } |
| |
| err = hdev->get_data_path_id(hdev, &cmd->data_path_id); |
| if (err < 0) |
| goto error; |
| |
| cmd->vnd_len = vnd_len; |
| memcpy(cmd->vnd_data, vnd_data, vnd_len); |
| |
| cmd->direction = 0x00; |
| hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd); |
| |
| cmd->direction = 0x01; |
| hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd); |
| |
| err = hci_req_run(&req, config_data_path_complete); |
| error: |
| |
| kfree(cmd); |
| kfree(vnd_data); |
| return err; |
| } |
| |
| static int stop_discovery(struct hci_request *req, unsigned long opt) |
| { |
| hci_dev_lock(req->hdev); |
| hci_req_stop_discovery(req); |
| hci_dev_unlock(req->hdev); |
| |
| return 0; |
| } |
| |
| static void discov_update(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| discov_update); |
| u8 status = 0; |
| |
| switch (hdev->discovery.state) { |
| case DISCOVERY_STARTING: |
| start_discovery(hdev, &status); |
| mgmt_start_discovery_complete(hdev, status); |
| if (status) |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| else |
| hci_discovery_set_state(hdev, DISCOVERY_FINDING); |
| break; |
| case DISCOVERY_STOPPING: |
| hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); |
| mgmt_stop_discovery_complete(hdev, status); |
| if (!status) |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| break; |
| case DISCOVERY_STOPPED: |
| default: |
| return; |
| } |
| } |
| |
| static void discov_off(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| discov_off.work); |
| |
| bt_dev_dbg(hdev, ""); |
| |
| hci_dev_lock(hdev); |
| |
| /* When discoverable timeout triggers, then just make sure |
| * the limited discoverable flag is cleared. Even in the case |
| * of a timeout triggered from general discoverable, it is |
| * safe to unconditionally clear the flag. |
| */ |
| hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); |
| hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); |
| hdev->discov_timeout = 0; |
| |
| hci_dev_unlock(hdev); |
| |
| hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); |
| mgmt_new_settings(hdev); |
| } |
| |
| static int powered_update_hci(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 link_sec; |
| |
| hci_dev_lock(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && |
| !lmp_host_ssp_capable(hdev)) { |
| u8 mode = 0x01; |
| |
| hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); |
| |
| if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { |
| u8 support = 0x01; |
| |
| hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, |
| sizeof(support), &support); |
| } |
| } |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && |
| lmp_bredr_capable(hdev)) { |
| struct hci_cp_write_le_host_supported cp; |
| |
| cp.le = 0x01; |
| cp.simul = 0x00; |
| |
| /* Check first if we already have the right |
| * host state (host features set) |
| */ |
| if (cp.le != lmp_host_le_capable(hdev) || |
| cp.simul != lmp_host_le_br_capable(hdev)) |
| hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, |
| sizeof(cp), &cp); |
| } |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { |
| /* Make sure the controller has a good default for |
| * advertising data. This also applies to the case |
| * where BR/EDR was toggled during the AUTO_OFF phase. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| list_empty(&hdev->adv_instances)) { |
| int err; |
| |
| if (ext_adv_capable(hdev)) { |
| err = __hci_req_setup_ext_adv_instance(req, |
| 0x00); |
| if (!err) |
| __hci_req_update_scan_rsp_data(req, |
| 0x00); |
| } else { |
| err = 0; |
| __hci_req_update_adv_data(req, 0x00); |
| __hci_req_update_scan_rsp_data(req, 0x00); |
| } |
| |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { |
| if (!ext_adv_capable(hdev)) |
| __hci_req_enable_advertising(req); |
| else if (!err) |
| __hci_req_enable_ext_advertising(req, |
| 0x00); |
| } |
| } else if (!list_empty(&hdev->adv_instances)) { |
| struct adv_info *adv_instance; |
| |
| adv_instance = list_first_entry(&hdev->adv_instances, |
| struct adv_info, list); |
| __hci_req_schedule_adv_instance(req, |
| adv_instance->instance, |
| true); |
| } |
| } |
| |
| link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); |
| if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) |
| hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, |
| sizeof(link_sec), &link_sec); |
| |
| if (lmp_bredr_capable(hdev)) { |
| if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) |
| __hci_req_write_fast_connectable(req, true); |
| else |
| __hci_req_write_fast_connectable(req, false); |
| __hci_req_update_scan(req); |
| __hci_req_update_class(req); |
| __hci_req_update_name(req); |
| __hci_req_update_eir(req); |
| } |
| |
| hci_dev_unlock(hdev); |
| return 0; |
| } |
| |
| int __hci_req_hci_power_on(struct hci_dev *hdev) |
| { |
| /* Register the available SMP channels (BR/EDR and LE) only when |
| * successfully powering on the controller. This late |
| * registration is required so that LE SMP can clearly decide if |
| * the public address or static address is used. |
| */ |
| smp_register(hdev); |
| |
| return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, |
| NULL); |
| } |
| |
| void hci_request_setup(struct hci_dev *hdev) |
| { |
| INIT_WORK(&hdev->discov_update, discov_update); |
| INIT_WORK(&hdev->scan_update, scan_update_work); |
| INIT_DELAYED_WORK(&hdev->discov_off, discov_off); |
| INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); |
| INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); |
| INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); |
| INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); |
| } |
| |
| void hci_request_cancel_all(struct hci_dev *hdev) |
| { |
| hci_req_sync_cancel(hdev, ENODEV); |
| |
| cancel_work_sync(&hdev->discov_update); |
| cancel_work_sync(&hdev->scan_update); |
| cancel_delayed_work_sync(&hdev->discov_off); |
| cancel_delayed_work_sync(&hdev->le_scan_disable); |
| cancel_delayed_work_sync(&hdev->le_scan_restart); |
| |
| if (hdev->adv_instance_timeout) { |
| cancel_delayed_work_sync(&hdev->adv_instance_expire); |
| hdev->adv_instance_timeout = 0; |
| } |
| |
| cancel_interleave_scan(hdev); |
| } |