| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (C) 2005-2017 Andes Technology Corporation |
| |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/export.h> |
| #include <linux/string.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| #include <linux/cache.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/dma-mapping.h> |
| #include <asm/proc-fns.h> |
| |
| /* |
| * This is the page table (2MB) covering uncached, DMA consistent allocations |
| */ |
| static pte_t *consistent_pte; |
| static DEFINE_RAW_SPINLOCK(consistent_lock); |
| |
| enum master_type { |
| FOR_CPU = 0, |
| FOR_DEVICE = 1, |
| }; |
| |
| /* |
| * VM region handling support. |
| * |
| * This should become something generic, handling VM region allocations for |
| * vmalloc and similar (ioremap, module space, etc). |
| * |
| * I envisage vmalloc()'s supporting vm_struct becoming: |
| * |
| * struct vm_struct { |
| * struct vm_region region; |
| * unsigned long flags; |
| * struct page **pages; |
| * unsigned int nr_pages; |
| * unsigned long phys_addr; |
| * }; |
| * |
| * get_vm_area() would then call vm_region_alloc with an appropriate |
| * struct vm_region head (eg): |
| * |
| * struct vm_region vmalloc_head = { |
| * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), |
| * .vm_start = VMALLOC_START, |
| * .vm_end = VMALLOC_END, |
| * }; |
| * |
| * However, vmalloc_head.vm_start is variable (typically, it is dependent on |
| * the amount of RAM found at boot time.) I would imagine that get_vm_area() |
| * would have to initialise this each time prior to calling vm_region_alloc(). |
| */ |
| struct arch_vm_region { |
| struct list_head vm_list; |
| unsigned long vm_start; |
| unsigned long vm_end; |
| struct page *vm_pages; |
| }; |
| |
| static struct arch_vm_region consistent_head = { |
| .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), |
| .vm_start = CONSISTENT_BASE, |
| .vm_end = CONSISTENT_END, |
| }; |
| |
| static struct arch_vm_region *vm_region_alloc(struct arch_vm_region *head, |
| size_t size, int gfp) |
| { |
| unsigned long addr = head->vm_start, end = head->vm_end - size; |
| unsigned long flags; |
| struct arch_vm_region *c, *new; |
| |
| new = kmalloc(sizeof(struct arch_vm_region), gfp); |
| if (!new) |
| goto out; |
| |
| raw_spin_lock_irqsave(&consistent_lock, flags); |
| |
| list_for_each_entry(c, &head->vm_list, vm_list) { |
| if ((addr + size) < addr) |
| goto nospc; |
| if ((addr + size) <= c->vm_start) |
| goto found; |
| addr = c->vm_end; |
| if (addr > end) |
| goto nospc; |
| } |
| |
| found: |
| /* |
| * Insert this entry _before_ the one we found. |
| */ |
| list_add_tail(&new->vm_list, &c->vm_list); |
| new->vm_start = addr; |
| new->vm_end = addr + size; |
| |
| raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| return new; |
| |
| nospc: |
| raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| kfree(new); |
| out: |
| return NULL; |
| } |
| |
| static struct arch_vm_region *vm_region_find(struct arch_vm_region *head, |
| unsigned long addr) |
| { |
| struct arch_vm_region *c; |
| |
| list_for_each_entry(c, &head->vm_list, vm_list) { |
| if (c->vm_start == addr) |
| goto out; |
| } |
| c = NULL; |
| out: |
| return c; |
| } |
| |
| /* FIXME: attrs is not used. */ |
| static void *nds32_dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t * handle, gfp_t gfp, |
| unsigned long attrs) |
| { |
| struct page *page; |
| struct arch_vm_region *c; |
| unsigned long order; |
| u64 mask = ~0ULL, limit; |
| pgprot_t prot = pgprot_noncached(PAGE_KERNEL); |
| |
| if (!consistent_pte) { |
| pr_err("%s: not initialized\n", __func__); |
| dump_stack(); |
| return NULL; |
| } |
| |
| if (dev) { |
| mask = dev->coherent_dma_mask; |
| |
| /* |
| * Sanity check the DMA mask - it must be non-zero, and |
| * must be able to be satisfied by a DMA allocation. |
| */ |
| if (mask == 0) { |
| dev_warn(dev, "coherent DMA mask is unset\n"); |
| goto no_page; |
| } |
| |
| } |
| |
| /* |
| * Sanity check the allocation size. |
| */ |
| size = PAGE_ALIGN(size); |
| limit = (mask + 1) & ~mask; |
| if ((limit && size >= limit) || |
| size >= (CONSISTENT_END - CONSISTENT_BASE)) { |
| pr_warn("coherent allocation too big " |
| "(requested %#x mask %#llx)\n", size, mask); |
| goto no_page; |
| } |
| |
| order = get_order(size); |
| |
| if (mask != 0xffffffff) |
| gfp |= GFP_DMA; |
| |
| page = alloc_pages(gfp, order); |
| if (!page) |
| goto no_page; |
| |
| /* |
| * Invalidate any data that might be lurking in the |
| * kernel direct-mapped region for device DMA. |
| */ |
| { |
| unsigned long kaddr = (unsigned long)page_address(page); |
| memset(page_address(page), 0, size); |
| cpu_dma_wbinval_range(kaddr, kaddr + size); |
| } |
| |
| /* |
| * Allocate a virtual address in the consistent mapping region. |
| */ |
| c = vm_region_alloc(&consistent_head, size, |
| gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); |
| if (c) { |
| pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start); |
| struct page *end = page + (1 << order); |
| |
| c->vm_pages = page; |
| |
| /* |
| * Set the "dma handle" |
| */ |
| *handle = page_to_phys(page); |
| |
| do { |
| BUG_ON(!pte_none(*pte)); |
| |
| /* |
| * x86 does not mark the pages reserved... |
| */ |
| SetPageReserved(page); |
| set_pte(pte, mk_pte(page, prot)); |
| page++; |
| pte++; |
| } while (size -= PAGE_SIZE); |
| |
| /* |
| * Free the otherwise unused pages. |
| */ |
| while (page < end) { |
| __free_page(page); |
| page++; |
| } |
| |
| return (void *)c->vm_start; |
| } |
| |
| if (page) |
| __free_pages(page, order); |
| no_page: |
| *handle = ~0; |
| return NULL; |
| } |
| |
| static void nds32_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs) |
| { |
| struct arch_vm_region *c; |
| unsigned long flags, addr; |
| pte_t *ptep; |
| |
| size = PAGE_ALIGN(size); |
| |
| raw_spin_lock_irqsave(&consistent_lock, flags); |
| |
| c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); |
| if (!c) |
| goto no_area; |
| |
| if ((c->vm_end - c->vm_start) != size) { |
| pr_err("%s: freeing wrong coherent size (%ld != %d)\n", |
| __func__, c->vm_end - c->vm_start, size); |
| dump_stack(); |
| size = c->vm_end - c->vm_start; |
| } |
| |
| ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start); |
| addr = c->vm_start; |
| do { |
| pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); |
| unsigned long pfn; |
| |
| ptep++; |
| addr += PAGE_SIZE; |
| |
| if (!pte_none(pte) && pte_present(pte)) { |
| pfn = pte_pfn(pte); |
| |
| if (pfn_valid(pfn)) { |
| struct page *page = pfn_to_page(pfn); |
| |
| /* |
| * x86 does not mark the pages reserved... |
| */ |
| ClearPageReserved(page); |
| |
| __free_page(page); |
| continue; |
| } |
| } |
| |
| pr_crit("%s: bad page in kernel page table\n", __func__); |
| } while (size -= PAGE_SIZE); |
| |
| flush_tlb_kernel_range(c->vm_start, c->vm_end); |
| |
| list_del(&c->vm_list); |
| |
| raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| |
| kfree(c); |
| return; |
| |
| no_area: |
| raw_spin_unlock_irqrestore(&consistent_lock, flags); |
| pr_err("%s: trying to free invalid coherent area: %p\n", |
| __func__, cpu_addr); |
| dump_stack(); |
| } |
| |
| /* |
| * Initialise the consistent memory allocation. |
| */ |
| static int __init consistent_init(void) |
| { |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| int ret = 0; |
| |
| do { |
| pgd = pgd_offset(&init_mm, CONSISTENT_BASE); |
| pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE); |
| if (!pmd) { |
| pr_err("%s: no pmd tables\n", __func__); |
| ret = -ENOMEM; |
| break; |
| } |
| /* The first level mapping may be created in somewhere. |
| * It's not necessary to warn here. */ |
| /* WARN_ON(!pmd_none(*pmd)); */ |
| |
| pte = pte_alloc_kernel(pmd, CONSISTENT_BASE); |
| if (!pte) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| consistent_pte = pte; |
| } while (0); |
| |
| return ret; |
| } |
| |
| core_initcall(consistent_init); |
| static void consistent_sync(void *vaddr, size_t size, int direction, int master_type); |
| static dma_addr_t nds32_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| consistent_sync((void *)(page_address(page) + offset), size, dir, FOR_DEVICE); |
| return page_to_phys(page) + offset; |
| } |
| |
| static void nds32_dma_unmap_page(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| consistent_sync(phys_to_virt(handle), size, dir, FOR_CPU); |
| } |
| |
| /* |
| * Make an area consistent for devices. |
| */ |
| static void consistent_sync(void *vaddr, size_t size, int direction, int master_type) |
| { |
| unsigned long start = (unsigned long)vaddr; |
| unsigned long end = start + size; |
| |
| if (master_type == FOR_CPU) { |
| switch (direction) { |
| case DMA_TO_DEVICE: |
| break; |
| case DMA_FROM_DEVICE: |
| case DMA_BIDIRECTIONAL: |
| cpu_dma_inval_range(start, end); |
| break; |
| default: |
| BUG(); |
| } |
| } else { |
| /* FOR_DEVICE */ |
| switch (direction) { |
| case DMA_FROM_DEVICE: |
| break; |
| case DMA_TO_DEVICE: |
| case DMA_BIDIRECTIONAL: |
| cpu_dma_wb_range(start, end); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| } |
| |
| static int nds32_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| int i; |
| |
| for (i = 0; i < nents; i++, sg++) { |
| void *virt; |
| unsigned long pfn; |
| struct page *page = sg_page(sg); |
| |
| sg->dma_address = sg_phys(sg); |
| pfn = page_to_pfn(page) + sg->offset / PAGE_SIZE; |
| page = pfn_to_page(pfn); |
| if (PageHighMem(page)) { |
| virt = kmap_atomic(page); |
| consistent_sync(virt, sg->length, dir, FOR_CPU); |
| kunmap_atomic(virt); |
| } else { |
| if (sg->offset > PAGE_SIZE) |
| panic("sg->offset:%08x > PAGE_SIZE\n", |
| sg->offset); |
| virt = page_address(page) + sg->offset; |
| consistent_sync(virt, sg->length, dir, FOR_CPU); |
| } |
| } |
| return nents; |
| } |
| |
| static void nds32_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nhwentries, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| } |
| |
| static void |
| nds32_dma_sync_single_for_cpu(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir) |
| { |
| consistent_sync((void *)phys_to_virt(handle), size, dir, FOR_CPU); |
| } |
| |
| static void |
| nds32_dma_sync_single_for_device(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir) |
| { |
| consistent_sync((void *)phys_to_virt(handle), size, dir, FOR_DEVICE); |
| } |
| |
| static void |
| nds32_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir) |
| { |
| int i; |
| |
| for (i = 0; i < nents; i++, sg++) { |
| char *virt = |
| page_address((struct page *)sg->page_link) + sg->offset; |
| consistent_sync(virt, sg->length, dir, FOR_CPU); |
| } |
| } |
| |
| static void |
| nds32_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| int i; |
| |
| for (i = 0; i < nents; i++, sg++) { |
| char *virt = |
| page_address((struct page *)sg->page_link) + sg->offset; |
| consistent_sync(virt, sg->length, dir, FOR_DEVICE); |
| } |
| } |
| |
| struct dma_map_ops nds32_dma_ops = { |
| .alloc = nds32_dma_alloc_coherent, |
| .free = nds32_dma_free, |
| .map_page = nds32_dma_map_page, |
| .unmap_page = nds32_dma_unmap_page, |
| .map_sg = nds32_dma_map_sg, |
| .unmap_sg = nds32_dma_unmap_sg, |
| .sync_single_for_device = nds32_dma_sync_single_for_device, |
| .sync_single_for_cpu = nds32_dma_sync_single_for_cpu, |
| .sync_sg_for_cpu = nds32_dma_sync_sg_for_cpu, |
| .sync_sg_for_device = nds32_dma_sync_sg_for_device, |
| }; |
| |
| EXPORT_SYMBOL(nds32_dma_ops); |