| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/export.h> |
| #include <linux/log2.h> |
| #include <linux/percpu.h> |
| #include <linux/preempt.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched.h> |
| #include <linux/sched/clock.h> |
| #include <linux/sched/rt.h> |
| #include <linux/slab.h> |
| |
| #include "six.h" |
| |
| #ifdef DEBUG |
| #define EBUG_ON(cond) BUG_ON(cond) |
| #else |
| #define EBUG_ON(cond) do {} while (0) |
| #endif |
| |
| #define six_acquire(l, t, r, ip) lock_acquire(l, 0, t, r, 1, NULL, ip) |
| #define six_release(l, ip) lock_release(l, ip) |
| |
| static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type); |
| |
| struct six_lock_vals { |
| /* Value we add to the lock in order to take the lock: */ |
| u64 lock_val; |
| |
| /* If the lock has this value (used as a mask), taking the lock fails: */ |
| u64 lock_fail; |
| |
| /* Value we add to the lock in order to release the lock: */ |
| u64 unlock_val; |
| |
| /* Mask that indicates lock is held for this type: */ |
| u64 held_mask; |
| |
| /* Waitlist we wakeup when releasing the lock: */ |
| enum six_lock_type unlock_wakeup; |
| }; |
| |
| #define __SIX_LOCK_HELD_read __SIX_VAL(read_lock, ~0) |
| #define __SIX_LOCK_HELD_intent __SIX_VAL(intent_lock, ~0) |
| #define __SIX_LOCK_HELD_write __SIX_VAL(seq, 1) |
| |
| #define LOCK_VALS { \ |
| [SIX_LOCK_read] = { \ |
| .lock_val = __SIX_VAL(read_lock, 1), \ |
| .lock_fail = __SIX_LOCK_HELD_write + __SIX_VAL(write_locking, 1),\ |
| .unlock_val = -__SIX_VAL(read_lock, 1), \ |
| .held_mask = __SIX_LOCK_HELD_read, \ |
| .unlock_wakeup = SIX_LOCK_write, \ |
| }, \ |
| [SIX_LOCK_intent] = { \ |
| .lock_val = __SIX_VAL(intent_lock, 1), \ |
| .lock_fail = __SIX_LOCK_HELD_intent, \ |
| .unlock_val = -__SIX_VAL(intent_lock, 1), \ |
| .held_mask = __SIX_LOCK_HELD_intent, \ |
| .unlock_wakeup = SIX_LOCK_intent, \ |
| }, \ |
| [SIX_LOCK_write] = { \ |
| .lock_val = __SIX_VAL(seq, 1), \ |
| .lock_fail = __SIX_LOCK_HELD_read, \ |
| .unlock_val = __SIX_VAL(seq, 1), \ |
| .held_mask = __SIX_LOCK_HELD_write, \ |
| .unlock_wakeup = SIX_LOCK_read, \ |
| }, \ |
| } |
| |
| static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type, |
| union six_lock_state old, |
| struct task_struct *owner) |
| { |
| if (type != SIX_LOCK_intent) |
| return; |
| |
| if (!old.intent_lock) { |
| EBUG_ON(lock->owner); |
| lock->owner = owner; |
| } else { |
| EBUG_ON(lock->owner != current); |
| } |
| } |
| |
| static inline unsigned pcpu_read_count(struct six_lock *lock) |
| { |
| unsigned read_count = 0; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| read_count += *per_cpu_ptr(lock->readers, cpu); |
| return read_count; |
| } |
| |
| /* This is probably up there with the more evil things I've done */ |
| #define waitlist_bitnr(id) ilog2((((union six_lock_state) { .waiters = 1 << (id) }).l)) |
| |
| static int __do_six_trylock_type(struct six_lock *lock, |
| enum six_lock_type type, |
| struct task_struct *task, |
| bool try) |
| { |
| const struct six_lock_vals l[] = LOCK_VALS; |
| union six_lock_state old, new; |
| int ret; |
| u64 v; |
| |
| EBUG_ON(type == SIX_LOCK_write && lock->owner != task); |
| EBUG_ON(type == SIX_LOCK_write && (lock->state.seq & 1)); |
| EBUG_ON(type == SIX_LOCK_write && (try != !(lock->state.write_locking))); |
| |
| /* |
| * Percpu reader mode: |
| * |
| * The basic idea behind this algorithm is that you can implement a lock |
| * between two threads without any atomics, just memory barriers: |
| * |
| * For two threads you'll need two variables, one variable for "thread a |
| * has the lock" and another for "thread b has the lock". |
| * |
| * To take the lock, a thread sets its variable indicating that it holds |
| * the lock, then issues a full memory barrier, then reads from the |
| * other thread's variable to check if the other thread thinks it has |
| * the lock. If we raced, we backoff and retry/sleep. |
| */ |
| |
| if (type == SIX_LOCK_read && lock->readers) { |
| preempt_disable(); |
| this_cpu_inc(*lock->readers); /* signal that we own lock */ |
| |
| smp_mb(); |
| |
| old.v = READ_ONCE(lock->state.v); |
| ret = !(old.v & l[type].lock_fail); |
| |
| this_cpu_sub(*lock->readers, !ret); |
| preempt_enable(); |
| |
| /* |
| * If we failed because a writer was trying to take the |
| * lock, issue a wakeup because we might have caused a |
| * spurious trylock failure: |
| */ |
| #if 0 |
| /* |
| * This code should be sufficient, but we're seeing unexplained |
| * lost wakeups: |
| */ |
| if (old.write_locking) |
| ret = -1 - SIX_LOCK_write; |
| #else |
| if (!ret) |
| ret = -1 - SIX_LOCK_write; |
| #endif |
| } else if (type == SIX_LOCK_write && lock->readers) { |
| if (try) { |
| atomic64_add(__SIX_VAL(write_locking, 1), |
| &lock->state.counter); |
| smp_mb__after_atomic(); |
| } else if (!(lock->state.waiters & (1 << SIX_LOCK_write))) { |
| atomic64_add(__SIX_VAL(waiters, 1 << SIX_LOCK_write), |
| &lock->state.counter); |
| /* |
| * pairs with barrier after unlock and before checking |
| * for readers in unlock path |
| */ |
| smp_mb__after_atomic(); |
| } |
| |
| ret = !pcpu_read_count(lock); |
| |
| /* |
| * On success, we increment lock->seq; also we clear |
| * write_locking unless we failed from the lock path: |
| */ |
| v = 0; |
| if (ret) |
| v += __SIX_VAL(seq, 1); |
| if (ret || try) |
| v -= __SIX_VAL(write_locking, 1); |
| |
| if (try && !ret) { |
| old.v = atomic64_add_return(v, &lock->state.counter); |
| if (old.waiters & (1 << SIX_LOCK_read)) |
| ret = -1 - SIX_LOCK_read; |
| } else { |
| atomic64_add(v, &lock->state.counter); |
| } |
| } else { |
| v = READ_ONCE(lock->state.v); |
| do { |
| new.v = old.v = v; |
| |
| if (!(old.v & l[type].lock_fail)) { |
| new.v += l[type].lock_val; |
| |
| if (type == SIX_LOCK_write) |
| new.write_locking = 0; |
| } else if (!try && !(new.waiters & (1 << type))) |
| new.waiters |= 1 << type; |
| else |
| break; /* waiting bit already set */ |
| } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, |
| old.v, new.v)) != old.v); |
| |
| ret = !(old.v & l[type].lock_fail); |
| |
| EBUG_ON(ret && !(lock->state.v & l[type].held_mask)); |
| } |
| |
| if (ret > 0) |
| six_set_owner(lock, type, old, task); |
| |
| EBUG_ON(type == SIX_LOCK_write && (try || ret > 0) && (lock->state.write_locking)); |
| |
| return ret; |
| } |
| |
| static inline void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type) |
| { |
| struct six_lock_waiter *w, *next; |
| struct task_struct *task; |
| bool saw_one; |
| int ret; |
| again: |
| ret = 0; |
| saw_one = false; |
| raw_spin_lock(&lock->wait_lock); |
| |
| list_for_each_entry_safe(w, next, &lock->wait_list, list) { |
| if (w->lock_want != lock_type) |
| continue; |
| |
| if (saw_one && lock_type != SIX_LOCK_read) |
| goto unlock; |
| saw_one = true; |
| |
| ret = __do_six_trylock_type(lock, lock_type, w->task, false); |
| if (ret <= 0) |
| goto unlock; |
| |
| __list_del(w->list.prev, w->list.next); |
| task = w->task; |
| /* |
| * Do no writes to @w besides setting lock_acquired - otherwise |
| * we would need a memory barrier: |
| */ |
| barrier(); |
| w->lock_acquired = true; |
| wake_up_process(task); |
| } |
| |
| clear_bit(waitlist_bitnr(lock_type), (unsigned long *) &lock->state.v); |
| unlock: |
| raw_spin_unlock(&lock->wait_lock); |
| |
| if (ret < 0) { |
| lock_type = -ret - 1; |
| goto again; |
| } |
| } |
| |
| static inline void six_lock_wakeup(struct six_lock *lock, |
| union six_lock_state state, |
| enum six_lock_type lock_type) |
| { |
| if (lock_type == SIX_LOCK_write && state.read_lock) |
| return; |
| |
| if (!(state.waiters & (1 << lock_type))) |
| return; |
| |
| __six_lock_wakeup(lock, lock_type); |
| } |
| |
| static bool do_six_trylock_type(struct six_lock *lock, |
| enum six_lock_type type, |
| bool try) |
| { |
| int ret; |
| |
| ret = __do_six_trylock_type(lock, type, current, try); |
| if (ret < 0) |
| __six_lock_wakeup(lock, -ret - 1); |
| |
| return ret > 0; |
| } |
| |
| __always_inline __flatten |
| static bool __six_trylock_type(struct six_lock *lock, enum six_lock_type type, |
| unsigned long ip) |
| { |
| if (!do_six_trylock_type(lock, type, true)) |
| return false; |
| |
| if (type != SIX_LOCK_write) |
| six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip); |
| return true; |
| } |
| |
| __always_inline __flatten |
| static bool __six_relock_type(struct six_lock *lock, enum six_lock_type type, |
| unsigned seq, unsigned long ip) |
| { |
| const struct six_lock_vals l[] = LOCK_VALS; |
| union six_lock_state old; |
| u64 v; |
| |
| EBUG_ON(type == SIX_LOCK_write); |
| |
| if (type == SIX_LOCK_read && |
| lock->readers) { |
| bool ret; |
| |
| preempt_disable(); |
| this_cpu_inc(*lock->readers); |
| |
| smp_mb(); |
| |
| old.v = READ_ONCE(lock->state.v); |
| ret = !(old.v & l[type].lock_fail) && old.seq == seq; |
| |
| this_cpu_sub(*lock->readers, !ret); |
| preempt_enable(); |
| |
| /* |
| * Similar to the lock path, we may have caused a spurious write |
| * lock fail and need to issue a wakeup: |
| */ |
| if (ret) |
| six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip); |
| else |
| six_lock_wakeup(lock, old, SIX_LOCK_write); |
| |
| return ret; |
| } |
| |
| v = READ_ONCE(lock->state.v); |
| do { |
| old.v = v; |
| |
| if (old.seq != seq || old.v & l[type].lock_fail) |
| return false; |
| } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, |
| old.v, |
| old.v + l[type].lock_val)) != old.v); |
| |
| six_set_owner(lock, type, old, current); |
| if (type != SIX_LOCK_write) |
| six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip); |
| return true; |
| } |
| |
| #ifdef CONFIG_SIX_LOCK_SPIN_ON_OWNER |
| |
| static inline bool six_can_spin_on_owner(struct six_lock *lock) |
| { |
| struct task_struct *owner; |
| bool ret; |
| |
| if (need_resched()) |
| return false; |
| |
| rcu_read_lock(); |
| owner = READ_ONCE(lock->owner); |
| ret = !owner || owner_on_cpu(owner); |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static inline void six_set_nospin(struct six_lock *lock) |
| { |
| union six_lock_state old, new; |
| u64 v = READ_ONCE(lock->state.v); |
| |
| do { |
| new.v = old.v = v; |
| new.nospin = true; |
| } while ((v = atomic64_cmpxchg(&lock->state.counter, old.v, new.v)) != old.v); |
| } |
| |
| static inline bool six_spin_on_owner(struct six_lock *lock, |
| struct task_struct *owner, |
| u64 end_time) |
| { |
| bool ret = true; |
| unsigned loop = 0; |
| |
| rcu_read_lock(); |
| while (lock->owner == owner) { |
| /* |
| * Ensure we emit the owner->on_cpu, dereference _after_ |
| * checking lock->owner still matches owner. If that fails, |
| * owner might point to freed memory. If it still matches, |
| * the rcu_read_lock() ensures the memory stays valid. |
| */ |
| barrier(); |
| |
| if (!owner_on_cpu(owner) || need_resched()) { |
| ret = false; |
| break; |
| } |
| |
| if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) { |
| six_set_nospin(lock); |
| ret = false; |
| break; |
| } |
| |
| cpu_relax(); |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type) |
| { |
| struct task_struct *task = current; |
| u64 end_time; |
| |
| if (type == SIX_LOCK_write) |
| return false; |
| |
| preempt_disable(); |
| if (!six_can_spin_on_owner(lock)) |
| goto fail; |
| |
| if (!osq_lock(&lock->osq)) |
| goto fail; |
| |
| end_time = sched_clock() + 10 * NSEC_PER_USEC; |
| |
| while (1) { |
| struct task_struct *owner; |
| |
| /* |
| * If there's an owner, wait for it to either |
| * release the lock or go to sleep. |
| */ |
| owner = READ_ONCE(lock->owner); |
| if (owner && !six_spin_on_owner(lock, owner, end_time)) |
| break; |
| |
| if (do_six_trylock_type(lock, type, false)) { |
| osq_unlock(&lock->osq); |
| preempt_enable(); |
| return true; |
| } |
| |
| /* |
| * When there's no owner, we might have preempted between the |
| * owner acquiring the lock and setting the owner field. If |
| * we're an RT task that will live-lock because we won't let |
| * the owner complete. |
| */ |
| if (!owner && (need_resched() || rt_task(task))) |
| break; |
| |
| /* |
| * The cpu_relax() call is a compiler barrier which forces |
| * everything in this loop to be re-loaded. We don't need |
| * memory barriers as we'll eventually observe the right |
| * values at the cost of a few extra spins. |
| */ |
| cpu_relax(); |
| } |
| |
| osq_unlock(&lock->osq); |
| fail: |
| preempt_enable(); |
| |
| /* |
| * If we fell out of the spin path because of need_resched(), |
| * reschedule now, before we try-lock again. This avoids getting |
| * scheduled out right after we obtained the lock. |
| */ |
| if (need_resched()) |
| schedule(); |
| |
| return false; |
| } |
| |
| #else /* CONFIG_SIX_LOCK_SPIN_ON_OWNER */ |
| |
| static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type) |
| { |
| return false; |
| } |
| |
| #endif |
| |
| noinline |
| static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type type, |
| struct six_lock_waiter *wait, |
| six_lock_should_sleep_fn should_sleep_fn, void *p, |
| unsigned long ip) |
| { |
| union six_lock_state old; |
| int ret = 0; |
| |
| if (type == SIX_LOCK_write) { |
| EBUG_ON(lock->state.write_locking); |
| atomic64_add(__SIX_VAL(write_locking, 1), &lock->state.counter); |
| smp_mb__after_atomic(); |
| } |
| |
| if (six_optimistic_spin(lock, type)) |
| goto out; |
| |
| lock_contended(&lock->dep_map, ip); |
| |
| wait->task = current; |
| wait->lock_want = type; |
| wait->lock_acquired = false; |
| |
| raw_spin_lock(&lock->wait_lock); |
| if (!(lock->state.waiters & (1 << type))) |
| set_bit(waitlist_bitnr(type), (unsigned long *) &lock->state.v); |
| /* |
| * Retry taking the lock after taking waitlist lock, have raced with an |
| * unlock: |
| */ |
| ret = __do_six_trylock_type(lock, type, current, false); |
| if (ret <= 0) { |
| wait->start_time = local_clock(); |
| |
| if (!list_empty(&lock->wait_list)) { |
| struct six_lock_waiter *last = |
| list_last_entry(&lock->wait_list, |
| struct six_lock_waiter, list); |
| |
| if (time_before_eq64(wait->start_time, last->start_time)) |
| wait->start_time = last->start_time + 1; |
| } |
| |
| list_add_tail(&wait->list, &lock->wait_list); |
| } |
| raw_spin_unlock(&lock->wait_lock); |
| |
| if (unlikely(ret > 0)) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (unlikely(ret < 0)) { |
| __six_lock_wakeup(lock, -ret - 1); |
| ret = 0; |
| } |
| |
| while (1) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| |
| if (wait->lock_acquired) |
| break; |
| |
| ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0; |
| if (unlikely(ret)) { |
| raw_spin_lock(&lock->wait_lock); |
| if (!wait->lock_acquired) |
| list_del(&wait->list); |
| raw_spin_unlock(&lock->wait_lock); |
| |
| if (wait->lock_acquired) |
| do_six_unlock_type(lock, type); |
| break; |
| } |
| |
| schedule(); |
| } |
| |
| __set_current_state(TASK_RUNNING); |
| out: |
| if (ret && type == SIX_LOCK_write && lock->state.write_locking) { |
| old.v = atomic64_sub_return(__SIX_VAL(write_locking, 1), |
| &lock->state.counter); |
| six_lock_wakeup(lock, old, SIX_LOCK_read); |
| } |
| |
| return ret; |
| } |
| |
| __always_inline __flatten |
| static int __six_lock_type_waiter(struct six_lock *lock, enum six_lock_type type, |
| struct six_lock_waiter *wait, |
| six_lock_should_sleep_fn should_sleep_fn, void *p, |
| unsigned long ip) |
| { |
| int ret; |
| |
| wait->start_time = 0; |
| |
| if (type != SIX_LOCK_write) |
| six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip); |
| |
| ret = do_six_trylock_type(lock, type, true) ? 0 |
| : __six_lock_type_slowpath(lock, type, wait, should_sleep_fn, p, ip); |
| |
| if (ret && type != SIX_LOCK_write) |
| six_release(&lock->dep_map, ip); |
| if (!ret) |
| lock_acquired(&lock->dep_map, ip); |
| |
| return ret; |
| } |
| |
| __always_inline |
| static int __six_lock_type(struct six_lock *lock, enum six_lock_type type, |
| six_lock_should_sleep_fn should_sleep_fn, void *p, |
| unsigned long ip) |
| { |
| struct six_lock_waiter wait; |
| |
| return __six_lock_type_waiter(lock, type, &wait, should_sleep_fn, p, ip); |
| } |
| |
| __always_inline __flatten |
| static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type) |
| { |
| const struct six_lock_vals l[] = LOCK_VALS; |
| union six_lock_state state; |
| |
| if (type == SIX_LOCK_intent) |
| lock->owner = NULL; |
| |
| if (type == SIX_LOCK_read && |
| lock->readers) { |
| smp_mb(); /* unlock barrier */ |
| this_cpu_dec(*lock->readers); |
| smp_mb(); /* between unlocking and checking for waiters */ |
| state.v = READ_ONCE(lock->state.v); |
| } else { |
| u64 v = l[type].unlock_val; |
| |
| if (type != SIX_LOCK_read) |
| v -= lock->state.v & __SIX_VAL(nospin, 1); |
| |
| EBUG_ON(!(lock->state.v & l[type].held_mask)); |
| state.v = atomic64_add_return_release(v, &lock->state.counter); |
| } |
| |
| six_lock_wakeup(lock, state, l[type].unlock_wakeup); |
| } |
| |
| __always_inline __flatten |
| static void __six_unlock_type(struct six_lock *lock, enum six_lock_type type, |
| unsigned long ip) |
| { |
| EBUG_ON(type == SIX_LOCK_write && |
| !(lock->state.v & __SIX_LOCK_HELD_intent)); |
| EBUG_ON((type == SIX_LOCK_write || |
| type == SIX_LOCK_intent) && |
| lock->owner != current); |
| |
| if (type != SIX_LOCK_write) |
| six_release(&lock->dep_map, ip); |
| |
| if (type == SIX_LOCK_intent && |
| lock->intent_lock_recurse) { |
| --lock->intent_lock_recurse; |
| return; |
| } |
| |
| do_six_unlock_type(lock, type); |
| } |
| |
| #define __SIX_LOCK(type) \ |
| bool six_trylock_ip_##type(struct six_lock *lock, unsigned long ip) \ |
| { \ |
| return __six_trylock_type(lock, SIX_LOCK_##type, ip); \ |
| } \ |
| EXPORT_SYMBOL_GPL(six_trylock_ip_##type); \ |
| \ |
| bool six_relock_ip_##type(struct six_lock *lock, u32 seq, unsigned long ip)\ |
| { \ |
| return __six_relock_type(lock, SIX_LOCK_##type, seq, ip); \ |
| } \ |
| EXPORT_SYMBOL_GPL(six_relock_ip_##type); \ |
| \ |
| int six_lock_ip_##type(struct six_lock *lock, \ |
| six_lock_should_sleep_fn should_sleep_fn, void *p, \ |
| unsigned long ip) \ |
| { \ |
| return __six_lock_type(lock, SIX_LOCK_##type, should_sleep_fn, p, ip);\ |
| } \ |
| EXPORT_SYMBOL_GPL(six_lock_ip_##type); \ |
| \ |
| int six_lock_ip_waiter_##type(struct six_lock *lock, \ |
| struct six_lock_waiter *wait, \ |
| six_lock_should_sleep_fn should_sleep_fn, void *p,\ |
| unsigned long ip) \ |
| { \ |
| return __six_lock_type_waiter(lock, SIX_LOCK_##type, wait, should_sleep_fn, p, ip);\ |
| } \ |
| EXPORT_SYMBOL_GPL(six_lock_ip_waiter_##type); \ |
| \ |
| void six_unlock_ip_##type(struct six_lock *lock, unsigned long ip) \ |
| { \ |
| __six_unlock_type(lock, SIX_LOCK_##type, ip); \ |
| } \ |
| EXPORT_SYMBOL_GPL(six_unlock_ip_##type); |
| |
| __SIX_LOCK(read) |
| __SIX_LOCK(intent) |
| __SIX_LOCK(write) |
| |
| #undef __SIX_LOCK |
| |
| /* Convert from intent to read: */ |
| void six_lock_downgrade(struct six_lock *lock) |
| { |
| six_lock_increment(lock, SIX_LOCK_read); |
| six_unlock_intent(lock); |
| } |
| EXPORT_SYMBOL_GPL(six_lock_downgrade); |
| |
| bool six_lock_tryupgrade(struct six_lock *lock) |
| { |
| union six_lock_state old, new; |
| u64 v = READ_ONCE(lock->state.v); |
| |
| do { |
| new.v = old.v = v; |
| |
| if (new.intent_lock) |
| return false; |
| |
| if (!lock->readers) { |
| EBUG_ON(!new.read_lock); |
| new.read_lock--; |
| } |
| |
| new.intent_lock = 1; |
| } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, |
| old.v, new.v)) != old.v); |
| |
| if (lock->readers) |
| this_cpu_dec(*lock->readers); |
| |
| six_set_owner(lock, SIX_LOCK_intent, old, current); |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(six_lock_tryupgrade); |
| |
| bool six_trylock_convert(struct six_lock *lock, |
| enum six_lock_type from, |
| enum six_lock_type to) |
| { |
| EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write); |
| |
| if (to == from) |
| return true; |
| |
| if (to == SIX_LOCK_read) { |
| six_lock_downgrade(lock); |
| return true; |
| } else { |
| return six_lock_tryupgrade(lock); |
| } |
| } |
| EXPORT_SYMBOL_GPL(six_trylock_convert); |
| |
| /* |
| * Increment read/intent lock count, assuming we already have it read or intent |
| * locked: |
| */ |
| void six_lock_increment(struct six_lock *lock, enum six_lock_type type) |
| { |
| const struct six_lock_vals l[] = LOCK_VALS; |
| |
| six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_); |
| |
| /* XXX: assert already locked, and that we don't overflow: */ |
| |
| switch (type) { |
| case SIX_LOCK_read: |
| if (lock->readers) { |
| this_cpu_inc(*lock->readers); |
| } else { |
| EBUG_ON(!lock->state.read_lock && |
| !lock->state.intent_lock); |
| atomic64_add(l[type].lock_val, &lock->state.counter); |
| } |
| break; |
| case SIX_LOCK_intent: |
| EBUG_ON(!lock->state.intent_lock); |
| lock->intent_lock_recurse++; |
| break; |
| case SIX_LOCK_write: |
| BUG(); |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(six_lock_increment); |
| |
| void six_lock_wakeup_all(struct six_lock *lock) |
| { |
| union six_lock_state state = lock->state; |
| struct six_lock_waiter *w; |
| |
| six_lock_wakeup(lock, state, SIX_LOCK_read); |
| six_lock_wakeup(lock, state, SIX_LOCK_intent); |
| six_lock_wakeup(lock, state, SIX_LOCK_write); |
| |
| raw_spin_lock(&lock->wait_lock); |
| list_for_each_entry(w, &lock->wait_list, list) |
| wake_up_process(w->task); |
| raw_spin_unlock(&lock->wait_lock); |
| } |
| EXPORT_SYMBOL_GPL(six_lock_wakeup_all); |
| |
| void six_lock_pcpu_free(struct six_lock *lock) |
| { |
| BUG_ON(lock->readers && pcpu_read_count(lock)); |
| BUG_ON(lock->state.read_lock); |
| |
| free_percpu(lock->readers); |
| lock->readers = NULL; |
| } |
| EXPORT_SYMBOL_GPL(six_lock_pcpu_free); |
| |
| void six_lock_pcpu_alloc(struct six_lock *lock) |
| { |
| #ifdef __KERNEL__ |
| if (!lock->readers) |
| lock->readers = alloc_percpu(unsigned); |
| #endif |
| } |
| EXPORT_SYMBOL_GPL(six_lock_pcpu_alloc); |
| |
| /* |
| * Returns lock held counts, for both read and intent |
| */ |
| struct six_lock_count six_lock_counts(struct six_lock *lock) |
| { |
| struct six_lock_count ret; |
| |
| ret.n[SIX_LOCK_read] = !lock->readers |
| ? lock->state.read_lock |
| : pcpu_read_count(lock); |
| ret.n[SIX_LOCK_intent] = lock->state.intent_lock + lock->intent_lock_recurse; |
| ret.n[SIX_LOCK_write] = lock->state.seq & 1; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(six_lock_counts); |