| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * elf.c - ELF access library |
| * |
| * Adapted from kpatch (https://github.com/dynup/kpatch): |
| * Copyright (C) 2013-2015 Josh Poimboeuf <jpoimboe@redhat.com> |
| * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <sys/mman.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <linux/interval_tree_generic.h> |
| #include <objtool/builtin.h> |
| |
| #include <objtool/elf.h> |
| #include <objtool/warn.h> |
| |
| #define MAX_NAME_LEN 128 |
| |
| static inline u32 str_hash(const char *str) |
| { |
| return jhash(str, strlen(str), 0); |
| } |
| |
| #define __elf_table(name) (elf->name##_hash) |
| #define __elf_bits(name) (elf->name##_bits) |
| |
| #define __elf_table_entry(name, key) \ |
| __elf_table(name)[hash_min(key, __elf_bits(name))] |
| |
| #define elf_hash_add(name, node, key) \ |
| ({ \ |
| struct elf_hash_node *__node = node; \ |
| __node->next = __elf_table_entry(name, key); \ |
| __elf_table_entry(name, key) = __node; \ |
| }) |
| |
| static inline void __elf_hash_del(struct elf_hash_node *node, |
| struct elf_hash_node **head) |
| { |
| struct elf_hash_node *cur, *prev; |
| |
| if (node == *head) { |
| *head = node->next; |
| return; |
| } |
| |
| for (prev = NULL, cur = *head; cur; prev = cur, cur = cur->next) { |
| if (cur == node) { |
| prev->next = cur->next; |
| break; |
| } |
| } |
| } |
| |
| #define elf_hash_del(name, node, key) \ |
| __elf_hash_del(node, &__elf_table_entry(name, key)) |
| |
| #define elf_list_entry(ptr, type, member) \ |
| ({ \ |
| typeof(ptr) __ptr = (ptr); \ |
| __ptr ? container_of(__ptr, type, member) : NULL; \ |
| }) |
| |
| #define elf_hash_for_each_possible(name, obj, member, key) \ |
| for (obj = elf_list_entry(__elf_table_entry(name, key), typeof(*obj), member); \ |
| obj; \ |
| obj = elf_list_entry(obj->member.next, typeof(*(obj)), member)) |
| |
| #define elf_alloc_hash(name, size) \ |
| ({ \ |
| __elf_bits(name) = max(10, ilog2(size)); \ |
| __elf_table(name) = mmap(NULL, sizeof(struct elf_hash_node *) << __elf_bits(name), \ |
| PROT_READ|PROT_WRITE, \ |
| MAP_PRIVATE|MAP_ANON, -1, 0); \ |
| if (__elf_table(name) == (void *)-1L) { \ |
| WARN("mmap fail " #name); \ |
| __elf_table(name) = NULL; \ |
| } \ |
| __elf_table(name); \ |
| }) |
| |
| static inline unsigned long __sym_start(struct symbol *s) |
| { |
| return s->offset; |
| } |
| |
| static inline unsigned long __sym_last(struct symbol *s) |
| { |
| return s->offset + s->len - 1; |
| } |
| |
| INTERVAL_TREE_DEFINE(struct symbol, node, unsigned long, __subtree_last, |
| __sym_start, __sym_last, static, __sym) |
| |
| #define __sym_for_each(_iter, _tree, _start, _end) \ |
| for (_iter = __sym_iter_first((_tree), (_start), (_end)); \ |
| _iter; _iter = __sym_iter_next(_iter, (_start), (_end))) |
| |
| struct symbol_hole { |
| unsigned long key; |
| const struct symbol *sym; |
| }; |
| |
| /* |
| * Find !section symbol where @offset is after it. |
| */ |
| static int symbol_hole_by_offset(const void *key, const struct rb_node *node) |
| { |
| const struct symbol *s = rb_entry(node, struct symbol, node); |
| struct symbol_hole *sh = (void *)key; |
| |
| if (sh->key < s->offset) |
| return -1; |
| |
| if (sh->key >= s->offset + s->len) { |
| if (s->type != STT_SECTION) |
| sh->sym = s; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| struct section *find_section_by_name(const struct elf *elf, const char *name) |
| { |
| struct section *sec; |
| |
| elf_hash_for_each_possible(section_name, sec, name_hash, str_hash(name)) { |
| if (!strcmp(sec->name, name)) |
| return sec; |
| } |
| |
| return NULL; |
| } |
| |
| static struct section *find_section_by_index(struct elf *elf, |
| unsigned int idx) |
| { |
| struct section *sec; |
| |
| elf_hash_for_each_possible(section, sec, hash, idx) { |
| if (sec->idx == idx) |
| return sec; |
| } |
| |
| return NULL; |
| } |
| |
| static struct symbol *find_symbol_by_index(struct elf *elf, unsigned int idx) |
| { |
| struct symbol *sym; |
| |
| elf_hash_for_each_possible(symbol, sym, hash, idx) { |
| if (sym->idx == idx) |
| return sym; |
| } |
| |
| return NULL; |
| } |
| |
| struct symbol *find_symbol_by_offset(struct section *sec, unsigned long offset) |
| { |
| struct rb_root_cached *tree = (struct rb_root_cached *)&sec->symbol_tree; |
| struct symbol *iter; |
| |
| __sym_for_each(iter, tree, offset, offset) { |
| if (iter->offset == offset && iter->type != STT_SECTION) |
| return iter; |
| } |
| |
| return NULL; |
| } |
| |
| struct symbol *find_func_by_offset(struct section *sec, unsigned long offset) |
| { |
| struct rb_root_cached *tree = (struct rb_root_cached *)&sec->symbol_tree; |
| struct symbol *iter; |
| |
| __sym_for_each(iter, tree, offset, offset) { |
| if (iter->offset == offset && iter->type == STT_FUNC) |
| return iter; |
| } |
| |
| return NULL; |
| } |
| |
| struct symbol *find_symbol_containing(const struct section *sec, unsigned long offset) |
| { |
| struct rb_root_cached *tree = (struct rb_root_cached *)&sec->symbol_tree; |
| struct symbol *iter; |
| |
| __sym_for_each(iter, tree, offset, offset) { |
| if (iter->type != STT_SECTION) |
| return iter; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Returns size of hole starting at @offset. |
| */ |
| int find_symbol_hole_containing(const struct section *sec, unsigned long offset) |
| { |
| struct symbol_hole hole = { |
| .key = offset, |
| .sym = NULL, |
| }; |
| struct rb_node *n; |
| struct symbol *s; |
| |
| /* |
| * Find the rightmost symbol for which @offset is after it. |
| */ |
| n = rb_find(&hole, &sec->symbol_tree.rb_root, symbol_hole_by_offset); |
| |
| /* found a symbol that contains @offset */ |
| if (n) |
| return 0; /* not a hole */ |
| |
| /* didn't find a symbol for which @offset is after it */ |
| if (!hole.sym) |
| return 0; /* not a hole */ |
| |
| /* @offset >= sym->offset + sym->len, find symbol after it */ |
| n = rb_next(&hole.sym->node); |
| if (!n) |
| return -1; /* until end of address space */ |
| |
| /* hole until start of next symbol */ |
| s = rb_entry(n, struct symbol, node); |
| return s->offset - offset; |
| } |
| |
| struct symbol *find_func_containing(struct section *sec, unsigned long offset) |
| { |
| struct rb_root_cached *tree = (struct rb_root_cached *)&sec->symbol_tree; |
| struct symbol *iter; |
| |
| __sym_for_each(iter, tree, offset, offset) { |
| if (iter->type == STT_FUNC) |
| return iter; |
| } |
| |
| return NULL; |
| } |
| |
| struct symbol *find_symbol_by_name(const struct elf *elf, const char *name) |
| { |
| struct symbol *sym; |
| |
| elf_hash_for_each_possible(symbol_name, sym, name_hash, str_hash(name)) { |
| if (!strcmp(sym->name, name)) |
| return sym; |
| } |
| |
| return NULL; |
| } |
| |
| struct reloc *find_reloc_by_dest_range(const struct elf *elf, struct section *sec, |
| unsigned long offset, unsigned int len) |
| { |
| struct reloc *reloc, *r = NULL; |
| struct section *rsec; |
| unsigned long o; |
| |
| rsec = sec->rsec; |
| if (!rsec) |
| return NULL; |
| |
| for_offset_range(o, offset, offset + len) { |
| elf_hash_for_each_possible(reloc, reloc, hash, |
| sec_offset_hash(rsec, o)) { |
| if (reloc->sec != rsec) |
| continue; |
| |
| if (reloc_offset(reloc) >= offset && |
| reloc_offset(reloc) < offset + len) { |
| if (!r || reloc_offset(reloc) < reloc_offset(r)) |
| r = reloc; |
| } |
| } |
| if (r) |
| return r; |
| } |
| |
| return NULL; |
| } |
| |
| struct reloc *find_reloc_by_dest(const struct elf *elf, struct section *sec, unsigned long offset) |
| { |
| return find_reloc_by_dest_range(elf, sec, offset, 1); |
| } |
| |
| static bool is_dwarf_section(struct section *sec) |
| { |
| return !strncmp(sec->name, ".debug_", 7); |
| } |
| |
| static int read_sections(struct elf *elf) |
| { |
| Elf_Scn *s = NULL; |
| struct section *sec; |
| size_t shstrndx, sections_nr; |
| int i; |
| |
| if (elf_getshdrnum(elf->elf, §ions_nr)) { |
| WARN_ELF("elf_getshdrnum"); |
| return -1; |
| } |
| |
| if (elf_getshdrstrndx(elf->elf, &shstrndx)) { |
| WARN_ELF("elf_getshdrstrndx"); |
| return -1; |
| } |
| |
| if (!elf_alloc_hash(section, sections_nr) || |
| !elf_alloc_hash(section_name, sections_nr)) |
| return -1; |
| |
| elf->section_data = calloc(sections_nr, sizeof(*sec)); |
| if (!elf->section_data) { |
| perror("calloc"); |
| return -1; |
| } |
| for (i = 0; i < sections_nr; i++) { |
| sec = &elf->section_data[i]; |
| |
| INIT_LIST_HEAD(&sec->symbol_list); |
| |
| s = elf_getscn(elf->elf, i); |
| if (!s) { |
| WARN_ELF("elf_getscn"); |
| return -1; |
| } |
| |
| sec->idx = elf_ndxscn(s); |
| |
| if (!gelf_getshdr(s, &sec->sh)) { |
| WARN_ELF("gelf_getshdr"); |
| return -1; |
| } |
| |
| sec->name = elf_strptr(elf->elf, shstrndx, sec->sh.sh_name); |
| if (!sec->name) { |
| WARN_ELF("elf_strptr"); |
| return -1; |
| } |
| |
| if (sec->sh.sh_size != 0 && !is_dwarf_section(sec)) { |
| sec->data = elf_getdata(s, NULL); |
| if (!sec->data) { |
| WARN_ELF("elf_getdata"); |
| return -1; |
| } |
| if (sec->data->d_off != 0 || |
| sec->data->d_size != sec->sh.sh_size) { |
| WARN("unexpected data attributes for %s", |
| sec->name); |
| return -1; |
| } |
| } |
| |
| list_add_tail(&sec->list, &elf->sections); |
| elf_hash_add(section, &sec->hash, sec->idx); |
| elf_hash_add(section_name, &sec->name_hash, str_hash(sec->name)); |
| |
| if (is_reloc_sec(sec)) |
| elf->num_relocs += sec_num_entries(sec); |
| } |
| |
| if (opts.stats) { |
| printf("nr_sections: %lu\n", (unsigned long)sections_nr); |
| printf("section_bits: %d\n", elf->section_bits); |
| } |
| |
| /* sanity check, one more call to elf_nextscn() should return NULL */ |
| if (elf_nextscn(elf->elf, s)) { |
| WARN("section entry mismatch"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void elf_add_symbol(struct elf *elf, struct symbol *sym) |
| { |
| struct list_head *entry; |
| struct rb_node *pnode; |
| struct symbol *iter; |
| |
| INIT_LIST_HEAD(&sym->pv_target); |
| sym->alias = sym; |
| |
| sym->type = GELF_ST_TYPE(sym->sym.st_info); |
| sym->bind = GELF_ST_BIND(sym->sym.st_info); |
| |
| if (sym->type == STT_FILE) |
| elf->num_files++; |
| |
| sym->offset = sym->sym.st_value; |
| sym->len = sym->sym.st_size; |
| |
| __sym_for_each(iter, &sym->sec->symbol_tree, sym->offset, sym->offset) { |
| if (iter->offset == sym->offset && iter->type == sym->type) |
| iter->alias = sym; |
| } |
| |
| __sym_insert(sym, &sym->sec->symbol_tree); |
| pnode = rb_prev(&sym->node); |
| if (pnode) |
| entry = &rb_entry(pnode, struct symbol, node)->list; |
| else |
| entry = &sym->sec->symbol_list; |
| list_add(&sym->list, entry); |
| elf_hash_add(symbol, &sym->hash, sym->idx); |
| elf_hash_add(symbol_name, &sym->name_hash, str_hash(sym->name)); |
| |
| /* |
| * Don't store empty STT_NOTYPE symbols in the rbtree. They |
| * can exist within a function, confusing the sorting. |
| */ |
| if (!sym->len) |
| __sym_remove(sym, &sym->sec->symbol_tree); |
| } |
| |
| static int read_symbols(struct elf *elf) |
| { |
| struct section *symtab, *symtab_shndx, *sec; |
| struct symbol *sym, *pfunc; |
| int symbols_nr, i; |
| char *coldstr; |
| Elf_Data *shndx_data = NULL; |
| Elf32_Word shndx; |
| |
| symtab = find_section_by_name(elf, ".symtab"); |
| if (symtab) { |
| symtab_shndx = find_section_by_name(elf, ".symtab_shndx"); |
| if (symtab_shndx) |
| shndx_data = symtab_shndx->data; |
| |
| symbols_nr = sec_num_entries(symtab); |
| } else { |
| /* |
| * A missing symbol table is actually possible if it's an empty |
| * .o file. This can happen for thunk_64.o. Make sure to at |
| * least allocate the symbol hash tables so we can do symbol |
| * lookups without crashing. |
| */ |
| symbols_nr = 0; |
| } |
| |
| if (!elf_alloc_hash(symbol, symbols_nr) || |
| !elf_alloc_hash(symbol_name, symbols_nr)) |
| return -1; |
| |
| elf->symbol_data = calloc(symbols_nr, sizeof(*sym)); |
| if (!elf->symbol_data) { |
| perror("calloc"); |
| return -1; |
| } |
| for (i = 0; i < symbols_nr; i++) { |
| sym = &elf->symbol_data[i]; |
| |
| sym->idx = i; |
| |
| if (!gelf_getsymshndx(symtab->data, shndx_data, i, &sym->sym, |
| &shndx)) { |
| WARN_ELF("gelf_getsymshndx"); |
| goto err; |
| } |
| |
| sym->name = elf_strptr(elf->elf, symtab->sh.sh_link, |
| sym->sym.st_name); |
| if (!sym->name) { |
| WARN_ELF("elf_strptr"); |
| goto err; |
| } |
| |
| if ((sym->sym.st_shndx > SHN_UNDEF && |
| sym->sym.st_shndx < SHN_LORESERVE) || |
| (shndx_data && sym->sym.st_shndx == SHN_XINDEX)) { |
| if (sym->sym.st_shndx != SHN_XINDEX) |
| shndx = sym->sym.st_shndx; |
| |
| sym->sec = find_section_by_index(elf, shndx); |
| if (!sym->sec) { |
| WARN("couldn't find section for symbol %s", |
| sym->name); |
| goto err; |
| } |
| if (GELF_ST_TYPE(sym->sym.st_info) == STT_SECTION) { |
| sym->name = sym->sec->name; |
| sym->sec->sym = sym; |
| } |
| } else |
| sym->sec = find_section_by_index(elf, 0); |
| |
| elf_add_symbol(elf, sym); |
| } |
| |
| if (opts.stats) { |
| printf("nr_symbols: %lu\n", (unsigned long)symbols_nr); |
| printf("symbol_bits: %d\n", elf->symbol_bits); |
| } |
| |
| /* Create parent/child links for any cold subfunctions */ |
| list_for_each_entry(sec, &elf->sections, list) { |
| sec_for_each_sym(sec, sym) { |
| char pname[MAX_NAME_LEN + 1]; |
| size_t pnamelen; |
| if (sym->type != STT_FUNC) |
| continue; |
| |
| if (sym->pfunc == NULL) |
| sym->pfunc = sym; |
| |
| if (sym->cfunc == NULL) |
| sym->cfunc = sym; |
| |
| coldstr = strstr(sym->name, ".cold"); |
| if (!coldstr) |
| continue; |
| |
| pnamelen = coldstr - sym->name; |
| if (pnamelen > MAX_NAME_LEN) { |
| WARN("%s(): parent function name exceeds maximum length of %d characters", |
| sym->name, MAX_NAME_LEN); |
| return -1; |
| } |
| |
| strncpy(pname, sym->name, pnamelen); |
| pname[pnamelen] = '\0'; |
| pfunc = find_symbol_by_name(elf, pname); |
| |
| if (!pfunc) { |
| WARN("%s(): can't find parent function", |
| sym->name); |
| return -1; |
| } |
| |
| sym->pfunc = pfunc; |
| pfunc->cfunc = sym; |
| |
| /* |
| * Unfortunately, -fnoreorder-functions puts the child |
| * inside the parent. Remove the overlap so we can |
| * have sane assumptions. |
| * |
| * Note that pfunc->len now no longer matches |
| * pfunc->sym.st_size. |
| */ |
| if (sym->sec == pfunc->sec && |
| sym->offset >= pfunc->offset && |
| sym->offset + sym->len == pfunc->offset + pfunc->len) { |
| pfunc->len -= sym->len; |
| } |
| } |
| } |
| |
| return 0; |
| |
| err: |
| free(sym); |
| return -1; |
| } |
| |
| /* |
| * @sym's idx has changed. Update the relocs which reference it. |
| */ |
| static int elf_update_sym_relocs(struct elf *elf, struct symbol *sym) |
| { |
| struct reloc *reloc; |
| |
| for (reloc = sym->relocs; reloc; reloc = reloc->sym_next_reloc) |
| set_reloc_sym(elf, reloc, reloc->sym->idx); |
| |
| return 0; |
| } |
| |
| /* |
| * The libelf API is terrible; gelf_update_sym*() takes a data block relative |
| * index value, *NOT* the symbol index. As such, iterate the data blocks and |
| * adjust index until it fits. |
| * |
| * If no data block is found, allow adding a new data block provided the index |
| * is only one past the end. |
| */ |
| static int elf_update_symbol(struct elf *elf, struct section *symtab, |
| struct section *symtab_shndx, struct symbol *sym) |
| { |
| Elf32_Word shndx = sym->sec ? sym->sec->idx : SHN_UNDEF; |
| Elf_Data *symtab_data = NULL, *shndx_data = NULL; |
| Elf64_Xword entsize = symtab->sh.sh_entsize; |
| int max_idx, idx = sym->idx; |
| Elf_Scn *s, *t = NULL; |
| bool is_special_shndx = sym->sym.st_shndx >= SHN_LORESERVE && |
| sym->sym.st_shndx != SHN_XINDEX; |
| |
| if (is_special_shndx) |
| shndx = sym->sym.st_shndx; |
| |
| s = elf_getscn(elf->elf, symtab->idx); |
| if (!s) { |
| WARN_ELF("elf_getscn"); |
| return -1; |
| } |
| |
| if (symtab_shndx) { |
| t = elf_getscn(elf->elf, symtab_shndx->idx); |
| if (!t) { |
| WARN_ELF("elf_getscn"); |
| return -1; |
| } |
| } |
| |
| for (;;) { |
| /* get next data descriptor for the relevant sections */ |
| symtab_data = elf_getdata(s, symtab_data); |
| if (t) |
| shndx_data = elf_getdata(t, shndx_data); |
| |
| /* end-of-list */ |
| if (!symtab_data) { |
| /* |
| * Over-allocate to avoid O(n^2) symbol creation |
| * behaviour. The down side is that libelf doesn't |
| * like this; see elf_truncate_section() for the fixup. |
| */ |
| int num = max(1U, sym->idx/3); |
| void *buf; |
| |
| if (idx) { |
| /* we don't do holes in symbol tables */ |
| WARN("index out of range"); |
| return -1; |
| } |
| |
| /* if @idx == 0, it's the next contiguous entry, create it */ |
| symtab_data = elf_newdata(s); |
| if (t) |
| shndx_data = elf_newdata(t); |
| |
| buf = calloc(num, entsize); |
| if (!buf) { |
| WARN("malloc"); |
| return -1; |
| } |
| |
| symtab_data->d_buf = buf; |
| symtab_data->d_size = num * entsize; |
| symtab_data->d_align = 1; |
| symtab_data->d_type = ELF_T_SYM; |
| |
| mark_sec_changed(elf, symtab, true); |
| symtab->truncate = true; |
| |
| if (t) { |
| buf = calloc(num, sizeof(Elf32_Word)); |
| if (!buf) { |
| WARN("malloc"); |
| return -1; |
| } |
| |
| shndx_data->d_buf = buf; |
| shndx_data->d_size = num * sizeof(Elf32_Word); |
| shndx_data->d_align = sizeof(Elf32_Word); |
| shndx_data->d_type = ELF_T_WORD; |
| |
| mark_sec_changed(elf, symtab_shndx, true); |
| symtab_shndx->truncate = true; |
| } |
| |
| break; |
| } |
| |
| /* empty blocks should not happen */ |
| if (!symtab_data->d_size) { |
| WARN("zero size data"); |
| return -1; |
| } |
| |
| /* is this the right block? */ |
| max_idx = symtab_data->d_size / entsize; |
| if (idx < max_idx) |
| break; |
| |
| /* adjust index and try again */ |
| idx -= max_idx; |
| } |
| |
| /* something went side-ways */ |
| if (idx < 0) { |
| WARN("negative index"); |
| return -1; |
| } |
| |
| /* setup extended section index magic and write the symbol */ |
| if ((shndx >= SHN_UNDEF && shndx < SHN_LORESERVE) || is_special_shndx) { |
| sym->sym.st_shndx = shndx; |
| if (!shndx_data) |
| shndx = 0; |
| } else { |
| sym->sym.st_shndx = SHN_XINDEX; |
| if (!shndx_data) { |
| WARN("no .symtab_shndx"); |
| return -1; |
| } |
| } |
| |
| if (!gelf_update_symshndx(symtab_data, shndx_data, idx, &sym->sym, shndx)) { |
| WARN_ELF("gelf_update_symshndx"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static struct symbol * |
| __elf_create_symbol(struct elf *elf, struct symbol *sym) |
| { |
| struct section *symtab, *symtab_shndx; |
| Elf32_Word first_non_local, new_idx; |
| struct symbol *old; |
| |
| symtab = find_section_by_name(elf, ".symtab"); |
| if (symtab) { |
| symtab_shndx = find_section_by_name(elf, ".symtab_shndx"); |
| } else { |
| WARN("no .symtab"); |
| return NULL; |
| } |
| |
| new_idx = sec_num_entries(symtab); |
| |
| if (GELF_ST_BIND(sym->sym.st_info) != STB_LOCAL) |
| goto non_local; |
| |
| /* |
| * Move the first global symbol, as per sh_info, into a new, higher |
| * symbol index. This fees up a spot for a new local symbol. |
| */ |
| first_non_local = symtab->sh.sh_info; |
| old = find_symbol_by_index(elf, first_non_local); |
| if (old) { |
| |
| elf_hash_del(symbol, &old->hash, old->idx); |
| elf_hash_add(symbol, &old->hash, new_idx); |
| old->idx = new_idx; |
| |
| if (elf_update_symbol(elf, symtab, symtab_shndx, old)) { |
| WARN("elf_update_symbol move"); |
| return NULL; |
| } |
| |
| if (elf_update_sym_relocs(elf, old)) |
| return NULL; |
| |
| new_idx = first_non_local; |
| } |
| |
| /* |
| * Either way, we will add a LOCAL symbol. |
| */ |
| symtab->sh.sh_info += 1; |
| |
| non_local: |
| sym->idx = new_idx; |
| if (elf_update_symbol(elf, symtab, symtab_shndx, sym)) { |
| WARN("elf_update_symbol"); |
| return NULL; |
| } |
| |
| symtab->sh.sh_size += symtab->sh.sh_entsize; |
| mark_sec_changed(elf, symtab, true); |
| |
| if (symtab_shndx) { |
| symtab_shndx->sh.sh_size += sizeof(Elf32_Word); |
| mark_sec_changed(elf, symtab_shndx, true); |
| } |
| |
| return sym; |
| } |
| |
| static struct symbol * |
| elf_create_section_symbol(struct elf *elf, struct section *sec) |
| { |
| struct symbol *sym = calloc(1, sizeof(*sym)); |
| |
| if (!sym) { |
| perror("malloc"); |
| return NULL; |
| } |
| |
| sym->name = sec->name; |
| sym->sec = sec; |
| |
| // st_name 0 |
| sym->sym.st_info = GELF_ST_INFO(STB_LOCAL, STT_SECTION); |
| // st_other 0 |
| // st_value 0 |
| // st_size 0 |
| |
| sym = __elf_create_symbol(elf, sym); |
| if (sym) |
| elf_add_symbol(elf, sym); |
| |
| return sym; |
| } |
| |
| static int elf_add_string(struct elf *elf, struct section *strtab, char *str); |
| |
| struct symbol * |
| elf_create_prefix_symbol(struct elf *elf, struct symbol *orig, long size) |
| { |
| struct symbol *sym = calloc(1, sizeof(*sym)); |
| size_t namelen = strlen(orig->name) + sizeof("__pfx_"); |
| char *name = malloc(namelen); |
| |
| if (!sym || !name) { |
| perror("malloc"); |
| return NULL; |
| } |
| |
| snprintf(name, namelen, "__pfx_%s", orig->name); |
| |
| sym->name = name; |
| sym->sec = orig->sec; |
| |
| sym->sym.st_name = elf_add_string(elf, NULL, name); |
| sym->sym.st_info = orig->sym.st_info; |
| sym->sym.st_value = orig->sym.st_value - size; |
| sym->sym.st_size = size; |
| |
| sym = __elf_create_symbol(elf, sym); |
| if (sym) |
| elf_add_symbol(elf, sym); |
| |
| return sym; |
| } |
| |
| static struct reloc *elf_init_reloc(struct elf *elf, struct section *rsec, |
| unsigned int reloc_idx, |
| unsigned long offset, struct symbol *sym, |
| s64 addend, unsigned int type) |
| { |
| struct reloc *reloc, empty = { 0 }; |
| |
| if (reloc_idx >= sec_num_entries(rsec)) { |
| WARN("%s: bad reloc_idx %u for %s with %d relocs", |
| __func__, reloc_idx, rsec->name, sec_num_entries(rsec)); |
| return NULL; |
| } |
| |
| reloc = &rsec->relocs[reloc_idx]; |
| |
| if (memcmp(reloc, &empty, sizeof(empty))) { |
| WARN("%s: %s: reloc %d already initialized!", |
| __func__, rsec->name, reloc_idx); |
| return NULL; |
| } |
| |
| reloc->sec = rsec; |
| reloc->sym = sym; |
| |
| set_reloc_offset(elf, reloc, offset); |
| set_reloc_sym(elf, reloc, sym->idx); |
| set_reloc_type(elf, reloc, type); |
| set_reloc_addend(elf, reloc, addend); |
| |
| elf_hash_add(reloc, &reloc->hash, reloc_hash(reloc)); |
| reloc->sym_next_reloc = sym->relocs; |
| sym->relocs = reloc; |
| |
| return reloc; |
| } |
| |
| struct reloc *elf_init_reloc_text_sym(struct elf *elf, struct section *sec, |
| unsigned long offset, |
| unsigned int reloc_idx, |
| struct section *insn_sec, |
| unsigned long insn_off) |
| { |
| struct symbol *sym = insn_sec->sym; |
| int addend = insn_off; |
| |
| if (!(insn_sec->sh.sh_flags & SHF_EXECINSTR)) { |
| WARN("bad call to %s() for data symbol %s", |
| __func__, sym->name); |
| return NULL; |
| } |
| |
| if (!sym) { |
| /* |
| * Due to how weak functions work, we must use section based |
| * relocations. Symbol based relocations would result in the |
| * weak and non-weak function annotations being overlaid on the |
| * non-weak function after linking. |
| */ |
| sym = elf_create_section_symbol(elf, insn_sec); |
| if (!sym) |
| return NULL; |
| |
| insn_sec->sym = sym; |
| } |
| |
| return elf_init_reloc(elf, sec->rsec, reloc_idx, offset, sym, addend, |
| elf_text_rela_type(elf)); |
| } |
| |
| struct reloc *elf_init_reloc_data_sym(struct elf *elf, struct section *sec, |
| unsigned long offset, |
| unsigned int reloc_idx, |
| struct symbol *sym, |
| s64 addend) |
| { |
| if (sym->sec && (sec->sh.sh_flags & SHF_EXECINSTR)) { |
| WARN("bad call to %s() for text symbol %s", |
| __func__, sym->name); |
| return NULL; |
| } |
| |
| return elf_init_reloc(elf, sec->rsec, reloc_idx, offset, sym, addend, |
| elf_data_rela_type(elf)); |
| } |
| |
| static int read_relocs(struct elf *elf) |
| { |
| unsigned long nr_reloc, max_reloc = 0; |
| struct section *rsec; |
| struct reloc *reloc; |
| unsigned int symndx; |
| struct symbol *sym; |
| int i; |
| |
| if (!elf_alloc_hash(reloc, elf->num_relocs)) |
| return -1; |
| |
| list_for_each_entry(rsec, &elf->sections, list) { |
| if (!is_reloc_sec(rsec)) |
| continue; |
| |
| rsec->base = find_section_by_index(elf, rsec->sh.sh_info); |
| if (!rsec->base) { |
| WARN("can't find base section for reloc section %s", |
| rsec->name); |
| return -1; |
| } |
| |
| rsec->base->rsec = rsec; |
| |
| nr_reloc = 0; |
| rsec->relocs = calloc(sec_num_entries(rsec), sizeof(*reloc)); |
| if (!rsec->relocs) { |
| perror("calloc"); |
| return -1; |
| } |
| for (i = 0; i < sec_num_entries(rsec); i++) { |
| reloc = &rsec->relocs[i]; |
| |
| reloc->sec = rsec; |
| symndx = reloc_sym(reloc); |
| reloc->sym = sym = find_symbol_by_index(elf, symndx); |
| if (!reloc->sym) { |
| WARN("can't find reloc entry symbol %d for %s", |
| symndx, rsec->name); |
| return -1; |
| } |
| |
| elf_hash_add(reloc, &reloc->hash, reloc_hash(reloc)); |
| reloc->sym_next_reloc = sym->relocs; |
| sym->relocs = reloc; |
| |
| nr_reloc++; |
| } |
| max_reloc = max(max_reloc, nr_reloc); |
| } |
| |
| if (opts.stats) { |
| printf("max_reloc: %lu\n", max_reloc); |
| printf("num_relocs: %lu\n", elf->num_relocs); |
| printf("reloc_bits: %d\n", elf->reloc_bits); |
| } |
| |
| return 0; |
| } |
| |
| struct elf *elf_open_read(const char *name, int flags) |
| { |
| struct elf *elf; |
| Elf_Cmd cmd; |
| |
| elf_version(EV_CURRENT); |
| |
| elf = malloc(sizeof(*elf)); |
| if (!elf) { |
| perror("malloc"); |
| return NULL; |
| } |
| memset(elf, 0, sizeof(*elf)); |
| |
| INIT_LIST_HEAD(&elf->sections); |
| |
| elf->fd = open(name, flags); |
| if (elf->fd == -1) { |
| fprintf(stderr, "objtool: Can't open '%s': %s\n", |
| name, strerror(errno)); |
| goto err; |
| } |
| |
| if ((flags & O_ACCMODE) == O_RDONLY) |
| cmd = ELF_C_READ_MMAP; |
| else if ((flags & O_ACCMODE) == O_RDWR) |
| cmd = ELF_C_RDWR; |
| else /* O_WRONLY */ |
| cmd = ELF_C_WRITE; |
| |
| elf->elf = elf_begin(elf->fd, cmd, NULL); |
| if (!elf->elf) { |
| WARN_ELF("elf_begin"); |
| goto err; |
| } |
| |
| if (!gelf_getehdr(elf->elf, &elf->ehdr)) { |
| WARN_ELF("gelf_getehdr"); |
| goto err; |
| } |
| |
| if (read_sections(elf)) |
| goto err; |
| |
| if (read_symbols(elf)) |
| goto err; |
| |
| if (read_relocs(elf)) |
| goto err; |
| |
| return elf; |
| |
| err: |
| elf_close(elf); |
| return NULL; |
| } |
| |
| static int elf_add_string(struct elf *elf, struct section *strtab, char *str) |
| { |
| Elf_Data *data; |
| Elf_Scn *s; |
| int len; |
| |
| if (!strtab) |
| strtab = find_section_by_name(elf, ".strtab"); |
| if (!strtab) { |
| WARN("can't find .strtab section"); |
| return -1; |
| } |
| |
| s = elf_getscn(elf->elf, strtab->idx); |
| if (!s) { |
| WARN_ELF("elf_getscn"); |
| return -1; |
| } |
| |
| data = elf_newdata(s); |
| if (!data) { |
| WARN_ELF("elf_newdata"); |
| return -1; |
| } |
| |
| data->d_buf = str; |
| data->d_size = strlen(str) + 1; |
| data->d_align = 1; |
| |
| len = strtab->sh.sh_size; |
| strtab->sh.sh_size += data->d_size; |
| |
| mark_sec_changed(elf, strtab, true); |
| |
| return len; |
| } |
| |
| struct section *elf_create_section(struct elf *elf, const char *name, |
| size_t entsize, unsigned int nr) |
| { |
| struct section *sec, *shstrtab; |
| size_t size = entsize * nr; |
| Elf_Scn *s; |
| |
| sec = malloc(sizeof(*sec)); |
| if (!sec) { |
| perror("malloc"); |
| return NULL; |
| } |
| memset(sec, 0, sizeof(*sec)); |
| |
| INIT_LIST_HEAD(&sec->symbol_list); |
| |
| s = elf_newscn(elf->elf); |
| if (!s) { |
| WARN_ELF("elf_newscn"); |
| return NULL; |
| } |
| |
| sec->name = strdup(name); |
| if (!sec->name) { |
| perror("strdup"); |
| return NULL; |
| } |
| |
| sec->idx = elf_ndxscn(s); |
| |
| sec->data = elf_newdata(s); |
| if (!sec->data) { |
| WARN_ELF("elf_newdata"); |
| return NULL; |
| } |
| |
| sec->data->d_size = size; |
| sec->data->d_align = 1; |
| |
| if (size) { |
| sec->data->d_buf = malloc(size); |
| if (!sec->data->d_buf) { |
| perror("malloc"); |
| return NULL; |
| } |
| memset(sec->data->d_buf, 0, size); |
| } |
| |
| if (!gelf_getshdr(s, &sec->sh)) { |
| WARN_ELF("gelf_getshdr"); |
| return NULL; |
| } |
| |
| sec->sh.sh_size = size; |
| sec->sh.sh_entsize = entsize; |
| sec->sh.sh_type = SHT_PROGBITS; |
| sec->sh.sh_addralign = 1; |
| sec->sh.sh_flags = SHF_ALLOC; |
| |
| /* Add section name to .shstrtab (or .strtab for Clang) */ |
| shstrtab = find_section_by_name(elf, ".shstrtab"); |
| if (!shstrtab) |
| shstrtab = find_section_by_name(elf, ".strtab"); |
| if (!shstrtab) { |
| WARN("can't find .shstrtab or .strtab section"); |
| return NULL; |
| } |
| sec->sh.sh_name = elf_add_string(elf, shstrtab, sec->name); |
| if (sec->sh.sh_name == -1) |
| return NULL; |
| |
| list_add_tail(&sec->list, &elf->sections); |
| elf_hash_add(section, &sec->hash, sec->idx); |
| elf_hash_add(section_name, &sec->name_hash, str_hash(sec->name)); |
| |
| mark_sec_changed(elf, sec, true); |
| |
| return sec; |
| } |
| |
| static struct section *elf_create_rela_section(struct elf *elf, |
| struct section *sec, |
| unsigned int reloc_nr) |
| { |
| struct section *rsec; |
| char *rsec_name; |
| |
| rsec_name = malloc(strlen(sec->name) + strlen(".rela") + 1); |
| if (!rsec_name) { |
| perror("malloc"); |
| return NULL; |
| } |
| strcpy(rsec_name, ".rela"); |
| strcat(rsec_name, sec->name); |
| |
| rsec = elf_create_section(elf, rsec_name, elf_rela_size(elf), reloc_nr); |
| free(rsec_name); |
| if (!rsec) |
| return NULL; |
| |
| rsec->data->d_type = ELF_T_RELA; |
| rsec->sh.sh_type = SHT_RELA; |
| rsec->sh.sh_addralign = elf_addr_size(elf); |
| rsec->sh.sh_link = find_section_by_name(elf, ".symtab")->idx; |
| rsec->sh.sh_info = sec->idx; |
| rsec->sh.sh_flags = SHF_INFO_LINK; |
| |
| rsec->relocs = calloc(sec_num_entries(rsec), sizeof(struct reloc)); |
| if (!rsec->relocs) { |
| perror("calloc"); |
| return NULL; |
| } |
| |
| sec->rsec = rsec; |
| rsec->base = sec; |
| |
| return rsec; |
| } |
| |
| struct section *elf_create_section_pair(struct elf *elf, const char *name, |
| size_t entsize, unsigned int nr, |
| unsigned int reloc_nr) |
| { |
| struct section *sec; |
| |
| sec = elf_create_section(elf, name, entsize, nr); |
| if (!sec) |
| return NULL; |
| |
| if (!elf_create_rela_section(elf, sec, reloc_nr)) |
| return NULL; |
| |
| return sec; |
| } |
| |
| int elf_write_insn(struct elf *elf, struct section *sec, |
| unsigned long offset, unsigned int len, |
| const char *insn) |
| { |
| Elf_Data *data = sec->data; |
| |
| if (data->d_type != ELF_T_BYTE || data->d_off) { |
| WARN("write to unexpected data for section: %s", sec->name); |
| return -1; |
| } |
| |
| memcpy(data->d_buf + offset, insn, len); |
| |
| mark_sec_changed(elf, sec, true); |
| |
| return 0; |
| } |
| |
| /* |
| * When Elf_Scn::sh_size is smaller than the combined Elf_Data::d_size |
| * do you: |
| * |
| * A) adhere to the section header and truncate the data, or |
| * B) ignore the section header and write out all the data you've got? |
| * |
| * Yes, libelf sucks and we need to manually truncate if we over-allocate data. |
| */ |
| static int elf_truncate_section(struct elf *elf, struct section *sec) |
| { |
| u64 size = sec->sh.sh_size; |
| bool truncated = false; |
| Elf_Data *data = NULL; |
| Elf_Scn *s; |
| |
| s = elf_getscn(elf->elf, sec->idx); |
| if (!s) { |
| WARN_ELF("elf_getscn"); |
| return -1; |
| } |
| |
| for (;;) { |
| /* get next data descriptor for the relevant section */ |
| data = elf_getdata(s, data); |
| |
| if (!data) { |
| if (size) { |
| WARN("end of section data but non-zero size left\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| if (truncated) { |
| /* when we remove symbols */ |
| WARN("truncated; but more data\n"); |
| return -1; |
| } |
| |
| if (!data->d_size) { |
| WARN("zero size data"); |
| return -1; |
| } |
| |
| if (data->d_size > size) { |
| truncated = true; |
| data->d_size = size; |
| } |
| |
| size -= data->d_size; |
| } |
| } |
| |
| int elf_write(struct elf *elf) |
| { |
| struct section *sec; |
| Elf_Scn *s; |
| |
| if (opts.dryrun) |
| return 0; |
| |
| /* Update changed relocation sections and section headers: */ |
| list_for_each_entry(sec, &elf->sections, list) { |
| if (sec->truncate) |
| elf_truncate_section(elf, sec); |
| |
| if (sec_changed(sec)) { |
| s = elf_getscn(elf->elf, sec->idx); |
| if (!s) { |
| WARN_ELF("elf_getscn"); |
| return -1; |
| } |
| |
| /* Note this also flags the section dirty */ |
| if (!gelf_update_shdr(s, &sec->sh)) { |
| WARN_ELF("gelf_update_shdr"); |
| return -1; |
| } |
| |
| mark_sec_changed(elf, sec, false); |
| } |
| } |
| |
| /* Make sure the new section header entries get updated properly. */ |
| elf_flagelf(elf->elf, ELF_C_SET, ELF_F_DIRTY); |
| |
| /* Write all changes to the file. */ |
| if (elf_update(elf->elf, ELF_C_WRITE) < 0) { |
| WARN_ELF("elf_update"); |
| return -1; |
| } |
| |
| elf->changed = false; |
| |
| return 0; |
| } |
| |
| void elf_close(struct elf *elf) |
| { |
| if (elf->elf) |
| elf_end(elf->elf); |
| |
| if (elf->fd > 0) |
| close(elf->fd); |
| |
| /* |
| * NOTE: All remaining allocations are leaked on purpose. Objtool is |
| * about to exit anyway. |
| */ |
| } |