| /* |
| * linux/arch/cris/arch-v32/kernel/time.c |
| * |
| * Copyright (C) 2003-2007 Axis Communications AB |
| * |
| */ |
| |
| #include <linux/timex.h> |
| #include <linux/time.h> |
| #include <linux/jiffies.h> |
| #include <linux/interrupt.h> |
| #include <linux/swap.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/cpufreq.h> |
| #include <asm/types.h> |
| #include <asm/signal.h> |
| #include <asm/io.h> |
| #include <asm/delay.h> |
| #include <asm/rtc.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| |
| #include <hwregs/reg_map.h> |
| #include <hwregs/reg_rdwr.h> |
| #include <hwregs/timer_defs.h> |
| #include <hwregs/intr_vect_defs.h> |
| #ifdef CONFIG_CRIS_MACH_ARTPEC3 |
| #include <hwregs/clkgen_defs.h> |
| #endif |
| |
| /* Watchdog defines */ |
| #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */ |
| #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */ |
| /* Number of 763 counts before watchdog bites */ |
| #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1) |
| |
| unsigned long timer_regs[NR_CPUS] = |
| { |
| regi_timer0, |
| #ifdef CONFIG_SMP |
| regi_timer2 |
| #endif |
| }; |
| |
| extern void update_xtime_from_cmos(void); |
| extern int set_rtc_mmss(unsigned long nowtime); |
| extern int setup_irq(int, struct irqaction *); |
| extern int have_rtc; |
| |
| #ifdef CONFIG_CPU_FREQ |
| static int |
| cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data); |
| |
| static struct notifier_block cris_time_freq_notifier_block = { |
| .notifier_call = cris_time_freq_notifier, |
| }; |
| #endif |
| |
| unsigned long get_ns_in_jiffie(void) |
| { |
| reg_timer_r_tmr0_data data; |
| unsigned long ns; |
| |
| data = REG_RD(timer, regi_timer0, r_tmr0_data); |
| ns = (TIMER0_DIV - data) * 10; |
| return ns; |
| } |
| |
| unsigned long do_slow_gettimeoffset(void) |
| { |
| unsigned long count; |
| unsigned long usec_count = 0; |
| |
| /* For the first call after boot */ |
| static unsigned long count_p = TIMER0_DIV; |
| static unsigned long jiffies_p = 0; |
| |
| /* Cache volatile jiffies temporarily; we have IRQs turned off. */ |
| unsigned long jiffies_t; |
| |
| /* The timer interrupt comes from Etrax timer 0. In order to get |
| * better precision, we check the current value. It might have |
| * underflowed already though. */ |
| count = REG_RD(timer, regi_timer0, r_tmr0_data); |
| jiffies_t = jiffies; |
| |
| /* Avoiding timer inconsistencies (they are rare, but they happen) |
| * There is one problem that must be avoided here: |
| * 1. the timer counter underflows |
| */ |
| if( jiffies_t == jiffies_p ) { |
| if( count > count_p ) { |
| /* Timer wrapped, use new count and prescale. |
| * Increase the time corresponding to one jiffy. |
| */ |
| usec_count = 1000000/HZ; |
| } |
| } else |
| jiffies_p = jiffies_t; |
| count_p = count; |
| /* Convert timer value to usec */ |
| /* 100 MHz timer, divide by 100 to get usec */ |
| usec_count += (TIMER0_DIV - count) / 100; |
| return usec_count; |
| } |
| |
| /* From timer MDS describing the hardware watchdog: |
| * 4.3.1 Watchdog Operation |
| * The watchdog timer is an 8-bit timer with a configurable start value. |
| * Once started the watchdog counts downwards with a frequency of 763 Hz |
| * (100/131072 MHz). When the watchdog counts down to 1, it generates an |
| * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the |
| * chip. |
| */ |
| /* This gives us 1.3 ms to do something useful when the NMI comes */ |
| |
| /* Right now, starting the watchdog is the same as resetting it */ |
| #define start_watchdog reset_watchdog |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| static short int watchdog_key = 42; /* arbitrary 7 bit number */ |
| #endif |
| |
| /* Number of pages to consider "out of memory". It is normal that the memory |
| * is used though, so set this really low. */ |
| #define WATCHDOG_MIN_FREE_PAGES 8 |
| |
| void |
| reset_watchdog(void) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; |
| |
| /* Only keep watchdog happy as long as we have memory left! */ |
| if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { |
| /* Reset the watchdog with the inverse of the old key */ |
| /* Invert key, which is 7 bits */ |
| watchdog_key ^= ETRAX_WD_KEY_MASK; |
| wd_ctrl.cnt = ETRAX_WD_CNT; |
| wd_ctrl.cmd = regk_timer_start; |
| wd_ctrl.key = watchdog_key; |
| REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); |
| } |
| #endif |
| } |
| |
| /* stop the watchdog - we still need the correct key */ |
| |
| void |
| stop_watchdog(void) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; |
| watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */ |
| wd_ctrl.cnt = ETRAX_WD_CNT; |
| wd_ctrl.cmd = regk_timer_stop; |
| wd_ctrl.key = watchdog_key; |
| REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); |
| #endif |
| } |
| |
| extern void show_registers(struct pt_regs *regs); |
| |
| void |
| handle_watchdog_bite(struct pt_regs* regs) |
| { |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| extern int cause_of_death; |
| |
| oops_in_progress = 1; |
| printk(KERN_WARNING "Watchdog bite\n"); |
| |
| /* Check if forced restart or unexpected watchdog */ |
| if (cause_of_death == 0xbedead) { |
| #ifdef CONFIG_CRIS_MACH_ARTPEC3 |
| /* There is a bug in Artpec-3 (voodoo TR 78) that requires |
| * us to go to lower frequency for the reset to be reliable |
| */ |
| reg_clkgen_rw_clk_ctrl ctrl = |
| REG_RD(clkgen, regi_clkgen, rw_clk_ctrl); |
| ctrl.pll = 0; |
| REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl); |
| #endif |
| while(1); |
| } |
| |
| /* Unexpected watchdog, stop the watchdog and dump registers. */ |
| stop_watchdog(); |
| printk(KERN_WARNING "Oops: bitten by watchdog\n"); |
| show_registers(regs); |
| oops_in_progress = 0; |
| #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY |
| reset_watchdog(); |
| #endif |
| while(1) /* nothing */; |
| #endif |
| } |
| |
| /* Last time the cmos clock got updated. */ |
| static long last_rtc_update = 0; |
| |
| /* |
| * timer_interrupt() needs to keep up the real-time clock, |
| * as well as call the "do_timer()" routine every clocktick. |
| */ |
| extern void cris_do_profile(struct pt_regs *regs); |
| |
| static inline irqreturn_t |
| timer_interrupt(int irq, void *dev_id) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| int cpu = smp_processor_id(); |
| reg_timer_r_masked_intr masked_intr; |
| reg_timer_rw_ack_intr ack_intr = { 0 }; |
| |
| /* Check if the timer interrupt is for us (a tmr0 int) */ |
| masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr); |
| if (!masked_intr.tmr0) |
| return IRQ_NONE; |
| |
| /* Acknowledge the timer irq. */ |
| ack_intr.tmr0 = 1; |
| REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr); |
| |
| /* Reset watchdog otherwise it resets us! */ |
| reset_watchdog(); |
| |
| /* Update statistics. */ |
| update_process_times(user_mode(regs)); |
| |
| cris_do_profile(regs); /* Save profiling information */ |
| |
| /* The master CPU is responsible for the time keeping. */ |
| if (cpu != 0) |
| return IRQ_HANDLED; |
| |
| /* Call the real timer interrupt handler */ |
| do_timer(1); |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| * |
| * The division here is not time critical since it will run once in |
| * 11 minutes |
| */ |
| if ((time_status & STA_UNSYNC) == 0 && |
| xtime.tv_sec > last_rtc_update + 660 && |
| (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 && |
| (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) { |
| if (set_rtc_mmss(xtime.tv_sec) == 0) |
| last_rtc_update = xtime.tv_sec; |
| else |
| /* Do it again in 60 s */ |
| last_rtc_update = xtime.tv_sec - 600; |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. |
| * It needs to be IRQF_DISABLED to make the jiffies update work properly. |
| */ |
| static struct irqaction irq_timer = { |
| .handler = timer_interrupt, |
| .flags = IRQF_SHARED | IRQF_DISABLED, |
| .name = "timer" |
| }; |
| |
| void __init |
| cris_timer_init(void) |
| { |
| int cpu = smp_processor_id(); |
| reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 }; |
| reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV; |
| reg_timer_rw_intr_mask timer_intr_mask; |
| |
| /* Setup the etrax timers. |
| * Base frequency is 100MHz, divider 1000000 -> 100 HZ |
| * We use timer0, so timer1 is free. |
| * The trig timer is used by the fasttimer API if enabled. |
| */ |
| |
| tmr0_ctrl.op = regk_timer_ld; |
| tmr0_ctrl.freq = regk_timer_f100; |
| REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div); |
| REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */ |
| tmr0_ctrl.op = regk_timer_run; |
| REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */ |
| |
| /* Enable the timer irq. */ |
| timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask); |
| timer_intr_mask.tmr0 = 1; |
| REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask); |
| } |
| |
| void __init |
| time_init(void) |
| { |
| reg_intr_vect_rw_mask intr_mask; |
| |
| /* Probe for the RTC and read it if it exists. |
| * Before the RTC can be probed the loops_per_usec variable needs |
| * to be initialized to make usleep work. A better value for |
| * loops_per_usec is calculated by the kernel later once the |
| * clock has started. |
| */ |
| loops_per_usec = 50; |
| |
| if(RTC_INIT() < 0) { |
| /* No RTC, start at 1980 */ |
| xtime.tv_sec = 0; |
| xtime.tv_nsec = 0; |
| have_rtc = 0; |
| } else { |
| /* Get the current time */ |
| have_rtc = 1; |
| update_xtime_from_cmos(); |
| } |
| |
| /* |
| * Initialize wall_to_monotonic such that adding it to |
| * xtime will yield zero, the tv_nsec field must be normalized |
| * (i.e., 0 <= nsec < NSEC_PER_SEC). |
| */ |
| set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); |
| |
| /* Start CPU local timer. */ |
| cris_timer_init(); |
| |
| /* Enable the timer irq in global config. */ |
| intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1); |
| intr_mask.timer0 = 1; |
| REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask); |
| |
| /* Now actually register the timer irq handler that calls |
| * timer_interrupt(). */ |
| setup_irq(TIMER0_INTR_VECT, &irq_timer); |
| |
| /* Enable watchdog if we should use one. */ |
| |
| #if defined(CONFIG_ETRAX_WATCHDOG) |
| printk(KERN_INFO "Enabling watchdog...\n"); |
| start_watchdog(); |
| |
| /* If we use the hardware watchdog, we want to trap it as an NMI |
| * and dump registers before it resets us. For this to happen, we |
| * must set the "m" NMI enable flag (which once set, is unset only |
| * when an NMI is taken). */ |
| { |
| unsigned long flags; |
| local_save_flags(flags); |
| flags |= (1<<30); /* NMI M flag is at bit 30 */ |
| local_irq_restore(flags); |
| } |
| #endif |
| |
| #ifdef CONFIG_CPU_FREQ |
| cpufreq_register_notifier(&cris_time_freq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| #endif |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| static int |
| cris_time_freq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freqs = data; |
| if (val == CPUFREQ_POSTCHANGE) { |
| reg_timer_r_tmr0_data data; |
| reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ; |
| do { |
| data = REG_RD(timer, timer_regs[freqs->cpu], |
| r_tmr0_data); |
| } while (data > 20); |
| REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div); |
| } |
| return 0; |
| } |
| #endif |