blob: d704511a0955bbd321b87748f4c5de8d7c6db2e2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2021 ARM Limited.
*/
#include <errno.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/auxv.h>
#include <sys/prctl.h>
#include <asm/hwcap.h>
#include <asm/sigcontext.h>
#include <asm/unistd.h>
#include "../../kselftest.h"
#include "syscall-abi.h"
/*
* The kernel defines a much larger SVE_VQ_MAX than is expressable in
* the architecture, this creates a *lot* of overhead filling the
* buffers (especially ZA) on emulated platforms so use the actual
* architectural maximum instead.
*/
#define ARCH_SVE_VQ_MAX 16
static int default_sme_vl;
static int sve_vl_count;
static unsigned int sve_vls[ARCH_SVE_VQ_MAX];
static int sme_vl_count;
static unsigned int sme_vls[ARCH_SVE_VQ_MAX];
extern void do_syscall(int sve_vl, int sme_vl);
static void fill_random(void *buf, size_t size)
{
int i;
uint32_t *lbuf = buf;
/* random() returns a 32 bit number regardless of the size of long */
for (i = 0; i < size / sizeof(uint32_t); i++)
lbuf[i] = random();
}
/*
* We also repeat the test for several syscalls to try to expose different
* behaviour.
*/
static struct syscall_cfg {
int syscall_nr;
const char *name;
} syscalls[] = {
{ __NR_getpid, "getpid()" },
{ __NR_sched_yield, "sched_yield()" },
};
#define NUM_GPR 31
uint64_t gpr_in[NUM_GPR];
uint64_t gpr_out[NUM_GPR];
static void setup_gpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
fill_random(gpr_in, sizeof(gpr_in));
gpr_in[8] = cfg->syscall_nr;
memset(gpr_out, 0, sizeof(gpr_out));
}
static int check_gpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr)
{
int errors = 0;
int i;
/*
* GPR x0-x7 may be clobbered, and all others should be preserved.
*/
for (i = 9; i < ARRAY_SIZE(gpr_in); i++) {
if (gpr_in[i] != gpr_out[i]) {
ksft_print_msg("%s SVE VL %d mismatch in GPR %d: %llx != %llx\n",
cfg->name, sve_vl, i,
gpr_in[i], gpr_out[i]);
errors++;
}
}
return errors;
}
#define NUM_FPR 32
uint64_t fpr_in[NUM_FPR * 2];
uint64_t fpr_out[NUM_FPR * 2];
uint64_t fpr_zero[NUM_FPR * 2];
static void setup_fpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
fill_random(fpr_in, sizeof(fpr_in));
memset(fpr_out, 0, sizeof(fpr_out));
}
static int check_fpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
int errors = 0;
int i;
if (!sve_vl && !(svcr & SVCR_SM_MASK)) {
for (i = 0; i < ARRAY_SIZE(fpr_in); i++) {
if (fpr_in[i] != fpr_out[i]) {
ksft_print_msg("%s Q%d/%d mismatch %llx != %llx\n",
cfg->name,
i / 2, i % 2,
fpr_in[i], fpr_out[i]);
errors++;
}
}
}
/*
* In streaming mode the whole register set should be cleared
* by the transition out of streaming mode.
*/
if (svcr & SVCR_SM_MASK) {
if (memcmp(fpr_zero, fpr_out, sizeof(fpr_out)) != 0) {
ksft_print_msg("%s FPSIMD registers non-zero exiting SM\n",
cfg->name);
errors++;
}
}
return errors;
}
#define SVE_Z_SHARED_BYTES (128 / 8)
static uint8_t z_zero[__SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)];
uint8_t z_in[SVE_NUM_ZREGS * __SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)];
uint8_t z_out[SVE_NUM_ZREGS * __SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)];
static void setup_z(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
fill_random(z_in, sizeof(z_in));
fill_random(z_out, sizeof(z_out));
}
static int check_z(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
size_t reg_size = sve_vl;
int errors = 0;
int i;
if (!sve_vl)
return 0;
for (i = 0; i < SVE_NUM_ZREGS; i++) {
uint8_t *in = &z_in[reg_size * i];
uint8_t *out = &z_out[reg_size * i];
if (svcr & SVCR_SM_MASK) {
/*
* In streaming mode the whole register should
* be cleared by the transition out of
* streaming mode.
*/
if (memcmp(z_zero, out, reg_size) != 0) {
ksft_print_msg("%s SVE VL %d Z%d non-zero\n",
cfg->name, sve_vl, i);
errors++;
}
} else {
/*
* For standard SVE the low 128 bits should be
* preserved and any additional bits cleared.
*/
if (memcmp(in, out, SVE_Z_SHARED_BYTES) != 0) {
ksft_print_msg("%s SVE VL %d Z%d low 128 bits changed\n",
cfg->name, sve_vl, i);
errors++;
}
if (reg_size > SVE_Z_SHARED_BYTES &&
(memcmp(z_zero, out + SVE_Z_SHARED_BYTES,
reg_size - SVE_Z_SHARED_BYTES) != 0)) {
ksft_print_msg("%s SVE VL %d Z%d high bits non-zero\n",
cfg->name, sve_vl, i);
errors++;
}
}
}
return errors;
}
uint8_t p_in[SVE_NUM_PREGS * __SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)];
uint8_t p_out[SVE_NUM_PREGS * __SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)];
static void setup_p(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
fill_random(p_in, sizeof(p_in));
fill_random(p_out, sizeof(p_out));
}
static int check_p(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
size_t reg_size = sve_vq_from_vl(sve_vl) * 2; /* 1 bit per VL byte */
int errors = 0;
int i;
if (!sve_vl)
return 0;
/* After a syscall the P registers should be zeroed */
for (i = 0; i < SVE_NUM_PREGS * reg_size; i++)
if (p_out[i])
errors++;
if (errors)
ksft_print_msg("%s SVE VL %d predicate registers non-zero\n",
cfg->name, sve_vl);
return errors;
}
uint8_t ffr_in[__SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)];
uint8_t ffr_out[__SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)];
static void setup_ffr(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
/*
* If we are in streaming mode and do not have FA64 then FFR
* is unavailable.
*/
if ((svcr & SVCR_SM_MASK) &&
!(getauxval(AT_HWCAP2) & HWCAP2_SME_FA64)) {
memset(&ffr_in, 0, sizeof(ffr_in));
return;
}
/*
* It is only valid to set a contiguous set of bits starting
* at 0. For now since we're expecting this to be cleared by
* a syscall just set all bits.
*/
memset(ffr_in, 0xff, sizeof(ffr_in));
fill_random(ffr_out, sizeof(ffr_out));
}
static int check_ffr(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
size_t reg_size = sve_vq_from_vl(sve_vl) * 2; /* 1 bit per VL byte */
int errors = 0;
int i;
if (!sve_vl)
return 0;
if ((svcr & SVCR_SM_MASK) &&
!(getauxval(AT_HWCAP2) & HWCAP2_SME_FA64))
return 0;
/* After a syscall FFR should be zeroed */
for (i = 0; i < reg_size; i++)
if (ffr_out[i])
errors++;
if (errors)
ksft_print_msg("%s SVE VL %d FFR non-zero\n",
cfg->name, sve_vl);
return errors;
}
uint64_t svcr_in, svcr_out;
static void setup_svcr(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
svcr_in = svcr;
}
static int check_svcr(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
int errors = 0;
if (svcr_out & SVCR_SM_MASK) {
ksft_print_msg("%s Still in SM, SVCR %llx\n",
cfg->name, svcr_out);
errors++;
}
if ((svcr_in & SVCR_ZA_MASK) != (svcr_out & SVCR_ZA_MASK)) {
ksft_print_msg("%s PSTATE.ZA changed, SVCR %llx != %llx\n",
cfg->name, svcr_in, svcr_out);
errors++;
}
return errors;
}
uint8_t za_in[ZA_SIG_REGS_SIZE(ARCH_SVE_VQ_MAX)];
uint8_t za_out[ZA_SIG_REGS_SIZE(ARCH_SVE_VQ_MAX)];
static void setup_za(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
fill_random(za_in, sizeof(za_in));
memset(za_out, 0, sizeof(za_out));
}
static int check_za(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
size_t reg_size = sme_vl * sme_vl;
int errors = 0;
if (!(svcr & SVCR_ZA_MASK))
return 0;
if (memcmp(za_in, za_out, reg_size) != 0) {
ksft_print_msg("SME VL %d ZA does not match\n", sme_vl);
errors++;
}
return errors;
}
uint8_t zt_in[ZT_SIG_REG_BYTES] __attribute__((aligned(16)));
uint8_t zt_out[ZT_SIG_REG_BYTES] __attribute__((aligned(16)));
static void setup_zt(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
fill_random(zt_in, sizeof(zt_in));
memset(zt_out, 0, sizeof(zt_out));
}
static int check_zt(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
int errors = 0;
if (!(getauxval(AT_HWCAP2) & HWCAP2_SME2))
return 0;
if (!(svcr & SVCR_ZA_MASK))
return 0;
if (memcmp(zt_in, zt_out, sizeof(zt_in)) != 0) {
ksft_print_msg("SME VL %d ZT does not match\n", sme_vl);
errors++;
}
return errors;
}
typedef void (*setup_fn)(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr);
typedef int (*check_fn)(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr);
/*
* Each set of registers has a setup function which is called before
* the syscall to fill values in a global variable for loading by the
* test code and a check function which validates that the results are
* as expected. Vector lengths are passed everywhere, a vector length
* of 0 should be treated as do not test.
*/
static struct {
setup_fn setup;
check_fn check;
} regset[] = {
{ setup_gpr, check_gpr },
{ setup_fpr, check_fpr },
{ setup_z, check_z },
{ setup_p, check_p },
{ setup_ffr, check_ffr },
{ setup_svcr, check_svcr },
{ setup_za, check_za },
{ setup_zt, check_zt },
};
static bool do_test(struct syscall_cfg *cfg, int sve_vl, int sme_vl,
uint64_t svcr)
{
int errors = 0;
int i;
for (i = 0; i < ARRAY_SIZE(regset); i++)
regset[i].setup(cfg, sve_vl, sme_vl, svcr);
do_syscall(sve_vl, sme_vl);
for (i = 0; i < ARRAY_SIZE(regset); i++)
errors += regset[i].check(cfg, sve_vl, sme_vl, svcr);
return errors == 0;
}
static void test_one_syscall(struct syscall_cfg *cfg)
{
int sve, sme;
int ret;
/* FPSIMD only case */
ksft_test_result(do_test(cfg, 0, default_sme_vl, 0),
"%s FPSIMD\n", cfg->name);
for (sve = 0; sve < sve_vl_count; sve++) {
ret = prctl(PR_SVE_SET_VL, sve_vls[sve]);
if (ret == -1)
ksft_exit_fail_msg("PR_SVE_SET_VL failed: %s (%d)\n",
strerror(errno), errno);
ksft_test_result(do_test(cfg, sve_vls[sve], default_sme_vl, 0),
"%s SVE VL %d\n", cfg->name, sve_vls[sve]);
for (sme = 0; sme < sme_vl_count; sme++) {
ret = prctl(PR_SME_SET_VL, sme_vls[sme]);
if (ret == -1)
ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n",
strerror(errno), errno);
ksft_test_result(do_test(cfg, sve_vls[sve],
sme_vls[sme],
SVCR_ZA_MASK | SVCR_SM_MASK),
"%s SVE VL %d/SME VL %d SM+ZA\n",
cfg->name, sve_vls[sve],
sme_vls[sme]);
ksft_test_result(do_test(cfg, sve_vls[sve],
sme_vls[sme], SVCR_SM_MASK),
"%s SVE VL %d/SME VL %d SM\n",
cfg->name, sve_vls[sve],
sme_vls[sme]);
ksft_test_result(do_test(cfg, sve_vls[sve],
sme_vls[sme], SVCR_ZA_MASK),
"%s SVE VL %d/SME VL %d ZA\n",
cfg->name, sve_vls[sve],
sme_vls[sme]);
}
}
for (sme = 0; sme < sme_vl_count; sme++) {
ret = prctl(PR_SME_SET_VL, sme_vls[sme]);
if (ret == -1)
ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n",
strerror(errno), errno);
ksft_test_result(do_test(cfg, 0, sme_vls[sme],
SVCR_ZA_MASK | SVCR_SM_MASK),
"%s SME VL %d SM+ZA\n",
cfg->name, sme_vls[sme]);
ksft_test_result(do_test(cfg, 0, sme_vls[sme], SVCR_SM_MASK),
"%s SME VL %d SM\n",
cfg->name, sme_vls[sme]);
ksft_test_result(do_test(cfg, 0, sme_vls[sme], SVCR_ZA_MASK),
"%s SME VL %d ZA\n",
cfg->name, sme_vls[sme]);
}
}
void sve_count_vls(void)
{
unsigned int vq;
int vl;
if (!(getauxval(AT_HWCAP) & HWCAP_SVE))
return;
/*
* Enumerate up to ARCH_SVE_VQ_MAX vector lengths
*/
for (vq = ARCH_SVE_VQ_MAX; vq > 0; vq /= 2) {
vl = prctl(PR_SVE_SET_VL, vq * 16);
if (vl == -1)
ksft_exit_fail_msg("PR_SVE_SET_VL failed: %s (%d)\n",
strerror(errno), errno);
vl &= PR_SVE_VL_LEN_MASK;
if (vq != sve_vq_from_vl(vl))
vq = sve_vq_from_vl(vl);
sve_vls[sve_vl_count++] = vl;
}
}
void sme_count_vls(void)
{
unsigned int vq;
int vl;
if (!(getauxval(AT_HWCAP2) & HWCAP2_SME))
return;
/*
* Enumerate up to ARCH_SVE_VQ_MAX vector lengths
*/
for (vq = ARCH_SVE_VQ_MAX; vq > 0; vq /= 2) {
vl = prctl(PR_SME_SET_VL, vq * 16);
if (vl == -1)
ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n",
strerror(errno), errno);
vl &= PR_SME_VL_LEN_MASK;
/* Found lowest VL */
if (sve_vq_from_vl(vl) > vq)
break;
if (vq != sve_vq_from_vl(vl))
vq = sve_vq_from_vl(vl);
sme_vls[sme_vl_count++] = vl;
}
/* Ensure we configure a SME VL, used to flag if SVCR is set */
default_sme_vl = sme_vls[0];
}
int main(void)
{
int i;
int tests = 1; /* FPSIMD */
int sme_ver;
srandom(getpid());
ksft_print_header();
sve_count_vls();
sme_count_vls();
tests += sve_vl_count;
tests += sme_vl_count * 3;
tests += (sve_vl_count * sme_vl_count) * 3;
ksft_set_plan(ARRAY_SIZE(syscalls) * tests);
if (getauxval(AT_HWCAP2) & HWCAP2_SME2)
sme_ver = 2;
else
sme_ver = 1;
if (getauxval(AT_HWCAP2) & HWCAP2_SME_FA64)
ksft_print_msg("SME%d with FA64\n", sme_ver);
else if (getauxval(AT_HWCAP2) & HWCAP2_SME)
ksft_print_msg("SME%d without FA64\n", sme_ver);
for (i = 0; i < ARRAY_SIZE(syscalls); i++)
test_one_syscall(&syscalls[i]);
ksft_print_cnts();
return 0;
}