blob: 1583157da355b2c7c500ee4b9fb51e7298cd4e71 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/string.h>
#include <linux/acpi.h>
#include <linux/i2c.h>
#include <drm/drm_atomic.h>
#include <drm/drm_probe_helper.h>
#include <drm/amdgpu_drm.h>
#include <drm/drm_edid.h>
#include "dm_services.h"
#include "amdgpu.h"
#include "dc.h"
#include "amdgpu_dm.h"
#include "amdgpu_dm_irq.h"
#include "amdgpu_dm_mst_types.h"
#include "dpcd_defs.h"
#include "dc/inc/core_types.h"
#include "dm_helpers.h"
#include "ddc_service_types.h"
/* dm_helpers_parse_edid_caps
*
* Parse edid caps
*
* @edid: [in] pointer to edid
* edid_caps: [in] pointer to edid caps
* @return
* void
* */
enum dc_edid_status dm_helpers_parse_edid_caps(
struct dc_link *link,
const struct dc_edid *edid,
struct dc_edid_caps *edid_caps)
{
struct amdgpu_dm_connector *aconnector = link->priv;
struct drm_connector *connector = &aconnector->base;
struct edid *edid_buf = edid ? (struct edid *) edid->raw_edid : NULL;
struct cea_sad *sads;
int sad_count = -1;
int sadb_count = -1;
int i = 0;
uint8_t *sadb = NULL;
enum dc_edid_status result = EDID_OK;
if (!edid_caps || !edid)
return EDID_BAD_INPUT;
if (!drm_edid_is_valid(edid_buf))
result = EDID_BAD_CHECKSUM;
edid_caps->manufacturer_id = (uint16_t) edid_buf->mfg_id[0] |
((uint16_t) edid_buf->mfg_id[1])<<8;
edid_caps->product_id = (uint16_t) edid_buf->prod_code[0] |
((uint16_t) edid_buf->prod_code[1])<<8;
edid_caps->serial_number = edid_buf->serial;
edid_caps->manufacture_week = edid_buf->mfg_week;
edid_caps->manufacture_year = edid_buf->mfg_year;
drm_edid_get_monitor_name(edid_buf,
edid_caps->display_name,
AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
edid_caps->edid_hdmi = connector->display_info.is_hdmi;
sad_count = drm_edid_to_sad((struct edid *) edid->raw_edid, &sads);
if (sad_count <= 0)
return result;
edid_caps->audio_mode_count = sad_count < DC_MAX_AUDIO_DESC_COUNT ? sad_count : DC_MAX_AUDIO_DESC_COUNT;
for (i = 0; i < edid_caps->audio_mode_count; ++i) {
struct cea_sad *sad = &sads[i];
edid_caps->audio_modes[i].format_code = sad->format;
edid_caps->audio_modes[i].channel_count = sad->channels + 1;
edid_caps->audio_modes[i].sample_rate = sad->freq;
edid_caps->audio_modes[i].sample_size = sad->byte2;
}
sadb_count = drm_edid_to_speaker_allocation((struct edid *) edid->raw_edid, &sadb);
if (sadb_count < 0) {
DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sadb_count);
sadb_count = 0;
}
if (sadb_count)
edid_caps->speaker_flags = sadb[0];
else
edid_caps->speaker_flags = DEFAULT_SPEAKER_LOCATION;
kfree(sads);
kfree(sadb);
return result;
}
static void
fill_dc_mst_payload_table_from_drm(struct dc_link *link,
bool enable,
struct drm_dp_mst_atomic_payload *target_payload,
struct dc_dp_mst_stream_allocation_table *table)
{
struct dc_dp_mst_stream_allocation_table new_table = { 0 };
struct dc_dp_mst_stream_allocation *sa;
struct link_mst_stream_allocation_table copy_of_link_table =
link->mst_stream_alloc_table;
int i;
int current_hw_table_stream_cnt = copy_of_link_table.stream_count;
struct link_mst_stream_allocation *dc_alloc;
/* TODO: refactor to set link->mst_stream_alloc_table directly if possible.*/
if (enable) {
dc_alloc =
&copy_of_link_table.stream_allocations[current_hw_table_stream_cnt];
dc_alloc->vcp_id = target_payload->vcpi;
dc_alloc->slot_count = target_payload->time_slots;
} else {
for (i = 0; i < copy_of_link_table.stream_count; i++) {
dc_alloc =
&copy_of_link_table.stream_allocations[i];
if (dc_alloc->vcp_id == target_payload->vcpi) {
dc_alloc->vcp_id = 0;
dc_alloc->slot_count = 0;
break;
}
}
ASSERT(i != copy_of_link_table.stream_count);
}
/* Fill payload info*/
for (i = 0; i < MAX_CONTROLLER_NUM; i++) {
dc_alloc =
&copy_of_link_table.stream_allocations[i];
if (dc_alloc->vcp_id > 0 && dc_alloc->slot_count > 0) {
sa = &new_table.stream_allocations[new_table.stream_count];
sa->slot_count = dc_alloc->slot_count;
sa->vcp_id = dc_alloc->vcp_id;
new_table.stream_count++;
}
}
/* Overwrite the old table */
*table = new_table;
}
void dm_helpers_dp_update_branch_info(
struct dc_context *ctx,
const struct dc_link *link)
{}
/*
* Writes payload allocation table in immediate downstream device.
*/
bool dm_helpers_dp_mst_write_payload_allocation_table(
struct dc_context *ctx,
const struct dc_stream_state *stream,
struct dc_dp_mst_stream_allocation_table *proposed_table,
bool enable)
{
struct amdgpu_dm_connector *aconnector;
struct drm_dp_mst_topology_state *mst_state;
struct drm_dp_mst_atomic_payload *payload;
struct drm_dp_mst_topology_mgr *mst_mgr;
aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context;
/* Accessing the connector state is required for vcpi_slots allocation
* and directly relies on behaviour in commit check
* that blocks before commit guaranteeing that the state
* is not gonna be swapped while still in use in commit tail */
if (!aconnector || !aconnector->mst_root)
return false;
mst_mgr = &aconnector->mst_root->mst_mgr;
mst_state = to_drm_dp_mst_topology_state(mst_mgr->base.state);
/* It's OK for this to fail */
payload = drm_atomic_get_mst_payload_state(mst_state, aconnector->mst_output_port);
if (enable)
drm_dp_add_payload_part1(mst_mgr, mst_state, payload);
else
drm_dp_remove_payload(mst_mgr, mst_state, payload, payload);
/* mst_mgr->->payloads are VC payload notify MST branch using DPCD or
* AUX message. The sequence is slot 1-63 allocated sequence for each
* stream. AMD ASIC stream slot allocation should follow the same
* sequence. copy DRM MST allocation to dc */
fill_dc_mst_payload_table_from_drm(stream->link, enable, payload, proposed_table);
return true;
}
/*
* poll pending down reply
*/
void dm_helpers_dp_mst_poll_pending_down_reply(
struct dc_context *ctx,
const struct dc_link *link)
{}
/*
* Clear payload allocation table before enable MST DP link.
*/
void dm_helpers_dp_mst_clear_payload_allocation_table(
struct dc_context *ctx,
const struct dc_link *link)
{}
/*
* Polls for ACT (allocation change trigger) handled and sends
* ALLOCATE_PAYLOAD message.
*/
enum act_return_status dm_helpers_dp_mst_poll_for_allocation_change_trigger(
struct dc_context *ctx,
const struct dc_stream_state *stream)
{
struct amdgpu_dm_connector *aconnector;
struct drm_dp_mst_topology_mgr *mst_mgr;
int ret;
aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context;
if (!aconnector || !aconnector->mst_root)
return ACT_FAILED;
mst_mgr = &aconnector->mst_root->mst_mgr;
if (!mst_mgr->mst_state)
return ACT_FAILED;
ret = drm_dp_check_act_status(mst_mgr);
if (ret)
return ACT_FAILED;
return ACT_SUCCESS;
}
bool dm_helpers_dp_mst_send_payload_allocation(
struct dc_context *ctx,
const struct dc_stream_state *stream,
bool enable)
{
struct amdgpu_dm_connector *aconnector;
struct drm_dp_mst_topology_state *mst_state;
struct drm_dp_mst_topology_mgr *mst_mgr;
struct drm_dp_mst_atomic_payload *payload;
enum mst_progress_status set_flag = MST_ALLOCATE_NEW_PAYLOAD;
enum mst_progress_status clr_flag = MST_CLEAR_ALLOCATED_PAYLOAD;
int ret = 0;
aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context;
if (!aconnector || !aconnector->mst_root)
return false;
mst_mgr = &aconnector->mst_root->mst_mgr;
mst_state = to_drm_dp_mst_topology_state(mst_mgr->base.state);
payload = drm_atomic_get_mst_payload_state(mst_state, aconnector->mst_output_port);
if (!enable) {
set_flag = MST_CLEAR_ALLOCATED_PAYLOAD;
clr_flag = MST_ALLOCATE_NEW_PAYLOAD;
}
if (enable)
ret = drm_dp_add_payload_part2(mst_mgr, mst_state->base.state, payload);
if (ret) {
amdgpu_dm_set_mst_status(&aconnector->mst_status,
set_flag, false);
} else {
amdgpu_dm_set_mst_status(&aconnector->mst_status,
set_flag, true);
amdgpu_dm_set_mst_status(&aconnector->mst_status,
clr_flag, false);
}
return true;
}
void dm_dtn_log_begin(struct dc_context *ctx,
struct dc_log_buffer_ctx *log_ctx)
{
static const char msg[] = "[dtn begin]\n";
if (!log_ctx) {
pr_info("%s", msg);
return;
}
dm_dtn_log_append_v(ctx, log_ctx, "%s", msg);
}
__printf(3, 4)
void dm_dtn_log_append_v(struct dc_context *ctx,
struct dc_log_buffer_ctx *log_ctx,
const char *msg, ...)
{
va_list args;
size_t total;
int n;
if (!log_ctx) {
/* No context, redirect to dmesg. */
struct va_format vaf;
vaf.fmt = msg;
vaf.va = &args;
va_start(args, msg);
pr_info("%pV", &vaf);
va_end(args);
return;
}
/* Measure the output. */
va_start(args, msg);
n = vsnprintf(NULL, 0, msg, args);
va_end(args);
if (n <= 0)
return;
/* Reallocate the string buffer as needed. */
total = log_ctx->pos + n + 1;
if (total > log_ctx->size) {
char *buf = (char *)kvcalloc(total, sizeof(char), GFP_KERNEL);
if (buf) {
memcpy(buf, log_ctx->buf, log_ctx->pos);
kfree(log_ctx->buf);
log_ctx->buf = buf;
log_ctx->size = total;
}
}
if (!log_ctx->buf)
return;
/* Write the formatted string to the log buffer. */
va_start(args, msg);
n = vscnprintf(
log_ctx->buf + log_ctx->pos,
log_ctx->size - log_ctx->pos,
msg,
args);
va_end(args);
if (n > 0)
log_ctx->pos += n;
}
void dm_dtn_log_end(struct dc_context *ctx,
struct dc_log_buffer_ctx *log_ctx)
{
static const char msg[] = "[dtn end]\n";
if (!log_ctx) {
pr_info("%s", msg);
return;
}
dm_dtn_log_append_v(ctx, log_ctx, "%s", msg);
}
bool dm_helpers_dp_mst_start_top_mgr(
struct dc_context *ctx,
const struct dc_link *link,
bool boot)
{
struct amdgpu_dm_connector *aconnector = link->priv;
int ret;
if (!aconnector) {
DRM_ERROR("Failed to find connector for link!");
return false;
}
if (boot) {
DRM_INFO("DM_MST: Differing MST start on aconnector: %p [id: %d]\n",
aconnector, aconnector->base.base.id);
return true;
}
DRM_INFO("DM_MST: starting TM on aconnector: %p [id: %d]\n",
aconnector, aconnector->base.base.id);
ret = drm_dp_mst_topology_mgr_set_mst(&aconnector->mst_mgr, true);
if (ret < 0) {
DRM_ERROR("DM_MST: Failed to set the device into MST mode!");
return false;
}
DRM_INFO("DM_MST: DP%x, %d-lane link detected\n", aconnector->mst_mgr.dpcd[0],
aconnector->mst_mgr.dpcd[2] & DP_MAX_LANE_COUNT_MASK);
return true;
}
bool dm_helpers_dp_mst_stop_top_mgr(
struct dc_context *ctx,
struct dc_link *link)
{
struct amdgpu_dm_connector *aconnector = link->priv;
if (!aconnector) {
DRM_ERROR("Failed to find connector for link!");
return false;
}
DRM_INFO("DM_MST: stopping TM on aconnector: %p [id: %d]\n",
aconnector, aconnector->base.base.id);
if (aconnector->mst_mgr.mst_state == true) {
drm_dp_mst_topology_mgr_set_mst(&aconnector->mst_mgr, false);
link->cur_link_settings.lane_count = 0;
}
return false;
}
bool dm_helpers_dp_read_dpcd(
struct dc_context *ctx,
const struct dc_link *link,
uint32_t address,
uint8_t *data,
uint32_t size)
{
struct amdgpu_dm_connector *aconnector = link->priv;
if (!aconnector) {
DC_LOG_DC("Failed to find connector for link!\n");
return false;
}
return drm_dp_dpcd_read(&aconnector->dm_dp_aux.aux, address,
data, size) > 0;
}
bool dm_helpers_dp_write_dpcd(
struct dc_context *ctx,
const struct dc_link *link,
uint32_t address,
const uint8_t *data,
uint32_t size)
{
struct amdgpu_dm_connector *aconnector = link->priv;
if (!aconnector) {
DRM_ERROR("Failed to find connector for link!");
return false;
}
return drm_dp_dpcd_write(&aconnector->dm_dp_aux.aux,
address, (uint8_t *)data, size) > 0;
}
bool dm_helpers_submit_i2c(
struct dc_context *ctx,
const struct dc_link *link,
struct i2c_command *cmd)
{
struct amdgpu_dm_connector *aconnector = link->priv;
struct i2c_msg *msgs;
int i = 0;
int num = cmd->number_of_payloads;
bool result;
if (!aconnector) {
DRM_ERROR("Failed to find connector for link!");
return false;
}
msgs = kcalloc(num, sizeof(struct i2c_msg), GFP_KERNEL);
if (!msgs)
return false;
for (i = 0; i < num; i++) {
msgs[i].flags = cmd->payloads[i].write ? 0 : I2C_M_RD;
msgs[i].addr = cmd->payloads[i].address;
msgs[i].len = cmd->payloads[i].length;
msgs[i].buf = cmd->payloads[i].data;
}
result = i2c_transfer(&aconnector->i2c->base, msgs, num) == num;
kfree(msgs);
return result;
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
static bool execute_synaptics_rc_command(struct drm_dp_aux *aux,
bool is_write_cmd,
unsigned char cmd,
unsigned int length,
unsigned int offset,
unsigned char *data)
{
bool success = false;
unsigned char rc_data[16] = {0};
unsigned char rc_offset[4] = {0};
unsigned char rc_length[2] = {0};
unsigned char rc_cmd = 0;
unsigned char rc_result = 0xFF;
unsigned char i = 0;
int ret;
if (is_write_cmd) {
// write rc data
memmove(rc_data, data, length);
ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_DATA, rc_data, sizeof(rc_data));
}
// write rc offset
rc_offset[0] = (unsigned char) offset & 0xFF;
rc_offset[1] = (unsigned char) (offset >> 8) & 0xFF;
rc_offset[2] = (unsigned char) (offset >> 16) & 0xFF;
rc_offset[3] = (unsigned char) (offset >> 24) & 0xFF;
ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_OFFSET, rc_offset, sizeof(rc_offset));
// write rc length
rc_length[0] = (unsigned char) length & 0xFF;
rc_length[1] = (unsigned char) (length >> 8) & 0xFF;
ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_LENGTH, rc_length, sizeof(rc_length));
// write rc cmd
rc_cmd = cmd | 0x80;
ret = drm_dp_dpcd_write(aux, SYNAPTICS_RC_COMMAND, &rc_cmd, sizeof(rc_cmd));
if (ret < 0) {
DRM_ERROR(" execute_synaptics_rc_command - write cmd ..., err = %d\n", ret);
return false;
}
// poll until active is 0
for (i = 0; i < 10; i++) {
drm_dp_dpcd_read(aux, SYNAPTICS_RC_COMMAND, &rc_cmd, sizeof(rc_cmd));
if (rc_cmd == cmd)
// active is 0
break;
msleep(10);
}
// read rc result
drm_dp_dpcd_read(aux, SYNAPTICS_RC_RESULT, &rc_result, sizeof(rc_result));
success = (rc_result == 0);
if (success && !is_write_cmd) {
// read rc data
drm_dp_dpcd_read(aux, SYNAPTICS_RC_DATA, data, length);
}
DC_LOG_DC(" execute_synaptics_rc_command - success = %d\n", success);
return success;
}
static void apply_synaptics_fifo_reset_wa(struct drm_dp_aux *aux)
{
unsigned char data[16] = {0};
DC_LOG_DC("Start apply_synaptics_fifo_reset_wa\n");
// Step 2
data[0] = 'P';
data[1] = 'R';
data[2] = 'I';
data[3] = 'U';
data[4] = 'S';
if (!execute_synaptics_rc_command(aux, true, 0x01, 5, 0, data))
return;
// Step 3 and 4
if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220998, data))
return;
data[0] &= (~(1 << 1)); // set bit 1 to 0
if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x220998, data))
return;
if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220D98, data))
return;
data[0] &= (~(1 << 1)); // set bit 1 to 0
if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x220D98, data))
return;
if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x221198, data))
return;
data[0] &= (~(1 << 1)); // set bit 1 to 0
if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x221198, data))
return;
// Step 3 and 5
if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220998, data))
return;
data[0] |= (1 << 1); // set bit 1 to 1
if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x220998, data))
return;
if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x220D98, data))
return;
data[0] |= (1 << 1); // set bit 1 to 1
return;
if (!execute_synaptics_rc_command(aux, false, 0x31, 4, 0x221198, data))
return;
data[0] |= (1 << 1); // set bit 1 to 1
if (!execute_synaptics_rc_command(aux, true, 0x21, 4, 0x221198, data))
return;
// Step 6
if (!execute_synaptics_rc_command(aux, true, 0x02, 0, 0, NULL))
return;
DC_LOG_DC("Done apply_synaptics_fifo_reset_wa\n");
}
static uint8_t write_dsc_enable_synaptics_non_virtual_dpcd_mst(
struct drm_dp_aux *aux,
const struct dc_stream_state *stream,
bool enable)
{
uint8_t ret = 0;
DC_LOG_DC("Configure DSC to non-virtual dpcd synaptics\n");
if (enable) {
/* When DSC is enabled on previous boot and reboot with the hub,
* there is a chance that Synaptics hub gets stuck during reboot sequence.
* Applying a workaround to reset Synaptics SDP fifo before enabling the first stream
*/
if (!stream->link->link_status.link_active &&
memcmp(stream->link->dpcd_caps.branch_dev_name,
(int8_t *)SYNAPTICS_DEVICE_ID, 4) == 0)
apply_synaptics_fifo_reset_wa(aux);
ret = drm_dp_dpcd_write(aux, DP_DSC_ENABLE, &enable, 1);
DRM_INFO("Send DSC enable to synaptics\n");
} else {
/* Synaptics hub not support virtual dpcd,
* external monitor occur garbage while disable DSC,
* Disable DSC only when entire link status turn to false,
*/
if (!stream->link->link_status.link_active) {
ret = drm_dp_dpcd_write(aux, DP_DSC_ENABLE, &enable, 1);
DRM_INFO("Send DSC disable to synaptics\n");
}
}
return ret;
}
#endif
bool dm_helpers_dp_write_dsc_enable(
struct dc_context *ctx,
const struct dc_stream_state *stream,
bool enable)
{
static const uint8_t DSC_DISABLE;
static const uint8_t DSC_DECODING = 0x01;
static const uint8_t DSC_PASSTHROUGH = 0x02;
struct amdgpu_dm_connector *aconnector;
struct drm_dp_mst_port *port;
uint8_t enable_dsc = enable ? DSC_DECODING : DSC_DISABLE;
uint8_t enable_passthrough = enable ? DSC_PASSTHROUGH : DSC_DISABLE;
uint8_t ret = 0;
if (!stream)
return false;
if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context;
if (!aconnector->dsc_aux)
return false;
#if defined(CONFIG_DRM_AMD_DC_DCN)
// apply w/a to synaptics
if (needs_dsc_aux_workaround(aconnector->dc_link) &&
(aconnector->mst_downstream_port_present.byte & 0x7) != 0x3)
return write_dsc_enable_synaptics_non_virtual_dpcd_mst(
aconnector->dsc_aux, stream, enable_dsc);
#endif
port = aconnector->mst_output_port;
if (enable) {
if (port->passthrough_aux) {
ret = drm_dp_dpcd_write(port->passthrough_aux,
DP_DSC_ENABLE,
&enable_passthrough, 1);
DC_LOG_DC("Sent DSC pass-through enable to virtual dpcd port, ret = %u\n",
ret);
}
ret = drm_dp_dpcd_write(aconnector->dsc_aux,
DP_DSC_ENABLE, &enable_dsc, 1);
DC_LOG_DC("Sent DSC decoding enable to %s port, ret = %u\n",
(port->passthrough_aux) ? "remote RX" :
"virtual dpcd",
ret);
} else {
ret = drm_dp_dpcd_write(aconnector->dsc_aux,
DP_DSC_ENABLE, &enable_dsc, 1);
DC_LOG_DC("Sent DSC decoding disable to %s port, ret = %u\n",
(port->passthrough_aux) ? "remote RX" :
"virtual dpcd",
ret);
if (port->passthrough_aux) {
ret = drm_dp_dpcd_write(port->passthrough_aux,
DP_DSC_ENABLE,
&enable_passthrough, 1);
DC_LOG_DC("Sent DSC pass-through disable to virtual dpcd port, ret = %u\n",
ret);
}
}
}
if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT || stream->signal == SIGNAL_TYPE_EDP) {
#if defined(CONFIG_DRM_AMD_DC_DCN)
if (stream->sink->link->dpcd_caps.dongle_type == DISPLAY_DONGLE_NONE) {
#endif
ret = dm_helpers_dp_write_dpcd(ctx, stream->link, DP_DSC_ENABLE, &enable_dsc, 1);
DC_LOG_DC("Send DSC %s to SST RX\n", enable_dsc ? "enable" : "disable");
#if defined(CONFIG_DRM_AMD_DC_DCN)
} else if (stream->sink->link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_HDMI_CONVERTER) {
ret = dm_helpers_dp_write_dpcd(ctx, stream->link, DP_DSC_ENABLE, &enable_dsc, 1);
DC_LOG_DC("Send DSC %s to DP-HDMI PCON\n", enable_dsc ? "enable" : "disable");
}
#endif
}
return ret;
}
bool dm_helpers_is_dp_sink_present(struct dc_link *link)
{
bool dp_sink_present;
struct amdgpu_dm_connector *aconnector = link->priv;
if (!aconnector) {
BUG_ON("Failed to find connector for link!");
return true;
}
mutex_lock(&aconnector->dm_dp_aux.aux.hw_mutex);
dp_sink_present = dc_link_is_dp_sink_present(link);
mutex_unlock(&aconnector->dm_dp_aux.aux.hw_mutex);
return dp_sink_present;
}
enum dc_edid_status dm_helpers_read_local_edid(
struct dc_context *ctx,
struct dc_link *link,
struct dc_sink *sink)
{
struct amdgpu_dm_connector *aconnector = link->priv;
struct drm_connector *connector = &aconnector->base;
struct i2c_adapter *ddc;
int retry = 3;
enum dc_edid_status edid_status;
struct edid *edid;
if (link->aux_mode)
ddc = &aconnector->dm_dp_aux.aux.ddc;
else
ddc = &aconnector->i2c->base;
/* some dongles read edid incorrectly the first time,
* do check sum and retry to make sure read correct edid.
*/
do {
edid = drm_get_edid(&aconnector->base, ddc);
/* DP Compliance Test 4.2.2.6 */
if (link->aux_mode && connector->edid_corrupt)
drm_dp_send_real_edid_checksum(&aconnector->dm_dp_aux.aux, connector->real_edid_checksum);
if (!edid && connector->edid_corrupt) {
connector->edid_corrupt = false;
return EDID_BAD_CHECKSUM;
}
if (!edid)
return EDID_NO_RESPONSE;
sink->dc_edid.length = EDID_LENGTH * (edid->extensions + 1);
memmove(sink->dc_edid.raw_edid, (uint8_t *)edid, sink->dc_edid.length);
/* We don't need the original edid anymore */
kfree(edid);
edid_status = dm_helpers_parse_edid_caps(
link,
&sink->dc_edid,
&sink->edid_caps);
} while (edid_status == EDID_BAD_CHECKSUM && --retry > 0);
if (edid_status != EDID_OK)
DRM_ERROR("EDID err: %d, on connector: %s",
edid_status,
aconnector->base.name);
/* DP Compliance Test 4.2.2.3 */
if (link->aux_mode)
drm_dp_send_real_edid_checksum(&aconnector->dm_dp_aux.aux, sink->dc_edid.raw_edid[sink->dc_edid.length-1]);
return edid_status;
}
int dm_helper_dmub_aux_transfer_sync(
struct dc_context *ctx,
const struct dc_link *link,
struct aux_payload *payload,
enum aux_return_code_type *operation_result)
{
return amdgpu_dm_process_dmub_aux_transfer_sync(ctx, link->link_index, payload,
operation_result);
}
int dm_helpers_dmub_set_config_sync(struct dc_context *ctx,
const struct dc_link *link,
struct set_config_cmd_payload *payload,
enum set_config_status *operation_result)
{
return amdgpu_dm_process_dmub_set_config_sync(ctx, link->link_index, payload,
operation_result);
}
void dm_set_dcn_clocks(struct dc_context *ctx, struct dc_clocks *clks)
{
/* TODO: something */
}
void dm_helpers_smu_timeout(struct dc_context *ctx, unsigned int msg_id, unsigned int param, unsigned int timeout_us)
{
// TODO:
//amdgpu_device_gpu_recover(dc_context->driver-context, NULL);
}
void dm_helpers_init_panel_settings(
struct dc_context *ctx,
struct dc_panel_config *panel_config,
struct dc_sink *sink)
{
// Extra Panel Power Sequence
panel_config->pps.extra_t3_ms = sink->edid_caps.panel_patch.extra_t3_ms;
panel_config->pps.extra_t7_ms = sink->edid_caps.panel_patch.extra_t7_ms;
panel_config->pps.extra_delay_backlight_off = sink->edid_caps.panel_patch.extra_delay_backlight_off;
panel_config->pps.extra_post_t7_ms = 0;
panel_config->pps.extra_pre_t11_ms = 0;
panel_config->pps.extra_t12_ms = sink->edid_caps.panel_patch.extra_t12_ms;
panel_config->pps.extra_post_OUI_ms = 0;
// Feature DSC
panel_config->dsc.disable_dsc_edp = false;
panel_config->dsc.force_dsc_edp_policy = 0;
}
void dm_helpers_override_panel_settings(
struct dc_context *ctx,
struct dc_panel_config *panel_config)
{
// Feature DSC
if (amdgpu_dc_debug_mask & DC_DISABLE_DSC) {
panel_config->dsc.disable_dsc_edp = true;
}
}
void *dm_helpers_allocate_gpu_mem(
struct dc_context *ctx,
enum dc_gpu_mem_alloc_type type,
size_t size,
long long *addr)
{
struct amdgpu_device *adev = ctx->driver_context;
struct dal_allocation *da;
u32 domain = (type == DC_MEM_ALLOC_TYPE_GART) ?
AMDGPU_GEM_DOMAIN_GTT : AMDGPU_GEM_DOMAIN_VRAM;
int ret;
da = kzalloc(sizeof(struct dal_allocation), GFP_KERNEL);
if (!da)
return NULL;
ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
domain, &da->bo,
&da->gpu_addr, &da->cpu_ptr);
*addr = da->gpu_addr;
if (ret) {
kfree(da);
return NULL;
}
/* add da to list in dm */
list_add(&da->list, &adev->dm.da_list);
return da->cpu_ptr;
}
void dm_helpers_free_gpu_mem(
struct dc_context *ctx,
enum dc_gpu_mem_alloc_type type,
void *pvMem)
{
struct amdgpu_device *adev = ctx->driver_context;
struct dal_allocation *da;
/* walk the da list in DM */
list_for_each_entry(da, &adev->dm.da_list, list) {
if (pvMem == da->cpu_ptr) {
amdgpu_bo_free_kernel(&da->bo, &da->gpu_addr, &da->cpu_ptr);
list_del(&da->list);
kfree(da);
break;
}
}
}
bool dm_helpers_dmub_outbox_interrupt_control(struct dc_context *ctx, bool enable)
{
enum dc_irq_source irq_source;
bool ret;
irq_source = DC_IRQ_SOURCE_DMCUB_OUTBOX;
ret = dc_interrupt_set(ctx->dc, irq_source, enable);
DRM_DEBUG_DRIVER("Dmub trace irq %sabling: r=%d\n",
enable ? "en" : "dis", ret);
return ret;
}
void dm_helpers_mst_enable_stream_features(const struct dc_stream_state *stream)
{
/* TODO: virtual DPCD */
struct dc_link *link = stream->link;
union down_spread_ctrl old_downspread;
union down_spread_ctrl new_downspread;
if (link->aux_access_disabled)
return;
if (!dm_helpers_dp_read_dpcd(link->ctx, link, DP_DOWNSPREAD_CTRL,
&old_downspread.raw,
sizeof(old_downspread)))
return;
new_downspread.raw = old_downspread.raw;
new_downspread.bits.IGNORE_MSA_TIMING_PARAM =
(stream->ignore_msa_timing_param) ? 1 : 0;
if (new_downspread.raw != old_downspread.raw)
dm_helpers_dp_write_dpcd(link->ctx, link, DP_DOWNSPREAD_CTRL,
&new_downspread.raw,
sizeof(new_downspread));
}
bool dm_helpers_dp_handle_test_pattern_request(
struct dc_context *ctx,
const struct dc_link *link,
union link_test_pattern dpcd_test_pattern,
union test_misc dpcd_test_params)
{
enum dp_test_pattern test_pattern;
enum dp_test_pattern_color_space test_pattern_color_space =
DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED;
enum dc_color_depth requestColorDepth = COLOR_DEPTH_UNDEFINED;
enum dc_pixel_encoding requestPixelEncoding = PIXEL_ENCODING_UNDEFINED;
struct pipe_ctx *pipes = link->dc->current_state->res_ctx.pipe_ctx;
struct pipe_ctx *pipe_ctx = NULL;
struct amdgpu_dm_connector *aconnector = link->priv;
int i;
for (i = 0; i < MAX_PIPES; i++) {
if (pipes[i].stream == NULL)
continue;
if (pipes[i].stream->link == link && !pipes[i].top_pipe &&
!pipes[i].prev_odm_pipe) {
pipe_ctx = &pipes[i];
break;
}
}
if (pipe_ctx == NULL)
return false;
switch (dpcd_test_pattern.bits.PATTERN) {
case LINK_TEST_PATTERN_COLOR_RAMP:
test_pattern = DP_TEST_PATTERN_COLOR_RAMP;
break;
case LINK_TEST_PATTERN_VERTICAL_BARS:
test_pattern = DP_TEST_PATTERN_VERTICAL_BARS;
break; /* black and white */
case LINK_TEST_PATTERN_COLOR_SQUARES:
test_pattern = (dpcd_test_params.bits.DYN_RANGE ==
TEST_DYN_RANGE_VESA ?
DP_TEST_PATTERN_COLOR_SQUARES :
DP_TEST_PATTERN_COLOR_SQUARES_CEA);
break;
default:
test_pattern = DP_TEST_PATTERN_VIDEO_MODE;
break;
}
if (dpcd_test_params.bits.CLR_FORMAT == 0)
test_pattern_color_space = DP_TEST_PATTERN_COLOR_SPACE_RGB;
else
test_pattern_color_space = dpcd_test_params.bits.YCBCR_COEFS ?
DP_TEST_PATTERN_COLOR_SPACE_YCBCR709 :
DP_TEST_PATTERN_COLOR_SPACE_YCBCR601;
switch (dpcd_test_params.bits.BPC) {
case 0: // 6 bits
requestColorDepth = COLOR_DEPTH_666;
break;
case 1: // 8 bits
requestColorDepth = COLOR_DEPTH_888;
break;
case 2: // 10 bits
requestColorDepth = COLOR_DEPTH_101010;
break;
case 3: // 12 bits
requestColorDepth = COLOR_DEPTH_121212;
break;
default:
break;
}
switch (dpcd_test_params.bits.CLR_FORMAT) {
case 0:
requestPixelEncoding = PIXEL_ENCODING_RGB;
break;
case 1:
requestPixelEncoding = PIXEL_ENCODING_YCBCR422;
break;
case 2:
requestPixelEncoding = PIXEL_ENCODING_YCBCR444;
break;
default:
requestPixelEncoding = PIXEL_ENCODING_RGB;
break;
}
if ((requestColorDepth != COLOR_DEPTH_UNDEFINED
&& pipe_ctx->stream->timing.display_color_depth != requestColorDepth)
|| (requestPixelEncoding != PIXEL_ENCODING_UNDEFINED
&& pipe_ctx->stream->timing.pixel_encoding != requestPixelEncoding)) {
DC_LOG_DEBUG("%s: original bpc %d pix encoding %d, changing to %d %d\n",
__func__,
pipe_ctx->stream->timing.display_color_depth,
pipe_ctx->stream->timing.pixel_encoding,
requestColorDepth,
requestPixelEncoding);
pipe_ctx->stream->timing.display_color_depth = requestColorDepth;
pipe_ctx->stream->timing.pixel_encoding = requestPixelEncoding;
dc_link_update_dsc_config(pipe_ctx);
aconnector->timing_changed = true;
/* store current timing */
if (aconnector->timing_requested)
*aconnector->timing_requested = pipe_ctx->stream->timing;
else
DC_LOG_ERROR("%s: timing storage failed\n", __func__);
}
dc_link_dp_set_test_pattern(
(struct dc_link *) link,
test_pattern,
test_pattern_color_space,
NULL,
NULL,
0);
return false;
}
void dm_set_phyd32clk(struct dc_context *ctx, int freq_khz)
{
// TODO
}
void dm_helpers_enable_periodic_detection(struct dc_context *ctx, bool enable)
{
/* TODO: add periodic detection implementation */
}
void dm_helpers_dp_mst_update_branch_bandwidth(
struct dc_context *ctx,
struct dc_link *link)
{
// TODO
}
static bool dm_is_freesync_pcon_whitelist(const uint32_t branch_dev_id)
{
bool ret_val = false;
switch (branch_dev_id) {
case DP_BRANCH_DEVICE_ID_0060AD:
case DP_BRANCH_DEVICE_ID_00E04C:
case DP_BRANCH_DEVICE_ID_90CC24:
ret_val = true;
break;
default:
break;
}
return ret_val;
}
enum adaptive_sync_type dm_get_adaptive_sync_support_type(struct dc_link *link)
{
struct dpcd_caps *dpcd_caps = &link->dpcd_caps;
enum adaptive_sync_type as_type = ADAPTIVE_SYNC_TYPE_NONE;
switch (dpcd_caps->dongle_type) {
case DISPLAY_DONGLE_DP_HDMI_CONVERTER:
if (dpcd_caps->adaptive_sync_caps.dp_adap_sync_caps.bits.ADAPTIVE_SYNC_SDP_SUPPORT == true &&
dpcd_caps->allow_invalid_MSA_timing_param == true &&
dm_is_freesync_pcon_whitelist(dpcd_caps->branch_dev_id))
as_type = FREESYNC_TYPE_PCON_IN_WHITELIST;
break;
default:
break;
}
return as_type;
}