|  | /* SPDX-License-Identifier: GPL-2.0+ */ | 
|  | /* | 
|  | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | 
|  | * Internal non-public definitions that provide either classic | 
|  | * or preemptible semantics. | 
|  | * | 
|  | * Copyright Red Hat, 2009 | 
|  | * Copyright IBM Corporation, 2009 | 
|  | * | 
|  | * Author: Ingo Molnar <mingo@elte.hu> | 
|  | *	   Paul E. McKenney <paulmck@linux.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include "../locking/rtmutex_common.h" | 
|  |  | 
|  | static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) | 
|  | { | 
|  | /* | 
|  | * In order to read the offloaded state of an rdp in a safe | 
|  | * and stable way and prevent from its value to be changed | 
|  | * under us, we must either hold the barrier mutex, the cpu | 
|  | * hotplug lock (read or write) or the nocb lock. Local | 
|  | * non-preemptible reads are also safe. NOCB kthreads and | 
|  | * timers have their own means of synchronization against the | 
|  | * offloaded state updaters. | 
|  | */ | 
|  | RCU_LOCKDEP_WARN( | 
|  | !(lockdep_is_held(&rcu_state.barrier_mutex) || | 
|  | (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || | 
|  | rcu_lockdep_is_held_nocb(rdp) || | 
|  | (rdp == this_cpu_ptr(&rcu_data) && | 
|  | !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || | 
|  | rcu_current_is_nocb_kthread(rdp)), | 
|  | "Unsafe read of RCU_NOCB offloaded state" | 
|  | ); | 
|  |  | 
|  | return rcu_segcblist_is_offloaded(&rdp->cblist); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the RCU kernel configuration parameters and print informative | 
|  | * messages about anything out of the ordinary. | 
|  | */ | 
|  | static void __init rcu_bootup_announce_oddness(void) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_RCU_TRACE)) | 
|  | pr_info("\tRCU event tracing is enabled.\n"); | 
|  | if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || | 
|  | (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) | 
|  | pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", | 
|  | RCU_FANOUT); | 
|  | if (rcu_fanout_exact) | 
|  | pr_info("\tHierarchical RCU autobalancing is disabled.\n"); | 
|  | if (IS_ENABLED(CONFIG_PROVE_RCU)) | 
|  | pr_info("\tRCU lockdep checking is enabled.\n"); | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | 
|  | pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n"); | 
|  | if (RCU_NUM_LVLS >= 4) | 
|  | pr_info("\tFour(or more)-level hierarchy is enabled.\n"); | 
|  | if (RCU_FANOUT_LEAF != 16) | 
|  | pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", | 
|  | RCU_FANOUT_LEAF); | 
|  | if (rcu_fanout_leaf != RCU_FANOUT_LEAF) | 
|  | pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", | 
|  | rcu_fanout_leaf); | 
|  | if (nr_cpu_ids != NR_CPUS) | 
|  | pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", | 
|  | kthread_prio, CONFIG_RCU_BOOST_DELAY); | 
|  | #endif | 
|  | if (blimit != DEFAULT_RCU_BLIMIT) | 
|  | pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); | 
|  | if (qhimark != DEFAULT_RCU_QHIMARK) | 
|  | pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); | 
|  | if (qlowmark != DEFAULT_RCU_QLOMARK) | 
|  | pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); | 
|  | if (qovld != DEFAULT_RCU_QOVLD) | 
|  | pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); | 
|  | if (jiffies_till_first_fqs != ULONG_MAX) | 
|  | pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); | 
|  | if (jiffies_till_next_fqs != ULONG_MAX) | 
|  | pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); | 
|  | if (jiffies_till_sched_qs != ULONG_MAX) | 
|  | pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); | 
|  | if (rcu_kick_kthreads) | 
|  | pr_info("\tKick kthreads if too-long grace period.\n"); | 
|  | if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) | 
|  | pr_info("\tRCU callback double-/use-after-free debug is enabled.\n"); | 
|  | if (gp_preinit_delay) | 
|  | pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); | 
|  | if (gp_init_delay) | 
|  | pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); | 
|  | if (gp_cleanup_delay) | 
|  | pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay); | 
|  | if (!use_softirq) | 
|  | pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); | 
|  | if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) | 
|  | pr_info("\tRCU debug extended QS entry/exit.\n"); | 
|  | rcupdate_announce_bootup_oddness(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  |  | 
|  | static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); | 
|  | static void rcu_read_unlock_special(struct task_struct *t); | 
|  |  | 
|  | /* | 
|  | * Tell them what RCU they are running. | 
|  | */ | 
|  | static void __init rcu_bootup_announce(void) | 
|  | { | 
|  | pr_info("Preemptible hierarchical RCU implementation.\n"); | 
|  | rcu_bootup_announce_oddness(); | 
|  | } | 
|  |  | 
|  | /* Flags for rcu_preempt_ctxt_queue() decision table. */ | 
|  | #define RCU_GP_TASKS	0x8 | 
|  | #define RCU_EXP_TASKS	0x4 | 
|  | #define RCU_GP_BLKD	0x2 | 
|  | #define RCU_EXP_BLKD	0x1 | 
|  |  | 
|  | /* | 
|  | * Queues a task preempted within an RCU-preempt read-side critical | 
|  | * section into the appropriate location within the ->blkd_tasks list, | 
|  | * depending on the states of any ongoing normal and expedited grace | 
|  | * periods.  The ->gp_tasks pointer indicates which element the normal | 
|  | * grace period is waiting on (NULL if none), and the ->exp_tasks pointer | 
|  | * indicates which element the expedited grace period is waiting on (again, | 
|  | * NULL if none).  If a grace period is waiting on a given element in the | 
|  | * ->blkd_tasks list, it also waits on all subsequent elements.  Thus, | 
|  | * adding a task to the tail of the list blocks any grace period that is | 
|  | * already waiting on one of the elements.  In contrast, adding a task | 
|  | * to the head of the list won't block any grace period that is already | 
|  | * waiting on one of the elements. | 
|  | * | 
|  | * This queuing is imprecise, and can sometimes make an ongoing grace | 
|  | * period wait for a task that is not strictly speaking blocking it. | 
|  | * Given the choice, we needlessly block a normal grace period rather than | 
|  | * blocking an expedited grace period. | 
|  | * | 
|  | * Note that an endless sequence of expedited grace periods still cannot | 
|  | * indefinitely postpone a normal grace period.  Eventually, all of the | 
|  | * fixed number of preempted tasks blocking the normal grace period that are | 
|  | * not also blocking the expedited grace period will resume and complete | 
|  | * their RCU read-side critical sections.  At that point, the ->gp_tasks | 
|  | * pointer will equal the ->exp_tasks pointer, at which point the end of | 
|  | * the corresponding expedited grace period will also be the end of the | 
|  | * normal grace period. | 
|  | */ | 
|  | static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | __releases(rnp->lock) /* But leaves rrupts disabled. */ | 
|  | { | 
|  | int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + | 
|  | (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + | 
|  | (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + | 
|  | (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  | WARN_ON_ONCE(rdp->mynode != rnp); | 
|  | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); | 
|  | /* RCU better not be waiting on newly onlined CPUs! */ | 
|  | WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & | 
|  | rdp->grpmask); | 
|  |  | 
|  | /* | 
|  | * Decide where to queue the newly blocked task.  In theory, | 
|  | * this could be an if-statement.  In practice, when I tried | 
|  | * that, it was quite messy. | 
|  | */ | 
|  | switch (blkd_state) { | 
|  | case 0: | 
|  | case                RCU_EXP_TASKS: | 
|  | case                RCU_EXP_TASKS + RCU_GP_BLKD: | 
|  | case RCU_GP_TASKS: | 
|  | case RCU_GP_TASKS + RCU_EXP_TASKS: | 
|  |  | 
|  | /* | 
|  | * Blocking neither GP, or first task blocking the normal | 
|  | * GP but not blocking the already-waiting expedited GP. | 
|  | * Queue at the head of the list to avoid unnecessarily | 
|  | * blocking the already-waiting GPs. | 
|  | */ | 
|  | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | 
|  | break; | 
|  |  | 
|  | case                                              RCU_EXP_BLKD: | 
|  | case                                RCU_GP_BLKD: | 
|  | case                                RCU_GP_BLKD + RCU_EXP_BLKD: | 
|  | case RCU_GP_TASKS +                               RCU_EXP_BLKD: | 
|  | case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD: | 
|  | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: | 
|  |  | 
|  | /* | 
|  | * First task arriving that blocks either GP, or first task | 
|  | * arriving that blocks the expedited GP (with the normal | 
|  | * GP already waiting), or a task arriving that blocks | 
|  | * both GPs with both GPs already waiting.  Queue at the | 
|  | * tail of the list to avoid any GP waiting on any of the | 
|  | * already queued tasks that are not blocking it. | 
|  | */ | 
|  | list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); | 
|  | break; | 
|  |  | 
|  | case                RCU_EXP_TASKS +               RCU_EXP_BLKD: | 
|  | case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: | 
|  | case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD: | 
|  |  | 
|  | /* | 
|  | * Second or subsequent task blocking the expedited GP. | 
|  | * The task either does not block the normal GP, or is the | 
|  | * first task blocking the normal GP.  Queue just after | 
|  | * the first task blocking the expedited GP. | 
|  | */ | 
|  | list_add(&t->rcu_node_entry, rnp->exp_tasks); | 
|  | break; | 
|  |  | 
|  | case RCU_GP_TASKS +                 RCU_GP_BLKD: | 
|  | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: | 
|  |  | 
|  | /* | 
|  | * Second or subsequent task blocking the normal GP. | 
|  | * The task does not block the expedited GP. Queue just | 
|  | * after the first task blocking the normal GP. | 
|  | */ | 
|  | list_add(&t->rcu_node_entry, rnp->gp_tasks); | 
|  | break; | 
|  |  | 
|  | default: | 
|  |  | 
|  | /* Yet another exercise in excessive paranoia. */ | 
|  | WARN_ON_ONCE(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have now queued the task.  If it was the first one to | 
|  | * block either grace period, update the ->gp_tasks and/or | 
|  | * ->exp_tasks pointers, respectively, to reference the newly | 
|  | * blocked tasks. | 
|  | */ | 
|  | if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { | 
|  | WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); | 
|  | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); | 
|  | } | 
|  | if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) | 
|  | WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); | 
|  | WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != | 
|  | !(rnp->qsmask & rdp->grpmask)); | 
|  | WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != | 
|  | !(rnp->expmask & rdp->grpmask)); | 
|  | raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ | 
|  |  | 
|  | /* | 
|  | * Report the quiescent state for the expedited GP.  This expedited | 
|  | * GP should not be able to end until we report, so there should be | 
|  | * no need to check for a subsequent expedited GP.  (Though we are | 
|  | * still in a quiescent state in any case.) | 
|  | * | 
|  | * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change. | 
|  | */ | 
|  | if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp) | 
|  | rcu_report_exp_rdp(rdp); | 
|  | else | 
|  | WARN_ON_ONCE(rdp->cpu_no_qs.b.exp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record a preemptible-RCU quiescent state for the specified CPU. | 
|  | * Note that this does not necessarily mean that the task currently running | 
|  | * on the CPU is in a quiescent state:  Instead, it means that the current | 
|  | * grace period need not wait on any RCU read-side critical section that | 
|  | * starts later on this CPU.  It also means that if the current task is | 
|  | * in an RCU read-side critical section, it has already added itself to | 
|  | * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the | 
|  | * current task, there might be any number of other tasks blocked while | 
|  | * in an RCU read-side critical section. | 
|  | * | 
|  | * Unlike non-preemptible-RCU, quiescent state reports for expedited | 
|  | * grace periods are handled separately via deferred quiescent states | 
|  | * and context switch events. | 
|  | * | 
|  | * Callers to this function must disable preemption. | 
|  | */ | 
|  | static void rcu_qs(void) | 
|  | { | 
|  | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); | 
|  | if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) { | 
|  | trace_rcu_grace_period(TPS("rcu_preempt"), | 
|  | __this_cpu_read(rcu_data.gp_seq), | 
|  | TPS("cpuqs")); | 
|  | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); | 
|  | barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ | 
|  | WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have entered the scheduler, and the current task might soon be | 
|  | * context-switched away from.  If this task is in an RCU read-side | 
|  | * critical section, we will no longer be able to rely on the CPU to | 
|  | * record that fact, so we enqueue the task on the blkd_tasks list. | 
|  | * The task will dequeue itself when it exits the outermost enclosing | 
|  | * RCU read-side critical section.  Therefore, the current grace period | 
|  | * cannot be permitted to complete until the blkd_tasks list entries | 
|  | * predating the current grace period drain, in other words, until | 
|  | * rnp->gp_tasks becomes NULL. | 
|  | * | 
|  | * Caller must disable interrupts. | 
|  | */ | 
|  | void rcu_note_context_switch(bool preempt) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | trace_rcu_utilization(TPS("Start context switch")); | 
|  | lockdep_assert_irqs_disabled(); | 
|  | WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); | 
|  | if (rcu_preempt_depth() > 0 && | 
|  | !t->rcu_read_unlock_special.b.blocked) { | 
|  |  | 
|  | /* Possibly blocking in an RCU read-side critical section. */ | 
|  | rnp = rdp->mynode; | 
|  | raw_spin_lock_rcu_node(rnp); | 
|  | t->rcu_read_unlock_special.b.blocked = true; | 
|  | t->rcu_blocked_node = rnp; | 
|  |  | 
|  | /* | 
|  | * Verify the CPU's sanity, trace the preemption, and | 
|  | * then queue the task as required based on the states | 
|  | * of any ongoing and expedited grace periods. | 
|  | */ | 
|  | WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp)); | 
|  | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | 
|  | trace_rcu_preempt_task(rcu_state.name, | 
|  | t->pid, | 
|  | (rnp->qsmask & rdp->grpmask) | 
|  | ? rnp->gp_seq | 
|  | : rcu_seq_snap(&rnp->gp_seq)); | 
|  | rcu_preempt_ctxt_queue(rnp, rdp); | 
|  | } else { | 
|  | rcu_preempt_deferred_qs(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Either we were not in an RCU read-side critical section to | 
|  | * begin with, or we have now recorded that critical section | 
|  | * globally.  Either way, we can now note a quiescent state | 
|  | * for this CPU.  Again, if we were in an RCU read-side critical | 
|  | * section, and if that critical section was blocking the current | 
|  | * grace period, then the fact that the task has been enqueued | 
|  | * means that we continue to block the current grace period. | 
|  | */ | 
|  | rcu_qs(); | 
|  | if (rdp->cpu_no_qs.b.exp) | 
|  | rcu_report_exp_rdp(rdp); | 
|  | rcu_tasks_qs(current, preempt); | 
|  | trace_rcu_utilization(TPS("End context switch")); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | 
|  |  | 
|  | /* | 
|  | * Check for preempted RCU readers blocking the current grace period | 
|  | * for the specified rcu_node structure.  If the caller needs a reliable | 
|  | * answer, it must hold the rcu_node's ->lock. | 
|  | */ | 
|  | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
|  | { | 
|  | return READ_ONCE(rnp->gp_tasks) != NULL; | 
|  | } | 
|  |  | 
|  | /* limit value for ->rcu_read_lock_nesting. */ | 
|  | #define RCU_NEST_PMAX (INT_MAX / 2) | 
|  |  | 
|  | static void rcu_preempt_read_enter(void) | 
|  | { | 
|  | WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); | 
|  | } | 
|  |  | 
|  | static int rcu_preempt_read_exit(void) | 
|  | { | 
|  | int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; | 
|  |  | 
|  | WRITE_ONCE(current->rcu_read_lock_nesting, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void rcu_preempt_depth_set(int val) | 
|  | { | 
|  | WRITE_ONCE(current->rcu_read_lock_nesting, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preemptible RCU implementation for rcu_read_lock(). | 
|  | * Just increment ->rcu_read_lock_nesting, shared state will be updated | 
|  | * if we block. | 
|  | */ | 
|  | void __rcu_read_lock(void) | 
|  | { | 
|  | rcu_preempt_read_enter(); | 
|  | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) | 
|  | WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) | 
|  | WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); | 
|  | barrier();  /* critical section after entry code. */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__rcu_read_lock); | 
|  |  | 
|  | /* | 
|  | * Preemptible RCU implementation for rcu_read_unlock(). | 
|  | * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost | 
|  | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | 
|  | * invoke rcu_read_unlock_special() to clean up after a context switch | 
|  | * in an RCU read-side critical section and other special cases. | 
|  | */ | 
|  | void __rcu_read_unlock(void) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | barrier();  // critical section before exit code. | 
|  | if (rcu_preempt_read_exit() == 0) { | 
|  | barrier();  // critical-section exit before .s check. | 
|  | if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) | 
|  | rcu_read_unlock_special(t); | 
|  | } | 
|  | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { | 
|  | int rrln = rcu_preempt_depth(); | 
|  |  | 
|  | WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | 
|  |  | 
|  | /* | 
|  | * Advance a ->blkd_tasks-list pointer to the next entry, instead | 
|  | * returning NULL if at the end of the list. | 
|  | */ | 
|  | static struct list_head *rcu_next_node_entry(struct task_struct *t, | 
|  | struct rcu_node *rnp) | 
|  | { | 
|  | struct list_head *np; | 
|  |  | 
|  | np = t->rcu_node_entry.next; | 
|  | if (np == &rnp->blkd_tasks) | 
|  | np = NULL; | 
|  | return np; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the specified rcu_node structure has tasks that were | 
|  | * preempted within an RCU read-side critical section. | 
|  | */ | 
|  | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | 
|  | { | 
|  | return !list_empty(&rnp->blkd_tasks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report deferred quiescent states.  The deferral time can | 
|  | * be quite short, for example, in the case of the call from | 
|  | * rcu_read_unlock_special(). | 
|  | */ | 
|  | static notrace void | 
|  | rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) | 
|  | { | 
|  | bool empty_exp; | 
|  | bool empty_norm; | 
|  | bool empty_exp_now; | 
|  | struct list_head *np; | 
|  | bool drop_boost_mutex = false; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp; | 
|  | union rcu_special special; | 
|  |  | 
|  | /* | 
|  | * If RCU core is waiting for this CPU to exit its critical section, | 
|  | * report the fact that it has exited.  Because irqs are disabled, | 
|  | * t->rcu_read_unlock_special cannot change. | 
|  | */ | 
|  | special = t->rcu_read_unlock_special; | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | if (!special.s && !rdp->cpu_no_qs.b.exp) { | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  | t->rcu_read_unlock_special.s = 0; | 
|  | if (special.b.need_qs) { | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { | 
|  | rdp->cpu_no_qs.b.norm = false; | 
|  | rcu_report_qs_rdp(rdp); | 
|  | udelay(rcu_unlock_delay); | 
|  | } else { | 
|  | rcu_qs(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Respond to a request by an expedited grace period for a | 
|  | * quiescent state from this CPU.  Note that requests from | 
|  | * tasks are handled when removing the task from the | 
|  | * blocked-tasks list below. | 
|  | */ | 
|  | if (rdp->cpu_no_qs.b.exp) | 
|  | rcu_report_exp_rdp(rdp); | 
|  |  | 
|  | /* Clean up if blocked during RCU read-side critical section. */ | 
|  | if (special.b.blocked) { | 
|  |  | 
|  | /* | 
|  | * Remove this task from the list it blocked on.  The task | 
|  | * now remains queued on the rcu_node corresponding to the | 
|  | * CPU it first blocked on, so there is no longer any need | 
|  | * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia. | 
|  | */ | 
|  | rnp = t->rcu_blocked_node; | 
|  | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | 
|  | WARN_ON_ONCE(rnp != t->rcu_blocked_node); | 
|  | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); | 
|  | empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); | 
|  | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && | 
|  | (!empty_norm || rnp->qsmask)); | 
|  | empty_exp = sync_rcu_exp_done(rnp); | 
|  | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | 
|  | np = rcu_next_node_entry(t, rnp); | 
|  | list_del_init(&t->rcu_node_entry); | 
|  | t->rcu_blocked_node = NULL; | 
|  | trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), | 
|  | rnp->gp_seq, t->pid); | 
|  | if (&t->rcu_node_entry == rnp->gp_tasks) | 
|  | WRITE_ONCE(rnp->gp_tasks, np); | 
|  | if (&t->rcu_node_entry == rnp->exp_tasks) | 
|  | WRITE_ONCE(rnp->exp_tasks, np); | 
|  | if (IS_ENABLED(CONFIG_RCU_BOOST)) { | 
|  | /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ | 
|  | drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; | 
|  | if (&t->rcu_node_entry == rnp->boost_tasks) | 
|  | WRITE_ONCE(rnp->boost_tasks, np); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this was the last task on the current list, and if | 
|  | * we aren't waiting on any CPUs, report the quiescent state. | 
|  | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, | 
|  | * so we must take a snapshot of the expedited state. | 
|  | */ | 
|  | empty_exp_now = sync_rcu_exp_done(rnp); | 
|  | if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { | 
|  | trace_rcu_quiescent_state_report(TPS("preempt_rcu"), | 
|  | rnp->gp_seq, | 
|  | 0, rnp->qsmask, | 
|  | rnp->level, | 
|  | rnp->grplo, | 
|  | rnp->grphi, | 
|  | !!rnp->gp_tasks); | 
|  | rcu_report_unblock_qs_rnp(rnp, flags); | 
|  | } else { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this was the last task on the expedited lists, | 
|  | * then we need to report up the rcu_node hierarchy. | 
|  | */ | 
|  | if (!empty_exp && empty_exp_now) | 
|  | rcu_report_exp_rnp(rnp, true); | 
|  |  | 
|  | /* Unboost if we were boosted. */ | 
|  | if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) | 
|  | rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); | 
|  | } else { | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is a deferred quiescent-state pending, and are we also not in | 
|  | * an RCU read-side critical section?  It is the caller's responsibility | 
|  | * to ensure it is otherwise safe to report any deferred quiescent | 
|  | * states.  The reason for this is that it is safe to report a | 
|  | * quiescent state during context switch even though preemption | 
|  | * is disabled.  This function cannot be expected to understand these | 
|  | * nuances, so the caller must handle them. | 
|  | */ | 
|  | static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) | 
|  | { | 
|  | return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) || | 
|  | READ_ONCE(t->rcu_read_unlock_special.s)) && | 
|  | rcu_preempt_depth() == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report a deferred quiescent state if needed and safe to do so. | 
|  | * As with rcu_preempt_need_deferred_qs(), "safe" involves only | 
|  | * not being in an RCU read-side critical section.  The caller must | 
|  | * evaluate safety in terms of interrupt, softirq, and preemption | 
|  | * disabling. | 
|  | */ | 
|  | notrace void rcu_preempt_deferred_qs(struct task_struct *t) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!rcu_preempt_need_deferred_qs(t)) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  | rcu_preempt_deferred_qs_irqrestore(t, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Minimal handler to give the scheduler a chance to re-evaluate. | 
|  | */ | 
|  | static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  |  | 
|  | rdp = container_of(iwp, struct rcu_data, defer_qs_iw); | 
|  | rdp->defer_qs_iw_pending = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle special cases during rcu_read_unlock(), such as needing to | 
|  | * notify RCU core processing or task having blocked during the RCU | 
|  | * read-side critical section. | 
|  | */ | 
|  | static void rcu_read_unlock_special(struct task_struct *t) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool irqs_were_disabled; | 
|  | bool preempt_bh_were_disabled = | 
|  | !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); | 
|  |  | 
|  | /* NMI handlers cannot block and cannot safely manipulate state. */ | 
|  | if (in_nmi()) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | irqs_were_disabled = irqs_disabled_flags(flags); | 
|  | if (preempt_bh_were_disabled || irqs_were_disabled) { | 
|  | bool expboost; // Expedited GP in flight or possible boosting. | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  |  | 
|  | expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || | 
|  | (rdp->grpmask & READ_ONCE(rnp->expmask)) || | 
|  | (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && | 
|  | ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) || | 
|  | (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && | 
|  | t->rcu_blocked_node); | 
|  | // Need to defer quiescent state until everything is enabled. | 
|  | if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) { | 
|  | // Using softirq, safe to awaken, and either the | 
|  | // wakeup is free or there is either an expedited | 
|  | // GP in flight or a potential need to deboost. | 
|  | raise_softirq_irqoff(RCU_SOFTIRQ); | 
|  | } else { | 
|  | // Enabling BH or preempt does reschedule, so... | 
|  | // Also if no expediting and no possible deboosting, | 
|  | // slow is OK.  Plus nohz_full CPUs eventually get | 
|  | // tick enabled. | 
|  | set_tsk_need_resched(current); | 
|  | set_preempt_need_resched(); | 
|  | if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && | 
|  | expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { | 
|  | // Get scheduler to re-evaluate and call hooks. | 
|  | // If !IRQ_WORK, FQS scan will eventually IPI. | 
|  | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && | 
|  | IS_ENABLED(CONFIG_PREEMPT_RT)) | 
|  | rdp->defer_qs_iw = IRQ_WORK_INIT_HARD( | 
|  | rcu_preempt_deferred_qs_handler); | 
|  | else | 
|  | init_irq_work(&rdp->defer_qs_iw, | 
|  | rcu_preempt_deferred_qs_handler); | 
|  | rdp->defer_qs_iw_pending = true; | 
|  | irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); | 
|  | } | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  | rcu_preempt_deferred_qs_irqrestore(t, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the list of blocked tasks for the newly completed grace | 
|  | * period is in fact empty.  It is a serious bug to complete a grace | 
|  | * period that still has RCU readers blocked!  This function must be | 
|  | * invoked -before- updating this rnp's ->gp_seq. | 
|  | * | 
|  | * Also, if there are blocked tasks on the list, they automatically | 
|  | * block the newly created grace period, so set up ->gp_tasks accordingly. | 
|  | */ | 
|  | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) | 
|  | dump_blkd_tasks(rnp, 10); | 
|  | if (rcu_preempt_has_tasks(rnp) && | 
|  | (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { | 
|  | WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); | 
|  | t = container_of(rnp->gp_tasks, struct task_struct, | 
|  | rcu_node_entry); | 
|  | trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), | 
|  | rnp->gp_seq, t->pid); | 
|  | } | 
|  | WARN_ON_ONCE(rnp->qsmask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a quiescent state from the current CPU, including voluntary | 
|  | * context switches for Tasks RCU.  When a task blocks, the task is | 
|  | * recorded in the corresponding CPU's rcu_node structure, which is checked | 
|  | * elsewhere, hence this function need only check for quiescent states | 
|  | * related to the current CPU, not to those related to tasks. | 
|  | */ | 
|  | static void rcu_flavor_sched_clock_irq(int user) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | lockdep_assert_irqs_disabled(); | 
|  | if (rcu_preempt_depth() > 0 || | 
|  | (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { | 
|  | /* No QS, force context switch if deferred. */ | 
|  | if (rcu_preempt_need_deferred_qs(t)) { | 
|  | set_tsk_need_resched(t); | 
|  | set_preempt_need_resched(); | 
|  | } | 
|  | } else if (rcu_preempt_need_deferred_qs(t)) { | 
|  | rcu_preempt_deferred_qs(t); /* Report deferred QS. */ | 
|  | return; | 
|  | } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { | 
|  | rcu_qs(); /* Report immediate QS. */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ | 
|  | if (rcu_preempt_depth() > 0 && | 
|  | __this_cpu_read(rcu_data.core_needs_qs) && | 
|  | __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && | 
|  | !t->rcu_read_unlock_special.b.need_qs && | 
|  | time_after(jiffies, rcu_state.gp_start + HZ)) | 
|  | t->rcu_read_unlock_special.b.need_qs = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a task exiting while in a preemptible-RCU read-side | 
|  | * critical section, clean up if so.  No need to issue warnings, as | 
|  | * debug_check_no_locks_held() already does this if lockdep is enabled. | 
|  | * Besides, if this function does anything other than just immediately | 
|  | * return, there was a bug of some sort.  Spewing warnings from this | 
|  | * function is like as not to simply obscure important prior warnings. | 
|  | */ | 
|  | void exit_rcu(void) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | if (unlikely(!list_empty(¤t->rcu_node_entry))) { | 
|  | rcu_preempt_depth_set(1); | 
|  | barrier(); | 
|  | WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); | 
|  | } else if (unlikely(rcu_preempt_depth())) { | 
|  | rcu_preempt_depth_set(1); | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | __rcu_read_unlock(); | 
|  | rcu_preempt_deferred_qs(current); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dump the blocked-tasks state, but limit the list dump to the | 
|  | * specified number of elements. | 
|  | */ | 
|  | static void | 
|  | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) | 
|  | { | 
|  | int cpu; | 
|  | int i; | 
|  | struct list_head *lhp; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp1; | 
|  |  | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", | 
|  | __func__, rnp->grplo, rnp->grphi, rnp->level, | 
|  | (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); | 
|  | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) | 
|  | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", | 
|  | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); | 
|  | pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", | 
|  | __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), | 
|  | READ_ONCE(rnp->exp_tasks)); | 
|  | pr_info("%s: ->blkd_tasks", __func__); | 
|  | i = 0; | 
|  | list_for_each(lhp, &rnp->blkd_tasks) { | 
|  | pr_cont(" %p", lhp); | 
|  | if (++i >= ncheck) | 
|  | break; | 
|  | } | 
|  | pr_cont("\n"); | 
|  | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { | 
|  | rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", | 
|  | cpu, ".o"[rcu_rdp_cpu_online(rdp)], | 
|  | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, | 
|  | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_PREEMPT_RCU */ | 
|  |  | 
|  | /* | 
|  | * If strict grace periods are enabled, and if the calling | 
|  | * __rcu_read_unlock() marks the beginning of a quiescent state, immediately | 
|  | * report that quiescent state and, if requested, spin for a bit. | 
|  | */ | 
|  | void rcu_read_unlock_strict(void) | 
|  | { | 
|  | struct rcu_data *rdp; | 
|  |  | 
|  | if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) | 
|  | return; | 
|  | rdp = this_cpu_ptr(&rcu_data); | 
|  | rdp->cpu_no_qs.b.norm = false; | 
|  | rcu_report_qs_rdp(rdp); | 
|  | udelay(rcu_unlock_delay); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); | 
|  |  | 
|  | /* | 
|  | * Tell them what RCU they are running. | 
|  | */ | 
|  | static void __init rcu_bootup_announce(void) | 
|  | { | 
|  | pr_info("Hierarchical RCU implementation.\n"); | 
|  | rcu_bootup_announce_oddness(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note a quiescent state for PREEMPTION=n.  Because we do not need to know | 
|  | * how many quiescent states passed, just if there was at least one since | 
|  | * the start of the grace period, this just sets a flag.  The caller must | 
|  | * have disabled preemption. | 
|  | */ | 
|  | static void rcu_qs(void) | 
|  | { | 
|  | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); | 
|  | if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) | 
|  | return; | 
|  | trace_rcu_grace_period(TPS("rcu_sched"), | 
|  | __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); | 
|  | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); | 
|  | if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) | 
|  | rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register an urgently needed quiescent state.  If there is an | 
|  | * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight | 
|  | * dyntick-idle quiescent state visible to other CPUs, which will in | 
|  | * some cases serve for expedited as well as normal grace periods. | 
|  | * Either way, register a lightweight quiescent state. | 
|  | */ | 
|  | void rcu_all_qs(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) | 
|  | return; | 
|  | preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels | 
|  | /* Load rcu_urgent_qs before other flags. */ | 
|  | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { | 
|  | preempt_enable(); | 
|  | return; | 
|  | } | 
|  | this_cpu_write(rcu_data.rcu_urgent_qs, false); | 
|  | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { | 
|  | local_irq_save(flags); | 
|  | rcu_momentary_dyntick_idle(); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | rcu_qs(); | 
|  | preempt_enable(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_all_qs); | 
|  |  | 
|  | /* | 
|  | * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. | 
|  | */ | 
|  | void rcu_note_context_switch(bool preempt) | 
|  | { | 
|  | trace_rcu_utilization(TPS("Start context switch")); | 
|  | rcu_qs(); | 
|  | /* Load rcu_urgent_qs before other flags. */ | 
|  | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) | 
|  | goto out; | 
|  | this_cpu_write(rcu_data.rcu_urgent_qs, false); | 
|  | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) | 
|  | rcu_momentary_dyntick_idle(); | 
|  | out: | 
|  | rcu_tasks_qs(current, preempt); | 
|  | trace_rcu_utilization(TPS("End context switch")); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, there are never any preempted | 
|  | * RCU readers. | 
|  | */ | 
|  | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because there is no preemptible RCU, there can be no readers blocked. | 
|  | */ | 
|  | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because there is no preemptible RCU, there can be no deferred quiescent | 
|  | * states. | 
|  | */ | 
|  | static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Except that we do need to respond to a request by an expedited | 
|  | // grace period for a quiescent state from this CPU.  Note that in | 
|  | // non-preemptible kernels, there can be no context switches within RCU | 
|  | // read-side critical sections, which in turn means that the leaf rcu_node | 
|  | // structure's blocked-tasks list is always empty.  is therefore no need to | 
|  | // actually check it.  Instead, a quiescent state from this CPU suffices, | 
|  | // and this function is only called from such a quiescent state. | 
|  | notrace void rcu_preempt_deferred_qs(struct task_struct *t) | 
|  | { | 
|  | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
|  |  | 
|  | if (READ_ONCE(rdp->cpu_no_qs.b.exp)) | 
|  | rcu_report_exp_rdp(rdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because there is no preemptible RCU, there can be no readers blocked, | 
|  | * so there is no need to check for blocked tasks.  So check only for | 
|  | * bogus qsmask values. | 
|  | */ | 
|  | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
|  | { | 
|  | WARN_ON_ONCE(rnp->qsmask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if this CPU is in a non-context-switch quiescent state, | 
|  | * namely user mode and idle loop. | 
|  | */ | 
|  | static void rcu_flavor_sched_clock_irq(int user) | 
|  | { | 
|  | if (user || rcu_is_cpu_rrupt_from_idle()) { | 
|  |  | 
|  | /* | 
|  | * Get here if this CPU took its interrupt from user | 
|  | * mode or from the idle loop, and if this is not a | 
|  | * nested interrupt.  In this case, the CPU is in | 
|  | * a quiescent state, so note it. | 
|  | * | 
|  | * No memory barrier is required here because rcu_qs() | 
|  | * references only CPU-local variables that other CPUs | 
|  | * neither access nor modify, at least not while the | 
|  | * corresponding CPU is online. | 
|  | */ | 
|  | rcu_qs(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, tasks cannot possibly exit | 
|  | * while in preemptible RCU read-side critical sections. | 
|  | */ | 
|  | void exit_rcu(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dump the guaranteed-empty blocked-tasks state.  Trust but verify. | 
|  | */ | 
|  | static void | 
|  | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) | 
|  | { | 
|  | WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ | 
|  |  | 
|  | /* | 
|  | * If boosting, set rcuc kthreads to realtime priority. | 
|  | */ | 
|  | static void rcu_cpu_kthread_setup(unsigned int cpu) | 
|  | { | 
|  | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | struct sched_param sp; | 
|  |  | 
|  | sp.sched_priority = kthread_prio; | 
|  | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | WRITE_ONCE(rdp->rcuc_activity, jiffies); | 
|  | } | 
|  |  | 
|  | static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp) | 
|  | { | 
|  | #ifdef CONFIG_RCU_NOCB_CPU | 
|  | return rdp->nocb_cb_kthread == current; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the current CPU running the RCU-callbacks kthread? | 
|  | * Caller must have preemption disabled. | 
|  | */ | 
|  | static bool rcu_is_callbacks_kthread(struct rcu_data *rdp) | 
|  | { | 
|  | return rdp->rcu_cpu_kthread_task == current || | 
|  | rcu_is_callbacks_nocb_kthread(rdp); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  |  | 
|  | /* | 
|  | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | 
|  | * or ->boost_tasks, advancing the pointer to the next task in the | 
|  | * ->blkd_tasks list. | 
|  | * | 
|  | * Note that irqs must be enabled: boosting the task can block. | 
|  | * Returns 1 if there are more tasks needing to be boosted. | 
|  | */ | 
|  | static int rcu_boost(struct rcu_node *rnp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct task_struct *t; | 
|  | struct list_head *tb; | 
|  |  | 
|  | if (READ_ONCE(rnp->exp_tasks) == NULL && | 
|  | READ_ONCE(rnp->boost_tasks) == NULL) | 
|  | return 0;  /* Nothing left to boost. */ | 
|  |  | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  |  | 
|  | /* | 
|  | * Recheck under the lock: all tasks in need of boosting | 
|  | * might exit their RCU read-side critical sections on their own. | 
|  | */ | 
|  | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preferentially boost tasks blocking expedited grace periods. | 
|  | * This cannot starve the normal grace periods because a second | 
|  | * expedited grace period must boost all blocked tasks, including | 
|  | * those blocking the pre-existing normal grace period. | 
|  | */ | 
|  | if (rnp->exp_tasks != NULL) | 
|  | tb = rnp->exp_tasks; | 
|  | else | 
|  | tb = rnp->boost_tasks; | 
|  |  | 
|  | /* | 
|  | * We boost task t by manufacturing an rt_mutex that appears to | 
|  | * be held by task t.  We leave a pointer to that rt_mutex where | 
|  | * task t can find it, and task t will release the mutex when it | 
|  | * exits its outermost RCU read-side critical section.  Then | 
|  | * simply acquiring this artificial rt_mutex will boost task | 
|  | * t's priority.  (Thanks to tglx for suggesting this approach!) | 
|  | * | 
|  | * Note that task t must acquire rnp->lock to remove itself from | 
|  | * the ->blkd_tasks list, which it will do from exit() if from | 
|  | * nowhere else.  We therefore are guaranteed that task t will | 
|  | * stay around at least until we drop rnp->lock.  Note that | 
|  | * rnp->lock also resolves races between our priority boosting | 
|  | * and task t's exiting its outermost RCU read-side critical | 
|  | * section. | 
|  | */ | 
|  | t = container_of(tb, struct task_struct, rcu_node_entry); | 
|  | rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | /* Lock only for side effect: boosts task t's priority. */ | 
|  | rt_mutex_lock(&rnp->boost_mtx); | 
|  | rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */ | 
|  | rnp->n_boosts++; | 
|  |  | 
|  | return READ_ONCE(rnp->exp_tasks) != NULL || | 
|  | READ_ONCE(rnp->boost_tasks) != NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority-boosting kthread, one per leaf rcu_node. | 
|  | */ | 
|  | static int rcu_boost_kthread(void *arg) | 
|  | { | 
|  | struct rcu_node *rnp = (struct rcu_node *)arg; | 
|  | int spincnt = 0; | 
|  | int more2boost; | 
|  |  | 
|  | trace_rcu_utilization(TPS("Start boost kthread@init")); | 
|  | for (;;) { | 
|  | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); | 
|  | trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); | 
|  | rcu_wait(READ_ONCE(rnp->boost_tasks) || | 
|  | READ_ONCE(rnp->exp_tasks)); | 
|  | trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); | 
|  | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); | 
|  | more2boost = rcu_boost(rnp); | 
|  | if (more2boost) | 
|  | spincnt++; | 
|  | else | 
|  | spincnt = 0; | 
|  | if (spincnt > 10) { | 
|  | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); | 
|  | trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); | 
|  | schedule_timeout_idle(2); | 
|  | trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); | 
|  | spincnt = 0; | 
|  | } | 
|  | } | 
|  | /* NOTREACHED */ | 
|  | trace_rcu_utilization(TPS("End boost kthread@notreached")); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if it is time to start boosting RCU readers that are | 
|  | * blocking the current grace period, and, if so, tell the per-rcu_node | 
|  | * kthread to start boosting them.  If there is an expedited grace | 
|  | * period in progress, it is always time to boost. | 
|  | * | 
|  | * The caller must hold rnp->lock, which this function releases. | 
|  | * The ->boost_kthread_task is immortal, so we don't need to worry | 
|  | * about it going away. | 
|  | */ | 
|  | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | raw_lockdep_assert_held_rcu_node(rnp); | 
|  | if (!rnp->boost_kthread_task || | 
|  | (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | return; | 
|  | } | 
|  | if (rnp->exp_tasks != NULL || | 
|  | (rnp->gp_tasks != NULL && | 
|  | rnp->boost_tasks == NULL && | 
|  | rnp->qsmask == 0 && | 
|  | (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld || | 
|  | IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) { | 
|  | if (rnp->exp_tasks == NULL) | 
|  | WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | rcu_wake_cond(rnp->boost_kthread_task, | 
|  | READ_ONCE(rnp->boost_kthread_status)); | 
|  | } else { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) | 
|  |  | 
|  | /* | 
|  | * Do priority-boost accounting for the start of a new grace period. | 
|  | */ | 
|  | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
|  | { | 
|  | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create an RCU-boost kthread for the specified node if one does not | 
|  | * already exist.  We only create this kthread for preemptible RCU. | 
|  | */ | 
|  | static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) | 
|  | { | 
|  | unsigned long flags; | 
|  | int rnp_index = rnp - rcu_get_root(); | 
|  | struct sched_param sp; | 
|  | struct task_struct *t; | 
|  |  | 
|  | mutex_lock(&rnp->boost_kthread_mutex); | 
|  | if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) | 
|  | goto out; | 
|  |  | 
|  | t = kthread_create(rcu_boost_kthread, (void *)rnp, | 
|  | "rcub/%d", rnp_index); | 
|  | if (WARN_ON_ONCE(IS_ERR(t))) | 
|  | goto out; | 
|  |  | 
|  | raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
|  | rnp->boost_kthread_task = t; | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | sp.sched_priority = kthread_prio; | 
|  | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | 
|  | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&rnp->boost_kthread_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the per-rcu_node kthread's affinity to cover all CPUs that are | 
|  | * served by the rcu_node in question.  The CPU hotplug lock is still | 
|  | * held, so the value of rnp->qsmaskinit will be stable. | 
|  | * | 
|  | * We don't include outgoingcpu in the affinity set, use -1 if there is | 
|  | * no outgoing CPU.  If there are no CPUs left in the affinity set, | 
|  | * this function allows the kthread to execute on any CPU. | 
|  | * | 
|  | * Any future concurrent calls are serialized via ->boost_kthread_mutex. | 
|  | */ | 
|  | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | 
|  | { | 
|  | struct task_struct *t = rnp->boost_kthread_task; | 
|  | unsigned long mask; | 
|  | cpumask_var_t cm; | 
|  | int cpu; | 
|  |  | 
|  | if (!t) | 
|  | return; | 
|  | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) | 
|  | return; | 
|  | mutex_lock(&rnp->boost_kthread_mutex); | 
|  | mask = rcu_rnp_online_cpus(rnp); | 
|  | for_each_leaf_node_possible_cpu(rnp, cpu) | 
|  | if ((mask & leaf_node_cpu_bit(rnp, cpu)) && | 
|  | cpu != outgoingcpu) | 
|  | cpumask_set_cpu(cpu, cm); | 
|  | cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); | 
|  | if (cpumask_empty(cm)) { | 
|  | cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); | 
|  | if (outgoingcpu >= 0) | 
|  | cpumask_clear_cpu(outgoingcpu, cm); | 
|  | } | 
|  | set_cpus_allowed_ptr(t, cm); | 
|  | mutex_unlock(&rnp->boost_kthread_mutex); | 
|  | free_cpumask_var(cm); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
|  | } | 
|  |  | 
|  | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | /* | 
|  | * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the | 
|  | * grace-period kthread will do force_quiescent_state() processing? | 
|  | * The idea is to avoid waking up RCU core processing on such a | 
|  | * CPU unless the grace period has extended for too long. | 
|  | * | 
|  | * This code relies on the fact that all NO_HZ_FULL CPUs are also | 
|  | * RCU_NOCB_CPU CPUs. | 
|  | */ | 
|  | static bool rcu_nohz_full_cpu(void) | 
|  | { | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | if (tick_nohz_full_cpu(smp_processor_id()) && | 
|  | (!rcu_gp_in_progress() || | 
|  | time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) | 
|  | return true; | 
|  | #endif /* #ifdef CONFIG_NO_HZ_FULL */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bind the RCU grace-period kthreads to the housekeeping CPU. | 
|  | */ | 
|  | static void rcu_bind_gp_kthread(void) | 
|  | { | 
|  | if (!tick_nohz_full_enabled()) | 
|  | return; | 
|  | housekeeping_affine(current, HK_TYPE_RCU); | 
|  | } |