| /* |
| * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. |
| * |
| * Copyright (C) 2012 Marvell |
| * |
| * Rami Rosen <rosenr@marvell.com> |
| * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> |
| * |
| * This file is licensed under the terms of the GNU General Public |
| * License version 2. This program is licensed "as is" without any |
| * warranty of any kind, whether express or implied. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/cpu.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_vlan.h> |
| #include <linux/inetdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/mbus.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_net.h> |
| #include <linux/phy.h> |
| #include <linux/platform_device.h> |
| #include <linux/skbuff.h> |
| #include "mvneta_bm.h" |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| #include <net/tso.h> |
| |
| /* Registers */ |
| #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) |
| #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) |
| #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 |
| #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 |
| #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 |
| #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 |
| #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) |
| #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) |
| #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) |
| #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) |
| #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) |
| #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) |
| #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 |
| #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) |
| #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) |
| #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff |
| #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) |
| #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 |
| #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 |
| #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) |
| #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 |
| #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 |
| #define MVNETA_PORT_RX_RESET 0x1cc0 |
| #define MVNETA_PORT_RX_DMA_RESET BIT(0) |
| #define MVNETA_PHY_ADDR 0x2000 |
| #define MVNETA_PHY_ADDR_MASK 0x1f |
| #define MVNETA_MBUS_RETRY 0x2010 |
| #define MVNETA_UNIT_INTR_CAUSE 0x2080 |
| #define MVNETA_UNIT_CONTROL 0x20B0 |
| #define MVNETA_PHY_POLLING_ENABLE BIT(1) |
| #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) |
| #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) |
| #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) |
| #define MVNETA_BASE_ADDR_ENABLE 0x2290 |
| #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 |
| #define MVNETA_PORT_CONFIG 0x2400 |
| #define MVNETA_UNI_PROMISC_MODE BIT(0) |
| #define MVNETA_DEF_RXQ(q) ((q) << 1) |
| #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) |
| #define MVNETA_TX_UNSET_ERR_SUM BIT(12) |
| #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) |
| #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) |
| #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) |
| #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) |
| #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ |
| MVNETA_DEF_RXQ_ARP(q) | \ |
| MVNETA_DEF_RXQ_TCP(q) | \ |
| MVNETA_DEF_RXQ_UDP(q) | \ |
| MVNETA_DEF_RXQ_BPDU(q) | \ |
| MVNETA_TX_UNSET_ERR_SUM | \ |
| MVNETA_RX_CSUM_WITH_PSEUDO_HDR) |
| #define MVNETA_PORT_CONFIG_EXTEND 0x2404 |
| #define MVNETA_MAC_ADDR_LOW 0x2414 |
| #define MVNETA_MAC_ADDR_HIGH 0x2418 |
| #define MVNETA_SDMA_CONFIG 0x241c |
| #define MVNETA_SDMA_BRST_SIZE_16 4 |
| #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) |
| #define MVNETA_RX_NO_DATA_SWAP BIT(4) |
| #define MVNETA_TX_NO_DATA_SWAP BIT(5) |
| #define MVNETA_DESC_SWAP BIT(6) |
| #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) |
| #define MVNETA_PORT_STATUS 0x2444 |
| #define MVNETA_TX_IN_PRGRS BIT(1) |
| #define MVNETA_TX_FIFO_EMPTY BIT(8) |
| #define MVNETA_RX_MIN_FRAME_SIZE 0x247c |
| #define MVNETA_SERDES_CFG 0x24A0 |
| #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 |
| #define MVNETA_QSGMII_SERDES_PROTO 0x0667 |
| #define MVNETA_TYPE_PRIO 0x24bc |
| #define MVNETA_FORCE_UNI BIT(21) |
| #define MVNETA_TXQ_CMD_1 0x24e4 |
| #define MVNETA_TXQ_CMD 0x2448 |
| #define MVNETA_TXQ_DISABLE_SHIFT 8 |
| #define MVNETA_TXQ_ENABLE_MASK 0x000000ff |
| #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 |
| #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 |
| #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 |
| #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) |
| #define MVNETA_ACC_MODE 0x2500 |
| #define MVNETA_BM_ADDRESS 0x2504 |
| #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) |
| #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff |
| #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 |
| #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) |
| #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) |
| #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) |
| |
| /* Exception Interrupt Port/Queue Cause register |
| * |
| * Their behavior depend of the mapping done using the PCPX2Q |
| * registers. For a given CPU if the bit associated to a queue is not |
| * set, then for the register a read from this CPU will always return |
| * 0 and a write won't do anything |
| */ |
| |
| #define MVNETA_INTR_NEW_CAUSE 0x25a0 |
| #define MVNETA_INTR_NEW_MASK 0x25a4 |
| |
| /* bits 0..7 = TXQ SENT, one bit per queue. |
| * bits 8..15 = RXQ OCCUP, one bit per queue. |
| * bits 16..23 = RXQ FREE, one bit per queue. |
| * bit 29 = OLD_REG_SUM, see old reg ? |
| * bit 30 = TX_ERR_SUM, one bit for 4 ports |
| * bit 31 = MISC_SUM, one bit for 4 ports |
| */ |
| #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) |
| #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) |
| #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) |
| #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) |
| #define MVNETA_MISCINTR_INTR_MASK BIT(31) |
| |
| #define MVNETA_INTR_OLD_CAUSE 0x25a8 |
| #define MVNETA_INTR_OLD_MASK 0x25ac |
| |
| /* Data Path Port/Queue Cause Register */ |
| #define MVNETA_INTR_MISC_CAUSE 0x25b0 |
| #define MVNETA_INTR_MISC_MASK 0x25b4 |
| |
| #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) |
| #define MVNETA_CAUSE_LINK_CHANGE BIT(1) |
| #define MVNETA_CAUSE_PTP BIT(4) |
| |
| #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) |
| #define MVNETA_CAUSE_RX_OVERRUN BIT(8) |
| #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) |
| #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) |
| #define MVNETA_CAUSE_TX_UNDERUN BIT(11) |
| #define MVNETA_CAUSE_PRBS_ERR BIT(12) |
| #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) |
| #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) |
| |
| #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 |
| #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) |
| #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) |
| |
| #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 |
| #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) |
| #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) |
| |
| #define MVNETA_INTR_ENABLE 0x25b8 |
| #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 |
| #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff |
| |
| #define MVNETA_RXQ_CMD 0x2680 |
| #define MVNETA_RXQ_DISABLE_SHIFT 8 |
| #define MVNETA_RXQ_ENABLE_MASK 0x000000ff |
| #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) |
| #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) |
| #define MVNETA_GMAC_CTRL_0 0x2c00 |
| #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 |
| #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc |
| #define MVNETA_GMAC0_PORT_ENABLE BIT(0) |
| #define MVNETA_GMAC_CTRL_2 0x2c08 |
| #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) |
| #define MVNETA_GMAC2_PCS_ENABLE BIT(3) |
| #define MVNETA_GMAC2_PORT_RGMII BIT(4) |
| #define MVNETA_GMAC2_PORT_RESET BIT(6) |
| #define MVNETA_GMAC_STATUS 0x2c10 |
| #define MVNETA_GMAC_LINK_UP BIT(0) |
| #define MVNETA_GMAC_SPEED_1000 BIT(1) |
| #define MVNETA_GMAC_SPEED_100 BIT(2) |
| #define MVNETA_GMAC_FULL_DUPLEX BIT(3) |
| #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) |
| #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) |
| #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) |
| #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) |
| #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c |
| #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) |
| #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) |
| #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) |
| #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) |
| #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) |
| #define MVNETA_GMAC_AN_SPEED_EN BIT(7) |
| #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) |
| #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) |
| #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) |
| #define MVNETA_MIB_COUNTERS_BASE 0x3000 |
| #define MVNETA_MIB_LATE_COLLISION 0x7c |
| #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 |
| #define MVNETA_DA_FILT_OTH_MCAST 0x3500 |
| #define MVNETA_DA_FILT_UCAST_BASE 0x3600 |
| #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) |
| #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) |
| #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 |
| #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) |
| #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) |
| #define MVNETA_TXQ_DEC_SENT_SHIFT 16 |
| #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) |
| #define MVNETA_TXQ_SENT_DESC_SHIFT 16 |
| #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 |
| #define MVNETA_PORT_TX_RESET 0x3cf0 |
| #define MVNETA_PORT_TX_DMA_RESET BIT(0) |
| #define MVNETA_TX_MTU 0x3e0c |
| #define MVNETA_TX_TOKEN_SIZE 0x3e14 |
| #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff |
| #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) |
| #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff |
| |
| #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff |
| |
| /* Descriptor ring Macros */ |
| #define MVNETA_QUEUE_NEXT_DESC(q, index) \ |
| (((index) < (q)->last_desc) ? ((index) + 1) : 0) |
| |
| /* Various constants */ |
| |
| /* Coalescing */ |
| #define MVNETA_TXDONE_COAL_PKTS 1 |
| #define MVNETA_RX_COAL_PKTS 32 |
| #define MVNETA_RX_COAL_USEC 100 |
| |
| /* The two bytes Marvell header. Either contains a special value used |
| * by Marvell switches when a specific hardware mode is enabled (not |
| * supported by this driver) or is filled automatically by zeroes on |
| * the RX side. Those two bytes being at the front of the Ethernet |
| * header, they allow to have the IP header aligned on a 4 bytes |
| * boundary automatically: the hardware skips those two bytes on its |
| * own. |
| */ |
| #define MVNETA_MH_SIZE 2 |
| |
| #define MVNETA_VLAN_TAG_LEN 4 |
| |
| #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 |
| #define MVNETA_TX_CSUM_DEF_SIZE 1600 |
| #define MVNETA_TX_CSUM_MAX_SIZE 9800 |
| #define MVNETA_ACC_MODE_EXT1 1 |
| #define MVNETA_ACC_MODE_EXT2 2 |
| |
| #define MVNETA_MAX_DECODE_WIN 6 |
| |
| /* Timeout constants */ |
| #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 |
| #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 |
| #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 |
| |
| #define MVNETA_TX_MTU_MAX 0x3ffff |
| |
| /* The RSS lookup table actually has 256 entries but we do not use |
| * them yet |
| */ |
| #define MVNETA_RSS_LU_TABLE_SIZE 1 |
| |
| /* TSO header size */ |
| #define TSO_HEADER_SIZE 128 |
| |
| /* Max number of Rx descriptors */ |
| #define MVNETA_MAX_RXD 128 |
| |
| /* Max number of Tx descriptors */ |
| #define MVNETA_MAX_TXD 532 |
| |
| /* Max number of allowed TCP segments for software TSO */ |
| #define MVNETA_MAX_TSO_SEGS 100 |
| |
| #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) |
| |
| /* descriptor aligned size */ |
| #define MVNETA_DESC_ALIGNED_SIZE 32 |
| |
| #define MVNETA_RX_PKT_SIZE(mtu) \ |
| ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ |
| ETH_HLEN + ETH_FCS_LEN, \ |
| MVNETA_CPU_D_CACHE_LINE_SIZE) |
| |
| #define IS_TSO_HEADER(txq, addr) \ |
| ((addr >= txq->tso_hdrs_phys) && \ |
| (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) |
| |
| #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ |
| (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) |
| |
| struct mvneta_statistic { |
| unsigned short offset; |
| unsigned short type; |
| const char name[ETH_GSTRING_LEN]; |
| }; |
| |
| #define T_REG_32 32 |
| #define T_REG_64 64 |
| |
| static const struct mvneta_statistic mvneta_statistics[] = { |
| { 0x3000, T_REG_64, "good_octets_received", }, |
| { 0x3010, T_REG_32, "good_frames_received", }, |
| { 0x3008, T_REG_32, "bad_octets_received", }, |
| { 0x3014, T_REG_32, "bad_frames_received", }, |
| { 0x3018, T_REG_32, "broadcast_frames_received", }, |
| { 0x301c, T_REG_32, "multicast_frames_received", }, |
| { 0x3050, T_REG_32, "unrec_mac_control_received", }, |
| { 0x3058, T_REG_32, "good_fc_received", }, |
| { 0x305c, T_REG_32, "bad_fc_received", }, |
| { 0x3060, T_REG_32, "undersize_received", }, |
| { 0x3064, T_REG_32, "fragments_received", }, |
| { 0x3068, T_REG_32, "oversize_received", }, |
| { 0x306c, T_REG_32, "jabber_received", }, |
| { 0x3070, T_REG_32, "mac_receive_error", }, |
| { 0x3074, T_REG_32, "bad_crc_event", }, |
| { 0x3078, T_REG_32, "collision", }, |
| { 0x307c, T_REG_32, "late_collision", }, |
| { 0x2484, T_REG_32, "rx_discard", }, |
| { 0x2488, T_REG_32, "rx_overrun", }, |
| { 0x3020, T_REG_32, "frames_64_octets", }, |
| { 0x3024, T_REG_32, "frames_65_to_127_octets", }, |
| { 0x3028, T_REG_32, "frames_128_to_255_octets", }, |
| { 0x302c, T_REG_32, "frames_256_to_511_octets", }, |
| { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, |
| { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, |
| { 0x3038, T_REG_64, "good_octets_sent", }, |
| { 0x3040, T_REG_32, "good_frames_sent", }, |
| { 0x3044, T_REG_32, "excessive_collision", }, |
| { 0x3048, T_REG_32, "multicast_frames_sent", }, |
| { 0x304c, T_REG_32, "broadcast_frames_sent", }, |
| { 0x3054, T_REG_32, "fc_sent", }, |
| { 0x300c, T_REG_32, "internal_mac_transmit_err", }, |
| }; |
| |
| struct mvneta_pcpu_stats { |
| struct u64_stats_sync syncp; |
| u64 rx_packets; |
| u64 rx_bytes; |
| u64 tx_packets; |
| u64 tx_bytes; |
| }; |
| |
| struct mvneta_pcpu_port { |
| /* Pointer to the shared port */ |
| struct mvneta_port *pp; |
| |
| /* Pointer to the CPU-local NAPI struct */ |
| struct napi_struct napi; |
| |
| /* Cause of the previous interrupt */ |
| u32 cause_rx_tx; |
| }; |
| |
| struct mvneta_port { |
| u8 id; |
| struct mvneta_pcpu_port __percpu *ports; |
| struct mvneta_pcpu_stats __percpu *stats; |
| |
| int pkt_size; |
| unsigned int frag_size; |
| void __iomem *base; |
| struct mvneta_rx_queue *rxqs; |
| struct mvneta_tx_queue *txqs; |
| struct net_device *dev; |
| struct notifier_block cpu_notifier; |
| int rxq_def; |
| /* Protect the access to the percpu interrupt registers, |
| * ensuring that the configuration remains coherent. |
| */ |
| spinlock_t lock; |
| bool is_stopped; |
| |
| /* Core clock */ |
| struct clk *clk; |
| /* AXI clock */ |
| struct clk *clk_bus; |
| u8 mcast_count[256]; |
| u16 tx_ring_size; |
| u16 rx_ring_size; |
| |
| struct mii_bus *mii_bus; |
| struct phy_device *phy_dev; |
| phy_interface_t phy_interface; |
| struct device_node *phy_node; |
| unsigned int link; |
| unsigned int duplex; |
| unsigned int speed; |
| unsigned int tx_csum_limit; |
| unsigned int use_inband_status:1; |
| |
| struct mvneta_bm *bm_priv; |
| struct mvneta_bm_pool *pool_long; |
| struct mvneta_bm_pool *pool_short; |
| int bm_win_id; |
| |
| u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; |
| |
| u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; |
| }; |
| |
| /* The mvneta_tx_desc and mvneta_rx_desc structures describe the |
| * layout of the transmit and reception DMA descriptors, and their |
| * layout is therefore defined by the hardware design |
| */ |
| |
| #define MVNETA_TX_L3_OFF_SHIFT 0 |
| #define MVNETA_TX_IP_HLEN_SHIFT 8 |
| #define MVNETA_TX_L4_UDP BIT(16) |
| #define MVNETA_TX_L3_IP6 BIT(17) |
| #define MVNETA_TXD_IP_CSUM BIT(18) |
| #define MVNETA_TXD_Z_PAD BIT(19) |
| #define MVNETA_TXD_L_DESC BIT(20) |
| #define MVNETA_TXD_F_DESC BIT(21) |
| #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ |
| MVNETA_TXD_L_DESC | \ |
| MVNETA_TXD_F_DESC) |
| #define MVNETA_TX_L4_CSUM_FULL BIT(30) |
| #define MVNETA_TX_L4_CSUM_NOT BIT(31) |
| |
| #define MVNETA_RXD_ERR_CRC 0x0 |
| #define MVNETA_RXD_BM_POOL_SHIFT 13 |
| #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) |
| #define MVNETA_RXD_ERR_SUMMARY BIT(16) |
| #define MVNETA_RXD_ERR_OVERRUN BIT(17) |
| #define MVNETA_RXD_ERR_LEN BIT(18) |
| #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) |
| #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) |
| #define MVNETA_RXD_L3_IP4 BIT(25) |
| #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) |
| #define MVNETA_RXD_L4_CSUM_OK BIT(30) |
| |
| #if defined(__LITTLE_ENDIAN) |
| struct mvneta_tx_desc { |
| u32 command; /* Options used by HW for packet transmitting.*/ |
| u16 reserverd1; /* csum_l4 (for future use) */ |
| u16 data_size; /* Data size of transmitted packet in bytes */ |
| u32 buf_phys_addr; /* Physical addr of transmitted buffer */ |
| u32 reserved2; /* hw_cmd - (for future use, PMT) */ |
| u32 reserved3[4]; /* Reserved - (for future use) */ |
| }; |
| |
| struct mvneta_rx_desc { |
| u32 status; /* Info about received packet */ |
| u16 reserved1; /* pnc_info - (for future use, PnC) */ |
| u16 data_size; /* Size of received packet in bytes */ |
| |
| u32 buf_phys_addr; /* Physical address of the buffer */ |
| u32 reserved2; /* pnc_flow_id (for future use, PnC) */ |
| |
| u32 buf_cookie; /* cookie for access to RX buffer in rx path */ |
| u16 reserved3; /* prefetch_cmd, for future use */ |
| u16 reserved4; /* csum_l4 - (for future use, PnC) */ |
| |
| u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ |
| u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ |
| }; |
| #else |
| struct mvneta_tx_desc { |
| u16 data_size; /* Data size of transmitted packet in bytes */ |
| u16 reserverd1; /* csum_l4 (for future use) */ |
| u32 command; /* Options used by HW for packet transmitting.*/ |
| u32 reserved2; /* hw_cmd - (for future use, PMT) */ |
| u32 buf_phys_addr; /* Physical addr of transmitted buffer */ |
| u32 reserved3[4]; /* Reserved - (for future use) */ |
| }; |
| |
| struct mvneta_rx_desc { |
| u16 data_size; /* Size of received packet in bytes */ |
| u16 reserved1; /* pnc_info - (for future use, PnC) */ |
| u32 status; /* Info about received packet */ |
| |
| u32 reserved2; /* pnc_flow_id (for future use, PnC) */ |
| u32 buf_phys_addr; /* Physical address of the buffer */ |
| |
| u16 reserved4; /* csum_l4 - (for future use, PnC) */ |
| u16 reserved3; /* prefetch_cmd, for future use */ |
| u32 buf_cookie; /* cookie for access to RX buffer in rx path */ |
| |
| u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ |
| u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ |
| }; |
| #endif |
| |
| struct mvneta_tx_queue { |
| /* Number of this TX queue, in the range 0-7 */ |
| u8 id; |
| |
| /* Number of TX DMA descriptors in the descriptor ring */ |
| int size; |
| |
| /* Number of currently used TX DMA descriptor in the |
| * descriptor ring |
| */ |
| int count; |
| int tx_stop_threshold; |
| int tx_wake_threshold; |
| |
| /* Array of transmitted skb */ |
| struct sk_buff **tx_skb; |
| |
| /* Index of last TX DMA descriptor that was inserted */ |
| int txq_put_index; |
| |
| /* Index of the TX DMA descriptor to be cleaned up */ |
| int txq_get_index; |
| |
| u32 done_pkts_coal; |
| |
| /* Virtual address of the TX DMA descriptors array */ |
| struct mvneta_tx_desc *descs; |
| |
| /* DMA address of the TX DMA descriptors array */ |
| dma_addr_t descs_phys; |
| |
| /* Index of the last TX DMA descriptor */ |
| int last_desc; |
| |
| /* Index of the next TX DMA descriptor to process */ |
| int next_desc_to_proc; |
| |
| /* DMA buffers for TSO headers */ |
| char *tso_hdrs; |
| |
| /* DMA address of TSO headers */ |
| dma_addr_t tso_hdrs_phys; |
| |
| /* Affinity mask for CPUs*/ |
| cpumask_t affinity_mask; |
| }; |
| |
| struct mvneta_rx_queue { |
| /* rx queue number, in the range 0-7 */ |
| u8 id; |
| |
| /* num of rx descriptors in the rx descriptor ring */ |
| int size; |
| |
| /* counter of times when mvneta_refill() failed */ |
| int missed; |
| |
| u32 pkts_coal; |
| u32 time_coal; |
| |
| /* Virtual address of the RX DMA descriptors array */ |
| struct mvneta_rx_desc *descs; |
| |
| /* DMA address of the RX DMA descriptors array */ |
| dma_addr_t descs_phys; |
| |
| /* Index of the last RX DMA descriptor */ |
| int last_desc; |
| |
| /* Index of the next RX DMA descriptor to process */ |
| int next_desc_to_proc; |
| }; |
| |
| /* The hardware supports eight (8) rx queues, but we are only allowing |
| * the first one to be used. Therefore, let's just allocate one queue. |
| */ |
| static int rxq_number = 8; |
| static int txq_number = 8; |
| |
| static int rxq_def; |
| |
| static int rx_copybreak __read_mostly = 256; |
| |
| /* HW BM need that each port be identify by a unique ID */ |
| static int global_port_id; |
| |
| #define MVNETA_DRIVER_NAME "mvneta" |
| #define MVNETA_DRIVER_VERSION "1.0" |
| |
| /* Utility/helper methods */ |
| |
| /* Write helper method */ |
| static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) |
| { |
| writel(data, pp->base + offset); |
| } |
| |
| /* Read helper method */ |
| static u32 mvreg_read(struct mvneta_port *pp, u32 offset) |
| { |
| return readl(pp->base + offset); |
| } |
| |
| /* Increment txq get counter */ |
| static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) |
| { |
| txq->txq_get_index++; |
| if (txq->txq_get_index == txq->size) |
| txq->txq_get_index = 0; |
| } |
| |
| /* Increment txq put counter */ |
| static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) |
| { |
| txq->txq_put_index++; |
| if (txq->txq_put_index == txq->size) |
| txq->txq_put_index = 0; |
| } |
| |
| |
| /* Clear all MIB counters */ |
| static void mvneta_mib_counters_clear(struct mvneta_port *pp) |
| { |
| int i; |
| u32 dummy; |
| |
| /* Perform dummy reads from MIB counters */ |
| for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) |
| dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); |
| dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); |
| dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); |
| } |
| |
| /* Get System Network Statistics */ |
| struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| unsigned int start; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct mvneta_pcpu_stats *cpu_stats; |
| u64 rx_packets; |
| u64 rx_bytes; |
| u64 tx_packets; |
| u64 tx_bytes; |
| |
| cpu_stats = per_cpu_ptr(pp->stats, cpu); |
| do { |
| start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); |
| rx_packets = cpu_stats->rx_packets; |
| rx_bytes = cpu_stats->rx_bytes; |
| tx_packets = cpu_stats->tx_packets; |
| tx_bytes = cpu_stats->tx_bytes; |
| } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); |
| |
| stats->rx_packets += rx_packets; |
| stats->rx_bytes += rx_bytes; |
| stats->tx_packets += tx_packets; |
| stats->tx_bytes += tx_bytes; |
| } |
| |
| stats->rx_errors = dev->stats.rx_errors; |
| stats->rx_dropped = dev->stats.rx_dropped; |
| |
| stats->tx_dropped = dev->stats.tx_dropped; |
| |
| return stats; |
| } |
| |
| /* Rx descriptors helper methods */ |
| |
| /* Checks whether the RX descriptor having this status is both the first |
| * and the last descriptor for the RX packet. Each RX packet is currently |
| * received through a single RX descriptor, so not having each RX |
| * descriptor with its first and last bits set is an error |
| */ |
| static int mvneta_rxq_desc_is_first_last(u32 status) |
| { |
| return (status & MVNETA_RXD_FIRST_LAST_DESC) == |
| MVNETA_RXD_FIRST_LAST_DESC; |
| } |
| |
| /* Add number of descriptors ready to receive new packets */ |
| static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq, |
| int ndescs) |
| { |
| /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can |
| * be added at once |
| */ |
| while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { |
| mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), |
| (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << |
| MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); |
| ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; |
| } |
| |
| mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), |
| (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); |
| } |
| |
| /* Get number of RX descriptors occupied by received packets */ |
| static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); |
| return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; |
| } |
| |
| /* Update num of rx desc called upon return from rx path or |
| * from mvneta_rxq_drop_pkts(). |
| */ |
| static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq, |
| int rx_done, int rx_filled) |
| { |
| u32 val; |
| |
| if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { |
| val = rx_done | |
| (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); |
| mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); |
| return; |
| } |
| |
| /* Only 255 descriptors can be added at once */ |
| while ((rx_done > 0) || (rx_filled > 0)) { |
| if (rx_done <= 0xff) { |
| val = rx_done; |
| rx_done = 0; |
| } else { |
| val = 0xff; |
| rx_done -= 0xff; |
| } |
| if (rx_filled <= 0xff) { |
| val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; |
| rx_filled = 0; |
| } else { |
| val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; |
| rx_filled -= 0xff; |
| } |
| mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); |
| } |
| } |
| |
| /* Get pointer to next RX descriptor to be processed by SW */ |
| static struct mvneta_rx_desc * |
| mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) |
| { |
| int rx_desc = rxq->next_desc_to_proc; |
| |
| rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); |
| prefetch(rxq->descs + rxq->next_desc_to_proc); |
| return rxq->descs + rx_desc; |
| } |
| |
| /* Change maximum receive size of the port. */ |
| static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); |
| val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; |
| val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << |
| MVNETA_GMAC_MAX_RX_SIZE_SHIFT; |
| mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); |
| } |
| |
| |
| /* Set rx queue offset */ |
| static void mvneta_rxq_offset_set(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq, |
| int offset) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); |
| val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; |
| |
| /* Offset is in */ |
| val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); |
| mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); |
| } |
| |
| |
| /* Tx descriptors helper methods */ |
| |
| /* Update HW with number of TX descriptors to be sent */ |
| static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq, |
| int pend_desc) |
| { |
| u32 val; |
| |
| /* Only 255 descriptors can be added at once ; Assume caller |
| * process TX desriptors in quanta less than 256 |
| */ |
| val = pend_desc; |
| mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); |
| } |
| |
| /* Get pointer to next TX descriptor to be processed (send) by HW */ |
| static struct mvneta_tx_desc * |
| mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) |
| { |
| int tx_desc = txq->next_desc_to_proc; |
| |
| txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); |
| return txq->descs + tx_desc; |
| } |
| |
| /* Release the last allocated TX descriptor. Useful to handle DMA |
| * mapping failures in the TX path. |
| */ |
| static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) |
| { |
| if (txq->next_desc_to_proc == 0) |
| txq->next_desc_to_proc = txq->last_desc - 1; |
| else |
| txq->next_desc_to_proc--; |
| } |
| |
| /* Set rxq buf size */ |
| static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq, |
| int buf_size) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); |
| |
| val &= ~MVNETA_RXQ_BUF_SIZE_MASK; |
| val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); |
| |
| mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); |
| } |
| |
| /* Disable buffer management (BM) */ |
| static void mvneta_rxq_bm_disable(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); |
| val &= ~MVNETA_RXQ_HW_BUF_ALLOC; |
| mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); |
| } |
| |
| /* Enable buffer management (BM) */ |
| static void mvneta_rxq_bm_enable(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); |
| val |= MVNETA_RXQ_HW_BUF_ALLOC; |
| mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); |
| } |
| |
| /* Notify HW about port's assignment of pool for bigger packets */ |
| static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); |
| val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; |
| val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); |
| |
| mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); |
| } |
| |
| /* Notify HW about port's assignment of pool for smaller packets */ |
| static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); |
| val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; |
| val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); |
| |
| mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); |
| } |
| |
| /* Set port's receive buffer size for assigned BM pool */ |
| static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, |
| int buf_size, |
| u8 pool_id) |
| { |
| u32 val; |
| |
| if (!IS_ALIGNED(buf_size, 8)) { |
| dev_warn(pp->dev->dev.parent, |
| "illegal buf_size value %d, round to %d\n", |
| buf_size, ALIGN(buf_size, 8)); |
| buf_size = ALIGN(buf_size, 8); |
| } |
| |
| val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); |
| val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; |
| mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); |
| } |
| |
| /* Configure MBUS window in order to enable access BM internal SRAM */ |
| static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, |
| u8 target, u8 attr) |
| { |
| u32 win_enable, win_protect; |
| int i; |
| |
| win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); |
| |
| if (pp->bm_win_id < 0) { |
| /* Find first not occupied window */ |
| for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { |
| if (win_enable & (1 << i)) { |
| pp->bm_win_id = i; |
| break; |
| } |
| } |
| if (i == MVNETA_MAX_DECODE_WIN) |
| return -ENOMEM; |
| } else { |
| i = pp->bm_win_id; |
| } |
| |
| mvreg_write(pp, MVNETA_WIN_BASE(i), 0); |
| mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); |
| |
| if (i < 4) |
| mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); |
| |
| mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | |
| (attr << 8) | target); |
| |
| mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); |
| |
| win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); |
| win_protect |= 3 << (2 * i); |
| mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); |
| |
| win_enable &= ~(1 << i); |
| mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); |
| |
| return 0; |
| } |
| |
| /* Assign and initialize pools for port. In case of fail |
| * buffer manager will remain disabled for current port. |
| */ |
| static int mvneta_bm_port_init(struct platform_device *pdev, |
| struct mvneta_port *pp) |
| { |
| struct device_node *dn = pdev->dev.of_node; |
| u32 long_pool_id, short_pool_id, wsize; |
| u8 target, attr; |
| int err; |
| |
| /* Get BM window information */ |
| err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, |
| &target, &attr); |
| if (err < 0) |
| return err; |
| |
| pp->bm_win_id = -1; |
| |
| /* Open NETA -> BM window */ |
| err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, |
| target, attr); |
| if (err < 0) { |
| netdev_info(pp->dev, "fail to configure mbus window to BM\n"); |
| return err; |
| } |
| |
| if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { |
| netdev_info(pp->dev, "missing long pool id\n"); |
| return -EINVAL; |
| } |
| |
| /* Create port's long pool depending on mtu */ |
| pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, |
| MVNETA_BM_LONG, pp->id, |
| MVNETA_RX_PKT_SIZE(pp->dev->mtu)); |
| if (!pp->pool_long) { |
| netdev_info(pp->dev, "fail to obtain long pool for port\n"); |
| return -ENOMEM; |
| } |
| |
| pp->pool_long->port_map |= 1 << pp->id; |
| |
| mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, |
| pp->pool_long->id); |
| |
| /* If short pool id is not defined, assume using single pool */ |
| if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) |
| short_pool_id = long_pool_id; |
| |
| /* Create port's short pool */ |
| pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, |
| MVNETA_BM_SHORT, pp->id, |
| MVNETA_BM_SHORT_PKT_SIZE); |
| if (!pp->pool_short) { |
| netdev_info(pp->dev, "fail to obtain short pool for port\n"); |
| mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); |
| return -ENOMEM; |
| } |
| |
| if (short_pool_id != long_pool_id) { |
| pp->pool_short->port_map |= 1 << pp->id; |
| mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, |
| pp->pool_short->id); |
| } |
| |
| return 0; |
| } |
| |
| /* Update settings of a pool for bigger packets */ |
| static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) |
| { |
| struct mvneta_bm_pool *bm_pool = pp->pool_long; |
| int num; |
| |
| /* Release all buffers from long pool */ |
| mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); |
| if (bm_pool->buf_num) { |
| WARN(1, "cannot free all buffers in pool %d\n", |
| bm_pool->id); |
| goto bm_mtu_err; |
| } |
| |
| bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); |
| bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); |
| bm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + |
| SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); |
| |
| /* Fill entire long pool */ |
| num = mvneta_bm_bufs_add(pp->bm_priv, bm_pool, bm_pool->size); |
| if (num != bm_pool->size) { |
| WARN(1, "pool %d: %d of %d allocated\n", |
| bm_pool->id, num, bm_pool->size); |
| goto bm_mtu_err; |
| } |
| mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); |
| |
| return; |
| |
| bm_mtu_err: |
| mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); |
| mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); |
| |
| pp->bm_priv = NULL; |
| mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); |
| netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); |
| } |
| |
| /* Start the Ethernet port RX and TX activity */ |
| static void mvneta_port_up(struct mvneta_port *pp) |
| { |
| int queue; |
| u32 q_map; |
| |
| /* Enable all initialized TXs. */ |
| q_map = 0; |
| for (queue = 0; queue < txq_number; queue++) { |
| struct mvneta_tx_queue *txq = &pp->txqs[queue]; |
| if (txq->descs != NULL) |
| q_map |= (1 << queue); |
| } |
| mvreg_write(pp, MVNETA_TXQ_CMD, q_map); |
| |
| /* Enable all initialized RXQs. */ |
| for (queue = 0; queue < rxq_number; queue++) { |
| struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; |
| |
| if (rxq->descs != NULL) |
| q_map |= (1 << queue); |
| } |
| mvreg_write(pp, MVNETA_RXQ_CMD, q_map); |
| } |
| |
| /* Stop the Ethernet port activity */ |
| static void mvneta_port_down(struct mvneta_port *pp) |
| { |
| u32 val; |
| int count; |
| |
| /* Stop Rx port activity. Check port Rx activity. */ |
| val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; |
| |
| /* Issue stop command for active channels only */ |
| if (val != 0) |
| mvreg_write(pp, MVNETA_RXQ_CMD, |
| val << MVNETA_RXQ_DISABLE_SHIFT); |
| |
| /* Wait for all Rx activity to terminate. */ |
| count = 0; |
| do { |
| if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { |
| netdev_warn(pp->dev, |
| "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", |
| val); |
| break; |
| } |
| mdelay(1); |
| |
| val = mvreg_read(pp, MVNETA_RXQ_CMD); |
| } while (val & 0xff); |
| |
| /* Stop Tx port activity. Check port Tx activity. Issue stop |
| * command for active channels only |
| */ |
| val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; |
| |
| if (val != 0) |
| mvreg_write(pp, MVNETA_TXQ_CMD, |
| (val << MVNETA_TXQ_DISABLE_SHIFT)); |
| |
| /* Wait for all Tx activity to terminate. */ |
| count = 0; |
| do { |
| if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { |
| netdev_warn(pp->dev, |
| "TIMEOUT for TX stopped status=0x%08x\n", |
| val); |
| break; |
| } |
| mdelay(1); |
| |
| /* Check TX Command reg that all Txqs are stopped */ |
| val = mvreg_read(pp, MVNETA_TXQ_CMD); |
| |
| } while (val & 0xff); |
| |
| /* Double check to verify that TX FIFO is empty */ |
| count = 0; |
| do { |
| if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { |
| netdev_warn(pp->dev, |
| "TX FIFO empty timeout status=0x08%x\n", |
| val); |
| break; |
| } |
| mdelay(1); |
| |
| val = mvreg_read(pp, MVNETA_PORT_STATUS); |
| } while (!(val & MVNETA_TX_FIFO_EMPTY) && |
| (val & MVNETA_TX_IN_PRGRS)); |
| |
| udelay(200); |
| } |
| |
| /* Enable the port by setting the port enable bit of the MAC control register */ |
| static void mvneta_port_enable(struct mvneta_port *pp) |
| { |
| u32 val; |
| |
| /* Enable port */ |
| val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); |
| val |= MVNETA_GMAC0_PORT_ENABLE; |
| mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); |
| } |
| |
| /* Disable the port and wait for about 200 usec before retuning */ |
| static void mvneta_port_disable(struct mvneta_port *pp) |
| { |
| u32 val; |
| |
| /* Reset the Enable bit in the Serial Control Register */ |
| val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); |
| val &= ~MVNETA_GMAC0_PORT_ENABLE; |
| mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); |
| |
| udelay(200); |
| } |
| |
| /* Multicast tables methods */ |
| |
| /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ |
| static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) |
| { |
| int offset; |
| u32 val; |
| |
| if (queue == -1) { |
| val = 0; |
| } else { |
| val = 0x1 | (queue << 1); |
| val |= (val << 24) | (val << 16) | (val << 8); |
| } |
| |
| for (offset = 0; offset <= 0xc; offset += 4) |
| mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); |
| } |
| |
| /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ |
| static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) |
| { |
| int offset; |
| u32 val; |
| |
| if (queue == -1) { |
| val = 0; |
| } else { |
| val = 0x1 | (queue << 1); |
| val |= (val << 24) | (val << 16) | (val << 8); |
| } |
| |
| for (offset = 0; offset <= 0xfc; offset += 4) |
| mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); |
| |
| } |
| |
| /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ |
| static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) |
| { |
| int offset; |
| u32 val; |
| |
| if (queue == -1) { |
| memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); |
| val = 0; |
| } else { |
| memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); |
| val = 0x1 | (queue << 1); |
| val |= (val << 24) | (val << 16) | (val << 8); |
| } |
| |
| for (offset = 0; offset <= 0xfc; offset += 4) |
| mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); |
| } |
| |
| static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) |
| { |
| u32 val; |
| |
| if (enable) { |
| val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); |
| val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | |
| MVNETA_GMAC_FORCE_LINK_DOWN | |
| MVNETA_GMAC_AN_FLOW_CTRL_EN); |
| val |= MVNETA_GMAC_INBAND_AN_ENABLE | |
| MVNETA_GMAC_AN_SPEED_EN | |
| MVNETA_GMAC_AN_DUPLEX_EN; |
| mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); |
| |
| val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); |
| val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; |
| mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); |
| |
| val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); |
| val |= MVNETA_GMAC2_INBAND_AN_ENABLE; |
| mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); |
| } else { |
| val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); |
| val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | |
| MVNETA_GMAC_AN_SPEED_EN | |
| MVNETA_GMAC_AN_DUPLEX_EN); |
| mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); |
| |
| val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); |
| val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; |
| mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); |
| |
| val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); |
| val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; |
| mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); |
| } |
| } |
| |
| static void mvneta_percpu_unmask_interrupt(void *arg) |
| { |
| struct mvneta_port *pp = arg; |
| |
| /* All the queue are unmasked, but actually only the ones |
| * mapped to this CPU will be unmasked |
| */ |
| mvreg_write(pp, MVNETA_INTR_NEW_MASK, |
| MVNETA_RX_INTR_MASK_ALL | |
| MVNETA_TX_INTR_MASK_ALL | |
| MVNETA_MISCINTR_INTR_MASK); |
| } |
| |
| static void mvneta_percpu_mask_interrupt(void *arg) |
| { |
| struct mvneta_port *pp = arg; |
| |
| /* All the queue are masked, but actually only the ones |
| * mapped to this CPU will be masked |
| */ |
| mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); |
| mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); |
| mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); |
| } |
| |
| static void mvneta_percpu_clear_intr_cause(void *arg) |
| { |
| struct mvneta_port *pp = arg; |
| |
| /* All the queue are cleared, but actually only the ones |
| * mapped to this CPU will be cleared |
| */ |
| mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); |
| mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); |
| mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); |
| } |
| |
| /* This method sets defaults to the NETA port: |
| * Clears interrupt Cause and Mask registers. |
| * Clears all MAC tables. |
| * Sets defaults to all registers. |
| * Resets RX and TX descriptor rings. |
| * Resets PHY. |
| * This method can be called after mvneta_port_down() to return the port |
| * settings to defaults. |
| */ |
| static void mvneta_defaults_set(struct mvneta_port *pp) |
| { |
| int cpu; |
| int queue; |
| u32 val; |
| int max_cpu = num_present_cpus(); |
| |
| /* Clear all Cause registers */ |
| on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); |
| |
| /* Mask all interrupts */ |
| on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); |
| mvreg_write(pp, MVNETA_INTR_ENABLE, 0); |
| |
| /* Enable MBUS Retry bit16 */ |
| mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); |
| |
| /* Set CPU queue access map. CPUs are assigned to the RX and |
| * TX queues modulo their number. If there is only one TX |
| * queue then it is assigned to the CPU associated to the |
| * default RX queue. |
| */ |
| for_each_present_cpu(cpu) { |
| int rxq_map = 0, txq_map = 0; |
| int rxq, txq; |
| |
| for (rxq = 0; rxq < rxq_number; rxq++) |
| if ((rxq % max_cpu) == cpu) |
| rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); |
| |
| for (txq = 0; txq < txq_number; txq++) |
| if ((txq % max_cpu) == cpu) |
| txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); |
| |
| /* With only one TX queue we configure a special case |
| * which will allow to get all the irq on a single |
| * CPU |
| */ |
| if (txq_number == 1) |
| txq_map = (cpu == pp->rxq_def) ? |
| MVNETA_CPU_TXQ_ACCESS(1) : 0; |
| |
| mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); |
| } |
| |
| /* Reset RX and TX DMAs */ |
| mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); |
| mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); |
| |
| /* Disable Legacy WRR, Disable EJP, Release from reset */ |
| mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); |
| for (queue = 0; queue < txq_number; queue++) { |
| mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); |
| mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); |
| } |
| |
| mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); |
| mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); |
| |
| /* Set Port Acceleration Mode */ |
| if (pp->bm_priv) |
| /* HW buffer management + legacy parser */ |
| val = MVNETA_ACC_MODE_EXT2; |
| else |
| /* SW buffer management + legacy parser */ |
| val = MVNETA_ACC_MODE_EXT1; |
| mvreg_write(pp, MVNETA_ACC_MODE, val); |
| |
| if (pp->bm_priv) |
| mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); |
| |
| /* Update val of portCfg register accordingly with all RxQueue types */ |
| val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); |
| mvreg_write(pp, MVNETA_PORT_CONFIG, val); |
| |
| val = 0; |
| mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); |
| mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); |
| |
| /* Build PORT_SDMA_CONFIG_REG */ |
| val = 0; |
| |
| /* Default burst size */ |
| val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); |
| val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); |
| val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; |
| |
| #if defined(__BIG_ENDIAN) |
| val |= MVNETA_DESC_SWAP; |
| #endif |
| |
| /* Assign port SDMA configuration */ |
| mvreg_write(pp, MVNETA_SDMA_CONFIG, val); |
| |
| /* Disable PHY polling in hardware, since we're using the |
| * kernel phylib to do this. |
| */ |
| val = mvreg_read(pp, MVNETA_UNIT_CONTROL); |
| val &= ~MVNETA_PHY_POLLING_ENABLE; |
| mvreg_write(pp, MVNETA_UNIT_CONTROL, val); |
| |
| mvneta_set_autoneg(pp, pp->use_inband_status); |
| mvneta_set_ucast_table(pp, -1); |
| mvneta_set_special_mcast_table(pp, -1); |
| mvneta_set_other_mcast_table(pp, -1); |
| |
| /* Set port interrupt enable register - default enable all */ |
| mvreg_write(pp, MVNETA_INTR_ENABLE, |
| (MVNETA_RXQ_INTR_ENABLE_ALL_MASK |
| | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); |
| |
| mvneta_mib_counters_clear(pp); |
| } |
| |
| /* Set max sizes for tx queues */ |
| static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) |
| |
| { |
| u32 val, size, mtu; |
| int queue; |
| |
| mtu = max_tx_size * 8; |
| if (mtu > MVNETA_TX_MTU_MAX) |
| mtu = MVNETA_TX_MTU_MAX; |
| |
| /* Set MTU */ |
| val = mvreg_read(pp, MVNETA_TX_MTU); |
| val &= ~MVNETA_TX_MTU_MAX; |
| val |= mtu; |
| mvreg_write(pp, MVNETA_TX_MTU, val); |
| |
| /* TX token size and all TXQs token size must be larger that MTU */ |
| val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); |
| |
| size = val & MVNETA_TX_TOKEN_SIZE_MAX; |
| if (size < mtu) { |
| size = mtu; |
| val &= ~MVNETA_TX_TOKEN_SIZE_MAX; |
| val |= size; |
| mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); |
| } |
| for (queue = 0; queue < txq_number; queue++) { |
| val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); |
| |
| size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; |
| if (size < mtu) { |
| size = mtu; |
| val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; |
| val |= size; |
| mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); |
| } |
| } |
| } |
| |
| /* Set unicast address */ |
| static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, |
| int queue) |
| { |
| unsigned int unicast_reg; |
| unsigned int tbl_offset; |
| unsigned int reg_offset; |
| |
| /* Locate the Unicast table entry */ |
| last_nibble = (0xf & last_nibble); |
| |
| /* offset from unicast tbl base */ |
| tbl_offset = (last_nibble / 4) * 4; |
| |
| /* offset within the above reg */ |
| reg_offset = last_nibble % 4; |
| |
| unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); |
| |
| if (queue == -1) { |
| /* Clear accepts frame bit at specified unicast DA tbl entry */ |
| unicast_reg &= ~(0xff << (8 * reg_offset)); |
| } else { |
| unicast_reg &= ~(0xff << (8 * reg_offset)); |
| unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); |
| } |
| |
| mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); |
| } |
| |
| /* Set mac address */ |
| static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, |
| int queue) |
| { |
| unsigned int mac_h; |
| unsigned int mac_l; |
| |
| if (queue != -1) { |
| mac_l = (addr[4] << 8) | (addr[5]); |
| mac_h = (addr[0] << 24) | (addr[1] << 16) | |
| (addr[2] << 8) | (addr[3] << 0); |
| |
| mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); |
| mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); |
| } |
| |
| /* Accept frames of this address */ |
| mvneta_set_ucast_addr(pp, addr[5], queue); |
| } |
| |
| /* Set the number of packets that will be received before RX interrupt |
| * will be generated by HW. |
| */ |
| static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq, u32 value) |
| { |
| mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), |
| value | MVNETA_RXQ_NON_OCCUPIED(0)); |
| rxq->pkts_coal = value; |
| } |
| |
| /* Set the time delay in usec before RX interrupt will be generated by |
| * HW. |
| */ |
| static void mvneta_rx_time_coal_set(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq, u32 value) |
| { |
| u32 val; |
| unsigned long clk_rate; |
| |
| clk_rate = clk_get_rate(pp->clk); |
| val = (clk_rate / 1000000) * value; |
| |
| mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); |
| rxq->time_coal = value; |
| } |
| |
| /* Set threshold for TX_DONE pkts coalescing */ |
| static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq, u32 value) |
| { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); |
| |
| val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; |
| val |= MVNETA_TXQ_SENT_THRESH_MASK(value); |
| |
| mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); |
| |
| txq->done_pkts_coal = value; |
| } |
| |
| /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ |
| static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, |
| u32 phys_addr, u32 cookie) |
| { |
| rx_desc->buf_cookie = cookie; |
| rx_desc->buf_phys_addr = phys_addr; |
| } |
| |
| /* Decrement sent descriptors counter */ |
| static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq, |
| int sent_desc) |
| { |
| u32 val; |
| |
| /* Only 255 TX descriptors can be updated at once */ |
| while (sent_desc > 0xff) { |
| val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; |
| mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); |
| sent_desc = sent_desc - 0xff; |
| } |
| |
| val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; |
| mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); |
| } |
| |
| /* Get number of TX descriptors already sent by HW */ |
| static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq) |
| { |
| u32 val; |
| int sent_desc; |
| |
| val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); |
| sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> |
| MVNETA_TXQ_SENT_DESC_SHIFT; |
| |
| return sent_desc; |
| } |
| |
| /* Get number of sent descriptors and decrement counter. |
| * The number of sent descriptors is returned. |
| */ |
| static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq) |
| { |
| int sent_desc; |
| |
| /* Get number of sent descriptors */ |
| sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); |
| |
| /* Decrement sent descriptors counter */ |
| if (sent_desc) |
| mvneta_txq_sent_desc_dec(pp, txq, sent_desc); |
| |
| return sent_desc; |
| } |
| |
| /* Set TXQ descriptors fields relevant for CSUM calculation */ |
| static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, |
| int ip_hdr_len, int l4_proto) |
| { |
| u32 command; |
| |
| /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, |
| * G_L4_chk, L4_type; required only for checksum |
| * calculation |
| */ |
| command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; |
| command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; |
| |
| if (l3_proto == htons(ETH_P_IP)) |
| command |= MVNETA_TXD_IP_CSUM; |
| else |
| command |= MVNETA_TX_L3_IP6; |
| |
| if (l4_proto == IPPROTO_TCP) |
| command |= MVNETA_TX_L4_CSUM_FULL; |
| else if (l4_proto == IPPROTO_UDP) |
| command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; |
| else |
| command |= MVNETA_TX_L4_CSUM_NOT; |
| |
| return command; |
| } |
| |
| |
| /* Display more error info */ |
| static void mvneta_rx_error(struct mvneta_port *pp, |
| struct mvneta_rx_desc *rx_desc) |
| { |
| u32 status = rx_desc->status; |
| |
| if (!mvneta_rxq_desc_is_first_last(status)) { |
| netdev_err(pp->dev, |
| "bad rx status %08x (buffer oversize), size=%d\n", |
| status, rx_desc->data_size); |
| return; |
| } |
| |
| switch (status & MVNETA_RXD_ERR_CODE_MASK) { |
| case MVNETA_RXD_ERR_CRC: |
| netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", |
| status, rx_desc->data_size); |
| break; |
| case MVNETA_RXD_ERR_OVERRUN: |
| netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", |
| status, rx_desc->data_size); |
| break; |
| case MVNETA_RXD_ERR_LEN: |
| netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", |
| status, rx_desc->data_size); |
| break; |
| case MVNETA_RXD_ERR_RESOURCE: |
| netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", |
| status, rx_desc->data_size); |
| break; |
| } |
| } |
| |
| /* Handle RX checksum offload based on the descriptor's status */ |
| static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, |
| struct sk_buff *skb) |
| { |
| if ((status & MVNETA_RXD_L3_IP4) && |
| (status & MVNETA_RXD_L4_CSUM_OK)) { |
| skb->csum = 0; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| return; |
| } |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| |
| /* Return tx queue pointer (find last set bit) according to <cause> returned |
| * form tx_done reg. <cause> must not be null. The return value is always a |
| * valid queue for matching the first one found in <cause>. |
| */ |
| static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, |
| u32 cause) |
| { |
| int queue = fls(cause) - 1; |
| |
| return &pp->txqs[queue]; |
| } |
| |
| /* Free tx queue skbuffs */ |
| static void mvneta_txq_bufs_free(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq, int num) |
| { |
| int i; |
| |
| for (i = 0; i < num; i++) { |
| struct mvneta_tx_desc *tx_desc = txq->descs + |
| txq->txq_get_index; |
| struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; |
| |
| mvneta_txq_inc_get(txq); |
| |
| if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) |
| dma_unmap_single(pp->dev->dev.parent, |
| tx_desc->buf_phys_addr, |
| tx_desc->data_size, DMA_TO_DEVICE); |
| if (!skb) |
| continue; |
| dev_kfree_skb_any(skb); |
| } |
| } |
| |
| /* Handle end of transmission */ |
| static void mvneta_txq_done(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq) |
| { |
| struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); |
| int tx_done; |
| |
| tx_done = mvneta_txq_sent_desc_proc(pp, txq); |
| if (!tx_done) |
| return; |
| |
| mvneta_txq_bufs_free(pp, txq, tx_done); |
| |
| txq->count -= tx_done; |
| |
| if (netif_tx_queue_stopped(nq)) { |
| if (txq->count <= txq->tx_wake_threshold) |
| netif_tx_wake_queue(nq); |
| } |
| } |
| |
| void *mvneta_frag_alloc(unsigned int frag_size) |
| { |
| if (likely(frag_size <= PAGE_SIZE)) |
| return netdev_alloc_frag(frag_size); |
| else |
| return kmalloc(frag_size, GFP_ATOMIC); |
| } |
| EXPORT_SYMBOL_GPL(mvneta_frag_alloc); |
| |
| void mvneta_frag_free(unsigned int frag_size, void *data) |
| { |
| if (likely(frag_size <= PAGE_SIZE)) |
| skb_free_frag(data); |
| else |
| kfree(data); |
| } |
| EXPORT_SYMBOL_GPL(mvneta_frag_free); |
| |
| /* Refill processing for SW buffer management */ |
| static int mvneta_rx_refill(struct mvneta_port *pp, |
| struct mvneta_rx_desc *rx_desc) |
| |
| { |
| dma_addr_t phys_addr; |
| void *data; |
| |
| data = mvneta_frag_alloc(pp->frag_size); |
| if (!data) |
| return -ENOMEM; |
| |
| phys_addr = dma_map_single(pp->dev->dev.parent, data, |
| MVNETA_RX_BUF_SIZE(pp->pkt_size), |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { |
| mvneta_frag_free(pp->frag_size, data); |
| return -ENOMEM; |
| } |
| |
| mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); |
| return 0; |
| } |
| |
| /* Handle tx checksum */ |
| static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) |
| { |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| int ip_hdr_len = 0; |
| __be16 l3_proto = vlan_get_protocol(skb); |
| u8 l4_proto; |
| |
| if (l3_proto == htons(ETH_P_IP)) { |
| struct iphdr *ip4h = ip_hdr(skb); |
| |
| /* Calculate IPv4 checksum and L4 checksum */ |
| ip_hdr_len = ip4h->ihl; |
| l4_proto = ip4h->protocol; |
| } else if (l3_proto == htons(ETH_P_IPV6)) { |
| struct ipv6hdr *ip6h = ipv6_hdr(skb); |
| |
| /* Read l4_protocol from one of IPv6 extra headers */ |
| if (skb_network_header_len(skb) > 0) |
| ip_hdr_len = (skb_network_header_len(skb) >> 2); |
| l4_proto = ip6h->nexthdr; |
| } else |
| return MVNETA_TX_L4_CSUM_NOT; |
| |
| return mvneta_txq_desc_csum(skb_network_offset(skb), |
| l3_proto, ip_hdr_len, l4_proto); |
| } |
| |
| return MVNETA_TX_L4_CSUM_NOT; |
| } |
| |
| /* Drop packets received by the RXQ and free buffers */ |
| static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| { |
| int rx_done, i; |
| |
| rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); |
| if (rx_done) |
| mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); |
| |
| if (pp->bm_priv) { |
| for (i = 0; i < rx_done; i++) { |
| struct mvneta_rx_desc *rx_desc = |
| mvneta_rxq_next_desc_get(rxq); |
| u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); |
| struct mvneta_bm_pool *bm_pool; |
| |
| bm_pool = &pp->bm_priv->bm_pools[pool_id]; |
| /* Return dropped buffer to the pool */ |
| mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, |
| rx_desc->buf_phys_addr); |
| } |
| return; |
| } |
| |
| for (i = 0; i < rxq->size; i++) { |
| struct mvneta_rx_desc *rx_desc = rxq->descs + i; |
| void *data = (void *)rx_desc->buf_cookie; |
| |
| dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, |
| MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); |
| mvneta_frag_free(pp->frag_size, data); |
| } |
| } |
| |
| /* Main rx processing when using software buffer management */ |
| static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, |
| struct mvneta_rx_queue *rxq) |
| { |
| struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); |
| struct net_device *dev = pp->dev; |
| int rx_done; |
| u32 rcvd_pkts = 0; |
| u32 rcvd_bytes = 0; |
| |
| /* Get number of received packets */ |
| rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); |
| |
| if (rx_todo > rx_done) |
| rx_todo = rx_done; |
| |
| rx_done = 0; |
| |
| /* Fairness NAPI loop */ |
| while (rx_done < rx_todo) { |
| struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); |
| struct sk_buff *skb; |
| unsigned char *data; |
| dma_addr_t phys_addr; |
| u32 rx_status, frag_size; |
| int rx_bytes, err; |
| |
| rx_done++; |
| rx_status = rx_desc->status; |
| rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); |
| data = (unsigned char *)rx_desc->buf_cookie; |
| phys_addr = rx_desc->buf_phys_addr; |
| |
| if (!mvneta_rxq_desc_is_first_last(rx_status) || |
| (rx_status & MVNETA_RXD_ERR_SUMMARY)) { |
| err_drop_frame: |
| dev->stats.rx_errors++; |
| mvneta_rx_error(pp, rx_desc); |
| /* leave the descriptor untouched */ |
| continue; |
| } |
| |
| if (rx_bytes <= rx_copybreak) { |
| /* better copy a small frame and not unmap the DMA region */ |
| skb = netdev_alloc_skb_ip_align(dev, rx_bytes); |
| if (unlikely(!skb)) |
| goto err_drop_frame; |
| |
| dma_sync_single_range_for_cpu(dev->dev.parent, |
| rx_desc->buf_phys_addr, |
| MVNETA_MH_SIZE + NET_SKB_PAD, |
| rx_bytes, |
| DMA_FROM_DEVICE); |
| memcpy(skb_put(skb, rx_bytes), |
| data + MVNETA_MH_SIZE + NET_SKB_PAD, |
| rx_bytes); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| mvneta_rx_csum(pp, rx_status, skb); |
| napi_gro_receive(&port->napi, skb); |
| |
| rcvd_pkts++; |
| rcvd_bytes += rx_bytes; |
| |
| /* leave the descriptor and buffer untouched */ |
| continue; |
| } |
| |
| /* Refill processing */ |
| err = mvneta_rx_refill(pp, rx_desc); |
| if (err) { |
| netdev_err(dev, "Linux processing - Can't refill\n"); |
| rxq->missed++; |
| goto err_drop_frame; |
| } |
| |
| frag_size = pp->frag_size; |
| |
| skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); |
| |
| /* After refill old buffer has to be unmapped regardless |
| * the skb is successfully built or not. |
| */ |
| dma_unmap_single(dev->dev.parent, phys_addr, |
| MVNETA_RX_BUF_SIZE(pp->pkt_size), |
| DMA_FROM_DEVICE); |
| |
| if (!skb) |
| goto err_drop_frame; |
| |
| rcvd_pkts++; |
| rcvd_bytes += rx_bytes; |
| |
| /* Linux processing */ |
| skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); |
| skb_put(skb, rx_bytes); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| mvneta_rx_csum(pp, rx_status, skb); |
| |
| napi_gro_receive(&port->napi, skb); |
| } |
| |
| if (rcvd_pkts) { |
| struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); |
| |
| u64_stats_update_begin(&stats->syncp); |
| stats->rx_packets += rcvd_pkts; |
| stats->rx_bytes += rcvd_bytes; |
| u64_stats_update_end(&stats->syncp); |
| } |
| |
| /* Update rxq management counters */ |
| mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); |
| |
| return rx_done; |
| } |
| |
| /* Main rx processing when using hardware buffer management */ |
| static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, |
| struct mvneta_rx_queue *rxq) |
| { |
| struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); |
| struct net_device *dev = pp->dev; |
| int rx_done; |
| u32 rcvd_pkts = 0; |
| u32 rcvd_bytes = 0; |
| |
| /* Get number of received packets */ |
| rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); |
| |
| if (rx_todo > rx_done) |
| rx_todo = rx_done; |
| |
| rx_done = 0; |
| |
| /* Fairness NAPI loop */ |
| while (rx_done < rx_todo) { |
| struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); |
| struct mvneta_bm_pool *bm_pool = NULL; |
| struct sk_buff *skb; |
| unsigned char *data; |
| dma_addr_t phys_addr; |
| u32 rx_status, frag_size; |
| int rx_bytes, err; |
| u8 pool_id; |
| |
| rx_done++; |
| rx_status = rx_desc->status; |
| rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); |
| data = (unsigned char *)rx_desc->buf_cookie; |
| phys_addr = rx_desc->buf_phys_addr; |
| pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); |
| bm_pool = &pp->bm_priv->bm_pools[pool_id]; |
| |
| if (!mvneta_rxq_desc_is_first_last(rx_status) || |
| (rx_status & MVNETA_RXD_ERR_SUMMARY)) { |
| err_drop_frame_ret_pool: |
| /* Return the buffer to the pool */ |
| mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, |
| rx_desc->buf_phys_addr); |
| err_drop_frame: |
| dev->stats.rx_errors++; |
| mvneta_rx_error(pp, rx_desc); |
| /* leave the descriptor untouched */ |
| continue; |
| } |
| |
| if (rx_bytes <= rx_copybreak) { |
| /* better copy a small frame and not unmap the DMA region */ |
| skb = netdev_alloc_skb_ip_align(dev, rx_bytes); |
| if (unlikely(!skb)) |
| goto err_drop_frame_ret_pool; |
| |
| dma_sync_single_range_for_cpu(dev->dev.parent, |
| rx_desc->buf_phys_addr, |
| MVNETA_MH_SIZE + NET_SKB_PAD, |
| rx_bytes, |
| DMA_FROM_DEVICE); |
| memcpy(skb_put(skb, rx_bytes), |
| data + MVNETA_MH_SIZE + NET_SKB_PAD, |
| rx_bytes); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| mvneta_rx_csum(pp, rx_status, skb); |
| napi_gro_receive(&port->napi, skb); |
| |
| rcvd_pkts++; |
| rcvd_bytes += rx_bytes; |
| |
| /* Return the buffer to the pool */ |
| mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, |
| rx_desc->buf_phys_addr); |
| |
| /* leave the descriptor and buffer untouched */ |
| continue; |
| } |
| |
| /* Refill processing */ |
| err = mvneta_bm_pool_refill(pp->bm_priv, bm_pool); |
| if (err) { |
| netdev_err(dev, "Linux processing - Can't refill\n"); |
| rxq->missed++; |
| goto err_drop_frame_ret_pool; |
| } |
| |
| frag_size = bm_pool->frag_size; |
| |
| skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); |
| |
| /* After refill old buffer has to be unmapped regardless |
| * the skb is successfully built or not. |
| */ |
| dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, |
| bm_pool->buf_size, DMA_FROM_DEVICE); |
| if (!skb) |
| goto err_drop_frame; |
| |
| rcvd_pkts++; |
| rcvd_bytes += rx_bytes; |
| |
| /* Linux processing */ |
| skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); |
| skb_put(skb, rx_bytes); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| mvneta_rx_csum(pp, rx_status, skb); |
| |
| napi_gro_receive(&port->napi, skb); |
| } |
| |
| if (rcvd_pkts) { |
| struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); |
| |
| u64_stats_update_begin(&stats->syncp); |
| stats->rx_packets += rcvd_pkts; |
| stats->rx_bytes += rcvd_bytes; |
| u64_stats_update_end(&stats->syncp); |
| } |
| |
| /* Update rxq management counters */ |
| mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); |
| |
| return rx_done; |
| } |
| |
| static inline void |
| mvneta_tso_put_hdr(struct sk_buff *skb, |
| struct mvneta_port *pp, struct mvneta_tx_queue *txq) |
| { |
| struct mvneta_tx_desc *tx_desc; |
| int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| |
| txq->tx_skb[txq->txq_put_index] = NULL; |
| tx_desc = mvneta_txq_next_desc_get(txq); |
| tx_desc->data_size = hdr_len; |
| tx_desc->command = mvneta_skb_tx_csum(pp, skb); |
| tx_desc->command |= MVNETA_TXD_F_DESC; |
| tx_desc->buf_phys_addr = txq->tso_hdrs_phys + |
| txq->txq_put_index * TSO_HEADER_SIZE; |
| mvneta_txq_inc_put(txq); |
| } |
| |
| static inline int |
| mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, |
| struct sk_buff *skb, char *data, int size, |
| bool last_tcp, bool is_last) |
| { |
| struct mvneta_tx_desc *tx_desc; |
| |
| tx_desc = mvneta_txq_next_desc_get(txq); |
| tx_desc->data_size = size; |
| tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, |
| size, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(dev->dev.parent, |
| tx_desc->buf_phys_addr))) { |
| mvneta_txq_desc_put(txq); |
| return -ENOMEM; |
| } |
| |
| tx_desc->command = 0; |
| txq->tx_skb[txq->txq_put_index] = NULL; |
| |
| if (last_tcp) { |
| /* last descriptor in the TCP packet */ |
| tx_desc->command = MVNETA_TXD_L_DESC; |
| |
| /* last descriptor in SKB */ |
| if (is_last) |
| txq->tx_skb[txq->txq_put_index] = skb; |
| } |
| mvneta_txq_inc_put(txq); |
| return 0; |
| } |
| |
| static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, |
| struct mvneta_tx_queue *txq) |
| { |
| int total_len, data_left; |
| int desc_count = 0; |
| struct mvneta_port *pp = netdev_priv(dev); |
| struct tso_t tso; |
| int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| int i; |
| |
| /* Count needed descriptors */ |
| if ((txq->count + tso_count_descs(skb)) >= txq->size) |
| return 0; |
| |
| if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { |
| pr_info("*** Is this even possible???!?!?\n"); |
| return 0; |
| } |
| |
| /* Initialize the TSO handler, and prepare the first payload */ |
| tso_start(skb, &tso); |
| |
| total_len = skb->len - hdr_len; |
| while (total_len > 0) { |
| char *hdr; |
| |
| data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); |
| total_len -= data_left; |
| desc_count++; |
| |
| /* prepare packet headers: MAC + IP + TCP */ |
| hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; |
| tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); |
| |
| mvneta_tso_put_hdr(skb, pp, txq); |
| |
| while (data_left > 0) { |
| int size; |
| desc_count++; |
| |
| size = min_t(int, tso.size, data_left); |
| |
| if (mvneta_tso_put_data(dev, txq, skb, |
| tso.data, size, |
| size == data_left, |
| total_len == 0)) |
| goto err_release; |
| data_left -= size; |
| |
| tso_build_data(skb, &tso, size); |
| } |
| } |
| |
| return desc_count; |
| |
| err_release: |
| /* Release all used data descriptors; header descriptors must not |
| * be DMA-unmapped. |
| */ |
| for (i = desc_count - 1; i >= 0; i--) { |
| struct mvneta_tx_desc *tx_desc = txq->descs + i; |
| if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) |
| dma_unmap_single(pp->dev->dev.parent, |
| tx_desc->buf_phys_addr, |
| tx_desc->data_size, |
| DMA_TO_DEVICE); |
| mvneta_txq_desc_put(txq); |
| } |
| return 0; |
| } |
| |
| /* Handle tx fragmentation processing */ |
| static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, |
| struct mvneta_tx_queue *txq) |
| { |
| struct mvneta_tx_desc *tx_desc; |
| int i, nr_frags = skb_shinfo(skb)->nr_frags; |
| |
| for (i = 0; i < nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| void *addr = page_address(frag->page.p) + frag->page_offset; |
| |
| tx_desc = mvneta_txq_next_desc_get(txq); |
| tx_desc->data_size = frag->size; |
| |
| tx_desc->buf_phys_addr = |
| dma_map_single(pp->dev->dev.parent, addr, |
| tx_desc->data_size, DMA_TO_DEVICE); |
| |
| if (dma_mapping_error(pp->dev->dev.parent, |
| tx_desc->buf_phys_addr)) { |
| mvneta_txq_desc_put(txq); |
| goto error; |
| } |
| |
| if (i == nr_frags - 1) { |
| /* Last descriptor */ |
| tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; |
| txq->tx_skb[txq->txq_put_index] = skb; |
| } else { |
| /* Descriptor in the middle: Not First, Not Last */ |
| tx_desc->command = 0; |
| txq->tx_skb[txq->txq_put_index] = NULL; |
| } |
| mvneta_txq_inc_put(txq); |
| } |
| |
| return 0; |
| |
| error: |
| /* Release all descriptors that were used to map fragments of |
| * this packet, as well as the corresponding DMA mappings |
| */ |
| for (i = i - 1; i >= 0; i--) { |
| tx_desc = txq->descs + i; |
| dma_unmap_single(pp->dev->dev.parent, |
| tx_desc->buf_phys_addr, |
| tx_desc->data_size, |
| DMA_TO_DEVICE); |
| mvneta_txq_desc_put(txq); |
| } |
| |
| return -ENOMEM; |
| } |
| |
| /* Main tx processing */ |
| static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| u16 txq_id = skb_get_queue_mapping(skb); |
| struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; |
| struct mvneta_tx_desc *tx_desc; |
| int len = skb->len; |
| int frags = 0; |
| u32 tx_cmd; |
| |
| if (!netif_running(dev)) |
| goto out; |
| |
| if (skb_is_gso(skb)) { |
| frags = mvneta_tx_tso(skb, dev, txq); |
| goto out; |
| } |
| |
| frags = skb_shinfo(skb)->nr_frags + 1; |
| |
| /* Get a descriptor for the first part of the packet */ |
| tx_desc = mvneta_txq_next_desc_get(txq); |
| |
| tx_cmd = mvneta_skb_tx_csum(pp, skb); |
| |
| tx_desc->data_size = skb_headlen(skb); |
| |
| tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, |
| tx_desc->data_size, |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(dev->dev.parent, |
| tx_desc->buf_phys_addr))) { |
| mvneta_txq_desc_put(txq); |
| frags = 0; |
| goto out; |
| } |
| |
| if (frags == 1) { |
| /* First and Last descriptor */ |
| tx_cmd |= MVNETA_TXD_FLZ_DESC; |
| tx_desc->command = tx_cmd; |
| txq->tx_skb[txq->txq_put_index] = skb; |
| mvneta_txq_inc_put(txq); |
| } else { |
| /* First but not Last */ |
| tx_cmd |= MVNETA_TXD_F_DESC; |
| txq->tx_skb[txq->txq_put_index] = NULL; |
| mvneta_txq_inc_put(txq); |
| tx_desc->command = tx_cmd; |
| /* Continue with other skb fragments */ |
| if (mvneta_tx_frag_process(pp, skb, txq)) { |
| dma_unmap_single(dev->dev.parent, |
| tx_desc->buf_phys_addr, |
| tx_desc->data_size, |
| DMA_TO_DEVICE); |
| mvneta_txq_desc_put(txq); |
| frags = 0; |
| goto out; |
| } |
| } |
| |
| out: |
| if (frags > 0) { |
| struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); |
| struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); |
| |
| txq->count += frags; |
| mvneta_txq_pend_desc_add(pp, txq, frags); |
| |
| if (txq->count >= txq->tx_stop_threshold) |
| netif_tx_stop_queue(nq); |
| |
| u64_stats_update_begin(&stats->syncp); |
| stats->tx_packets++; |
| stats->tx_bytes += len; |
| u64_stats_update_end(&stats->syncp); |
| } else { |
| dev->stats.tx_dropped++; |
| dev_kfree_skb_any(skb); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| |
| /* Free tx resources, when resetting a port */ |
| static void mvneta_txq_done_force(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq) |
| |
| { |
| int tx_done = txq->count; |
| |
| mvneta_txq_bufs_free(pp, txq, tx_done); |
| |
| /* reset txq */ |
| txq->count = 0; |
| txq->txq_put_index = 0; |
| txq->txq_get_index = 0; |
| } |
| |
| /* Handle tx done - called in softirq context. The <cause_tx_done> argument |
| * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. |
| */ |
| static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) |
| { |
| struct mvneta_tx_queue *txq; |
| struct netdev_queue *nq; |
| |
| while (cause_tx_done) { |
| txq = mvneta_tx_done_policy(pp, cause_tx_done); |
| |
| nq = netdev_get_tx_queue(pp->dev, txq->id); |
| __netif_tx_lock(nq, smp_processor_id()); |
| |
| if (txq->count) |
| mvneta_txq_done(pp, txq); |
| |
| __netif_tx_unlock(nq); |
| cause_tx_done &= ~((1 << txq->id)); |
| } |
| } |
| |
| /* Compute crc8 of the specified address, using a unique algorithm , |
| * according to hw spec, different than generic crc8 algorithm |
| */ |
| static int mvneta_addr_crc(unsigned char *addr) |
| { |
| int crc = 0; |
| int i; |
| |
| for (i = 0; i < ETH_ALEN; i++) { |
| int j; |
| |
| crc = (crc ^ addr[i]) << 8; |
| for (j = 7; j >= 0; j--) { |
| if (crc & (0x100 << j)) |
| crc ^= 0x107 << j; |
| } |
| } |
| |
| return crc; |
| } |
| |
| /* This method controls the net device special MAC multicast support. |
| * The Special Multicast Table for MAC addresses supports MAC of the form |
| * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). |
| * The MAC DA[7:0] bits are used as a pointer to the Special Multicast |
| * Table entries in the DA-Filter table. This method set the Special |
| * Multicast Table appropriate entry. |
| */ |
| static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, |
| unsigned char last_byte, |
| int queue) |
| { |
| unsigned int smc_table_reg; |
| unsigned int tbl_offset; |
| unsigned int reg_offset; |
| |
| /* Register offset from SMC table base */ |
| tbl_offset = (last_byte / 4); |
| /* Entry offset within the above reg */ |
| reg_offset = last_byte % 4; |
| |
| smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST |
| + tbl_offset * 4)); |
| |
| if (queue == -1) |
| smc_table_reg &= ~(0xff << (8 * reg_offset)); |
| else { |
| smc_table_reg &= ~(0xff << (8 * reg_offset)); |
| smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); |
| } |
| |
| mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, |
| smc_table_reg); |
| } |
| |
| /* This method controls the network device Other MAC multicast support. |
| * The Other Multicast Table is used for multicast of another type. |
| * A CRC-8 is used as an index to the Other Multicast Table entries |
| * in the DA-Filter table. |
| * The method gets the CRC-8 value from the calling routine and |
| * sets the Other Multicast Table appropriate entry according to the |
| * specified CRC-8 . |
| */ |
| static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, |
| unsigned char crc8, |
| int queue) |
| { |
| unsigned int omc_table_reg; |
| unsigned int tbl_offset; |
| unsigned int reg_offset; |
| |
| tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ |
| reg_offset = crc8 % 4; /* Entry offset within the above reg */ |
| |
| omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); |
| |
| if (queue == -1) { |
| /* Clear accepts frame bit at specified Other DA table entry */ |
| omc_table_reg &= ~(0xff << (8 * reg_offset)); |
| } else { |
| omc_table_reg &= ~(0xff << (8 * reg_offset)); |
| omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); |
| } |
| |
| mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); |
| } |
| |
| /* The network device supports multicast using two tables: |
| * 1) Special Multicast Table for MAC addresses of the form |
| * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). |
| * The MAC DA[7:0] bits are used as a pointer to the Special Multicast |
| * Table entries in the DA-Filter table. |
| * 2) Other Multicast Table for multicast of another type. A CRC-8 value |
| * is used as an index to the Other Multicast Table entries in the |
| * DA-Filter table. |
| */ |
| static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, |
| int queue) |
| { |
| unsigned char crc_result = 0; |
| |
| if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { |
| mvneta_set_special_mcast_addr(pp, p_addr[5], queue); |
| return 0; |
| } |
| |
| crc_result = mvneta_addr_crc(p_addr); |
| if (queue == -1) { |
| if (pp->mcast_count[crc_result] == 0) { |
| netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", |
| crc_result); |
| return -EINVAL; |
| } |
| |
| pp->mcast_count[crc_result]--; |
| if (pp->mcast_count[crc_result] != 0) { |
| netdev_info(pp->dev, |
| "After delete there are %d valid Mcast for crc8=0x%02x\n", |
| pp->mcast_count[crc_result], crc_result); |
| return -EINVAL; |
| } |
| } else |
| pp->mcast_count[crc_result]++; |
| |
| mvneta_set_other_mcast_addr(pp, crc_result, queue); |
| |
| return 0; |
| } |
| |
| /* Configure Fitering mode of Ethernet port */ |
| static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, |
| int is_promisc) |
| { |
| u32 port_cfg_reg, val; |
| |
| port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); |
| |
| val = mvreg_read(pp, MVNETA_TYPE_PRIO); |
| |
| /* Set / Clear UPM bit in port configuration register */ |
| if (is_promisc) { |
| /* Accept all Unicast addresses */ |
| port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; |
| val |= MVNETA_FORCE_UNI; |
| mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); |
| mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); |
| } else { |
| /* Reject all Unicast addresses */ |
| port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; |
| val &= ~MVNETA_FORCE_UNI; |
| } |
| |
| mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); |
| mvreg_write(pp, MVNETA_TYPE_PRIO, val); |
| } |
| |
| /* register unicast and multicast addresses */ |
| static void mvneta_set_rx_mode(struct net_device *dev) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| struct netdev_hw_addr *ha; |
| |
| if (dev->flags & IFF_PROMISC) { |
| /* Accept all: Multicast + Unicast */ |
| mvneta_rx_unicast_promisc_set(pp, 1); |
| mvneta_set_ucast_table(pp, pp->rxq_def); |
| mvneta_set_special_mcast_table(pp, pp->rxq_def); |
| mvneta_set_other_mcast_table(pp, pp->rxq_def); |
| } else { |
| /* Accept single Unicast */ |
| mvneta_rx_unicast_promisc_set(pp, 0); |
| mvneta_set_ucast_table(pp, -1); |
| mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| /* Accept all multicast */ |
| mvneta_set_special_mcast_table(pp, pp->rxq_def); |
| mvneta_set_other_mcast_table(pp, pp->rxq_def); |
| } else { |
| /* Accept only initialized multicast */ |
| mvneta_set_special_mcast_table(pp, -1); |
| mvneta_set_other_mcast_table(pp, -1); |
| |
| if (!netdev_mc_empty(dev)) { |
| netdev_for_each_mc_addr(ha, dev) { |
| mvneta_mcast_addr_set(pp, ha->addr, |
| pp->rxq_def); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Interrupt handling - the callback for request_irq() */ |
| static irqreturn_t mvneta_isr(int irq, void *dev_id) |
| { |
| struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; |
| |
| disable_percpu_irq(port->pp->dev->irq); |
| napi_schedule(&port->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int mvneta_fixed_link_update(struct mvneta_port *pp, |
| struct phy_device *phy) |
| { |
| struct fixed_phy_status status; |
| struct fixed_phy_status changed = {}; |
| u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); |
| |
| status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); |
| if (gmac_stat & MVNETA_GMAC_SPEED_1000) |
| status.speed = SPEED_1000; |
| else if (gmac_stat & MVNETA_GMAC_SPEED_100) |
| status.speed = SPEED_100; |
| else |
| status.speed = SPEED_10; |
| status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); |
| changed.link = 1; |
| changed.speed = 1; |
| changed.duplex = 1; |
| fixed_phy_update_state(phy, &status, &changed); |
| return 0; |
| } |
| |
| /* NAPI handler |
| * Bits 0 - 7 of the causeRxTx register indicate that are transmitted |
| * packets on the corresponding TXQ (Bit 0 is for TX queue 1). |
| * Bits 8 -15 of the cause Rx Tx register indicate that are received |
| * packets on the corresponding RXQ (Bit 8 is for RX queue 0). |
| * Each CPU has its own causeRxTx register |
| */ |
| static int mvneta_poll(struct napi_struct *napi, int budget) |
| { |
| int rx_done = 0; |
| u32 cause_rx_tx; |
| int rx_queue; |
| struct mvneta_port *pp = netdev_priv(napi->dev); |
| struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); |
| |
| if (!netif_running(pp->dev)) { |
| napi_complete(&port->napi); |
| return rx_done; |
| } |
| |
| /* Read cause register */ |
| cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); |
| if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { |
| u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); |
| |
| mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); |
| if (pp->use_inband_status && (cause_misc & |
| (MVNETA_CAUSE_PHY_STATUS_CHANGE | |
| MVNETA_CAUSE_LINK_CHANGE | |
| MVNETA_CAUSE_PSC_SYNC_CHANGE))) { |
| mvneta_fixed_link_update(pp, pp->phy_dev); |
| } |
| } |
| |
| /* Release Tx descriptors */ |
| if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { |
| mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); |
| cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; |
| } |
| |
| /* For the case where the last mvneta_poll did not process all |
| * RX packets |
| */ |
| rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); |
| |
| cause_rx_tx |= port->cause_rx_tx; |
| |
| if (rx_queue) { |
| rx_queue = rx_queue - 1; |
| if (pp->bm_priv) |
| rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); |
| else |
| rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); |
| } |
| |
| budget -= rx_done; |
| |
| if (budget > 0) { |
| cause_rx_tx = 0; |
| napi_complete(&port->napi); |
| enable_percpu_irq(pp->dev->irq, 0); |
| } |
| |
| port->cause_rx_tx = cause_rx_tx; |
| return rx_done; |
| } |
| |
| /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ |
| static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, |
| int num) |
| { |
| int i; |
| |
| for (i = 0; i < num; i++) { |
| memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); |
| if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { |
| netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", |
| __func__, rxq->id, i, num); |
| break; |
| } |
| } |
| |
| /* Add this number of RX descriptors as non occupied (ready to |
| * get packets) |
| */ |
| mvneta_rxq_non_occup_desc_add(pp, rxq, i); |
| |
| return i; |
| } |
| |
| /* Free all packets pending transmit from all TXQs and reset TX port */ |
| static void mvneta_tx_reset(struct mvneta_port *pp) |
| { |
| int queue; |
| |
| /* free the skb's in the tx ring */ |
| for (queue = 0; queue < txq_number; queue++) |
| mvneta_txq_done_force(pp, &pp->txqs[queue]); |
| |
| mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); |
| mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); |
| } |
| |
| static void mvneta_rx_reset(struct mvneta_port *pp) |
| { |
| mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); |
| mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); |
| } |
| |
| /* Rx/Tx queue initialization/cleanup methods */ |
| |
| /* Create a specified RX queue */ |
| static int mvneta_rxq_init(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| |
| { |
| rxq->size = pp->rx_ring_size; |
| |
| /* Allocate memory for RX descriptors */ |
| rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, |
| rxq->size * MVNETA_DESC_ALIGNED_SIZE, |
| &rxq->descs_phys, GFP_KERNEL); |
| if (rxq->descs == NULL) |
| return -ENOMEM; |
| |
| BUG_ON(rxq->descs != |
| PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); |
| |
| rxq->last_desc = rxq->size - 1; |
| |
| /* Set Rx descriptors queue starting address */ |
| mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); |
| mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); |
| |
| /* Set Offset */ |
| mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); |
| |
| /* Set coalescing pkts and time */ |
| mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); |
| mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); |
| |
| if (!pp->bm_priv) { |
| /* Fill RXQ with buffers from RX pool */ |
| mvneta_rxq_buf_size_set(pp, rxq, |
| MVNETA_RX_BUF_SIZE(pp->pkt_size)); |
| mvneta_rxq_bm_disable(pp, rxq); |
| } else { |
| mvneta_rxq_bm_enable(pp, rxq); |
| mvneta_rxq_long_pool_set(pp, rxq); |
| mvneta_rxq_short_pool_set(pp, rxq); |
| } |
| |
| mvneta_rxq_fill(pp, rxq, rxq->size); |
| |
| return 0; |
| } |
| |
| /* Cleanup Rx queue */ |
| static void mvneta_rxq_deinit(struct mvneta_port *pp, |
| struct mvneta_rx_queue *rxq) |
| { |
| mvneta_rxq_drop_pkts(pp, rxq); |
| |
| if (rxq->descs) |
| dma_free_coherent(pp->dev->dev.parent, |
| rxq->size * MVNETA_DESC_ALIGNED_SIZE, |
| rxq->descs, |
| rxq->descs_phys); |
| |
| rxq->descs = NULL; |
| rxq->last_desc = 0; |
| rxq->next_desc_to_proc = 0; |
| rxq->descs_phys = 0; |
| } |
| |
| /* Create and initialize a tx queue */ |
| static int mvneta_txq_init(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq) |
| { |
| int cpu; |
| |
| txq->size = pp->tx_ring_size; |
| |
| /* A queue must always have room for at least one skb. |
| * Therefore, stop the queue when the free entries reaches |
| * the maximum number of descriptors per skb. |
| */ |
| txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; |
| txq->tx_wake_threshold = txq->tx_stop_threshold / 2; |
| |
| |
| /* Allocate memory for TX descriptors */ |
| txq->descs = dma_alloc_coherent(pp->dev->dev.parent, |
| txq->size * MVNETA_DESC_ALIGNED_SIZE, |
| &txq->descs_phys, GFP_KERNEL); |
| if (txq->descs == NULL) |
| return -ENOMEM; |
| |
| /* Make sure descriptor address is cache line size aligned */ |
| BUG_ON(txq->descs != |
| PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); |
| |
| txq->last_desc = txq->size - 1; |
| |
| /* Set maximum bandwidth for enabled TXQs */ |
| mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); |
| mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); |
| |
| /* Set Tx descriptors queue starting address */ |
| mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); |
| mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); |
| |
| txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); |
| if (txq->tx_skb == NULL) { |
| dma_free_coherent(pp->dev->dev.parent, |
| txq->size * MVNETA_DESC_ALIGNED_SIZE, |
| txq->descs, txq->descs_phys); |
| return -ENOMEM; |
| } |
| |
| /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ |
| txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, |
| txq->size * TSO_HEADER_SIZE, |
| &txq->tso_hdrs_phys, GFP_KERNEL); |
| if (txq->tso_hdrs == NULL) { |
| kfree(txq->tx_skb); |
| dma_free_coherent(pp->dev->dev.parent, |
| txq->size * MVNETA_DESC_ALIGNED_SIZE, |
| txq->descs, txq->descs_phys); |
| return -ENOMEM; |
| } |
| mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); |
| |
| /* Setup XPS mapping */ |
| if (txq_number > 1) |
| cpu = txq->id % num_present_cpus(); |
| else |
| cpu = pp->rxq_def % num_present_cpus(); |
| cpumask_set_cpu(cpu, &txq->affinity_mask); |
| netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); |
| |
| return 0; |
| } |
| |
| /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ |
| static void mvneta_txq_deinit(struct mvneta_port *pp, |
| struct mvneta_tx_queue *txq) |
| { |
| kfree(txq->tx_skb); |
| |
| if (txq->tso_hdrs) |
| dma_free_coherent(pp->dev->dev.parent, |
| txq->size * TSO_HEADER_SIZE, |
| txq->tso_hdrs, txq->tso_hdrs_phys); |
| if (txq->descs) |
| dma_free_coherent(pp->dev->dev.parent, |
| txq->size * MVNETA_DESC_ALIGNED_SIZE, |
| txq->descs, txq->descs_phys); |
| |
| txq->descs = NULL; |
| txq->last_desc = 0; |
| txq->next_desc_to_proc = 0; |
| txq->descs_phys = 0; |
| |
| /* Set minimum bandwidth for disabled TXQs */ |
| mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); |
| mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); |
| |
| /* Set Tx descriptors queue starting address and size */ |
| mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); |
| mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); |
| } |
| |
| /* Cleanup all Tx queues */ |
| static void mvneta_cleanup_txqs(struct mvneta_port *pp) |
| { |
| int queue; |
| |
| for (queue = 0; queue < txq_number; queue++) |
| mvneta_txq_deinit(pp, &pp->txqs[queue]); |
| } |
| |
| /* Cleanup all Rx queues */ |
| static void mvneta_cleanup_rxqs(struct mvneta_port *pp) |
| { |
| int queue; |
| |
| for (queue = 0; queue < txq_number; queue++) |
| mvneta_rxq_deinit(pp, &pp->rxqs[queue]); |
| } |
| |
| |
| /* Init all Rx queues */ |
| static int mvneta_setup_rxqs(struct mvneta_port *pp) |
| { |
| int queue; |
| |
| for (queue = 0; queue < rxq_number; queue++) { |
| int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); |
| |
| if (err) { |
| netdev_err(pp->dev, "%s: can't create rxq=%d\n", |
| __func__, queue); |
| mvneta_cleanup_rxqs(pp); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Init all tx queues */ |
| static int mvneta_setup_txqs(struct mvneta_port *pp) |
| { |
| int queue; |
| |
| for (queue = 0; queue < txq_number; queue++) { |
| int err = mvneta_txq_init(pp, &pp->txqs[queue]); |
| if (err) { |
| netdev_err(pp->dev, "%s: can't create txq=%d\n", |
| __func__, queue); |
| mvneta_cleanup_txqs(pp); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void mvneta_start_dev(struct mvneta_port *pp) |
| { |
| int cpu; |
| |
| mvneta_max_rx_size_set(pp, pp->pkt_size); |
| mvneta_txq_max_tx_size_set(pp, pp->pkt_size); |
| |
| /* start the Rx/Tx activity */ |
| mvneta_port_enable(pp); |
| |
| /* Enable polling on the port */ |
| for_each_online_cpu(cpu) { |
| struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); |
| |
| napi_enable(&port->napi); |
| } |
| |
| /* Unmask interrupts. It has to be done from each CPU */ |
| on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); |
| |
| mvreg_write(pp, MVNETA_INTR_MISC_MASK, |
| MVNETA_CAUSE_PHY_STATUS_CHANGE | |
| MVNETA_CAUSE_LINK_CHANGE | |
| MVNETA_CAUSE_PSC_SYNC_CHANGE); |
| |
| phy_start(pp->phy_dev); |
| netif_tx_start_all_queues(pp->dev); |
| } |
| |
| static void mvneta_stop_dev(struct mvneta_port *pp) |
| { |
| unsigned int cpu; |
| |
| phy_stop(pp->phy_dev); |
| |
| for_each_online_cpu(cpu) { |
| struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); |
| |
| napi_disable(&port->napi); |
| } |
| |
| netif_carrier_off(pp->dev); |
| |
| mvneta_port_down(pp); |
| netif_tx_stop_all_queues(pp->dev); |
| |
| /* Stop the port activity */ |
| mvneta_port_disable(pp); |
| |
| /* Clear all ethernet port interrupts */ |
| on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); |
| |
| /* Mask all ethernet port interrupts */ |
| on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); |
| |
| mvneta_tx_reset(pp); |
| mvneta_rx_reset(pp); |
| } |
| |
| /* Return positive if MTU is valid */ |
| static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) |
| { |
| if (mtu < 68) { |
| netdev_err(dev, "cannot change mtu to less than 68\n"); |
| return -EINVAL; |
| } |
| |
| /* 9676 == 9700 - 20 and rounding to 8 */ |
| if (mtu > 9676) { |
| netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); |
| mtu = 9676; |
| } |
| |
| if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { |
| netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", |
| mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); |
| mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); |
| } |
| |
| return mtu; |
| } |
| |
| /* Change the device mtu */ |
| static int mvneta_change_mtu(struct net_device *dev, int mtu) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| int ret; |
| |
| mtu = mvneta_check_mtu_valid(dev, mtu); |
| if (mtu < 0) |
| return -EINVAL; |
| |
| dev->mtu = mtu; |
| |
| if (!netif_running(dev)) { |
| if (pp->bm_priv) |
| mvneta_bm_update_mtu(pp, mtu); |
| |
| netdev_update_features(dev); |
| return 0; |
| } |
| |
| /* The interface is running, so we have to force a |
| * reallocation of the queues |
| */ |
| mvneta_stop_dev(pp); |
| |
| mvneta_cleanup_txqs(pp); |
| mvneta_cleanup_rxqs(pp); |
| |
| if (pp->bm_priv) |
| mvneta_bm_update_mtu(pp, mtu); |
| |
| pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); |
| pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| |
| ret = mvneta_setup_rxqs(pp); |
| if (ret) { |
| netdev_err(dev, "unable to setup rxqs after MTU change\n"); |
| return ret; |
| } |
| |
| ret = mvneta_setup_txqs(pp); |
| if (ret) { |
| netdev_err(dev, "unable to setup txqs after MTU change\n"); |
| return ret; |
| } |
| |
| mvneta_start_dev(pp); |
| mvneta_port_up(pp); |
| |
| netdev_update_features(dev); |
| |
| return 0; |
| } |
| |
| static netdev_features_t mvneta_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { |
| features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); |
| netdev_info(dev, |
| "Disable IP checksum for MTU greater than %dB\n", |
| pp->tx_csum_limit); |
| } |
| |
| return features; |
| } |
| |
| /* Get mac address */ |
| static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) |
| { |
| u32 mac_addr_l, mac_addr_h; |
| |
| mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); |
| mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); |
| addr[0] = (mac_addr_h >> 24) & 0xFF; |
| addr[1] = (mac_addr_h >> 16) & 0xFF; |
| addr[2] = (mac_addr_h >> 8) & 0xFF; |
| addr[3] = mac_addr_h & 0xFF; |
| addr[4] = (mac_addr_l >> 8) & 0xFF; |
| addr[5] = mac_addr_l & 0xFF; |
| } |
| |
| /* Handle setting mac address */ |
| static int mvneta_set_mac_addr(struct net_device *dev, void *addr) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| struct sockaddr *sockaddr = addr; |
| int ret; |
| |
| ret = eth_prepare_mac_addr_change(dev, addr); |
| if (ret < 0) |
| return ret; |
| /* Remove previous address table entry */ |
| mvneta_mac_addr_set(pp, dev->dev_addr, -1); |
| |
| /* Set new addr in hw */ |
| mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); |
| |
| eth_commit_mac_addr_change(dev, addr); |
| return 0; |
| } |
| |
| static void mvneta_adjust_link(struct net_device *ndev) |
| { |
| struct mvneta_port *pp = netdev_priv(ndev); |
| struct phy_device *phydev = pp->phy_dev; |
| int status_change = 0; |
| |
| if (phydev->link) { |
| if ((pp->speed != phydev->speed) || |
| (pp->duplex != phydev->duplex)) { |
| u32 val; |
| |
| val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); |
| val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | |
| MVNETA_GMAC_CONFIG_GMII_SPEED | |
| MVNETA_GMAC_CONFIG_FULL_DUPLEX); |
| |
| if (phydev->duplex) |
| val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; |
| |
| if (phydev->speed == SPEED_1000) |
| val |= MVNETA_GMAC_CONFIG_GMII_SPEED; |
| else if (phydev->speed == SPEED_100) |
| val |= MVNETA_GMAC_CONFIG_MII_SPEED; |
| |
| mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); |
| |
| pp->duplex = phydev->duplex; |
| pp->speed = phydev->speed; |
| } |
| } |
| |
| if (phydev->link != pp->link) { |
| if (!phydev->link) { |
| pp->duplex = -1; |
| pp->speed = 0; |
| } |
| |
| pp->link = phydev->link; |
| status_change = 1; |
| } |
| |
| if (status_change) { |
| if (phydev->link) { |
| if (!pp->use_inband_status) { |
| u32 val = mvreg_read(pp, |
| MVNETA_GMAC_AUTONEG_CONFIG); |
| val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; |
| val |= MVNETA_GMAC_FORCE_LINK_PASS; |
| mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, |
| val); |
| } |
| mvneta_port_up(pp); |
| } else { |
| if (!pp->use_inband_status) { |
| u32 val = mvreg_read(pp, |
| MVNETA_GMAC_AUTONEG_CONFIG); |
| val &= ~MVNETA_GMAC_FORCE_LINK_PASS; |
| val |= MVNETA_GMAC_FORCE_LINK_DOWN; |
| mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, |
| val); |
| } |
| mvneta_port_down(pp); |
| } |
| phy_print_status(phydev); |
| } |
| } |
| |
| static int mvneta_mdio_probe(struct mvneta_port *pp) |
| { |
| struct phy_device *phy_dev; |
| |
| phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, |
| pp->phy_interface); |
| if (!phy_dev) { |
| netdev_err(pp->dev, "could not find the PHY\n"); |
| return -ENODEV; |
| } |
| |
| phy_dev->supported &= PHY_GBIT_FEATURES; |
| phy_dev->advertising = phy_dev->supported; |
| |
| pp->phy_dev = phy_dev; |
| pp->link = 0; |
| pp->duplex = 0; |
| pp->speed = 0; |
| |
| return 0; |
| } |
| |
| static void mvneta_mdio_remove(struct mvneta_port *pp) |
| { |
| phy_disconnect(pp->phy_dev); |
| pp->phy_dev = NULL; |
| } |
| |
| static void mvneta_percpu_enable(void *arg) |
| { |
| struct mvneta_port *pp = arg; |
| |
| enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); |
| } |
| |
| static void mvneta_percpu_disable(void *arg) |
| { |
| struct mvneta_port *pp = arg; |
| |
| disable_percpu_irq(pp->dev->irq); |
| } |
| |
| /* Electing a CPU must be done in an atomic way: it should be done |
| * after or before the removal/insertion of a CPU and this function is |
| * not reentrant. |
| */ |
| static void mvneta_percpu_elect(struct mvneta_port *pp) |
| { |
| int elected_cpu = 0, max_cpu, cpu, i = 0; |
| |
| /* Use the cpu associated to the rxq when it is online, in all |
| * the other cases, use the cpu 0 which can't be offline. |
| */ |
| if (cpu_online(pp->rxq_def)) |
| elected_cpu = pp->rxq_def; |
| |
| max_cpu = num_present_cpus(); |
| |
| for_each_online_cpu(cpu) { |
| int rxq_map = 0, txq_map = 0; |
| int rxq; |
| |
| for (rxq = 0; rxq < rxq_number; rxq++) |
| if ((rxq % max_cpu) == cpu) |
| rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); |
| |
| if (cpu == elected_cpu) |
| /* Map the default receive queue queue to the |
| * elected CPU |
| */ |
| rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); |
| |
| /* We update the TX queue map only if we have one |
| * queue. In this case we associate the TX queue to |
| * the CPU bound to the default RX queue |
| */ |
| if (txq_number == 1) |
| txq_map = (cpu == elected_cpu) ? |
| MVNETA_CPU_TXQ_ACCESS(1) : 0; |
| else |
| txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & |
| MVNETA_CPU_TXQ_ACCESS_ALL_MASK; |
| |
| mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); |
| |
| /* Update the interrupt mask on each CPU according the |
| * new mapping |
| */ |
| smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, |
| pp, true); |
| i++; |
| |
| } |
| }; |
| |
| static int mvneta_percpu_notifier(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| struct mvneta_port *pp = container_of(nfb, struct mvneta_port, |
| cpu_notifier); |
| int cpu = (unsigned long)hcpu, other_cpu; |
| struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); |
| |
| switch (action) { |
| case CPU_ONLINE: |
| case CPU_ONLINE_FROZEN: |
| spin_lock(&pp->lock); |
| /* Configuring the driver for a new CPU while the |
| * driver is stopping is racy, so just avoid it. |
| */ |
| if (pp->is_stopped) { |
| spin_unlock(&pp->lock); |
| break; |
| } |
| netif_tx_stop_all_queues(pp->dev); |
| |
| /* We have to synchronise on tha napi of each CPU |
| * except the one just being waked up |
| */ |
| for_each_online_cpu(other_cpu) { |
| if (other_cpu != cpu) { |
| struct mvneta_pcpu_port *other_port = |
| per_cpu_ptr(pp->ports, other_cpu); |
| |
| napi_synchronize(&other_port->napi); |
| } |
| } |
| |
| /* Mask all ethernet port interrupts */ |
| on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); |
| napi_enable(&port->napi); |
| |
| |
| /* Enable per-CPU interrupts on the CPU that is |
| * brought up. |
| */ |
| smp_call_function_single(cpu, mvneta_percpu_enable, |
| pp, true); |
| |
| /* Enable per-CPU interrupt on the one CPU we care |
| * about. |
| */ |
| mvneta_percpu_elect(pp); |
| |
| /* Unmask all ethernet port interrupts */ |
| on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); |
| mvreg_write(pp, MVNETA_INTR_MISC_MASK, |
| MVNETA_CAUSE_PHY_STATUS_CHANGE | |
| MVNETA_CAUSE_LINK_CHANGE | |
| MVNETA_CAUSE_PSC_SYNC_CHANGE); |
| netif_tx_start_all_queues(pp->dev); |
| spin_unlock(&pp->lock); |
| break; |
| case CPU_DOWN_PREPARE: |
| case CPU_DOWN_PREPARE_FROZEN: |
| netif_tx_stop_all_queues(pp->dev); |
| /* Thanks to this lock we are sure that any pending |
| * cpu election is done |
| */ |
| spin_lock(&pp->lock); |
| /* Mask all ethernet port interrupts */ |
| on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); |
| spin_unlock(&pp->lock); |
| |
| napi_synchronize(&port->napi); |
| napi_disable(&port->napi); |
| /* Disable per-CPU interrupts on the CPU that is |
| * brought down. |
| */ |
| smp_call_function_single(cpu, mvneta_percpu_disable, |
| pp, true); |
| |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| /* Check if a new CPU must be elected now this on is down */ |
| spin_lock(&pp->lock); |
| mvneta_percpu_elect(pp); |
| spin_unlock(&pp->lock); |
| /* Unmask all ethernet port interrupts */ |
| on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); |
| mvreg_write(pp, MVNETA_INTR_MISC_MASK, |
| MVNETA_CAUSE_PHY_STATUS_CHANGE | |
| MVNETA_CAUSE_LINK_CHANGE | |
| MVNETA_CAUSE_PSC_SYNC_CHANGE); |
| netif_tx_start_all_queues(pp->dev); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static int mvneta_open(struct net_device *dev) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| int ret; |
| |
| pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); |
| pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| |
| ret = mvneta_setup_rxqs(pp); |
| if (ret) |
| return ret; |
| |
| ret = mvneta_setup_txqs(pp); |
| if (ret) |
| goto err_cleanup_rxqs; |
| |
| /* Connect to port interrupt line */ |
| ret = request_percpu_irq(pp->dev->irq, mvneta_isr, |
| MVNETA_DRIVER_NAME, pp->ports); |
| if (ret) { |
| netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); |
| goto err_cleanup_txqs; |
| } |
| |
| /* Enable per-CPU interrupt on all the CPU to handle our RX |
| * queue interrupts |
| */ |
| on_each_cpu(mvneta_percpu_enable, pp, true); |
| |
| pp->is_stopped = false; |
| /* Register a CPU notifier to handle the case where our CPU |
| * might be taken offline. |
| */ |
| register_cpu_notifier(&pp->cpu_notifier); |
| |
| /* In default link is down */ |
| netif_carrier_off(pp->dev); |
| |
| ret = mvneta_mdio_probe(pp); |
| if (ret < 0) { |
| netdev_err(dev, "cannot probe MDIO bus\n"); |
| goto err_free_irq; |
| } |
| |
| mvneta_start_dev(pp); |
| |
| return 0; |
| |
| err_free_irq: |
| free_percpu_irq(pp->dev->irq, pp->ports); |
| err_cleanup_txqs: |
| mvneta_cleanup_txqs(pp); |
| err_cleanup_rxqs: |
| mvneta_cleanup_rxqs(pp); |
| return ret; |
| } |
| |
| /* Stop the port, free port interrupt line */ |
| static int mvneta_stop(struct net_device *dev) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| /* Inform that we are stopping so we don't want to setup the |
| * driver for new CPUs in the notifiers |
| */ |
| spin_lock(&pp->lock); |
| pp->is_stopped = true; |
| mvneta_stop_dev(pp); |
| mvneta_mdio_remove(pp); |
| unregister_cpu_notifier(&pp->cpu_notifier); |
| /* Now that the notifier are unregistered, we can release le |
| * lock |
| */ |
| spin_unlock(&pp->lock); |
| on_each_cpu(mvneta_percpu_disable, pp, true); |
| free_percpu_irq(dev->irq, pp->ports); |
| mvneta_cleanup_rxqs(pp); |
| mvneta_cleanup_txqs(pp); |
| |
| return 0; |
| } |
| |
| static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| if (!pp->phy_dev) |
| return -ENOTSUPP; |
| |
| return phy_mii_ioctl(pp->phy_dev, ifr, cmd); |
| } |
| |
| /* Ethtool methods */ |
| |
| /* Get settings (phy address, speed) for ethtools */ |
| int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| if (!pp->phy_dev) |
| return -ENODEV; |
| |
| return phy_ethtool_gset(pp->phy_dev, cmd); |
| } |
| |
| /* Set settings (phy address, speed) for ethtools */ |
| int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| struct phy_device *phydev = pp->phy_dev; |
| |
| if (!phydev) |
| return -ENODEV; |
| |
| if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { |
| u32 val; |
| |
| mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE); |
| |
| if (cmd->autoneg == AUTONEG_DISABLE) { |
| val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); |
| val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | |
| MVNETA_GMAC_CONFIG_GMII_SPEED | |
| MVNETA_GMAC_CONFIG_FULL_DUPLEX); |
| |
| if (phydev->duplex) |
| val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; |
| |
| if (phydev->speed == SPEED_1000) |
| val |= MVNETA_GMAC_CONFIG_GMII_SPEED; |
| else if (phydev->speed == SPEED_100) |
| val |= MVNETA_GMAC_CONFIG_MII_SPEED; |
| |
| mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); |
| } |
| |
| pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE); |
| netdev_info(pp->dev, "autoneg status set to %i\n", |
| pp->use_inband_status); |
| |
| if (netif_running(dev)) { |
| mvneta_port_down(pp); |
| mvneta_port_up(pp); |
| } |
| } |
| |
| return phy_ethtool_sset(pp->phy_dev, cmd); |
| } |
| |
| /* Set interrupt coalescing for ethtools */ |
| static int mvneta_ethtool_set_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *c) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| int queue; |
| |
| for (queue = 0; queue < rxq_number; queue++) { |
| struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; |
| rxq->time_coal = c->rx_coalesce_usecs; |
| rxq->pkts_coal = c->rx_max_coalesced_frames; |
| mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); |
| mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); |
| } |
| |
| for (queue = 0; queue < txq_number; queue++) { |
| struct mvneta_tx_queue *txq = &pp->txqs[queue]; |
| txq->done_pkts_coal = c->tx_max_coalesced_frames; |
| mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); |
| } |
| |
| return 0; |
| } |
| |
| /* get coalescing for ethtools */ |
| static int mvneta_ethtool_get_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *c) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| c->rx_coalesce_usecs = pp->rxqs[0].time_coal; |
| c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; |
| |
| c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; |
| return 0; |
| } |
| |
| |
| static void mvneta_ethtool_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *drvinfo) |
| { |
| strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, |
| sizeof(drvinfo->driver)); |
| strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, |
| sizeof(drvinfo->version)); |
| strlcpy(drvinfo->bus_info, dev_name(&dev->dev), |
| sizeof(drvinfo->bus_info)); |
| } |
| |
| |
| static void mvneta_ethtool_get_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct mvneta_port *pp = netdev_priv(netdev); |
| |
| ring->rx_max_pending = MVNETA_MAX_RXD; |
| ring->tx_max_pending = MVNETA_MAX_TXD; |
| ring->rx_pending = pp->rx_ring_size; |
| ring->tx_pending = pp->tx_ring_size; |
| } |
| |
| static int mvneta_ethtool_set_ringparam(struct net_device *dev, |
| struct ethtool_ringparam *ring) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) |
| return -EINVAL; |
| pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? |
| ring->rx_pending : MVNETA_MAX_RXD; |
| |
| pp->tx_ring_size = clamp_t(u16, ring->tx_pending, |
| MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); |
| if (pp->tx_ring_size != ring->tx_pending) |
| netdev_warn(dev, "TX queue size set to %u (requested %u)\n", |
| pp->tx_ring_size, ring->tx_pending); |
| |
| if (netif_running(dev)) { |
| mvneta_stop(dev); |
| if (mvneta_open(dev)) { |
| netdev_err(dev, |
| "error on opening device after ring param change\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, |
| u8 *data) |
| { |
| if (sset == ETH_SS_STATS) { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) |
| memcpy(data + i * ETH_GSTRING_LEN, |
| mvneta_statistics[i].name, ETH_GSTRING_LEN); |
| } |
| } |
| |
| static void mvneta_ethtool_update_stats(struct mvneta_port *pp) |
| { |
| const struct mvneta_statistic *s; |
| void __iomem *base = pp->base; |
| u32 high, low, val; |
| u64 val64; |
| int i; |
| |
| for (i = 0, s = mvneta_statistics; |
| s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); |
| s++, i++) { |
| switch (s->type) { |
| case T_REG_32: |
| val = readl_relaxed(base + s->offset); |
| pp->ethtool_stats[i] += val; |
| break; |
| case T_REG_64: |
| /* Docs say to read low 32-bit then high */ |
| low = readl_relaxed(base + s->offset); |
| high = readl_relaxed(base + s->offset + 4); |
| val64 = (u64)high << 32 | low; |
| pp->ethtool_stats[i] += val64; |
| break; |
| } |
| } |
| } |
| |
| static void mvneta_ethtool_get_stats(struct net_device *dev, |
| struct ethtool_stats *stats, u64 *data) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| int i; |
| |
| mvneta_ethtool_update_stats(pp); |
| |
| for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) |
| *data++ = pp->ethtool_stats[i]; |
| } |
| |
| static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) |
| { |
| if (sset == ETH_SS_STATS) |
| return ARRAY_SIZE(mvneta_statistics); |
| return -EOPNOTSUPP; |
| } |
| |
| static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) |
| { |
| return MVNETA_RSS_LU_TABLE_SIZE; |
| } |
| |
| static int mvneta_ethtool_get_rxnfc(struct net_device *dev, |
| struct ethtool_rxnfc *info, |
| u32 *rules __always_unused) |
| { |
| switch (info->cmd) { |
| case ETHTOOL_GRXRINGS: |
| info->data = rxq_number; |
| return 0; |
| case ETHTOOL_GRXFH: |
| return -EOPNOTSUPP; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int mvneta_config_rss(struct mvneta_port *pp) |
| { |
| int cpu; |
| u32 val; |
| |
| netif_tx_stop_all_queues(pp->dev); |
| |
| on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); |
| |
| /* We have to synchronise on the napi of each CPU */ |
| for_each_online_cpu(cpu) { |
| struct mvneta_pcpu_port *pcpu_port = |
| per_cpu_ptr(pp->ports, cpu); |
| |
| napi_synchronize(&pcpu_port->napi); |
| napi_disable(&pcpu_port->napi); |
| } |
| |
| pp->rxq_def = pp->indir[0]; |
| |
| /* Update unicast mapping */ |
| mvneta_set_rx_mode(pp->dev); |
| |
| /* Update val of portCfg register accordingly with all RxQueue types */ |
| val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); |
| mvreg_write(pp, MVNETA_PORT_CONFIG, val); |
| |
| /* Update the elected CPU matching the new rxq_def */ |
| spin_lock(&pp->lock); |
| mvneta_percpu_elect(pp); |
| spin_unlock(&pp->lock); |
| |
| /* We have to synchronise on the napi of each CPU */ |
| for_each_online_cpu(cpu) { |
| struct mvneta_pcpu_port *pcpu_port = |
| per_cpu_ptr(pp->ports, cpu); |
| |
| napi_enable(&pcpu_port->napi); |
| } |
| |
| netif_tx_start_all_queues(pp->dev); |
| |
| return 0; |
| } |
| |
| static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, |
| const u8 *key, const u8 hfunc) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| /* We require at least one supported parameter to be changed |
| * and no change in any of the unsupported parameters |
| */ |
| if (key || |
| (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) |
| return -EOPNOTSUPP; |
| |
| if (!indir) |
| return 0; |
| |
| memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); |
| |
| return mvneta_config_rss(pp); |
| } |
| |
| static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, |
| u8 *hfunc) |
| { |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| if (hfunc) |
| *hfunc = ETH_RSS_HASH_TOP; |
| |
| if (!indir) |
| return 0; |
| |
| memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops mvneta_netdev_ops = { |
| .ndo_open = mvneta_open, |
| .ndo_stop = mvneta_stop, |
| .ndo_start_xmit = mvneta_tx, |
| .ndo_set_rx_mode = mvneta_set_rx_mode, |
| .ndo_set_mac_address = mvneta_set_mac_addr, |
| .ndo_change_mtu = mvneta_change_mtu, |
| .ndo_fix_features = mvneta_fix_features, |
| .ndo_get_stats64 = mvneta_get_stats64, |
| .ndo_do_ioctl = mvneta_ioctl, |
| }; |
| |
| const struct ethtool_ops mvneta_eth_tool_ops = { |
| .get_link = ethtool_op_get_link, |
| .get_settings = mvneta_ethtool_get_settings, |
| .set_settings = mvneta_ethtool_set_settings, |
| .set_coalesce = mvneta_ethtool_set_coalesce, |
| .get_coalesce = mvneta_ethtool_get_coalesce, |
| .get_drvinfo = mvneta_ethtool_get_drvinfo, |
| .get_ringparam = mvneta_ethtool_get_ringparam, |
| .set_ringparam = mvneta_ethtool_set_ringparam, |
| .get_strings = mvneta_ethtool_get_strings, |
| .get_ethtool_stats = mvneta_ethtool_get_stats, |
| .get_sset_count = mvneta_ethtool_get_sset_count, |
| .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, |
| .get_rxnfc = mvneta_ethtool_get_rxnfc, |
| .get_rxfh = mvneta_ethtool_get_rxfh, |
| .set_rxfh = mvneta_ethtool_set_rxfh, |
| }; |
| |
| /* Initialize hw */ |
| static int mvneta_init(struct device *dev, struct mvneta_port *pp) |
| { |
| int queue; |
| |
| /* Disable port */ |
| mvneta_port_disable(pp); |
| |
| /* Set port default values */ |
| mvneta_defaults_set(pp); |
| |
| pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), |
| GFP_KERNEL); |
| if (!pp->txqs) |
| return -ENOMEM; |
| |
| /* Initialize TX descriptor rings */ |
| for (queue = 0; queue < txq_number; queue++) { |
| struct mvneta_tx_queue *txq = &pp->txqs[queue]; |
| txq->id = queue; |
| txq->size = pp->tx_ring_size; |
| txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; |
| } |
| |
| pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), |
| GFP_KERNEL); |
| if (!pp->rxqs) |
| return -ENOMEM; |
| |
| /* Create Rx descriptor rings */ |
| for (queue = 0; queue < rxq_number; queue++) { |
| struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; |
| rxq->id = queue; |
| rxq->size = pp->rx_ring_size; |
| rxq->pkts_coal = MVNETA_RX_COAL_PKTS; |
| rxq->time_coal = MVNETA_RX_COAL_USEC; |
| } |
| |
| return 0; |
| } |
| |
| /* platform glue : initialize decoding windows */ |
| static void mvneta_conf_mbus_windows(struct mvneta_port *pp, |
| const struct mbus_dram_target_info *dram) |
| { |
| u32 win_enable; |
| u32 win_protect; |
| int i; |
| |
| for (i = 0; i < 6; i++) { |
| mvreg_write(pp, MVNETA_WIN_BASE(i), 0); |
| mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); |
| |
| if (i < 4) |
| mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); |
| } |
| |
| win_enable = 0x3f; |
| win_protect = 0; |
| |
| for (i = 0; i < dram->num_cs; i++) { |
| const struct mbus_dram_window *cs = dram->cs + i; |
| mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | |
| (cs->mbus_attr << 8) | dram->mbus_dram_target_id); |
| |
| mvreg_write(pp, MVNETA_WIN_SIZE(i), |
| (cs->size - 1) & 0xffff0000); |
| |
| win_enable &= ~(1 << i); |
| win_protect |= 3 << (2 * i); |
| } |
| |
| mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); |
| mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); |
| } |
| |
| /* Power up the port */ |
| static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) |
| { |
| u32 ctrl; |
| |
| /* MAC Cause register should be cleared */ |
| mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); |
| |
| ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); |
| |
| /* Even though it might look weird, when we're configured in |
| * SGMII or QSGMII mode, the RGMII bit needs to be set. |
| */ |
| switch(phy_mode) { |
| case PHY_INTERFACE_MODE_QSGMII: |
| mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); |
| ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; |
| break; |
| case PHY_INTERFACE_MODE_SGMII: |
| mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); |
| ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; |
| break; |
| case PHY_INTERFACE_MODE_RGMII: |
| case PHY_INTERFACE_MODE_RGMII_ID: |
| ctrl |= MVNETA_GMAC2_PORT_RGMII; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Cancel Port Reset */ |
| ctrl &= ~MVNETA_GMAC2_PORT_RESET; |
| mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); |
| |
| while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & |
| MVNETA_GMAC2_PORT_RESET) != 0) |
| continue; |
| |
| return 0; |
| } |
| |
| /* Device initialization routine */ |
| static int mvneta_probe(struct platform_device *pdev) |
| { |
| const struct mbus_dram_target_info *dram_target_info; |
| struct resource *res; |
| struct device_node *dn = pdev->dev.of_node; |
| struct device_node *phy_node; |
| struct device_node *bm_node; |
| struct mvneta_port *pp; |
| struct net_device *dev; |
| const char *dt_mac_addr; |
| char hw_mac_addr[ETH_ALEN]; |
| const char *mac_from; |
| const char *managed; |
| int tx_csum_limit; |
| int phy_mode; |
| int err; |
| int cpu; |
| |
| dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); |
| if (!dev) |
| return -ENOMEM; |
| |
| dev->irq = irq_of_parse_and_map(dn, 0); |
| if (dev->irq == 0) { |
| err = -EINVAL; |
| goto err_free_netdev; |
| } |
| |
| phy_node = of_parse_phandle(dn, "phy", 0); |
| if (!phy_node) { |
| if (!of_phy_is_fixed_link(dn)) { |
| dev_err(&pdev->dev, "no PHY specified\n"); |
| err = -ENODEV; |
| goto err_free_irq; |
| } |
| |
| err = of_phy_register_fixed_link(dn); |
| if (err < 0) { |
| dev_err(&pdev->dev, "cannot register fixed PHY\n"); |
| goto err_free_irq; |
| } |
| |
| /* In the case of a fixed PHY, the DT node associated |
| * to the PHY is the Ethernet MAC DT node. |
| */ |
| phy_node = of_node_get(dn); |
| } |
| |
| phy_mode = of_get_phy_mode(dn); |
| if (phy_mode < 0) { |
| dev_err(&pdev->dev, "incorrect phy-mode\n"); |
| err = -EINVAL; |
| goto err_put_phy_node; |
| } |
| |
| dev->tx_queue_len = MVNETA_MAX_TXD; |
| dev->watchdog_timeo = 5 * HZ; |
| dev->netdev_ops = &mvneta_netdev_ops; |
| |
| dev->ethtool_ops = &mvneta_eth_tool_ops; |
| |
| pp = netdev_priv(dev); |
| pp->phy_node = phy_node; |
| pp->phy_interface = phy_mode; |
| |
| err = of_property_read_string(dn, "managed", &managed); |
| pp->use_inband_status = (err == 0 && |
| strcmp(managed, "in-band-status") == 0); |
| pp->cpu_notifier.notifier_call = mvneta_percpu_notifier; |
| |
| pp->rxq_def = rxq_def; |
| |
| pp->indir[0] = rxq_def; |
| |
| pp->clk = devm_clk_get(&pdev->dev, "core"); |
| if (IS_ERR(pp->clk)) |
| pp->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(pp->clk)) { |
| err = PTR_ERR(pp->clk); |
| goto err_put_phy_node; |
| } |
| |
| clk_prepare_enable(pp->clk); |
| |
| pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); |
| if (!IS_ERR(pp->clk_bus)) |
| clk_prepare_enable(pp->clk_bus); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| pp->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(pp->base)) { |
| err = PTR_ERR(pp->base); |
| goto err_clk; |
| } |
| |
| /* Alloc per-cpu port structure */ |
| pp->ports = alloc_percpu(struct mvneta_pcpu_port); |
| if (!pp->ports) { |
| err = -ENOMEM; |
| goto err_clk; |
| } |
| |
| /* Alloc per-cpu stats */ |
| pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); |
| if (!pp->stats) { |
| err = -ENOMEM; |
| goto err_free_ports; |
| } |
| |
| dt_mac_addr = of_get_mac_address(dn); |
| if (dt_mac_addr) { |
| mac_from = "device tree"; |
| memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); |
| } else { |
| mvneta_get_mac_addr(pp, hw_mac_addr); |
| if (is_valid_ether_addr(hw_mac_addr)) { |
| mac_from = "hardware"; |
| memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); |
| } else { |
| mac_from = "random"; |
| eth_hw_addr_random(dev); |
| } |
| } |
| |
| if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { |
| if (tx_csum_limit < 0 || |
| tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { |
| tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; |
| dev_info(&pdev->dev, |
| "Wrong TX csum limit in DT, set to %dB\n", |
| MVNETA_TX_CSUM_DEF_SIZE); |
| } |
| } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { |
| tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; |
| } else { |
| tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; |
| } |
| |
| pp->tx_csum_limit = tx_csum_limit; |
| |
| dram_target_info = mv_mbus_dram_info(); |
| if (dram_target_info) |
| mvneta_conf_mbus_windows(pp, dram_target_info); |
| |
| pp->tx_ring_size = MVNETA_MAX_TXD; |
| pp->rx_ring_size = MVNETA_MAX_RXD; |
| |
| pp->dev = dev; |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| pp->id = global_port_id++; |
| |
| /* Obtain access to BM resources if enabled and already initialized */ |
| bm_node = of_parse_phandle(dn, "buffer-manager", 0); |
| if (bm_node && bm_node->data) { |
| pp->bm_priv = bm_node->data; |
| err = mvneta_bm_port_init(pdev, pp); |
| if (err < 0) { |
| dev_info(&pdev->dev, "use SW buffer management\n"); |
| pp->bm_priv = NULL; |
| } |
| } |
| |
| err = mvneta_init(&pdev->dev, pp); |
| if (err < 0) |
| goto err_netdev; |
| |
| err = mvneta_port_power_up(pp, phy_mode); |
| if (err < 0) { |
| dev_err(&pdev->dev, "can't power up port\n"); |
| goto err_netdev; |
| } |
| |
| for_each_present_cpu(cpu) { |
| struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); |
| |
| netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); |
| port->pp = pp; |
| } |
| |
| dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; |
| dev->hw_features |= dev->features; |
| dev->vlan_features |= dev->features; |
| dev->priv_flags |= IFF_UNICAST_FLT; |
| dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; |
| |
| err = register_netdev(dev); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to register\n"); |
| goto err_free_stats; |
| } |
| |
| netdev_info(dev, "Using %s mac address %pM\n", mac_from, |
| dev->dev_addr); |
| |
| platform_set_drvdata(pdev, pp->dev); |
| |
| if (pp->use_inband_status) { |
| struct phy_device *phy = of_phy_find_device(dn); |
| |
| mvneta_fixed_link_update(pp, phy); |
| |
| put_device(&phy->mdio.dev); |
| } |
| |
| return 0; |
| |
| err_netdev: |
| unregister_netdev(dev); |
| if (pp->bm_priv) { |
| mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); |
| mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, |
| 1 << pp->id); |
| } |
| err_free_stats: |
| free_percpu(pp->stats); |
| err_free_ports: |
| free_percpu(pp->ports); |
| err_clk: |
| clk_disable_unprepare(pp->clk_bus); |
| clk_disable_unprepare(pp->clk); |
| err_put_phy_node: |
| of_node_put(phy_node); |
| err_free_irq: |
| irq_dispose_mapping(dev->irq); |
| err_free_netdev: |
| free_netdev(dev); |
| return err; |
| } |
| |
| /* Device removal routine */ |
| static int mvneta_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct mvneta_port *pp = netdev_priv(dev); |
| |
| unregister_netdev(dev); |
| clk_disable_unprepare(pp->clk_bus); |
| clk_disable_unprepare(pp->clk); |
| free_percpu(pp->ports); |
| free_percpu(pp->stats); |
| irq_dispose_mapping(dev->irq); |
| of_node_put(pp->phy_node); |
| free_netdev(dev); |
| |
| if (pp->bm_priv) { |
| mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); |
| mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, |
| 1 << pp->id); |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id mvneta_match[] = { |
| { .compatible = "marvell,armada-370-neta" }, |
| { .compatible = "marvell,armada-xp-neta" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, mvneta_match); |
| |
| static struct platform_driver mvneta_driver = { |
| .probe = mvneta_probe, |
| .remove = mvneta_remove, |
| .driver = { |
| .name = MVNETA_DRIVER_NAME, |
| .of_match_table = mvneta_match, |
| }, |
| }; |
| |
| module_platform_driver(mvneta_driver); |
| |
| MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); |
| MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); |
| MODULE_LICENSE("GPL"); |
| |
| module_param(rxq_number, int, S_IRUGO); |
| module_param(txq_number, int, S_IRUGO); |
| |
| module_param(rxq_def, int, S_IRUGO); |
| module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); |