|  | #ifndef _I386_BITOPS_H | 
|  | #define _I386_BITOPS_H | 
|  |  | 
|  | /* | 
|  | * Copyright 1992, Linus Torvalds. | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/compiler.h> | 
|  |  | 
|  | /* | 
|  | * These have to be done with inline assembly: that way the bit-setting | 
|  | * is guaranteed to be atomic. All bit operations return 0 if the bit | 
|  | * was cleared before the operation and != 0 if it was not. | 
|  | * | 
|  | * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define LOCK_PREFIX "lock ; " | 
|  | #else | 
|  | #define LOCK_PREFIX "" | 
|  | #endif | 
|  |  | 
|  | #define ADDR (*(volatile long *) addr) | 
|  |  | 
|  | /** | 
|  | * set_bit - Atomically set a bit in memory | 
|  | * @nr: the bit to set | 
|  | * @addr: the address to start counting from | 
|  | * | 
|  | * This function is atomic and may not be reordered.  See __set_bit() | 
|  | * if you do not require the atomic guarantees. | 
|  | * | 
|  | * Note: there are no guarantees that this function will not be reordered | 
|  | * on non x86 architectures, so if you are writting portable code, | 
|  | * make sure not to rely on its reordering guarantees. | 
|  | * | 
|  | * Note that @nr may be almost arbitrarily large; this function is not | 
|  | * restricted to acting on a single-word quantity. | 
|  | */ | 
|  | static inline void set_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | __asm__ __volatile__( LOCK_PREFIX | 
|  | "btsl %1,%0" | 
|  | :"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __set_bit - Set a bit in memory | 
|  | * @nr: the bit to set | 
|  | * @addr: the address to start counting from | 
|  | * | 
|  | * Unlike set_bit(), this function is non-atomic and may be reordered. | 
|  | * If it's called on the same region of memory simultaneously, the effect | 
|  | * may be that only one operation succeeds. | 
|  | */ | 
|  | static inline void __set_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | __asm__( | 
|  | "btsl %1,%0" | 
|  | :"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * clear_bit - Clears a bit in memory | 
|  | * @nr: Bit to clear | 
|  | * @addr: Address to start counting from | 
|  | * | 
|  | * clear_bit() is atomic and may not be reordered.  However, it does | 
|  | * not contain a memory barrier, so if it is used for locking purposes, | 
|  | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() | 
|  | * in order to ensure changes are visible on other processors. | 
|  | */ | 
|  | static inline void clear_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | __asm__ __volatile__( LOCK_PREFIX | 
|  | "btrl %1,%0" | 
|  | :"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | } | 
|  |  | 
|  | static inline void __clear_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | __asm__ __volatile__( | 
|  | "btrl %1,%0" | 
|  | :"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | } | 
|  | #define smp_mb__before_clear_bit()	barrier() | 
|  | #define smp_mb__after_clear_bit()	barrier() | 
|  |  | 
|  | /** | 
|  | * __change_bit - Toggle a bit in memory | 
|  | * @nr: the bit to change | 
|  | * @addr: the address to start counting from | 
|  | * | 
|  | * Unlike change_bit(), this function is non-atomic and may be reordered. | 
|  | * If it's called on the same region of memory simultaneously, the effect | 
|  | * may be that only one operation succeeds. | 
|  | */ | 
|  | static inline void __change_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | __asm__ __volatile__( | 
|  | "btcl %1,%0" | 
|  | :"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * change_bit - Toggle a bit in memory | 
|  | * @nr: Bit to change | 
|  | * @addr: Address to start counting from | 
|  | * | 
|  | * change_bit() is atomic and may not be reordered. It may be | 
|  | * reordered on other architectures than x86. | 
|  | * Note that @nr may be almost arbitrarily large; this function is not | 
|  | * restricted to acting on a single-word quantity. | 
|  | */ | 
|  | static inline void change_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | __asm__ __volatile__( LOCK_PREFIX | 
|  | "btcl %1,%0" | 
|  | :"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * test_and_set_bit - Set a bit and return its old value | 
|  | * @nr: Bit to set | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is atomic and cannot be reordered. | 
|  | * It may be reordered on other architectures than x86. | 
|  | * It also implies a memory barrier. | 
|  | */ | 
|  | static inline int test_and_set_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | int oldbit; | 
|  |  | 
|  | __asm__ __volatile__( LOCK_PREFIX | 
|  | "btsl %2,%1\n\tsbbl %0,%0" | 
|  | :"=r" (oldbit),"=m" (ADDR) | 
|  | :"Ir" (nr) : "memory"); | 
|  | return oldbit; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __test_and_set_bit - Set a bit and return its old value | 
|  | * @nr: Bit to set | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is non-atomic and can be reordered. | 
|  | * If two examples of this operation race, one can appear to succeed | 
|  | * but actually fail.  You must protect multiple accesses with a lock. | 
|  | */ | 
|  | static inline int __test_and_set_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | int oldbit; | 
|  |  | 
|  | __asm__( | 
|  | "btsl %2,%1\n\tsbbl %0,%0" | 
|  | :"=r" (oldbit),"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | return oldbit; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * test_and_clear_bit - Clear a bit and return its old value | 
|  | * @nr: Bit to clear | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is atomic and cannot be reordered. | 
|  | * It can be reorderdered on other architectures other than x86. | 
|  | * It also implies a memory barrier. | 
|  | */ | 
|  | static inline int test_and_clear_bit(int nr, volatile unsigned long * addr) | 
|  | { | 
|  | int oldbit; | 
|  |  | 
|  | __asm__ __volatile__( LOCK_PREFIX | 
|  | "btrl %2,%1\n\tsbbl %0,%0" | 
|  | :"=r" (oldbit),"=m" (ADDR) | 
|  | :"Ir" (nr) : "memory"); | 
|  | return oldbit; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __test_and_clear_bit - Clear a bit and return its old value | 
|  | * @nr: Bit to clear | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is non-atomic and can be reordered. | 
|  | * If two examples of this operation race, one can appear to succeed | 
|  | * but actually fail.  You must protect multiple accesses with a lock. | 
|  | */ | 
|  | static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | int oldbit; | 
|  |  | 
|  | __asm__( | 
|  | "btrl %2,%1\n\tsbbl %0,%0" | 
|  | :"=r" (oldbit),"=m" (ADDR) | 
|  | :"Ir" (nr)); | 
|  | return oldbit; | 
|  | } | 
|  |  | 
|  | /* WARNING: non atomic and it can be reordered! */ | 
|  | static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | int oldbit; | 
|  |  | 
|  | __asm__ __volatile__( | 
|  | "btcl %2,%1\n\tsbbl %0,%0" | 
|  | :"=r" (oldbit),"=m" (ADDR) | 
|  | :"Ir" (nr) : "memory"); | 
|  | return oldbit; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * test_and_change_bit - Change a bit and return its old value | 
|  | * @nr: Bit to change | 
|  | * @addr: Address to count from | 
|  | * | 
|  | * This operation is atomic and cannot be reordered. | 
|  | * It also implies a memory barrier. | 
|  | */ | 
|  | static inline int test_and_change_bit(int nr, volatile unsigned long* addr) | 
|  | { | 
|  | int oldbit; | 
|  |  | 
|  | __asm__ __volatile__( LOCK_PREFIX | 
|  | "btcl %2,%1\n\tsbbl %0,%0" | 
|  | :"=r" (oldbit),"=m" (ADDR) | 
|  | :"Ir" (nr) : "memory"); | 
|  | return oldbit; | 
|  | } | 
|  |  | 
|  | #if 0 /* Fool kernel-doc since it doesn't do macros yet */ | 
|  | /** | 
|  | * test_bit - Determine whether a bit is set | 
|  | * @nr: bit number to test | 
|  | * @addr: Address to start counting from | 
|  | */ | 
|  | static int test_bit(int nr, const volatile void * addr); | 
|  | #endif | 
|  |  | 
|  | static inline int constant_test_bit(int nr, const volatile unsigned long *addr) | 
|  | { | 
|  | return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0; | 
|  | } | 
|  |  | 
|  | static inline int variable_test_bit(int nr, const volatile unsigned long * addr) | 
|  | { | 
|  | int oldbit; | 
|  |  | 
|  | __asm__ __volatile__( | 
|  | "btl %2,%1\n\tsbbl %0,%0" | 
|  | :"=r" (oldbit) | 
|  | :"m" (ADDR),"Ir" (nr)); | 
|  | return oldbit; | 
|  | } | 
|  |  | 
|  | #define test_bit(nr,addr) \ | 
|  | (__builtin_constant_p(nr) ? \ | 
|  | constant_test_bit((nr),(addr)) : \ | 
|  | variable_test_bit((nr),(addr))) | 
|  |  | 
|  | #undef ADDR | 
|  |  | 
|  | /** | 
|  | * find_first_zero_bit - find the first zero bit in a memory region | 
|  | * @addr: The address to start the search at | 
|  | * @size: The maximum size to search | 
|  | * | 
|  | * Returns the bit-number of the first zero bit, not the number of the byte | 
|  | * containing a bit. | 
|  | */ | 
|  | static inline int find_first_zero_bit(const unsigned long *addr, unsigned size) | 
|  | { | 
|  | int d0, d1, d2; | 
|  | int res; | 
|  |  | 
|  | if (!size) | 
|  | return 0; | 
|  | /* This looks at memory. Mark it volatile to tell gcc not to move it around */ | 
|  | __asm__ __volatile__( | 
|  | "movl $-1,%%eax\n\t" | 
|  | "xorl %%edx,%%edx\n\t" | 
|  | "repe; scasl\n\t" | 
|  | "je 1f\n\t" | 
|  | "xorl -4(%%edi),%%eax\n\t" | 
|  | "subl $4,%%edi\n\t" | 
|  | "bsfl %%eax,%%edx\n" | 
|  | "1:\tsubl %%ebx,%%edi\n\t" | 
|  | "shll $3,%%edi\n\t" | 
|  | "addl %%edi,%%edx" | 
|  | :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2) | 
|  | :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory"); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_next_zero_bit - find the first zero bit in a memory region | 
|  | * @addr: The address to base the search on | 
|  | * @offset: The bitnumber to start searching at | 
|  | * @size: The maximum size to search | 
|  | */ | 
|  | int find_next_zero_bit(const unsigned long *addr, int size, int offset); | 
|  |  | 
|  | /** | 
|  | * __ffs - find first bit in word. | 
|  | * @word: The word to search | 
|  | * | 
|  | * Undefined if no bit exists, so code should check against 0 first. | 
|  | */ | 
|  | static inline unsigned long __ffs(unsigned long word) | 
|  | { | 
|  | __asm__("bsfl %1,%0" | 
|  | :"=r" (word) | 
|  | :"rm" (word)); | 
|  | return word; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_first_bit - find the first set bit in a memory region | 
|  | * @addr: The address to start the search at | 
|  | * @size: The maximum size to search | 
|  | * | 
|  | * Returns the bit-number of the first set bit, not the number of the byte | 
|  | * containing a bit. | 
|  | */ | 
|  | static inline unsigned find_first_bit(const unsigned long *addr, unsigned size) | 
|  | { | 
|  | unsigned x = 0; | 
|  |  | 
|  | while (x < size) { | 
|  | unsigned long val = *addr++; | 
|  | if (val) | 
|  | return __ffs(val) + x; | 
|  | x += (sizeof(*addr)<<3); | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_next_bit - find the first set bit in a memory region | 
|  | * @addr: The address to base the search on | 
|  | * @offset: The bitnumber to start searching at | 
|  | * @size: The maximum size to search | 
|  | */ | 
|  | int find_next_bit(const unsigned long *addr, int size, int offset); | 
|  |  | 
|  | /** | 
|  | * ffz - find first zero in word. | 
|  | * @word: The word to search | 
|  | * | 
|  | * Undefined if no zero exists, so code should check against ~0UL first. | 
|  | */ | 
|  | static inline unsigned long ffz(unsigned long word) | 
|  | { | 
|  | __asm__("bsfl %1,%0" | 
|  | :"=r" (word) | 
|  | :"r" (~word)); | 
|  | return word; | 
|  | } | 
|  |  | 
|  | #define fls64(x)   generic_fls64(x) | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | /* | 
|  | * Every architecture must define this function. It's the fastest | 
|  | * way of searching a 140-bit bitmap where the first 100 bits are | 
|  | * unlikely to be set. It's guaranteed that at least one of the 140 | 
|  | * bits is cleared. | 
|  | */ | 
|  | static inline int sched_find_first_bit(const unsigned long *b) | 
|  | { | 
|  | if (unlikely(b[0])) | 
|  | return __ffs(b[0]); | 
|  | if (unlikely(b[1])) | 
|  | return __ffs(b[1]) + 32; | 
|  | if (unlikely(b[2])) | 
|  | return __ffs(b[2]) + 64; | 
|  | if (b[3]) | 
|  | return __ffs(b[3]) + 96; | 
|  | return __ffs(b[4]) + 128; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ffs - find first bit set | 
|  | * @x: the word to search | 
|  | * | 
|  | * This is defined the same way as | 
|  | * the libc and compiler builtin ffs routines, therefore | 
|  | * differs in spirit from the above ffz (man ffs). | 
|  | */ | 
|  | static inline int ffs(int x) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | __asm__("bsfl %1,%0\n\t" | 
|  | "jnz 1f\n\t" | 
|  | "movl $-1,%0\n" | 
|  | "1:" : "=r" (r) : "rm" (x)); | 
|  | return r+1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fls - find last bit set | 
|  | * @x: the word to search | 
|  | * | 
|  | * This is defined the same way as ffs. | 
|  | */ | 
|  | static inline int fls(int x) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | __asm__("bsrl %1,%0\n\t" | 
|  | "jnz 1f\n\t" | 
|  | "movl $-1,%0\n" | 
|  | "1:" : "=r" (r) : "rm" (x)); | 
|  | return r+1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hweightN - returns the hamming weight of a N-bit word | 
|  | * @x: the word to weigh | 
|  | * | 
|  | * The Hamming Weight of a number is the total number of bits set in it. | 
|  | */ | 
|  |  | 
|  | #define hweight32(x) generic_hweight32(x) | 
|  | #define hweight16(x) generic_hweight16(x) | 
|  | #define hweight8(x) generic_hweight8(x) | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #define ext2_set_bit(nr,addr) \ | 
|  | __test_and_set_bit((nr),(unsigned long*)addr) | 
|  | #define ext2_set_bit_atomic(lock,nr,addr) \ | 
|  | test_and_set_bit((nr),(unsigned long*)addr) | 
|  | #define ext2_clear_bit(nr, addr) \ | 
|  | __test_and_clear_bit((nr),(unsigned long*)addr) | 
|  | #define ext2_clear_bit_atomic(lock,nr, addr) \ | 
|  | test_and_clear_bit((nr),(unsigned long*)addr) | 
|  | #define ext2_test_bit(nr, addr)      test_bit((nr),(unsigned long*)addr) | 
|  | #define ext2_find_first_zero_bit(addr, size) \ | 
|  | find_first_zero_bit((unsigned long*)addr, size) | 
|  | #define ext2_find_next_zero_bit(addr, size, off) \ | 
|  | find_next_zero_bit((unsigned long*)addr, size, off) | 
|  |  | 
|  | /* Bitmap functions for the minix filesystem.  */ | 
|  | #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,(void*)addr) | 
|  | #define minix_set_bit(nr,addr) __set_bit(nr,(void*)addr) | 
|  | #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,(void*)addr) | 
|  | #define minix_test_bit(nr,addr) test_bit(nr,(void*)addr) | 
|  | #define minix_find_first_zero_bit(addr,size) \ | 
|  | find_first_zero_bit((void*)addr,size) | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* _I386_BITOPS_H */ |