| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/workqueue.h> |
| #include <linux/netdevice.h> |
| #include <linux/filter.h> |
| #include <linux/cache.h> |
| #include <linux/if_vlan.h> |
| #include <linux/execmem.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/ptrace.h> |
| |
| #include "bpf_jit_32.h" |
| |
| static inline bool is_simm13(unsigned int value) |
| { |
| return value + 0x1000 < 0x2000; |
| } |
| |
| #define SEEN_DATAREF 1 /* might call external helpers */ |
| #define SEEN_XREG 2 /* ebx is used */ |
| #define SEEN_MEM 4 /* use mem[] for temporary storage */ |
| |
| #define S13(X) ((X) & 0x1fff) |
| #define IMMED 0x00002000 |
| #define RD(X) ((X) << 25) |
| #define RS1(X) ((X) << 14) |
| #define RS2(X) ((X)) |
| #define OP(X) ((X) << 30) |
| #define OP2(X) ((X) << 22) |
| #define OP3(X) ((X) << 19) |
| #define COND(X) ((X) << 25) |
| #define F1(X) OP(X) |
| #define F2(X, Y) (OP(X) | OP2(Y)) |
| #define F3(X, Y) (OP(X) | OP3(Y)) |
| |
| #define CONDN COND(0x0) |
| #define CONDE COND(0x1) |
| #define CONDLE COND(0x2) |
| #define CONDL COND(0x3) |
| #define CONDLEU COND(0x4) |
| #define CONDCS COND(0x5) |
| #define CONDNEG COND(0x6) |
| #define CONDVC COND(0x7) |
| #define CONDA COND(0x8) |
| #define CONDNE COND(0x9) |
| #define CONDG COND(0xa) |
| #define CONDGE COND(0xb) |
| #define CONDGU COND(0xc) |
| #define CONDCC COND(0xd) |
| #define CONDPOS COND(0xe) |
| #define CONDVS COND(0xf) |
| |
| #define CONDGEU CONDCC |
| #define CONDLU CONDCS |
| |
| #define WDISP22(X) (((X) >> 2) & 0x3fffff) |
| |
| #define BA (F2(0, 2) | CONDA) |
| #define BGU (F2(0, 2) | CONDGU) |
| #define BLEU (F2(0, 2) | CONDLEU) |
| #define BGEU (F2(0, 2) | CONDGEU) |
| #define BLU (F2(0, 2) | CONDLU) |
| #define BE (F2(0, 2) | CONDE) |
| #define BNE (F2(0, 2) | CONDNE) |
| |
| #define BE_PTR BE |
| |
| #define SETHI(K, REG) \ |
| (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff)) |
| #define OR_LO(K, REG) \ |
| (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG)) |
| |
| #define ADD F3(2, 0x00) |
| #define AND F3(2, 0x01) |
| #define ANDCC F3(2, 0x11) |
| #define OR F3(2, 0x02) |
| #define XOR F3(2, 0x03) |
| #define SUB F3(2, 0x04) |
| #define SUBCC F3(2, 0x14) |
| #define MUL F3(2, 0x0a) /* umul */ |
| #define DIV F3(2, 0x0e) /* udiv */ |
| #define SLL F3(2, 0x25) |
| #define SRL F3(2, 0x26) |
| #define JMPL F3(2, 0x38) |
| #define CALL F1(1) |
| #define BR F2(0, 0x01) |
| #define RD_Y F3(2, 0x28) |
| #define WR_Y F3(2, 0x30) |
| |
| #define LD32 F3(3, 0x00) |
| #define LD8 F3(3, 0x01) |
| #define LD16 F3(3, 0x02) |
| #define LD64 F3(3, 0x0b) |
| #define ST32 F3(3, 0x04) |
| |
| #define LDPTR LD32 |
| #define BASE_STACKFRAME 96 |
| |
| #define LD32I (LD32 | IMMED) |
| #define LD8I (LD8 | IMMED) |
| #define LD16I (LD16 | IMMED) |
| #define LD64I (LD64 | IMMED) |
| #define LDPTRI (LDPTR | IMMED) |
| #define ST32I (ST32 | IMMED) |
| |
| #define emit_nop() \ |
| do { \ |
| *prog++ = SETHI(0, G0); \ |
| } while (0) |
| |
| #define emit_neg() \ |
| do { /* sub %g0, r_A, r_A */ \ |
| *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \ |
| } while (0) |
| |
| #define emit_reg_move(FROM, TO) \ |
| do { /* or %g0, FROM, TO */ \ |
| *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \ |
| } while (0) |
| |
| #define emit_clear(REG) \ |
| do { /* or %g0, %g0, REG */ \ |
| *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \ |
| } while (0) |
| |
| #define emit_set_const(K, REG) \ |
| do { /* sethi %hi(K), REG */ \ |
| *prog++ = SETHI(K, REG); \ |
| /* or REG, %lo(K), REG */ \ |
| *prog++ = OR_LO(K, REG); \ |
| } while (0) |
| |
| /* Emit |
| * |
| * OP r_A, r_X, r_A |
| */ |
| #define emit_alu_X(OPCODE) \ |
| do { \ |
| seen |= SEEN_XREG; \ |
| *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \ |
| } while (0) |
| |
| /* Emit either: |
| * |
| * OP r_A, K, r_A |
| * |
| * or |
| * |
| * sethi %hi(K), r_TMP |
| * or r_TMP, %lo(K), r_TMP |
| * OP r_A, r_TMP, r_A |
| * |
| * depending upon whether K fits in a signed 13-bit |
| * immediate instruction field. Emit nothing if K |
| * is zero. |
| */ |
| #define emit_alu_K(OPCODE, K) \ |
| do { \ |
| if (K || OPCODE == AND || OPCODE == MUL) { \ |
| unsigned int _insn = OPCODE; \ |
| _insn |= RS1(r_A) | RD(r_A); \ |
| if (is_simm13(K)) { \ |
| *prog++ = _insn | IMMED | S13(K); \ |
| } else { \ |
| emit_set_const(K, r_TMP); \ |
| *prog++ = _insn | RS2(r_TMP); \ |
| } \ |
| } \ |
| } while (0) |
| |
| #define emit_loadimm(K, DEST) \ |
| do { \ |
| if (is_simm13(K)) { \ |
| /* or %g0, K, DEST */ \ |
| *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \ |
| } else { \ |
| emit_set_const(K, DEST); \ |
| } \ |
| } while (0) |
| |
| #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \ |
| do { unsigned int _off = offsetof(STRUCT, FIELD); \ |
| BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *)); \ |
| *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \ |
| } while (0) |
| |
| #define emit_load32(BASE, STRUCT, FIELD, DEST) \ |
| do { unsigned int _off = offsetof(STRUCT, FIELD); \ |
| BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32)); \ |
| *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \ |
| } while (0) |
| |
| #define emit_load16(BASE, STRUCT, FIELD, DEST) \ |
| do { unsigned int _off = offsetof(STRUCT, FIELD); \ |
| BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16)); \ |
| *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \ |
| } while (0) |
| |
| #define __emit_load8(BASE, STRUCT, FIELD, DEST) \ |
| do { unsigned int _off = offsetof(STRUCT, FIELD); \ |
| *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \ |
| } while (0) |
| |
| #define emit_load8(BASE, STRUCT, FIELD, DEST) \ |
| do { BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8)); \ |
| __emit_load8(BASE, STRUCT, FIELD, DEST); \ |
| } while (0) |
| |
| #define BIAS (-4) |
| |
| #define emit_ldmem(OFF, DEST) \ |
| do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \ |
| } while (0) |
| |
| #define emit_stmem(OFF, SRC) \ |
| do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \ |
| } while (0) |
| |
| #ifdef CONFIG_SMP |
| #define emit_load_cpu(REG) \ |
| emit_load32(G6, struct thread_info, cpu, REG) |
| #else |
| #define emit_load_cpu(REG) emit_clear(REG) |
| #endif |
| |
| #define emit_skb_loadptr(FIELD, DEST) \ |
| emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST) |
| #define emit_skb_load32(FIELD, DEST) \ |
| emit_load32(r_SKB, struct sk_buff, FIELD, DEST) |
| #define emit_skb_load16(FIELD, DEST) \ |
| emit_load16(r_SKB, struct sk_buff, FIELD, DEST) |
| #define __emit_skb_load8(FIELD, DEST) \ |
| __emit_load8(r_SKB, struct sk_buff, FIELD, DEST) |
| #define emit_skb_load8(FIELD, DEST) \ |
| emit_load8(r_SKB, struct sk_buff, FIELD, DEST) |
| |
| #define emit_jmpl(BASE, IMM_OFF, LREG) \ |
| *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG)) |
| |
| #define emit_call(FUNC) \ |
| do { void *_here = image + addrs[i] - 8; \ |
| unsigned int _off = (void *)(FUNC) - _here; \ |
| *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \ |
| emit_nop(); \ |
| } while (0) |
| |
| #define emit_branch(BR_OPC, DEST) \ |
| do { unsigned int _here = addrs[i] - 8; \ |
| *prog++ = BR_OPC | WDISP22((DEST) - _here); \ |
| } while (0) |
| |
| #define emit_branch_off(BR_OPC, OFF) \ |
| do { *prog++ = BR_OPC | WDISP22(OFF); \ |
| } while (0) |
| |
| #define emit_jump(DEST) emit_branch(BA, DEST) |
| |
| #define emit_read_y(REG) *prog++ = RD_Y | RD(REG) |
| #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0) |
| |
| #define emit_cmp(R1, R2) \ |
| *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0)) |
| |
| #define emit_cmpi(R1, IMM) \ |
| *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); |
| |
| #define emit_btst(R1, R2) \ |
| *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0)) |
| |
| #define emit_btsti(R1, IMM) \ |
| *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); |
| |
| #define emit_sub(R1, R2, R3) \ |
| *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3)) |
| |
| #define emit_subi(R1, IMM, R3) \ |
| *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3)) |
| |
| #define emit_add(R1, R2, R3) \ |
| *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3)) |
| |
| #define emit_addi(R1, IMM, R3) \ |
| *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3)) |
| |
| #define emit_and(R1, R2, R3) \ |
| *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3)) |
| |
| #define emit_andi(R1, IMM, R3) \ |
| *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3)) |
| |
| #define emit_alloc_stack(SZ) \ |
| *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP)) |
| |
| #define emit_release_stack(SZ) \ |
| *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP)) |
| |
| /* A note about branch offset calculations. The addrs[] array, |
| * indexed by BPF instruction, records the address after all the |
| * sparc instructions emitted for that BPF instruction. |
| * |
| * The most common case is to emit a branch at the end of such |
| * a code sequence. So this would be two instructions, the |
| * branch and its delay slot. |
| * |
| * Therefore by default the branch emitters calculate the branch |
| * offset field as: |
| * |
| * destination - (addrs[i] - 8) |
| * |
| * This "addrs[i] - 8" is the address of the branch itself or |
| * what "." would be in assembler notation. The "8" part is |
| * how we take into consideration the branch and its delay |
| * slot mentioned above. |
| * |
| * Sometimes we need to emit a branch earlier in the code |
| * sequence. And in these situations we adjust "destination" |
| * to accommodate this difference. For example, if we needed |
| * to emit a branch (and its delay slot) right before the |
| * final instruction emitted for a BPF opcode, we'd use |
| * "destination + 4" instead of just plain "destination" above. |
| * |
| * This is why you see all of these funny emit_branch() and |
| * emit_jump() calls with adjusted offsets. |
| */ |
| |
| void bpf_jit_compile(struct bpf_prog *fp) |
| { |
| unsigned int cleanup_addr, proglen, oldproglen = 0; |
| u32 temp[8], *prog, *func, seen = 0, pass; |
| const struct sock_filter *filter = fp->insns; |
| int i, flen = fp->len, pc_ret0 = -1; |
| unsigned int *addrs; |
| void *image; |
| |
| if (!bpf_jit_enable) |
| return; |
| |
| addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL); |
| if (addrs == NULL) |
| return; |
| |
| /* Before first pass, make a rough estimation of addrs[] |
| * each bpf instruction is translated to less than 64 bytes |
| */ |
| for (proglen = 0, i = 0; i < flen; i++) { |
| proglen += 64; |
| addrs[i] = proglen; |
| } |
| cleanup_addr = proglen; /* epilogue address */ |
| image = NULL; |
| for (pass = 0; pass < 10; pass++) { |
| u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen; |
| |
| /* no prologue/epilogue for trivial filters (RET something) */ |
| proglen = 0; |
| prog = temp; |
| |
| /* Prologue */ |
| if (seen_or_pass0) { |
| if (seen_or_pass0 & SEEN_MEM) { |
| unsigned int sz = BASE_STACKFRAME; |
| sz += BPF_MEMWORDS * sizeof(u32); |
| emit_alloc_stack(sz); |
| } |
| |
| /* Make sure we dont leek kernel memory. */ |
| if (seen_or_pass0 & SEEN_XREG) |
| emit_clear(r_X); |
| |
| /* If this filter needs to access skb data, |
| * load %o4 and %o5 with: |
| * %o4 = skb->len - skb->data_len |
| * %o5 = skb->data |
| * And also back up %o7 into r_saved_O7 so we can |
| * invoke the stubs using 'call'. |
| */ |
| if (seen_or_pass0 & SEEN_DATAREF) { |
| emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN); |
| emit_load32(r_SKB, struct sk_buff, data_len, r_TMP); |
| emit_sub(r_HEADLEN, r_TMP, r_HEADLEN); |
| emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA); |
| } |
| } |
| emit_reg_move(O7, r_saved_O7); |
| |
| /* Make sure we dont leak kernel information to the user. */ |
| if (bpf_needs_clear_a(&filter[0])) |
| emit_clear(r_A); /* A = 0 */ |
| |
| for (i = 0; i < flen; i++) { |
| unsigned int K = filter[i].k; |
| unsigned int t_offset; |
| unsigned int f_offset; |
| u32 t_op, f_op; |
| u16 code = bpf_anc_helper(&filter[i]); |
| int ilen; |
| |
| switch (code) { |
| case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */ |
| emit_alu_X(ADD); |
| break; |
| case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */ |
| emit_alu_K(ADD, K); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */ |
| emit_alu_X(SUB); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ |
| emit_alu_K(SUB, K); |
| break; |
| case BPF_ALU | BPF_AND | BPF_X: /* A &= X */ |
| emit_alu_X(AND); |
| break; |
| case BPF_ALU | BPF_AND | BPF_K: /* A &= K */ |
| emit_alu_K(AND, K); |
| break; |
| case BPF_ALU | BPF_OR | BPF_X: /* A |= X */ |
| emit_alu_X(OR); |
| break; |
| case BPF_ALU | BPF_OR | BPF_K: /* A |= K */ |
| emit_alu_K(OR, K); |
| break; |
| case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */ |
| case BPF_ALU | BPF_XOR | BPF_X: |
| emit_alu_X(XOR); |
| break; |
| case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */ |
| emit_alu_K(XOR, K); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */ |
| emit_alu_X(SLL); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */ |
| emit_alu_K(SLL, K); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */ |
| emit_alu_X(SRL); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */ |
| emit_alu_K(SRL, K); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */ |
| emit_alu_X(MUL); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ |
| emit_alu_K(MUL, K); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/ |
| if (K == 1) |
| break; |
| emit_write_y(G0); |
| /* The Sparc v8 architecture requires |
| * three instructions between a %y |
| * register write and the first use. |
| */ |
| emit_nop(); |
| emit_nop(); |
| emit_nop(); |
| emit_alu_K(DIV, K); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */ |
| emit_cmpi(r_X, 0); |
| if (pc_ret0 > 0) { |
| t_offset = addrs[pc_ret0 - 1]; |
| emit_branch(BE, t_offset + 20); |
| emit_nop(); /* delay slot */ |
| } else { |
| emit_branch_off(BNE, 16); |
| emit_nop(); |
| emit_jump(cleanup_addr + 20); |
| emit_clear(r_A); |
| } |
| emit_write_y(G0); |
| /* The Sparc v8 architecture requires |
| * three instructions between a %y |
| * register write and the first use. |
| */ |
| emit_nop(); |
| emit_nop(); |
| emit_nop(); |
| emit_alu_X(DIV); |
| break; |
| case BPF_ALU | BPF_NEG: |
| emit_neg(); |
| break; |
| case BPF_RET | BPF_K: |
| if (!K) { |
| if (pc_ret0 == -1) |
| pc_ret0 = i; |
| emit_clear(r_A); |
| } else { |
| emit_loadimm(K, r_A); |
| } |
| fallthrough; |
| case BPF_RET | BPF_A: |
| if (seen_or_pass0) { |
| if (i != flen - 1) { |
| emit_jump(cleanup_addr); |
| emit_nop(); |
| break; |
| } |
| if (seen_or_pass0 & SEEN_MEM) { |
| unsigned int sz = BASE_STACKFRAME; |
| sz += BPF_MEMWORDS * sizeof(u32); |
| emit_release_stack(sz); |
| } |
| } |
| /* jmpl %r_saved_O7 + 8, %g0 */ |
| emit_jmpl(r_saved_O7, 8, G0); |
| emit_reg_move(r_A, O0); /* delay slot */ |
| break; |
| case BPF_MISC | BPF_TAX: |
| seen |= SEEN_XREG; |
| emit_reg_move(r_A, r_X); |
| break; |
| case BPF_MISC | BPF_TXA: |
| seen |= SEEN_XREG; |
| emit_reg_move(r_X, r_A); |
| break; |
| case BPF_ANC | SKF_AD_CPU: |
| emit_load_cpu(r_A); |
| break; |
| case BPF_ANC | SKF_AD_PROTOCOL: |
| emit_skb_load16(protocol, r_A); |
| break; |
| case BPF_ANC | SKF_AD_PKTTYPE: |
| __emit_skb_load8(__pkt_type_offset, r_A); |
| emit_andi(r_A, PKT_TYPE_MAX, r_A); |
| emit_alu_K(SRL, 5); |
| break; |
| case BPF_ANC | SKF_AD_IFINDEX: |
| emit_skb_loadptr(dev, r_A); |
| emit_cmpi(r_A, 0); |
| emit_branch(BE_PTR, cleanup_addr + 4); |
| emit_nop(); |
| emit_load32(r_A, struct net_device, ifindex, r_A); |
| break; |
| case BPF_ANC | SKF_AD_MARK: |
| emit_skb_load32(mark, r_A); |
| break; |
| case BPF_ANC | SKF_AD_QUEUE: |
| emit_skb_load16(queue_mapping, r_A); |
| break; |
| case BPF_ANC | SKF_AD_HATYPE: |
| emit_skb_loadptr(dev, r_A); |
| emit_cmpi(r_A, 0); |
| emit_branch(BE_PTR, cleanup_addr + 4); |
| emit_nop(); |
| emit_load16(r_A, struct net_device, type, r_A); |
| break; |
| case BPF_ANC | SKF_AD_RXHASH: |
| emit_skb_load32(hash, r_A); |
| break; |
| case BPF_ANC | SKF_AD_VLAN_TAG: |
| emit_skb_load16(vlan_tci, r_A); |
| break; |
| case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: |
| emit_skb_load32(vlan_all, r_A); |
| emit_cmpi(r_A, 0); |
| emit_branch_off(BE, 12); |
| emit_nop(); |
| emit_loadimm(1, r_A); |
| break; |
| case BPF_LD | BPF_W | BPF_LEN: |
| emit_skb_load32(len, r_A); |
| break; |
| case BPF_LDX | BPF_W | BPF_LEN: |
| emit_skb_load32(len, r_X); |
| break; |
| case BPF_LD | BPF_IMM: |
| emit_loadimm(K, r_A); |
| break; |
| case BPF_LDX | BPF_IMM: |
| emit_loadimm(K, r_X); |
| break; |
| case BPF_LD | BPF_MEM: |
| seen |= SEEN_MEM; |
| emit_ldmem(K * 4, r_A); |
| break; |
| case BPF_LDX | BPF_MEM: |
| seen |= SEEN_MEM | SEEN_XREG; |
| emit_ldmem(K * 4, r_X); |
| break; |
| case BPF_ST: |
| seen |= SEEN_MEM; |
| emit_stmem(K * 4, r_A); |
| break; |
| case BPF_STX: |
| seen |= SEEN_MEM | SEEN_XREG; |
| emit_stmem(K * 4, r_X); |
| break; |
| |
| #define CHOOSE_LOAD_FUNC(K, func) \ |
| ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) |
| |
| case BPF_LD | BPF_W | BPF_ABS: |
| func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word); |
| common_load: seen |= SEEN_DATAREF; |
| emit_loadimm(K, r_OFF); |
| emit_call(func); |
| break; |
| case BPF_LD | BPF_H | BPF_ABS: |
| func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half); |
| goto common_load; |
| case BPF_LD | BPF_B | BPF_ABS: |
| func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte); |
| goto common_load; |
| case BPF_LDX | BPF_B | BPF_MSH: |
| func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh); |
| goto common_load; |
| case BPF_LD | BPF_W | BPF_IND: |
| func = bpf_jit_load_word; |
| common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG; |
| if (K) { |
| if (is_simm13(K)) { |
| emit_addi(r_X, K, r_OFF); |
| } else { |
| emit_loadimm(K, r_TMP); |
| emit_add(r_X, r_TMP, r_OFF); |
| } |
| } else { |
| emit_reg_move(r_X, r_OFF); |
| } |
| emit_call(func); |
| break; |
| case BPF_LD | BPF_H | BPF_IND: |
| func = bpf_jit_load_half; |
| goto common_load_ind; |
| case BPF_LD | BPF_B | BPF_IND: |
| func = bpf_jit_load_byte; |
| goto common_load_ind; |
| case BPF_JMP | BPF_JA: |
| emit_jump(addrs[i + K]); |
| emit_nop(); |
| break; |
| |
| #define COND_SEL(CODE, TOP, FOP) \ |
| case CODE: \ |
| t_op = TOP; \ |
| f_op = FOP; \ |
| goto cond_branch |
| |
| COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU); |
| COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU); |
| COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE); |
| COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE); |
| COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU); |
| COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU); |
| COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE); |
| COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE); |
| |
| cond_branch: f_offset = addrs[i + filter[i].jf]; |
| t_offset = addrs[i + filter[i].jt]; |
| |
| /* same targets, can avoid doing the test :) */ |
| if (filter[i].jt == filter[i].jf) { |
| emit_jump(t_offset); |
| emit_nop(); |
| break; |
| } |
| |
| switch (code) { |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| seen |= SEEN_XREG; |
| emit_cmp(r_A, r_X); |
| break; |
| case BPF_JMP | BPF_JSET | BPF_X: |
| seen |= SEEN_XREG; |
| emit_btst(r_A, r_X); |
| break; |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| if (is_simm13(K)) { |
| emit_cmpi(r_A, K); |
| } else { |
| emit_loadimm(K, r_TMP); |
| emit_cmp(r_A, r_TMP); |
| } |
| break; |
| case BPF_JMP | BPF_JSET | BPF_K: |
| if (is_simm13(K)) { |
| emit_btsti(r_A, K); |
| } else { |
| emit_loadimm(K, r_TMP); |
| emit_btst(r_A, r_TMP); |
| } |
| break; |
| } |
| if (filter[i].jt != 0) { |
| if (filter[i].jf) |
| t_offset += 8; |
| emit_branch(t_op, t_offset); |
| emit_nop(); /* delay slot */ |
| if (filter[i].jf) { |
| emit_jump(f_offset); |
| emit_nop(); |
| } |
| break; |
| } |
| emit_branch(f_op, f_offset); |
| emit_nop(); /* delay slot */ |
| break; |
| |
| default: |
| /* hmm, too complex filter, give up with jit compiler */ |
| goto out; |
| } |
| ilen = (void *) prog - (void *) temp; |
| if (image) { |
| if (unlikely(proglen + ilen > oldproglen)) { |
| pr_err("bpb_jit_compile fatal error\n"); |
| kfree(addrs); |
| execmem_free(image); |
| return; |
| } |
| memcpy(image + proglen, temp, ilen); |
| } |
| proglen += ilen; |
| addrs[i] = proglen; |
| prog = temp; |
| } |
| /* last bpf instruction is always a RET : |
| * use it to give the cleanup instruction(s) addr |
| */ |
| cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */ |
| if (seen_or_pass0 & SEEN_MEM) |
| cleanup_addr -= 4; /* add %sp, X, %sp; */ |
| |
| if (image) { |
| if (proglen != oldproglen) |
| pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", |
| proglen, oldproglen); |
| break; |
| } |
| if (proglen == oldproglen) { |
| image = execmem_alloc(EXECMEM_BPF, proglen); |
| if (!image) |
| goto out; |
| } |
| oldproglen = proglen; |
| } |
| |
| if (bpf_jit_enable > 1) |
| bpf_jit_dump(flen, proglen, pass + 1, image); |
| |
| if (image) { |
| fp->bpf_func = (void *)image; |
| fp->jited = 1; |
| } |
| out: |
| kfree(addrs); |
| return; |
| } |
| |
| void bpf_jit_free(struct bpf_prog *fp) |
| { |
| if (fp->jited) |
| execmem_free(fp->bpf_func); |
| |
| bpf_prog_unlock_free(fp); |
| } |