| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com> |
| * |
| * Scatterlist handling helpers. |
| */ |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/scatterlist.h> |
| #include <linux/highmem.h> |
| #include <linux/kmemleak.h> |
| #include <linux/bvec.h> |
| #include <linux/uio.h> |
| #include <linux/folio_queue.h> |
| |
| /** |
| * sg_next - return the next scatterlist entry in a list |
| * @sg: The current sg entry |
| * |
| * Description: |
| * Usually the next entry will be @sg@ + 1, but if this sg element is part |
| * of a chained scatterlist, it could jump to the start of a new |
| * scatterlist array. |
| * |
| **/ |
| struct scatterlist *sg_next(struct scatterlist *sg) |
| { |
| if (sg_is_last(sg)) |
| return NULL; |
| |
| sg++; |
| if (unlikely(sg_is_chain(sg))) |
| sg = sg_chain_ptr(sg); |
| |
| return sg; |
| } |
| EXPORT_SYMBOL(sg_next); |
| |
| /** |
| * sg_nents - return total count of entries in scatterlist |
| * @sg: The scatterlist |
| * |
| * Description: |
| * Allows to know how many entries are in sg, taking into account |
| * chaining as well |
| * |
| **/ |
| int sg_nents(struct scatterlist *sg) |
| { |
| int nents; |
| for (nents = 0; sg; sg = sg_next(sg)) |
| nents++; |
| return nents; |
| } |
| EXPORT_SYMBOL(sg_nents); |
| |
| /** |
| * sg_nents_for_len - return total count of entries in scatterlist |
| * needed to satisfy the supplied length |
| * @sg: The scatterlist |
| * @len: The total required length |
| * |
| * Description: |
| * Determines the number of entries in sg that are required to meet |
| * the supplied length, taking into account chaining as well |
| * |
| * Returns: |
| * the number of sg entries needed, negative error on failure |
| * |
| **/ |
| int sg_nents_for_len(struct scatterlist *sg, u64 len) |
| { |
| int nents; |
| u64 total; |
| |
| if (!len) |
| return 0; |
| |
| for (nents = 0, total = 0; sg; sg = sg_next(sg)) { |
| nents++; |
| total += sg->length; |
| if (total >= len) |
| return nents; |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(sg_nents_for_len); |
| |
| /** |
| * sg_last - return the last scatterlist entry in a list |
| * @sgl: First entry in the scatterlist |
| * @nents: Number of entries in the scatterlist |
| * |
| * Description: |
| * Should only be used casually, it (currently) scans the entire list |
| * to get the last entry. |
| * |
| * Note that the @sgl@ pointer passed in need not be the first one, |
| * the important bit is that @nents@ denotes the number of entries that |
| * exist from @sgl@. |
| * |
| **/ |
| struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents) |
| { |
| struct scatterlist *sg, *ret = NULL; |
| unsigned int i; |
| |
| for_each_sg(sgl, sg, nents, i) |
| ret = sg; |
| |
| BUG_ON(!sg_is_last(ret)); |
| return ret; |
| } |
| EXPORT_SYMBOL(sg_last); |
| |
| /** |
| * sg_init_table - Initialize SG table |
| * @sgl: The SG table |
| * @nents: Number of entries in table |
| * |
| * Notes: |
| * If this is part of a chained sg table, sg_mark_end() should be |
| * used only on the last table part. |
| * |
| **/ |
| void sg_init_table(struct scatterlist *sgl, unsigned int nents) |
| { |
| memset(sgl, 0, sizeof(*sgl) * nents); |
| sg_init_marker(sgl, nents); |
| } |
| EXPORT_SYMBOL(sg_init_table); |
| |
| /** |
| * sg_init_one - Initialize a single entry sg list |
| * @sg: SG entry |
| * @buf: Virtual address for IO |
| * @buflen: IO length |
| * |
| **/ |
| void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen) |
| { |
| sg_init_table(sg, 1); |
| sg_set_buf(sg, buf, buflen); |
| } |
| EXPORT_SYMBOL(sg_init_one); |
| |
| /* |
| * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree |
| * helpers. |
| */ |
| static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask) |
| { |
| if (nents == SG_MAX_SINGLE_ALLOC) { |
| /* |
| * Kmemleak doesn't track page allocations as they are not |
| * commonly used (in a raw form) for kernel data structures. |
| * As we chain together a list of pages and then a normal |
| * kmalloc (tracked by kmemleak), in order to for that last |
| * allocation not to become decoupled (and thus a |
| * false-positive) we need to inform kmemleak of all the |
| * intermediate allocations. |
| */ |
| void *ptr = (void *) __get_free_page(gfp_mask); |
| kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask); |
| return ptr; |
| } else |
| return kmalloc_array(nents, sizeof(struct scatterlist), |
| gfp_mask); |
| } |
| |
| static void sg_kfree(struct scatterlist *sg, unsigned int nents) |
| { |
| if (nents == SG_MAX_SINGLE_ALLOC) { |
| kmemleak_free(sg); |
| free_page((unsigned long) sg); |
| } else |
| kfree(sg); |
| } |
| |
| /** |
| * __sg_free_table - Free a previously mapped sg table |
| * @table: The sg table header to use |
| * @max_ents: The maximum number of entries per single scatterlist |
| * @nents_first_chunk: Number of entries int the (preallocated) first |
| * scatterlist chunk, 0 means no such preallocated first chunk |
| * @free_fn: Free function |
| * @num_ents: Number of entries in the table |
| * |
| * Description: |
| * Free an sg table previously allocated and setup with |
| * __sg_alloc_table(). The @max_ents value must be identical to |
| * that previously used with __sg_alloc_table(). |
| * |
| **/ |
| void __sg_free_table(struct sg_table *table, unsigned int max_ents, |
| unsigned int nents_first_chunk, sg_free_fn *free_fn, |
| unsigned int num_ents) |
| { |
| struct scatterlist *sgl, *next; |
| unsigned curr_max_ents = nents_first_chunk ?: max_ents; |
| |
| if (unlikely(!table->sgl)) |
| return; |
| |
| sgl = table->sgl; |
| while (num_ents) { |
| unsigned int alloc_size = num_ents; |
| unsigned int sg_size; |
| |
| /* |
| * If we have more than max_ents segments left, |
| * then assign 'next' to the sg table after the current one. |
| * sg_size is then one less than alloc size, since the last |
| * element is the chain pointer. |
| */ |
| if (alloc_size > curr_max_ents) { |
| next = sg_chain_ptr(&sgl[curr_max_ents - 1]); |
| alloc_size = curr_max_ents; |
| sg_size = alloc_size - 1; |
| } else { |
| sg_size = alloc_size; |
| next = NULL; |
| } |
| |
| num_ents -= sg_size; |
| if (nents_first_chunk) |
| nents_first_chunk = 0; |
| else |
| free_fn(sgl, alloc_size); |
| sgl = next; |
| curr_max_ents = max_ents; |
| } |
| |
| table->sgl = NULL; |
| } |
| EXPORT_SYMBOL(__sg_free_table); |
| |
| /** |
| * sg_free_append_table - Free a previously allocated append sg table. |
| * @table: The mapped sg append table header |
| * |
| **/ |
| void sg_free_append_table(struct sg_append_table *table) |
| { |
| __sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree, |
| table->total_nents); |
| } |
| EXPORT_SYMBOL(sg_free_append_table); |
| |
| |
| /** |
| * sg_free_table - Free a previously allocated sg table |
| * @table: The mapped sg table header |
| * |
| **/ |
| void sg_free_table(struct sg_table *table) |
| { |
| __sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree, |
| table->orig_nents); |
| } |
| EXPORT_SYMBOL(sg_free_table); |
| |
| /** |
| * __sg_alloc_table - Allocate and initialize an sg table with given allocator |
| * @table: The sg table header to use |
| * @nents: Number of entries in sg list |
| * @max_ents: The maximum number of entries the allocator returns per call |
| * @first_chunk: first SGL if preallocated (may be %NULL) |
| * @nents_first_chunk: Number of entries in the (preallocated) first |
| * scatterlist chunk, 0 means no such preallocated chunk provided by user |
| * @gfp_mask: GFP allocation mask |
| * @alloc_fn: Allocator to use |
| * |
| * Description: |
| * This function returns a @table @nents long. The allocator is |
| * defined to return scatterlist chunks of maximum size @max_ents. |
| * Thus if @nents is bigger than @max_ents, the scatterlists will be |
| * chained in units of @max_ents. |
| * |
| * Notes: |
| * If this function returns non-0 (eg failure), the caller must call |
| * __sg_free_table() to cleanup any leftover allocations. |
| * |
| **/ |
| int __sg_alloc_table(struct sg_table *table, unsigned int nents, |
| unsigned int max_ents, struct scatterlist *first_chunk, |
| unsigned int nents_first_chunk, gfp_t gfp_mask, |
| sg_alloc_fn *alloc_fn) |
| { |
| struct scatterlist *sg, *prv; |
| unsigned int left; |
| unsigned curr_max_ents = nents_first_chunk ?: max_ents; |
| unsigned prv_max_ents; |
| |
| memset(table, 0, sizeof(*table)); |
| |
| if (nents == 0) |
| return -EINVAL; |
| #ifdef CONFIG_ARCH_NO_SG_CHAIN |
| if (WARN_ON_ONCE(nents > max_ents)) |
| return -EINVAL; |
| #endif |
| |
| left = nents; |
| prv = NULL; |
| do { |
| unsigned int sg_size, alloc_size = left; |
| |
| if (alloc_size > curr_max_ents) { |
| alloc_size = curr_max_ents; |
| sg_size = alloc_size - 1; |
| } else |
| sg_size = alloc_size; |
| |
| left -= sg_size; |
| |
| if (first_chunk) { |
| sg = first_chunk; |
| first_chunk = NULL; |
| } else { |
| sg = alloc_fn(alloc_size, gfp_mask); |
| } |
| if (unlikely(!sg)) { |
| /* |
| * Adjust entry count to reflect that the last |
| * entry of the previous table won't be used for |
| * linkage. Without this, sg_kfree() may get |
| * confused. |
| */ |
| if (prv) |
| table->nents = ++table->orig_nents; |
| |
| return -ENOMEM; |
| } |
| |
| sg_init_table(sg, alloc_size); |
| table->nents = table->orig_nents += sg_size; |
| |
| /* |
| * If this is the first mapping, assign the sg table header. |
| * If this is not the first mapping, chain previous part. |
| */ |
| if (prv) |
| sg_chain(prv, prv_max_ents, sg); |
| else |
| table->sgl = sg; |
| |
| /* |
| * If no more entries after this one, mark the end |
| */ |
| if (!left) |
| sg_mark_end(&sg[sg_size - 1]); |
| |
| prv = sg; |
| prv_max_ents = curr_max_ents; |
| curr_max_ents = max_ents; |
| } while (left); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(__sg_alloc_table); |
| |
| /** |
| * sg_alloc_table - Allocate and initialize an sg table |
| * @table: The sg table header to use |
| * @nents: Number of entries in sg list |
| * @gfp_mask: GFP allocation mask |
| * |
| * Description: |
| * Allocate and initialize an sg table. If @nents@ is larger than |
| * SG_MAX_SINGLE_ALLOC a chained sg table will be setup. |
| * |
| **/ |
| int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) |
| { |
| int ret; |
| |
| ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC, |
| NULL, 0, gfp_mask, sg_kmalloc); |
| if (unlikely(ret)) |
| sg_free_table(table); |
| return ret; |
| } |
| EXPORT_SYMBOL(sg_alloc_table); |
| |
| static struct scatterlist *get_next_sg(struct sg_append_table *table, |
| struct scatterlist *cur, |
| unsigned long needed_sges, |
| gfp_t gfp_mask) |
| { |
| struct scatterlist *new_sg, *next_sg; |
| unsigned int alloc_size; |
| |
| if (cur) { |
| next_sg = sg_next(cur); |
| /* Check if last entry should be keeped for chainning */ |
| if (!sg_is_last(next_sg) || needed_sges == 1) |
| return next_sg; |
| } |
| |
| alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC); |
| new_sg = sg_kmalloc(alloc_size, gfp_mask); |
| if (!new_sg) |
| return ERR_PTR(-ENOMEM); |
| sg_init_table(new_sg, alloc_size); |
| if (cur) { |
| table->total_nents += alloc_size - 1; |
| __sg_chain(next_sg, new_sg); |
| } else { |
| table->sgt.sgl = new_sg; |
| table->total_nents = alloc_size; |
| } |
| return new_sg; |
| } |
| |
| static bool pages_are_mergeable(struct page *a, struct page *b) |
| { |
| if (page_to_pfn(a) != page_to_pfn(b) + 1) |
| return false; |
| if (!zone_device_pages_have_same_pgmap(a, b)) |
| return false; |
| return true; |
| } |
| |
| /** |
| * sg_alloc_append_table_from_pages - Allocate and initialize an append sg |
| * table from an array of pages |
| * @sgt_append: The sg append table to use |
| * @pages: Pointer to an array of page pointers |
| * @n_pages: Number of pages in the pages array |
| * @offset: Offset from start of the first page to the start of a buffer |
| * @size: Number of valid bytes in the buffer (after offset) |
| * @max_segment: Maximum size of a scatterlist element in bytes |
| * @left_pages: Left pages caller have to set after this call |
| * @gfp_mask: GFP allocation mask |
| * |
| * Description: |
| * In the first call it allocate and initialize an sg table from a list of |
| * pages, else reuse the scatterlist from sgt_append. Contiguous ranges of |
| * the pages are squashed into a single scatterlist entry up to the maximum |
| * size specified in @max_segment. A user may provide an offset at a start |
| * and a size of valid data in a buffer specified by the page array. The |
| * returned sg table is released by sg_free_append_table |
| * |
| * Returns: |
| * 0 on success, negative error on failure |
| * |
| * Notes: |
| * If this function returns non-0 (eg failure), the caller must call |
| * sg_free_append_table() to cleanup any leftover allocations. |
| * |
| * In the fist call, sgt_append must by initialized. |
| */ |
| int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append, |
| struct page **pages, unsigned int n_pages, unsigned int offset, |
| unsigned long size, unsigned int max_segment, |
| unsigned int left_pages, gfp_t gfp_mask) |
| { |
| unsigned int chunks, cur_page, seg_len, i, prv_len = 0; |
| unsigned int added_nents = 0; |
| struct scatterlist *s = sgt_append->prv; |
| struct page *last_pg; |
| |
| /* |
| * The algorithm below requires max_segment to be aligned to PAGE_SIZE |
| * otherwise it can overshoot. |
| */ |
| max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE); |
| if (WARN_ON(max_segment < PAGE_SIZE)) |
| return -EINVAL; |
| |
| if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv) |
| return -EOPNOTSUPP; |
| |
| if (sgt_append->prv) { |
| unsigned long next_pfn = (page_to_phys(sg_page(sgt_append->prv)) + |
| sgt_append->prv->offset + sgt_append->prv->length) / PAGE_SIZE; |
| |
| if (WARN_ON(offset)) |
| return -EINVAL; |
| |
| /* Merge contiguous pages into the last SG */ |
| prv_len = sgt_append->prv->length; |
| if (page_to_pfn(pages[0]) == next_pfn) { |
| last_pg = pfn_to_page(next_pfn - 1); |
| while (n_pages && pages_are_mergeable(pages[0], last_pg)) { |
| if (sgt_append->prv->length + PAGE_SIZE > max_segment) |
| break; |
| sgt_append->prv->length += PAGE_SIZE; |
| last_pg = pages[0]; |
| pages++; |
| n_pages--; |
| } |
| if (!n_pages) |
| goto out; |
| } |
| } |
| |
| /* compute number of contiguous chunks */ |
| chunks = 1; |
| seg_len = 0; |
| for (i = 1; i < n_pages; i++) { |
| seg_len += PAGE_SIZE; |
| if (seg_len >= max_segment || |
| !pages_are_mergeable(pages[i], pages[i - 1])) { |
| chunks++; |
| seg_len = 0; |
| } |
| } |
| |
| /* merging chunks and putting them into the scatterlist */ |
| cur_page = 0; |
| for (i = 0; i < chunks; i++) { |
| unsigned int j, chunk_size; |
| |
| /* look for the end of the current chunk */ |
| seg_len = 0; |
| for (j = cur_page + 1; j < n_pages; j++) { |
| seg_len += PAGE_SIZE; |
| if (seg_len >= max_segment || |
| !pages_are_mergeable(pages[j], pages[j - 1])) |
| break; |
| } |
| |
| /* Pass how many chunks might be left */ |
| s = get_next_sg(sgt_append, s, chunks - i + left_pages, |
| gfp_mask); |
| if (IS_ERR(s)) { |
| /* |
| * Adjust entry length to be as before function was |
| * called. |
| */ |
| if (sgt_append->prv) |
| sgt_append->prv->length = prv_len; |
| return PTR_ERR(s); |
| } |
| chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset; |
| sg_set_page(s, pages[cur_page], |
| min_t(unsigned long, size, chunk_size), offset); |
| added_nents++; |
| size -= chunk_size; |
| offset = 0; |
| cur_page = j; |
| } |
| sgt_append->sgt.nents += added_nents; |
| sgt_append->sgt.orig_nents = sgt_append->sgt.nents; |
| sgt_append->prv = s; |
| out: |
| if (!left_pages) |
| sg_mark_end(s); |
| return 0; |
| } |
| EXPORT_SYMBOL(sg_alloc_append_table_from_pages); |
| |
| /** |
| * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from |
| * an array of pages and given maximum |
| * segment. |
| * @sgt: The sg table header to use |
| * @pages: Pointer to an array of page pointers |
| * @n_pages: Number of pages in the pages array |
| * @offset: Offset from start of the first page to the start of a buffer |
| * @size: Number of valid bytes in the buffer (after offset) |
| * @max_segment: Maximum size of a scatterlist element in bytes |
| * @gfp_mask: GFP allocation mask |
| * |
| * Description: |
| * Allocate and initialize an sg table from a list of pages. Contiguous |
| * ranges of the pages are squashed into a single scatterlist node up to the |
| * maximum size specified in @max_segment. A user may provide an offset at a |
| * start and a size of valid data in a buffer specified by the page array. |
| * |
| * The returned sg table is released by sg_free_table. |
| * |
| * Returns: |
| * 0 on success, negative error on failure |
| */ |
| int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages, |
| unsigned int n_pages, unsigned int offset, |
| unsigned long size, unsigned int max_segment, |
| gfp_t gfp_mask) |
| { |
| struct sg_append_table append = {}; |
| int err; |
| |
| err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset, |
| size, max_segment, 0, gfp_mask); |
| if (err) { |
| sg_free_append_table(&append); |
| return err; |
| } |
| memcpy(sgt, &append.sgt, sizeof(*sgt)); |
| WARN_ON(append.total_nents != sgt->orig_nents); |
| return 0; |
| } |
| EXPORT_SYMBOL(sg_alloc_table_from_pages_segment); |
| |
| #ifdef CONFIG_SGL_ALLOC |
| |
| /** |
| * sgl_alloc_order - allocate a scatterlist and its pages |
| * @length: Length in bytes of the scatterlist. Must be at least one |
| * @order: Second argument for alloc_pages() |
| * @chainable: Whether or not to allocate an extra element in the scatterlist |
| * for scatterlist chaining purposes |
| * @gfp: Memory allocation flags |
| * @nent_p: [out] Number of entries in the scatterlist that have pages |
| * |
| * Returns: A pointer to an initialized scatterlist or %NULL upon failure. |
| */ |
| struct scatterlist *sgl_alloc_order(unsigned long long length, |
| unsigned int order, bool chainable, |
| gfp_t gfp, unsigned int *nent_p) |
| { |
| struct scatterlist *sgl, *sg; |
| struct page *page; |
| unsigned int nent, nalloc; |
| u32 elem_len; |
| |
| nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order); |
| /* Check for integer overflow */ |
| if (length > (nent << (PAGE_SHIFT + order))) |
| return NULL; |
| nalloc = nent; |
| if (chainable) { |
| /* Check for integer overflow */ |
| if (nalloc + 1 < nalloc) |
| return NULL; |
| nalloc++; |
| } |
| sgl = kmalloc_array(nalloc, sizeof(struct scatterlist), |
| gfp & ~GFP_DMA); |
| if (!sgl) |
| return NULL; |
| |
| sg_init_table(sgl, nalloc); |
| sg = sgl; |
| while (length) { |
| elem_len = min_t(u64, length, PAGE_SIZE << order); |
| page = alloc_pages(gfp, order); |
| if (!page) { |
| sgl_free_order(sgl, order); |
| return NULL; |
| } |
| |
| sg_set_page(sg, page, elem_len, 0); |
| length -= elem_len; |
| sg = sg_next(sg); |
| } |
| WARN_ONCE(length, "length = %lld\n", length); |
| if (nent_p) |
| *nent_p = nent; |
| return sgl; |
| } |
| EXPORT_SYMBOL(sgl_alloc_order); |
| |
| /** |
| * sgl_alloc - allocate a scatterlist and its pages |
| * @length: Length in bytes of the scatterlist |
| * @gfp: Memory allocation flags |
| * @nent_p: [out] Number of entries in the scatterlist |
| * |
| * Returns: A pointer to an initialized scatterlist or %NULL upon failure. |
| */ |
| struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp, |
| unsigned int *nent_p) |
| { |
| return sgl_alloc_order(length, 0, false, gfp, nent_p); |
| } |
| EXPORT_SYMBOL(sgl_alloc); |
| |
| /** |
| * sgl_free_n_order - free a scatterlist and its pages |
| * @sgl: Scatterlist with one or more elements |
| * @nents: Maximum number of elements to free |
| * @order: Second argument for __free_pages() |
| * |
| * Notes: |
| * - If several scatterlists have been chained and each chain element is |
| * freed separately then it's essential to set nents correctly to avoid that a |
| * page would get freed twice. |
| * - All pages in a chained scatterlist can be freed at once by setting @nents |
| * to a high number. |
| */ |
| void sgl_free_n_order(struct scatterlist *sgl, int nents, int order) |
| { |
| struct scatterlist *sg; |
| struct page *page; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| if (!sg) |
| break; |
| page = sg_page(sg); |
| if (page) |
| __free_pages(page, order); |
| } |
| kfree(sgl); |
| } |
| EXPORT_SYMBOL(sgl_free_n_order); |
| |
| /** |
| * sgl_free_order - free a scatterlist and its pages |
| * @sgl: Scatterlist with one or more elements |
| * @order: Second argument for __free_pages() |
| */ |
| void sgl_free_order(struct scatterlist *sgl, int order) |
| { |
| sgl_free_n_order(sgl, INT_MAX, order); |
| } |
| EXPORT_SYMBOL(sgl_free_order); |
| |
| /** |
| * sgl_free - free a scatterlist and its pages |
| * @sgl: Scatterlist with one or more elements |
| */ |
| void sgl_free(struct scatterlist *sgl) |
| { |
| sgl_free_order(sgl, 0); |
| } |
| EXPORT_SYMBOL(sgl_free); |
| |
| #endif /* CONFIG_SGL_ALLOC */ |
| |
| void __sg_page_iter_start(struct sg_page_iter *piter, |
| struct scatterlist *sglist, unsigned int nents, |
| unsigned long pgoffset) |
| { |
| piter->__pg_advance = 0; |
| piter->__nents = nents; |
| |
| piter->sg = sglist; |
| piter->sg_pgoffset = pgoffset; |
| } |
| EXPORT_SYMBOL(__sg_page_iter_start); |
| |
| static int sg_page_count(struct scatterlist *sg) |
| { |
| return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT; |
| } |
| |
| bool __sg_page_iter_next(struct sg_page_iter *piter) |
| { |
| if (!piter->__nents || !piter->sg) |
| return false; |
| |
| piter->sg_pgoffset += piter->__pg_advance; |
| piter->__pg_advance = 1; |
| |
| while (piter->sg_pgoffset >= sg_page_count(piter->sg)) { |
| piter->sg_pgoffset -= sg_page_count(piter->sg); |
| piter->sg = sg_next(piter->sg); |
| if (!--piter->__nents || !piter->sg) |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(__sg_page_iter_next); |
| |
| static int sg_dma_page_count(struct scatterlist *sg) |
| { |
| return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT; |
| } |
| |
| bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter) |
| { |
| struct sg_page_iter *piter = &dma_iter->base; |
| |
| if (!piter->__nents || !piter->sg) |
| return false; |
| |
| piter->sg_pgoffset += piter->__pg_advance; |
| piter->__pg_advance = 1; |
| |
| while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) { |
| piter->sg_pgoffset -= sg_dma_page_count(piter->sg); |
| piter->sg = sg_next(piter->sg); |
| if (!--piter->__nents || !piter->sg) |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(__sg_page_iter_dma_next); |
| |
| /** |
| * sg_miter_start - start mapping iteration over a sg list |
| * @miter: sg mapping iter to be started |
| * @sgl: sg list to iterate over |
| * @nents: number of sg entries |
| * @flags: sg iterator flags |
| * |
| * Description: |
| * Starts mapping iterator @miter. |
| * |
| * Context: |
| * Don't care. |
| */ |
| void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, |
| unsigned int nents, unsigned int flags) |
| { |
| memset(miter, 0, sizeof(struct sg_mapping_iter)); |
| |
| __sg_page_iter_start(&miter->piter, sgl, nents, 0); |
| WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG))); |
| miter->__flags = flags; |
| } |
| EXPORT_SYMBOL(sg_miter_start); |
| |
| static bool sg_miter_get_next_page(struct sg_mapping_iter *miter) |
| { |
| if (!miter->__remaining) { |
| struct scatterlist *sg; |
| |
| if (!__sg_page_iter_next(&miter->piter)) |
| return false; |
| |
| sg = miter->piter.sg; |
| |
| miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset; |
| miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT; |
| miter->__offset &= PAGE_SIZE - 1; |
| miter->__remaining = sg->offset + sg->length - |
| (miter->piter.sg_pgoffset << PAGE_SHIFT) - |
| miter->__offset; |
| miter->__remaining = min_t(unsigned long, miter->__remaining, |
| PAGE_SIZE - miter->__offset); |
| } |
| |
| return true; |
| } |
| |
| /** |
| * sg_miter_skip - reposition mapping iterator |
| * @miter: sg mapping iter to be skipped |
| * @offset: number of bytes to plus the current location |
| * |
| * Description: |
| * Sets the offset of @miter to its current location plus @offset bytes. |
| * If mapping iterator @miter has been proceeded by sg_miter_next(), this |
| * stops @miter. |
| * |
| * Context: |
| * Don't care. |
| * |
| * Returns: |
| * true if @miter contains the valid mapping. false if end of sg |
| * list is reached. |
| */ |
| bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset) |
| { |
| sg_miter_stop(miter); |
| |
| while (offset) { |
| off_t consumed; |
| |
| if (!sg_miter_get_next_page(miter)) |
| return false; |
| |
| consumed = min_t(off_t, offset, miter->__remaining); |
| miter->__offset += consumed; |
| miter->__remaining -= consumed; |
| offset -= consumed; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(sg_miter_skip); |
| |
| /** |
| * sg_miter_next - proceed mapping iterator to the next mapping |
| * @miter: sg mapping iter to proceed |
| * |
| * Description: |
| * Proceeds @miter to the next mapping. @miter should have been started |
| * using sg_miter_start(). On successful return, @miter->page, |
| * @miter->addr and @miter->length point to the current mapping. |
| * |
| * Context: |
| * May sleep if !SG_MITER_ATOMIC. |
| * |
| * Returns: |
| * true if @miter contains the next mapping. false if end of sg |
| * list is reached. |
| */ |
| bool sg_miter_next(struct sg_mapping_iter *miter) |
| { |
| sg_miter_stop(miter); |
| |
| /* |
| * Get to the next page if necessary. |
| * __remaining, __offset is adjusted by sg_miter_stop |
| */ |
| if (!sg_miter_get_next_page(miter)) |
| return false; |
| |
| miter->page = sg_page_iter_page(&miter->piter); |
| miter->consumed = miter->length = miter->__remaining; |
| |
| if (miter->__flags & SG_MITER_ATOMIC) |
| miter->addr = kmap_atomic(miter->page) + miter->__offset; |
| else |
| miter->addr = kmap(miter->page) + miter->__offset; |
| |
| return true; |
| } |
| EXPORT_SYMBOL(sg_miter_next); |
| |
| /** |
| * sg_miter_stop - stop mapping iteration |
| * @miter: sg mapping iter to be stopped |
| * |
| * Description: |
| * Stops mapping iterator @miter. @miter should have been started |
| * using sg_miter_start(). A stopped iteration can be resumed by |
| * calling sg_miter_next() on it. This is useful when resources (kmap) |
| * need to be released during iteration. |
| * |
| * Context: |
| * Don't care otherwise. |
| */ |
| void sg_miter_stop(struct sg_mapping_iter *miter) |
| { |
| WARN_ON(miter->consumed > miter->length); |
| |
| /* drop resources from the last iteration */ |
| if (miter->addr) { |
| miter->__offset += miter->consumed; |
| miter->__remaining -= miter->consumed; |
| |
| if (miter->__flags & SG_MITER_TO_SG) |
| flush_dcache_page(miter->page); |
| |
| if (miter->__flags & SG_MITER_ATOMIC) { |
| WARN_ON_ONCE(!pagefault_disabled()); |
| kunmap_atomic(miter->addr); |
| } else |
| kunmap(miter->page); |
| |
| miter->page = NULL; |
| miter->addr = NULL; |
| miter->length = 0; |
| miter->consumed = 0; |
| } |
| } |
| EXPORT_SYMBOL(sg_miter_stop); |
| |
| /** |
| * sg_copy_buffer - Copy data between a linear buffer and an SG list |
| * @sgl: The SG list |
| * @nents: Number of SG entries |
| * @buf: Where to copy from |
| * @buflen: The number of bytes to copy |
| * @skip: Number of bytes to skip before copying |
| * @to_buffer: transfer direction (true == from an sg list to a |
| * buffer, false == from a buffer to an sg list) |
| * |
| * Returns the number of copied bytes. |
| * |
| **/ |
| size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, |
| size_t buflen, off_t skip, bool to_buffer) |
| { |
| unsigned int offset = 0; |
| struct sg_mapping_iter miter; |
| unsigned int sg_flags = SG_MITER_ATOMIC; |
| |
| if (to_buffer) |
| sg_flags |= SG_MITER_FROM_SG; |
| else |
| sg_flags |= SG_MITER_TO_SG; |
| |
| sg_miter_start(&miter, sgl, nents, sg_flags); |
| |
| if (!sg_miter_skip(&miter, skip)) |
| return 0; |
| |
| while ((offset < buflen) && sg_miter_next(&miter)) { |
| unsigned int len; |
| |
| len = min(miter.length, buflen - offset); |
| |
| if (to_buffer) |
| memcpy(buf + offset, miter.addr, len); |
| else |
| memcpy(miter.addr, buf + offset, len); |
| |
| offset += len; |
| } |
| |
| sg_miter_stop(&miter); |
| |
| return offset; |
| } |
| EXPORT_SYMBOL(sg_copy_buffer); |
| |
| /** |
| * sg_copy_from_buffer - Copy from a linear buffer to an SG list |
| * @sgl: The SG list |
| * @nents: Number of SG entries |
| * @buf: Where to copy from |
| * @buflen: The number of bytes to copy |
| * |
| * Returns the number of copied bytes. |
| * |
| **/ |
| size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, |
| const void *buf, size_t buflen) |
| { |
| return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false); |
| } |
| EXPORT_SYMBOL(sg_copy_from_buffer); |
| |
| /** |
| * sg_copy_to_buffer - Copy from an SG list to a linear buffer |
| * @sgl: The SG list |
| * @nents: Number of SG entries |
| * @buf: Where to copy to |
| * @buflen: The number of bytes to copy |
| * |
| * Returns the number of copied bytes. |
| * |
| **/ |
| size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, |
| void *buf, size_t buflen) |
| { |
| return sg_copy_buffer(sgl, nents, buf, buflen, 0, true); |
| } |
| EXPORT_SYMBOL(sg_copy_to_buffer); |
| |
| /** |
| * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list |
| * @sgl: The SG list |
| * @nents: Number of SG entries |
| * @buf: Where to copy from |
| * @buflen: The number of bytes to copy |
| * @skip: Number of bytes to skip before copying |
| * |
| * Returns the number of copied bytes. |
| * |
| **/ |
| size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, |
| const void *buf, size_t buflen, off_t skip) |
| { |
| return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false); |
| } |
| EXPORT_SYMBOL(sg_pcopy_from_buffer); |
| |
| /** |
| * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer |
| * @sgl: The SG list |
| * @nents: Number of SG entries |
| * @buf: Where to copy to |
| * @buflen: The number of bytes to copy |
| * @skip: Number of bytes to skip before copying |
| * |
| * Returns the number of copied bytes. |
| * |
| **/ |
| size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, |
| void *buf, size_t buflen, off_t skip) |
| { |
| return sg_copy_buffer(sgl, nents, buf, buflen, skip, true); |
| } |
| EXPORT_SYMBOL(sg_pcopy_to_buffer); |
| |
| /** |
| * sg_zero_buffer - Zero-out a part of a SG list |
| * @sgl: The SG list |
| * @nents: Number of SG entries |
| * @buflen: The number of bytes to zero out |
| * @skip: Number of bytes to skip before zeroing |
| * |
| * Returns the number of bytes zeroed. |
| **/ |
| size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, |
| size_t buflen, off_t skip) |
| { |
| unsigned int offset = 0; |
| struct sg_mapping_iter miter; |
| unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG; |
| |
| sg_miter_start(&miter, sgl, nents, sg_flags); |
| |
| if (!sg_miter_skip(&miter, skip)) |
| return false; |
| |
| while (offset < buflen && sg_miter_next(&miter)) { |
| unsigned int len; |
| |
| len = min(miter.length, buflen - offset); |
| memset(miter.addr, 0, len); |
| |
| offset += len; |
| } |
| |
| sg_miter_stop(&miter); |
| return offset; |
| } |
| EXPORT_SYMBOL(sg_zero_buffer); |
| |
| /* |
| * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class |
| * iterators, and add them to the scatterlist. |
| */ |
| static ssize_t extract_user_to_sg(struct iov_iter *iter, |
| ssize_t maxsize, |
| struct sg_table *sgtable, |
| unsigned int sg_max, |
| iov_iter_extraction_t extraction_flags) |
| { |
| struct scatterlist *sg = sgtable->sgl + sgtable->nents; |
| struct page **pages; |
| unsigned int npages; |
| ssize_t ret = 0, res; |
| size_t len, off; |
| |
| /* We decant the page list into the tail of the scatterlist */ |
| pages = (void *)sgtable->sgl + |
| array_size(sg_max, sizeof(struct scatterlist)); |
| pages -= sg_max; |
| |
| do { |
| res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max, |
| extraction_flags, &off); |
| if (res <= 0) |
| goto failed; |
| |
| len = res; |
| maxsize -= len; |
| ret += len; |
| npages = DIV_ROUND_UP(off + len, PAGE_SIZE); |
| sg_max -= npages; |
| |
| for (; npages > 0; npages--) { |
| struct page *page = *pages; |
| size_t seg = min_t(size_t, PAGE_SIZE - off, len); |
| |
| *pages++ = NULL; |
| sg_set_page(sg, page, seg, off); |
| sgtable->nents++; |
| sg++; |
| len -= seg; |
| off = 0; |
| } |
| } while (maxsize > 0 && sg_max > 0); |
| |
| return ret; |
| |
| failed: |
| while (sgtable->nents > sgtable->orig_nents) |
| unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents])); |
| return res; |
| } |
| |
| /* |
| * Extract up to sg_max pages from a BVEC-type iterator and add them to the |
| * scatterlist. The pages are not pinned. |
| */ |
| static ssize_t extract_bvec_to_sg(struct iov_iter *iter, |
| ssize_t maxsize, |
| struct sg_table *sgtable, |
| unsigned int sg_max, |
| iov_iter_extraction_t extraction_flags) |
| { |
| const struct bio_vec *bv = iter->bvec; |
| struct scatterlist *sg = sgtable->sgl + sgtable->nents; |
| unsigned long start = iter->iov_offset; |
| unsigned int i; |
| ssize_t ret = 0; |
| |
| for (i = 0; i < iter->nr_segs; i++) { |
| size_t off, len; |
| |
| len = bv[i].bv_len; |
| if (start >= len) { |
| start -= len; |
| continue; |
| } |
| |
| len = min_t(size_t, maxsize, len - start); |
| off = bv[i].bv_offset + start; |
| |
| sg_set_page(sg, bv[i].bv_page, len, off); |
| sgtable->nents++; |
| sg++; |
| sg_max--; |
| |
| ret += len; |
| maxsize -= len; |
| if (maxsize <= 0 || sg_max == 0) |
| break; |
| start = 0; |
| } |
| |
| if (ret > 0) |
| iov_iter_advance(iter, ret); |
| return ret; |
| } |
| |
| /* |
| * Extract up to sg_max pages from a KVEC-type iterator and add them to the |
| * scatterlist. This can deal with vmalloc'd buffers as well as kmalloc'd or |
| * static buffers. The pages are not pinned. |
| */ |
| static ssize_t extract_kvec_to_sg(struct iov_iter *iter, |
| ssize_t maxsize, |
| struct sg_table *sgtable, |
| unsigned int sg_max, |
| iov_iter_extraction_t extraction_flags) |
| { |
| const struct kvec *kv = iter->kvec; |
| struct scatterlist *sg = sgtable->sgl + sgtable->nents; |
| unsigned long start = iter->iov_offset; |
| unsigned int i; |
| ssize_t ret = 0; |
| |
| for (i = 0; i < iter->nr_segs; i++) { |
| struct page *page; |
| unsigned long kaddr; |
| size_t off, len, seg; |
| |
| len = kv[i].iov_len; |
| if (start >= len) { |
| start -= len; |
| continue; |
| } |
| |
| kaddr = (unsigned long)kv[i].iov_base + start; |
| off = kaddr & ~PAGE_MASK; |
| len = min_t(size_t, maxsize, len - start); |
| kaddr &= PAGE_MASK; |
| |
| maxsize -= len; |
| ret += len; |
| do { |
| seg = min_t(size_t, len, PAGE_SIZE - off); |
| if (is_vmalloc_or_module_addr((void *)kaddr)) |
| page = vmalloc_to_page((void *)kaddr); |
| else |
| page = virt_to_page((void *)kaddr); |
| |
| sg_set_page(sg, page, len, off); |
| sgtable->nents++; |
| sg++; |
| sg_max--; |
| |
| len -= seg; |
| kaddr += PAGE_SIZE; |
| off = 0; |
| } while (len > 0 && sg_max > 0); |
| |
| if (maxsize <= 0 || sg_max == 0) |
| break; |
| start = 0; |
| } |
| |
| if (ret > 0) |
| iov_iter_advance(iter, ret); |
| return ret; |
| } |
| |
| /* |
| * Extract up to sg_max folios from an FOLIOQ-type iterator and add them to |
| * the scatterlist. The pages are not pinned. |
| */ |
| static ssize_t extract_folioq_to_sg(struct iov_iter *iter, |
| ssize_t maxsize, |
| struct sg_table *sgtable, |
| unsigned int sg_max, |
| iov_iter_extraction_t extraction_flags) |
| { |
| const struct folio_queue *folioq = iter->folioq; |
| struct scatterlist *sg = sgtable->sgl + sgtable->nents; |
| unsigned int slot = iter->folioq_slot; |
| ssize_t ret = 0; |
| size_t offset = iter->iov_offset; |
| |
| BUG_ON(!folioq); |
| |
| if (slot >= folioq_nr_slots(folioq)) { |
| folioq = folioq->next; |
| if (WARN_ON_ONCE(!folioq)) |
| return 0; |
| slot = 0; |
| } |
| |
| do { |
| struct folio *folio = folioq_folio(folioq, slot); |
| size_t fsize = folioq_folio_size(folioq, slot); |
| |
| if (offset < fsize) { |
| size_t part = umin(maxsize - ret, fsize - offset); |
| |
| sg_set_page(sg, folio_page(folio, 0), part, offset); |
| sgtable->nents++; |
| sg++; |
| sg_max--; |
| offset += part; |
| ret += part; |
| } |
| |
| if (offset >= fsize) { |
| offset = 0; |
| slot++; |
| if (slot >= folioq_nr_slots(folioq)) { |
| if (!folioq->next) { |
| WARN_ON_ONCE(ret < iter->count); |
| break; |
| } |
| folioq = folioq->next; |
| slot = 0; |
| } |
| } |
| } while (sg_max > 0 && ret < maxsize); |
| |
| iter->folioq = folioq; |
| iter->folioq_slot = slot; |
| iter->iov_offset = offset; |
| iter->count -= ret; |
| return ret; |
| } |
| |
| /* |
| * Extract up to sg_max folios from an XARRAY-type iterator and add them to |
| * the scatterlist. The pages are not pinned. |
| */ |
| static ssize_t extract_xarray_to_sg(struct iov_iter *iter, |
| ssize_t maxsize, |
| struct sg_table *sgtable, |
| unsigned int sg_max, |
| iov_iter_extraction_t extraction_flags) |
| { |
| struct scatterlist *sg = sgtable->sgl + sgtable->nents; |
| struct xarray *xa = iter->xarray; |
| struct folio *folio; |
| loff_t start = iter->xarray_start + iter->iov_offset; |
| pgoff_t index = start / PAGE_SIZE; |
| ssize_t ret = 0; |
| size_t offset, len; |
| XA_STATE(xas, xa, index); |
| |
| rcu_read_lock(); |
| |
| xas_for_each(&xas, folio, ULONG_MAX) { |
| if (xas_retry(&xas, folio)) |
| continue; |
| if (WARN_ON(xa_is_value(folio))) |
| break; |
| if (WARN_ON(folio_test_hugetlb(folio))) |
| break; |
| |
| offset = offset_in_folio(folio, start); |
| len = min_t(size_t, maxsize, folio_size(folio) - offset); |
| |
| sg_set_page(sg, folio_page(folio, 0), len, offset); |
| sgtable->nents++; |
| sg++; |
| sg_max--; |
| |
| maxsize -= len; |
| ret += len; |
| if (maxsize <= 0 || sg_max == 0) |
| break; |
| } |
| |
| rcu_read_unlock(); |
| if (ret > 0) |
| iov_iter_advance(iter, ret); |
| return ret; |
| } |
| |
| /** |
| * extract_iter_to_sg - Extract pages from an iterator and add to an sglist |
| * @iter: The iterator to extract from |
| * @maxsize: The amount of iterator to copy |
| * @sgtable: The scatterlist table to fill in |
| * @sg_max: Maximum number of elements in @sgtable that may be filled |
| * @extraction_flags: Flags to qualify the request |
| * |
| * Extract the page fragments from the given amount of the source iterator and |
| * add them to a scatterlist that refers to all of those bits, to a maximum |
| * addition of @sg_max elements. |
| * |
| * The pages referred to by UBUF- and IOVEC-type iterators are extracted and |
| * pinned; BVEC-, KVEC-, FOLIOQ- and XARRAY-type are extracted but aren't |
| * pinned; DISCARD-type is not supported. |
| * |
| * No end mark is placed on the scatterlist; that's left to the caller. |
| * |
| * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA |
| * be allowed on the pages extracted. |
| * |
| * If successful, @sgtable->nents is updated to include the number of elements |
| * added and the number of bytes added is returned. @sgtable->orig_nents is |
| * left unaltered. |
| * |
| * The iov_iter_extract_mode() function should be used to query how cleanup |
| * should be performed. |
| */ |
| ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize, |
| struct sg_table *sgtable, unsigned int sg_max, |
| iov_iter_extraction_t extraction_flags) |
| { |
| if (maxsize == 0) |
| return 0; |
| |
| switch (iov_iter_type(iter)) { |
| case ITER_UBUF: |
| case ITER_IOVEC: |
| return extract_user_to_sg(iter, maxsize, sgtable, sg_max, |
| extraction_flags); |
| case ITER_BVEC: |
| return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max, |
| extraction_flags); |
| case ITER_KVEC: |
| return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max, |
| extraction_flags); |
| case ITER_FOLIOQ: |
| return extract_folioq_to_sg(iter, maxsize, sgtable, sg_max, |
| extraction_flags); |
| case ITER_XARRAY: |
| return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max, |
| extraction_flags); |
| default: |
| pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter)); |
| WARN_ON_ONCE(1); |
| return -EIO; |
| } |
| } |
| EXPORT_SYMBOL_GPL(extract_iter_to_sg); |