| /* |
| * Copyright (c) Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #include "zstd_compress_internal.h" |
| #include "zstd_lazy.h" |
| |
| |
| /*-************************************* |
| * Binary Tree search |
| ***************************************/ |
| |
| static void |
| ZSTD_updateDUBT(ZSTD_matchState_t* ms, |
| const BYTE* ip, const BYTE* iend, |
| U32 mls) |
| { |
| const ZSTD_compressionParameters* const cParams = &ms->cParams; |
| U32* const hashTable = ms->hashTable; |
| U32 const hashLog = cParams->hashLog; |
| |
| U32* const bt = ms->chainTable; |
| U32 const btLog = cParams->chainLog - 1; |
| U32 const btMask = (1 << btLog) - 1; |
| |
| const BYTE* const base = ms->window.base; |
| U32 const target = (U32)(ip - base); |
| U32 idx = ms->nextToUpdate; |
| |
| if (idx != target) |
| DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)", |
| idx, target, ms->window.dictLimit); |
| assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */ |
| (void)iend; |
| |
| assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */ |
| for ( ; idx < target ; idx++) { |
| size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */ |
| U32 const matchIndex = hashTable[h]; |
| |
| U32* const nextCandidatePtr = bt + 2*(idx&btMask); |
| U32* const sortMarkPtr = nextCandidatePtr + 1; |
| |
| DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx); |
| hashTable[h] = idx; /* Update Hash Table */ |
| *nextCandidatePtr = matchIndex; /* update BT like a chain */ |
| *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK; |
| } |
| ms->nextToUpdate = target; |
| } |
| |
| |
| /* ZSTD_insertDUBT1() : |
| * sort one already inserted but unsorted position |
| * assumption : curr >= btlow == (curr - btmask) |
| * doesn't fail */ |
| static void |
| ZSTD_insertDUBT1(const ZSTD_matchState_t* ms, |
| U32 curr, const BYTE* inputEnd, |
| U32 nbCompares, U32 btLow, |
| const ZSTD_dictMode_e dictMode) |
| { |
| const ZSTD_compressionParameters* const cParams = &ms->cParams; |
| U32* const bt = ms->chainTable; |
| U32 const btLog = cParams->chainLog - 1; |
| U32 const btMask = (1 << btLog) - 1; |
| size_t commonLengthSmaller=0, commonLengthLarger=0; |
| const BYTE* const base = ms->window.base; |
| const BYTE* const dictBase = ms->window.dictBase; |
| const U32 dictLimit = ms->window.dictLimit; |
| const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr; |
| const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit; |
| const BYTE* const dictEnd = dictBase + dictLimit; |
| const BYTE* const prefixStart = base + dictLimit; |
| const BYTE* match; |
| U32* smallerPtr = bt + 2*(curr&btMask); |
| U32* largerPtr = smallerPtr + 1; |
| U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */ |
| U32 dummy32; /* to be nullified at the end */ |
| U32 const windowValid = ms->window.lowLimit; |
| U32 const maxDistance = 1U << cParams->windowLog; |
| U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid; |
| |
| |
| DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)", |
| curr, dictLimit, windowLow); |
| assert(curr >= btLow); |
| assert(ip < iend); /* condition for ZSTD_count */ |
| |
| for (; nbCompares && (matchIndex > windowLow); --nbCompares) { |
| U32* const nextPtr = bt + 2*(matchIndex & btMask); |
| size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ |
| assert(matchIndex < curr); |
| /* note : all candidates are now supposed sorted, |
| * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK |
| * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */ |
| |
| if ( (dictMode != ZSTD_extDict) |
| || (matchIndex+matchLength >= dictLimit) /* both in current segment*/ |
| || (curr < dictLimit) /* both in extDict */) { |
| const BYTE* const mBase = ( (dictMode != ZSTD_extDict) |
| || (matchIndex+matchLength >= dictLimit)) ? |
| base : dictBase; |
| assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */ |
| || (curr < dictLimit) ); |
| match = mBase + matchIndex; |
| matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); |
| } else { |
| match = dictBase + matchIndex; |
| matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); |
| if (matchIndex+matchLength >= dictLimit) |
| match = base + matchIndex; /* preparation for next read of match[matchLength] */ |
| } |
| |
| DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ", |
| curr, matchIndex, (U32)matchLength); |
| |
| if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ |
| break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ |
| } |
| |
| if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ |
| /* match is smaller than current */ |
| *smallerPtr = matchIndex; /* update smaller idx */ |
| commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ |
| if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ |
| DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u", |
| matchIndex, btLow, nextPtr[1]); |
| smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ |
| matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ |
| } else { |
| /* match is larger than current */ |
| *largerPtr = matchIndex; |
| commonLengthLarger = matchLength; |
| if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ |
| DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u", |
| matchIndex, btLow, nextPtr[0]); |
| largerPtr = nextPtr; |
| matchIndex = nextPtr[0]; |
| } } |
| |
| *smallerPtr = *largerPtr = 0; |
| } |
| |
| |
| static size_t |
| ZSTD_DUBT_findBetterDictMatch ( |
| const ZSTD_matchState_t* ms, |
| const BYTE* const ip, const BYTE* const iend, |
| size_t* offsetPtr, |
| size_t bestLength, |
| U32 nbCompares, |
| U32 const mls, |
| const ZSTD_dictMode_e dictMode) |
| { |
| const ZSTD_matchState_t * const dms = ms->dictMatchState; |
| const ZSTD_compressionParameters* const dmsCParams = &dms->cParams; |
| const U32 * const dictHashTable = dms->hashTable; |
| U32 const hashLog = dmsCParams->hashLog; |
| size_t const h = ZSTD_hashPtr(ip, hashLog, mls); |
| U32 dictMatchIndex = dictHashTable[h]; |
| |
| const BYTE* const base = ms->window.base; |
| const BYTE* const prefixStart = base + ms->window.dictLimit; |
| U32 const curr = (U32)(ip-base); |
| const BYTE* const dictBase = dms->window.base; |
| const BYTE* const dictEnd = dms->window.nextSrc; |
| U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base); |
| U32 const dictLowLimit = dms->window.lowLimit; |
| U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit; |
| |
| U32* const dictBt = dms->chainTable; |
| U32 const btLog = dmsCParams->chainLog - 1; |
| U32 const btMask = (1 << btLog) - 1; |
| U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask; |
| |
| size_t commonLengthSmaller=0, commonLengthLarger=0; |
| |
| (void)dictMode; |
| assert(dictMode == ZSTD_dictMatchState); |
| |
| for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) { |
| U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask); |
| size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ |
| const BYTE* match = dictBase + dictMatchIndex; |
| matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); |
| if (dictMatchIndex+matchLength >= dictHighLimit) |
| match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */ |
| |
| if (matchLength > bestLength) { |
| U32 matchIndex = dictMatchIndex + dictIndexDelta; |
| if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) { |
| DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)", |
| curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, STORE_OFFSET(curr - matchIndex), dictMatchIndex, matchIndex); |
| bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex); |
| } |
| if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */ |
| break; /* drop, to guarantee consistency (miss a little bit of compression) */ |
| } |
| } |
| |
| if (match[matchLength] < ip[matchLength]) { |
| if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ |
| commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ |
| dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ |
| } else { |
| /* match is larger than current */ |
| if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ |
| commonLengthLarger = matchLength; |
| dictMatchIndex = nextPtr[0]; |
| } |
| } |
| |
| if (bestLength >= MINMATCH) { |
| U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex; |
| DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)", |
| curr, (U32)bestLength, (U32)*offsetPtr, mIndex); |
| } |
| return bestLength; |
| |
| } |
| |
| |
| static size_t |
| ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms, |
| const BYTE* const ip, const BYTE* const iend, |
| size_t* offsetPtr, |
| U32 const mls, |
| const ZSTD_dictMode_e dictMode) |
| { |
| const ZSTD_compressionParameters* const cParams = &ms->cParams; |
| U32* const hashTable = ms->hashTable; |
| U32 const hashLog = cParams->hashLog; |
| size_t const h = ZSTD_hashPtr(ip, hashLog, mls); |
| U32 matchIndex = hashTable[h]; |
| |
| const BYTE* const base = ms->window.base; |
| U32 const curr = (U32)(ip-base); |
| U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog); |
| |
| U32* const bt = ms->chainTable; |
| U32 const btLog = cParams->chainLog - 1; |
| U32 const btMask = (1 << btLog) - 1; |
| U32 const btLow = (btMask >= curr) ? 0 : curr - btMask; |
| U32 const unsortLimit = MAX(btLow, windowLow); |
| |
| U32* nextCandidate = bt + 2*(matchIndex&btMask); |
| U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1; |
| U32 nbCompares = 1U << cParams->searchLog; |
| U32 nbCandidates = nbCompares; |
| U32 previousCandidate = 0; |
| |
| DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr); |
| assert(ip <= iend-8); /* required for h calculation */ |
| assert(dictMode != ZSTD_dedicatedDictSearch); |
| |
| /* reach end of unsorted candidates list */ |
| while ( (matchIndex > unsortLimit) |
| && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK) |
| && (nbCandidates > 1) ) { |
| DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted", |
| matchIndex); |
| *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */ |
| previousCandidate = matchIndex; |
| matchIndex = *nextCandidate; |
| nextCandidate = bt + 2*(matchIndex&btMask); |
| unsortedMark = bt + 2*(matchIndex&btMask) + 1; |
| nbCandidates --; |
| } |
| |
| /* nullify last candidate if it's still unsorted |
| * simplification, detrimental to compression ratio, beneficial for speed */ |
| if ( (matchIndex > unsortLimit) |
| && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) { |
| DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u", |
| matchIndex); |
| *nextCandidate = *unsortedMark = 0; |
| } |
| |
| /* batch sort stacked candidates */ |
| matchIndex = previousCandidate; |
| while (matchIndex) { /* will end on matchIndex == 0 */ |
| U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1; |
| U32 const nextCandidateIdx = *nextCandidateIdxPtr; |
| ZSTD_insertDUBT1(ms, matchIndex, iend, |
| nbCandidates, unsortLimit, dictMode); |
| matchIndex = nextCandidateIdx; |
| nbCandidates++; |
| } |
| |
| /* find longest match */ |
| { size_t commonLengthSmaller = 0, commonLengthLarger = 0; |
| const BYTE* const dictBase = ms->window.dictBase; |
| const U32 dictLimit = ms->window.dictLimit; |
| const BYTE* const dictEnd = dictBase + dictLimit; |
| const BYTE* const prefixStart = base + dictLimit; |
| U32* smallerPtr = bt + 2*(curr&btMask); |
| U32* largerPtr = bt + 2*(curr&btMask) + 1; |
| U32 matchEndIdx = curr + 8 + 1; |
| U32 dummy32; /* to be nullified at the end */ |
| size_t bestLength = 0; |
| |
| matchIndex = hashTable[h]; |
| hashTable[h] = curr; /* Update Hash Table */ |
| |
| for (; nbCompares && (matchIndex > windowLow); --nbCompares) { |
| U32* const nextPtr = bt + 2*(matchIndex & btMask); |
| size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ |
| const BYTE* match; |
| |
| if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) { |
| match = base + matchIndex; |
| matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); |
| } else { |
| match = dictBase + matchIndex; |
| matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); |
| if (matchIndex+matchLength >= dictLimit) |
| match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ |
| } |
| |
| if (matchLength > bestLength) { |
| if (matchLength > matchEndIdx - matchIndex) |
| matchEndIdx = matchIndex + (U32)matchLength; |
| if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) |
| bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex); |
| if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ |
| if (dictMode == ZSTD_dictMatchState) { |
| nbCompares = 0; /* in addition to avoiding checking any |
| * further in this loop, make sure we |
| * skip checking in the dictionary. */ |
| } |
| break; /* drop, to guarantee consistency (miss a little bit of compression) */ |
| } |
| } |
| |
| if (match[matchLength] < ip[matchLength]) { |
| /* match is smaller than current */ |
| *smallerPtr = matchIndex; /* update smaller idx */ |
| commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ |
| if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ |
| smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ |
| matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ |
| } else { |
| /* match is larger than current */ |
| *largerPtr = matchIndex; |
| commonLengthLarger = matchLength; |
| if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ |
| largerPtr = nextPtr; |
| matchIndex = nextPtr[0]; |
| } } |
| |
| *smallerPtr = *largerPtr = 0; |
| |
| assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ |
| if (dictMode == ZSTD_dictMatchState && nbCompares) { |
| bestLength = ZSTD_DUBT_findBetterDictMatch( |
| ms, ip, iend, |
| offsetPtr, bestLength, nbCompares, |
| mls, dictMode); |
| } |
| |
| assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */ |
| ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ |
| if (bestLength >= MINMATCH) { |
| U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex; |
| DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)", |
| curr, (U32)bestLength, (U32)*offsetPtr, mIndex); |
| } |
| return bestLength; |
| } |
| } |
| |
| |
| /* ZSTD_BtFindBestMatch() : Tree updater, providing best match */ |
| FORCE_INLINE_TEMPLATE size_t |
| ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms, |
| const BYTE* const ip, const BYTE* const iLimit, |
| size_t* offsetPtr, |
| const U32 mls /* template */, |
| const ZSTD_dictMode_e dictMode) |
| { |
| DEBUGLOG(7, "ZSTD_BtFindBestMatch"); |
| if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ |
| ZSTD_updateDUBT(ms, ip, iLimit, mls); |
| return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offsetPtr, mls, dictMode); |
| } |
| |
| /* ********************************* |
| * Dedicated dict search |
| ***********************************/ |
| |
| void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip) |
| { |
| const BYTE* const base = ms->window.base; |
| U32 const target = (U32)(ip - base); |
| U32* const hashTable = ms->hashTable; |
| U32* const chainTable = ms->chainTable; |
| U32 const chainSize = 1 << ms->cParams.chainLog; |
| U32 idx = ms->nextToUpdate; |
| U32 const minChain = chainSize < target - idx ? target - chainSize : idx; |
| U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG; |
| U32 const cacheSize = bucketSize - 1; |
| U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize; |
| U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts; |
| |
| /* We know the hashtable is oversized by a factor of `bucketSize`. |
| * We are going to temporarily pretend `bucketSize == 1`, keeping only a |
| * single entry. We will use the rest of the space to construct a temporary |
| * chaintable. |
| */ |
| U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; |
| U32* const tmpHashTable = hashTable; |
| U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog); |
| U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog; |
| U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx; |
| U32 hashIdx; |
| |
| assert(ms->cParams.chainLog <= 24); |
| assert(ms->cParams.hashLog > ms->cParams.chainLog); |
| assert(idx != 0); |
| assert(tmpMinChain <= minChain); |
| |
| /* fill conventional hash table and conventional chain table */ |
| for ( ; idx < target; idx++) { |
| U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch); |
| if (idx >= tmpMinChain) { |
| tmpChainTable[idx - tmpMinChain] = hashTable[h]; |
| } |
| tmpHashTable[h] = idx; |
| } |
| |
| /* sort chains into ddss chain table */ |
| { |
| U32 chainPos = 0; |
| for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) { |
| U32 count; |
| U32 countBeyondMinChain = 0; |
| U32 i = tmpHashTable[hashIdx]; |
| for (count = 0; i >= tmpMinChain && count < cacheSize; count++) { |
| /* skip through the chain to the first position that won't be |
| * in the hash cache bucket */ |
| if (i < minChain) { |
| countBeyondMinChain++; |
| } |
| i = tmpChainTable[i - tmpMinChain]; |
| } |
| if (count == cacheSize) { |
| for (count = 0; count < chainLimit;) { |
| if (i < minChain) { |
| if (!i || ++countBeyondMinChain > cacheSize) { |
| /* only allow pulling `cacheSize` number of entries |
| * into the cache or chainTable beyond `minChain`, |
| * to replace the entries pulled out of the |
| * chainTable into the cache. This lets us reach |
| * back further without increasing the total number |
| * of entries in the chainTable, guaranteeing the |
| * DDSS chain table will fit into the space |
| * allocated for the regular one. */ |
| break; |
| } |
| } |
| chainTable[chainPos++] = i; |
| count++; |
| if (i < tmpMinChain) { |
| break; |
| } |
| i = tmpChainTable[i - tmpMinChain]; |
| } |
| } else { |
| count = 0; |
| } |
| if (count) { |
| tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count; |
| } else { |
| tmpHashTable[hashIdx] = 0; |
| } |
| } |
| assert(chainPos <= chainSize); /* I believe this is guaranteed... */ |
| } |
| |
| /* move chain pointers into the last entry of each hash bucket */ |
| for (hashIdx = (1 << hashLog); hashIdx; ) { |
| U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG; |
| U32 const chainPackedPointer = tmpHashTable[hashIdx]; |
| U32 i; |
| for (i = 0; i < cacheSize; i++) { |
| hashTable[bucketIdx + i] = 0; |
| } |
| hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer; |
| } |
| |
| /* fill the buckets of the hash table */ |
| for (idx = ms->nextToUpdate; idx < target; idx++) { |
| U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch) |
| << ZSTD_LAZY_DDSS_BUCKET_LOG; |
| U32 i; |
| /* Shift hash cache down 1. */ |
| for (i = cacheSize - 1; i; i--) |
| hashTable[h + i] = hashTable[h + i - 1]; |
| hashTable[h] = idx; |
| } |
| |
| ms->nextToUpdate = target; |
| } |
| |
| /* Returns the longest match length found in the dedicated dict search structure. |
| * If none are longer than the argument ml, then ml will be returned. |
| */ |
| FORCE_INLINE_TEMPLATE |
| size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts, |
| const ZSTD_matchState_t* const dms, |
| const BYTE* const ip, const BYTE* const iLimit, |
| const BYTE* const prefixStart, const U32 curr, |
| const U32 dictLimit, const size_t ddsIdx) { |
| const U32 ddsLowestIndex = dms->window.dictLimit; |
| const BYTE* const ddsBase = dms->window.base; |
| const BYTE* const ddsEnd = dms->window.nextSrc; |
| const U32 ddsSize = (U32)(ddsEnd - ddsBase); |
| const U32 ddsIndexDelta = dictLimit - ddsSize; |
| const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG); |
| const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1; |
| U32 ddsAttempt; |
| U32 matchIndex; |
| |
| for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) { |
| PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]); |
| } |
| |
| { |
| U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; |
| U32 const chainIndex = chainPackedPointer >> 8; |
| |
| PREFETCH_L1(&dms->chainTable[chainIndex]); |
| } |
| |
| for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) { |
| size_t currentMl=0; |
| const BYTE* match; |
| matchIndex = dms->hashTable[ddsIdx + ddsAttempt]; |
| match = ddsBase + matchIndex; |
| |
| if (!matchIndex) { |
| return ml; |
| } |
| |
| /* guaranteed by table construction */ |
| (void)ddsLowestIndex; |
| assert(matchIndex >= ddsLowestIndex); |
| assert(match+4 <= ddsEnd); |
| if (MEM_read32(match) == MEM_read32(ip)) { |
| /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
| currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; |
| } |
| |
| /* save best solution */ |
| if (currentMl > ml) { |
| ml = currentMl; |
| *offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta)); |
| if (ip+currentMl == iLimit) { |
| /* best possible, avoids read overflow on next attempt */ |
| return ml; |
| } |
| } |
| } |
| |
| { |
| U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1]; |
| U32 chainIndex = chainPackedPointer >> 8; |
| U32 const chainLength = chainPackedPointer & 0xFF; |
| U32 const chainAttempts = nbAttempts - ddsAttempt; |
| U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts; |
| U32 chainAttempt; |
| |
| for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) { |
| PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]); |
| } |
| |
| for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) { |
| size_t currentMl=0; |
| const BYTE* match; |
| matchIndex = dms->chainTable[chainIndex]; |
| match = ddsBase + matchIndex; |
| |
| /* guaranteed by table construction */ |
| assert(matchIndex >= ddsLowestIndex); |
| assert(match+4 <= ddsEnd); |
| if (MEM_read32(match) == MEM_read32(ip)) { |
| /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
| currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4; |
| } |
| |
| /* save best solution */ |
| if (currentMl > ml) { |
| ml = currentMl; |
| *offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta)); |
| if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
| } |
| } |
| } |
| return ml; |
| } |
| |
| |
| /* ********************************* |
| * Hash Chain |
| ***********************************/ |
| #define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)] |
| |
| /* Update chains up to ip (excluded) |
| Assumption : always within prefix (i.e. not within extDict) */ |
| FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal( |
| ZSTD_matchState_t* ms, |
| const ZSTD_compressionParameters* const cParams, |
| const BYTE* ip, U32 const mls) |
| { |
| U32* const hashTable = ms->hashTable; |
| const U32 hashLog = cParams->hashLog; |
| U32* const chainTable = ms->chainTable; |
| const U32 chainMask = (1 << cParams->chainLog) - 1; |
| const BYTE* const base = ms->window.base; |
| const U32 target = (U32)(ip - base); |
| U32 idx = ms->nextToUpdate; |
| |
| while(idx < target) { /* catch up */ |
| size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls); |
| NEXT_IN_CHAIN(idx, chainMask) = hashTable[h]; |
| hashTable[h] = idx; |
| idx++; |
| } |
| |
| ms->nextToUpdate = target; |
| return hashTable[ZSTD_hashPtr(ip, hashLog, mls)]; |
| } |
| |
| U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) { |
| const ZSTD_compressionParameters* const cParams = &ms->cParams; |
| return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch); |
| } |
| |
| /* inlining is important to hardwire a hot branch (template emulation) */ |
| FORCE_INLINE_TEMPLATE |
| size_t ZSTD_HcFindBestMatch( |
| ZSTD_matchState_t* ms, |
| const BYTE* const ip, const BYTE* const iLimit, |
| size_t* offsetPtr, |
| const U32 mls, const ZSTD_dictMode_e dictMode) |
| { |
| const ZSTD_compressionParameters* const cParams = &ms->cParams; |
| U32* const chainTable = ms->chainTable; |
| const U32 chainSize = (1 << cParams->chainLog); |
| const U32 chainMask = chainSize-1; |
| const BYTE* const base = ms->window.base; |
| const BYTE* const dictBase = ms->window.dictBase; |
| const U32 dictLimit = ms->window.dictLimit; |
| const BYTE* const prefixStart = base + dictLimit; |
| const BYTE* const dictEnd = dictBase + dictLimit; |
| const U32 curr = (U32)(ip-base); |
| const U32 maxDistance = 1U << cParams->windowLog; |
| const U32 lowestValid = ms->window.lowLimit; |
| const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; |
| const U32 isDictionary = (ms->loadedDictEnd != 0); |
| const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; |
| const U32 minChain = curr > chainSize ? curr - chainSize : 0; |
| U32 nbAttempts = 1U << cParams->searchLog; |
| size_t ml=4-1; |
| |
| const ZSTD_matchState_t* const dms = ms->dictMatchState; |
| const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch |
| ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0; |
| const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch |
| ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0; |
| |
| U32 matchIndex; |
| |
| if (dictMode == ZSTD_dedicatedDictSearch) { |
| const U32* entry = &dms->hashTable[ddsIdx]; |
| PREFETCH_L1(entry); |
| } |
| |
| /* HC4 match finder */ |
| matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls); |
| |
| for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) { |
| size_t currentMl=0; |
| if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { |
| const BYTE* const match = base + matchIndex; |
| assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ |
| if (match[ml] == ip[ml]) /* potentially better */ |
| currentMl = ZSTD_count(ip, match, iLimit); |
| } else { |
| const BYTE* const match = dictBase + matchIndex; |
| assert(match+4 <= dictEnd); |
| if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
| currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; |
| } |
| |
| /* save best solution */ |
| if (currentMl > ml) { |
| ml = currentMl; |
| *offsetPtr = STORE_OFFSET(curr - matchIndex); |
| if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
| } |
| |
| if (matchIndex <= minChain) break; |
| matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask); |
| } |
| |
| assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ |
| if (dictMode == ZSTD_dedicatedDictSearch) { |
| ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms, |
| ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); |
| } else if (dictMode == ZSTD_dictMatchState) { |
| const U32* const dmsChainTable = dms->chainTable; |
| const U32 dmsChainSize = (1 << dms->cParams.chainLog); |
| const U32 dmsChainMask = dmsChainSize - 1; |
| const U32 dmsLowestIndex = dms->window.dictLimit; |
| const BYTE* const dmsBase = dms->window.base; |
| const BYTE* const dmsEnd = dms->window.nextSrc; |
| const U32 dmsSize = (U32)(dmsEnd - dmsBase); |
| const U32 dmsIndexDelta = dictLimit - dmsSize; |
| const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0; |
| |
| matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)]; |
| |
| for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) { |
| size_t currentMl=0; |
| const BYTE* const match = dmsBase + matchIndex; |
| assert(match+4 <= dmsEnd); |
| if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
| currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; |
| |
| /* save best solution */ |
| if (currentMl > ml) { |
| ml = currentMl; |
| assert(curr > matchIndex + dmsIndexDelta); |
| *offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta)); |
| if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
| } |
| |
| if (matchIndex <= dmsMinChain) break; |
| |
| matchIndex = dmsChainTable[matchIndex & dmsChainMask]; |
| } |
| } |
| |
| return ml; |
| } |
| |
| /* ********************************* |
| * (SIMD) Row-based matchfinder |
| ***********************************/ |
| /* Constants for row-based hash */ |
| #define ZSTD_ROW_HASH_TAG_OFFSET 16 /* byte offset of hashes in the match state's tagTable from the beginning of a row */ |
| #define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */ |
| #define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1) |
| #define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */ |
| |
| #define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1) |
| |
| typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */ |
| |
| /* ZSTD_VecMask_next(): |
| * Starting from the LSB, returns the idx of the next non-zero bit. |
| * Basically counting the nb of trailing zeroes. |
| */ |
| static U32 ZSTD_VecMask_next(ZSTD_VecMask val) { |
| assert(val != 0); |
| # if (defined(__GNUC__) && ((__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 4)))) |
| if (sizeof(size_t) == 4) { |
| U32 mostSignificantWord = (U32)(val >> 32); |
| U32 leastSignificantWord = (U32)val; |
| if (leastSignificantWord == 0) { |
| return 32 + (U32)__builtin_ctz(mostSignificantWord); |
| } else { |
| return (U32)__builtin_ctz(leastSignificantWord); |
| } |
| } else { |
| return (U32)__builtin_ctzll(val); |
| } |
| # else |
| /* Software ctz version: http://aggregate.org/MAGIC/#Trailing%20Zero%20Count |
| * and: https://stackoverflow.com/questions/2709430/count-number-of-bits-in-a-64-bit-long-big-integer |
| */ |
| val = ~val & (val - 1ULL); /* Lowest set bit mask */ |
| val = val - ((val >> 1) & 0x5555555555555555); |
| val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); |
| return (U32)((((val + (val >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56); |
| # endif |
| } |
| |
| /* ZSTD_rotateRight_*(): |
| * Rotates a bitfield to the right by "count" bits. |
| * https://en.wikipedia.org/w/index.php?title=Circular_shift&oldid=991635599#Implementing_circular_shifts |
| */ |
| FORCE_INLINE_TEMPLATE |
| U64 ZSTD_rotateRight_U64(U64 const value, U32 count) { |
| assert(count < 64); |
| count &= 0x3F; /* for fickle pattern recognition */ |
| return (value >> count) | (U64)(value << ((0U - count) & 0x3F)); |
| } |
| |
| FORCE_INLINE_TEMPLATE |
| U32 ZSTD_rotateRight_U32(U32 const value, U32 count) { |
| assert(count < 32); |
| count &= 0x1F; /* for fickle pattern recognition */ |
| return (value >> count) | (U32)(value << ((0U - count) & 0x1F)); |
| } |
| |
| FORCE_INLINE_TEMPLATE |
| U16 ZSTD_rotateRight_U16(U16 const value, U32 count) { |
| assert(count < 16); |
| count &= 0x0F; /* for fickle pattern recognition */ |
| return (value >> count) | (U16)(value << ((0U - count) & 0x0F)); |
| } |
| |
| /* ZSTD_row_nextIndex(): |
| * Returns the next index to insert at within a tagTable row, and updates the "head" |
| * value to reflect the update. Essentially cycles backwards from [0, {entries per row}) |
| */ |
| FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) { |
| U32 const next = (*tagRow - 1) & rowMask; |
| *tagRow = (BYTE)next; |
| return next; |
| } |
| |
| /* ZSTD_isAligned(): |
| * Checks that a pointer is aligned to "align" bytes which must be a power of 2. |
| */ |
| MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) { |
| assert((align & (align - 1)) == 0); |
| return (((size_t)ptr) & (align - 1)) == 0; |
| } |
| |
| /* ZSTD_row_prefetch(): |
| * Performs prefetching for the hashTable and tagTable at a given row. |
| */ |
| FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, U16 const* tagTable, U32 const relRow, U32 const rowLog) { |
| PREFETCH_L1(hashTable + relRow); |
| if (rowLog >= 5) { |
| PREFETCH_L1(hashTable + relRow + 16); |
| /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */ |
| } |
| PREFETCH_L1(tagTable + relRow); |
| if (rowLog == 6) { |
| PREFETCH_L1(tagTable + relRow + 32); |
| } |
| assert(rowLog == 4 || rowLog == 5 || rowLog == 6); |
| assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */ |
| assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */ |
| } |
| |
| /* ZSTD_row_fillHashCache(): |
| * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries, |
| * but not beyond iLimit. |
| */ |
| FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base, |
| U32 const rowLog, U32 const mls, |
| U32 idx, const BYTE* const iLimit) |
| { |
| U32 const* const hashTable = ms->hashTable; |
| U16 const* const tagTable = ms->tagTable; |
| U32 const hashLog = ms->rowHashLog; |
| U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1); |
| U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch); |
| |
| for (; idx < lim; ++idx) { |
| U32 const hash = (U32)ZSTD_hashPtr(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls); |
| U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
| ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); |
| ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash; |
| } |
| |
| DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1], |
| ms->hashCache[2], ms->hashCache[3], ms->hashCache[4], |
| ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]); |
| } |
| |
| /* ZSTD_row_nextCachedHash(): |
| * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at |
| * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable. |
| */ |
| FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable, |
| U16 const* tagTable, BYTE const* base, |
| U32 idx, U32 const hashLog, |
| U32 const rowLog, U32 const mls) |
| { |
| U32 const newHash = (U32)ZSTD_hashPtr(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls); |
| U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
| ZSTD_row_prefetch(hashTable, tagTable, row, rowLog); |
| { U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK]; |
| cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash; |
| return hash; |
| } |
| } |
| |
| /* ZSTD_row_update_internalImpl(): |
| * Updates the hash table with positions starting from updateStartIdx until updateEndIdx. |
| */ |
| FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms, |
| U32 updateStartIdx, U32 const updateEndIdx, |
| U32 const mls, U32 const rowLog, |
| U32 const rowMask, U32 const useCache) |
| { |
| U32* const hashTable = ms->hashTable; |
| U16* const tagTable = ms->tagTable; |
| U32 const hashLog = ms->rowHashLog; |
| const BYTE* const base = ms->window.base; |
| |
| DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx); |
| for (; updateStartIdx < updateEndIdx; ++updateStartIdx) { |
| U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls) |
| : (U32)ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls); |
| U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
| U32* const row = hashTable + relRow; |
| BYTE* tagRow = (BYTE*)(tagTable + relRow); /* Though tagTable is laid out as a table of U16, each tag is only 1 byte. |
| Explicit cast allows us to get exact desired position within each row */ |
| U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); |
| |
| assert(hash == ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls)); |
| ((BYTE*)tagRow)[pos + ZSTD_ROW_HASH_TAG_OFFSET] = hash & ZSTD_ROW_HASH_TAG_MASK; |
| row[pos] = updateStartIdx; |
| } |
| } |
| |
| /* ZSTD_row_update_internal(): |
| * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate. |
| * Skips sections of long matches as is necessary. |
| */ |
| FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip, |
| U32 const mls, U32 const rowLog, |
| U32 const rowMask, U32 const useCache) |
| { |
| U32 idx = ms->nextToUpdate; |
| const BYTE* const base = ms->window.base; |
| const U32 target = (U32)(ip - base); |
| const U32 kSkipThreshold = 384; |
| const U32 kMaxMatchStartPositionsToUpdate = 96; |
| const U32 kMaxMatchEndPositionsToUpdate = 32; |
| |
| if (useCache) { |
| /* Only skip positions when using hash cache, i.e. |
| * if we are loading a dict, don't skip anything. |
| * If we decide to skip, then we only update a set number |
| * of positions at the beginning and end of the match. |
| */ |
| if (UNLIKELY(target - idx > kSkipThreshold)) { |
| U32 const bound = idx + kMaxMatchStartPositionsToUpdate; |
| ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache); |
| idx = target - kMaxMatchEndPositionsToUpdate; |
| ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1); |
| } |
| } |
| assert(target >= idx); |
| ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache); |
| ms->nextToUpdate = target; |
| } |
| |
| /* ZSTD_row_update(): |
| * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary |
| * processing. |
| */ |
| void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) { |
| const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); |
| const U32 rowMask = (1u << rowLog) - 1; |
| const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */); |
| |
| DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog); |
| ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* dont use cache */); |
| } |
| |
| #if defined(ZSTD_ARCH_X86_SSE2) |
| FORCE_INLINE_TEMPLATE ZSTD_VecMask |
| ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head) |
| { |
| const __m128i comparisonMask = _mm_set1_epi8((char)tag); |
| int matches[4] = {0}; |
| int i; |
| assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4); |
| for (i=0; i<nbChunks; i++) { |
| const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i)); |
| const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask); |
| matches[i] = _mm_movemask_epi8(equalMask); |
| } |
| if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head); |
| if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head); |
| assert(nbChunks == 4); |
| return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head); |
| } |
| #endif |
| |
| /* Returns a ZSTD_VecMask (U32) that has the nth bit set to 1 if the newly-computed "tag" matches |
| * the hash at the nth position in a row of the tagTable. |
| * Each row is a circular buffer beginning at the value of "head". So we must rotate the "matches" bitfield |
| * to match up with the actual layout of the entries within the hashTable */ |
| FORCE_INLINE_TEMPLATE ZSTD_VecMask |
| ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 head, const U32 rowEntries) |
| { |
| const BYTE* const src = tagRow + ZSTD_ROW_HASH_TAG_OFFSET; |
| assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64); |
| assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES); |
| |
| #if defined(ZSTD_ARCH_X86_SSE2) |
| |
| return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, head); |
| |
| #else /* SW or NEON-LE */ |
| |
| # if defined(ZSTD_ARCH_ARM_NEON) |
| /* This NEON path only works for little endian - otherwise use SWAR below */ |
| if (MEM_isLittleEndian()) { |
| if (rowEntries == 16) { |
| const uint8x16_t chunk = vld1q_u8(src); |
| const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag))); |
| const uint16x8_t t0 = vshlq_n_u16(equalMask, 7); |
| const uint32x4_t t1 = vreinterpretq_u32_u16(vsriq_n_u16(t0, t0, 14)); |
| const uint64x2_t t2 = vreinterpretq_u64_u32(vshrq_n_u32(t1, 14)); |
| const uint8x16_t t3 = vreinterpretq_u8_u64(vsraq_n_u64(t2, t2, 28)); |
| const U16 hi = (U16)vgetq_lane_u8(t3, 8); |
| const U16 lo = (U16)vgetq_lane_u8(t3, 0); |
| return ZSTD_rotateRight_U16((hi << 8) | lo, head); |
| } else if (rowEntries == 32) { |
| const uint16x8x2_t chunk = vld2q_u16((const U16*)(const void*)src); |
| const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]); |
| const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]); |
| const uint8x16_t equalMask0 = vceqq_u8(chunk0, vdupq_n_u8(tag)); |
| const uint8x16_t equalMask1 = vceqq_u8(chunk1, vdupq_n_u8(tag)); |
| const int8x8_t pack0 = vqmovn_s16(vreinterpretq_s16_u8(equalMask0)); |
| const int8x8_t pack1 = vqmovn_s16(vreinterpretq_s16_u8(equalMask1)); |
| const uint8x8_t t0 = vreinterpret_u8_s8(pack0); |
| const uint8x8_t t1 = vreinterpret_u8_s8(pack1); |
| const uint8x8_t t2 = vsri_n_u8(t1, t0, 2); |
| const uint8x8x2_t t3 = vuzp_u8(t2, t0); |
| const uint8x8_t t4 = vsri_n_u8(t3.val[1], t3.val[0], 4); |
| const U32 matches = vget_lane_u32(vreinterpret_u32_u8(t4), 0); |
| return ZSTD_rotateRight_U32(matches, head); |
| } else { /* rowEntries == 64 */ |
| const uint8x16x4_t chunk = vld4q_u8(src); |
| const uint8x16_t dup = vdupq_n_u8(tag); |
| const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup); |
| const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup); |
| const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup); |
| const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup); |
| |
| const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1); |
| const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1); |
| const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2); |
| const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4); |
| const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4); |
| const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0); |
| return ZSTD_rotateRight_U64(matches, head); |
| } |
| } |
| # endif /* ZSTD_ARCH_ARM_NEON */ |
| /* SWAR */ |
| { const size_t chunkSize = sizeof(size_t); |
| const size_t shiftAmount = ((chunkSize * 8) - chunkSize); |
| const size_t xFF = ~((size_t)0); |
| const size_t x01 = xFF / 0xFF; |
| const size_t x80 = x01 << 7; |
| const size_t splatChar = tag * x01; |
| ZSTD_VecMask matches = 0; |
| int i = rowEntries - chunkSize; |
| assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8)); |
| if (MEM_isLittleEndian()) { /* runtime check so have two loops */ |
| const size_t extractMagic = (xFF / 0x7F) >> chunkSize; |
| do { |
| size_t chunk = MEM_readST(&src[i]); |
| chunk ^= splatChar; |
| chunk = (((chunk | x80) - x01) | chunk) & x80; |
| matches <<= chunkSize; |
| matches |= (chunk * extractMagic) >> shiftAmount; |
| i -= chunkSize; |
| } while (i >= 0); |
| } else { /* big endian: reverse bits during extraction */ |
| const size_t msb = xFF ^ (xFF >> 1); |
| const size_t extractMagic = (msb / 0x1FF) | msb; |
| do { |
| size_t chunk = MEM_readST(&src[i]); |
| chunk ^= splatChar; |
| chunk = (((chunk | x80) - x01) | chunk) & x80; |
| matches <<= chunkSize; |
| matches |= ((chunk >> 7) * extractMagic) >> shiftAmount; |
| i -= chunkSize; |
| } while (i >= 0); |
| } |
| matches = ~matches; |
| if (rowEntries == 16) { |
| return ZSTD_rotateRight_U16((U16)matches, head); |
| } else if (rowEntries == 32) { |
| return ZSTD_rotateRight_U32((U32)matches, head); |
| } else { |
| return ZSTD_rotateRight_U64((U64)matches, head); |
| } |
| } |
| #endif |
| } |
| |
| /* The high-level approach of the SIMD row based match finder is as follows: |
| * - Figure out where to insert the new entry: |
| * - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag" |
| * - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines |
| * which row to insert into. |
| * - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can |
| * be considered as a circular buffer with a "head" index that resides in the tagTable. |
| * - Also insert the "tag" into the equivalent row and position in the tagTable. |
| * - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry. |
| * The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively, |
| * for alignment/performance reasons, leaving some bytes unused. |
| * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and |
| * generate a bitfield that we can cycle through to check the collisions in the hash table. |
| * - Pick the longest match. |
| */ |
| FORCE_INLINE_TEMPLATE |
| size_t ZSTD_RowFindBestMatch( |
| ZSTD_matchState_t* ms, |
| const BYTE* const ip, const BYTE* const iLimit, |
| size_t* offsetPtr, |
| const U32 mls, const ZSTD_dictMode_e dictMode, |
| const U32 rowLog) |
| { |
| U32* const hashTable = ms->hashTable; |
| U16* const tagTable = ms->tagTable; |
| U32* const hashCache = ms->hashCache; |
| const U32 hashLog = ms->rowHashLog; |
| const ZSTD_compressionParameters* const cParams = &ms->cParams; |
| const BYTE* const base = ms->window.base; |
| const BYTE* const dictBase = ms->window.dictBase; |
| const U32 dictLimit = ms->window.dictLimit; |
| const BYTE* const prefixStart = base + dictLimit; |
| const BYTE* const dictEnd = dictBase + dictLimit; |
| const U32 curr = (U32)(ip-base); |
| const U32 maxDistance = 1U << cParams->windowLog; |
| const U32 lowestValid = ms->window.lowLimit; |
| const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; |
| const U32 isDictionary = (ms->loadedDictEnd != 0); |
| const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance; |
| const U32 rowEntries = (1U << rowLog); |
| const U32 rowMask = rowEntries - 1; |
| const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */ |
| U32 nbAttempts = 1U << cappedSearchLog; |
| size_t ml=4-1; |
| |
| /* DMS/DDS variables that may be referenced laster */ |
| const ZSTD_matchState_t* const dms = ms->dictMatchState; |
| |
| /* Initialize the following variables to satisfy static analyzer */ |
| size_t ddsIdx = 0; |
| U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */ |
| U32 dmsTag = 0; |
| U32* dmsRow = NULL; |
| BYTE* dmsTagRow = NULL; |
| |
| if (dictMode == ZSTD_dedicatedDictSearch) { |
| const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG; |
| { /* Prefetch DDS hashtable entry */ |
| ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG; |
| PREFETCH_L1(&dms->hashTable[ddsIdx]); |
| } |
| ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0; |
| } |
| |
| if (dictMode == ZSTD_dictMatchState) { |
| /* Prefetch DMS rows */ |
| U32* const dmsHashTable = dms->hashTable; |
| U16* const dmsTagTable = dms->tagTable; |
| U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls); |
| U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
| dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK; |
| dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow); |
| dmsRow = dmsHashTable + dmsRelRow; |
| ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog); |
| } |
| |
| /* Update the hashTable and tagTable up to (but not including) ip */ |
| ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */); |
| { /* Get the hash for ip, compute the appropriate row */ |
| U32 const hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls); |
| U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog; |
| U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK; |
| U32* const row = hashTable + relRow; |
| BYTE* tagRow = (BYTE*)(tagTable + relRow); |
| U32 const head = *tagRow & rowMask; |
| U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; |
| size_t numMatches = 0; |
| size_t currMatch = 0; |
| ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, head, rowEntries); |
| |
| /* Cycle through the matches and prefetch */ |
| for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) { |
| U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask; |
| U32 const matchIndex = row[matchPos]; |
| assert(numMatches < rowEntries); |
| if (matchIndex < lowLimit) |
| break; |
| if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { |
| PREFETCH_L1(base + matchIndex); |
| } else { |
| PREFETCH_L1(dictBase + matchIndex); |
| } |
| matchBuffer[numMatches++] = matchIndex; |
| } |
| |
| /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop |
| in ZSTD_row_update_internal() at the next search. */ |
| { |
| U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask); |
| tagRow[pos + ZSTD_ROW_HASH_TAG_OFFSET] = (BYTE)tag; |
| row[pos] = ms->nextToUpdate++; |
| } |
| |
| /* Return the longest match */ |
| for (; currMatch < numMatches; ++currMatch) { |
| U32 const matchIndex = matchBuffer[currMatch]; |
| size_t currentMl=0; |
| assert(matchIndex < curr); |
| assert(matchIndex >= lowLimit); |
| |
| if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { |
| const BYTE* const match = base + matchIndex; |
| assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ |
| if (match[ml] == ip[ml]) /* potentially better */ |
| currentMl = ZSTD_count(ip, match, iLimit); |
| } else { |
| const BYTE* const match = dictBase + matchIndex; |
| assert(match+4 <= dictEnd); |
| if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ |
| currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; |
| } |
| |
| /* Save best solution */ |
| if (currentMl > ml) { |
| ml = currentMl; |
| *offsetPtr = STORE_OFFSET(curr - matchIndex); |
| if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ |
| } |
| } |
| } |
| |
| assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */ |
| if (dictMode == ZSTD_dedicatedDictSearch) { |
| ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms, |
| ip, iLimit, prefixStart, curr, dictLimit, ddsIdx); |
| } else if (dictMode == ZSTD_dictMatchState) { |
| /* TODO: Measure and potentially add prefetching to DMS */ |
| const U32 dmsLowestIndex = dms->window.dictLimit; |
| const BYTE* const dmsBase = dms->window.base; |
| const BYTE* const dmsEnd = dms->window.nextSrc; |
| const U32 dmsSize = (U32)(dmsEnd - dmsBase); |
| const U32 dmsIndexDelta = dictLimit - dmsSize; |
| |
| { U32 const head = *dmsTagRow & rowMask; |
| U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES]; |
| size_t numMatches = 0; |
| size_t currMatch = 0; |
| ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, head, rowEntries); |
| |
| for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) { |
| U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask; |
| U32 const matchIndex = dmsRow[matchPos]; |
| if (matchIndex < dmsLowestIndex) |
| break; |
| PREFETCH_L1(dmsBase + matchIndex); |
| matchBuffer[numMatches++] = matchIndex; |
| } |
| |
| /* Return the longest match */ |
| for (; currMatch < numMatches; ++currMatch) { |
| U32 const matchIndex = matchBuffer[currMatch]; |
| size_t currentMl=0; |
| assert(matchIndex >= dmsLowestIndex); |
| assert(matchIndex < curr); |
| |
| { const BYTE* const match = dmsBase + matchIndex; |
| assert(match+4 <= dmsEnd); |
| if (MEM_read32(match) == MEM_read32(ip)) |
| currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; |
| } |
| |
| if (currentMl > ml) { |
| ml = currentMl; |
| assert(curr > matchIndex + dmsIndexDelta); |
| *offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta)); |
| if (ip+currentMl == iLimit) break; |
| } |
| } |
| } |
| } |
| return ml; |
| } |
| |
| |
| /* |
| * Generate search functions templated on (dictMode, mls, rowLog). |
| * These functions are outlined for code size & compilation time. |
| * ZSTD_searchMax() dispatches to the correct implementation function. |
| * |
| * TODO: The start of the search function involves loading and calculating a |
| * bunch of constants from the ZSTD_matchState_t. These computations could be |
| * done in an initialization function, and saved somewhere in the match state. |
| * Then we could pass a pointer to the saved state instead of the match state, |
| * and avoid duplicate computations. |
| * |
| * TODO: Move the match re-winding into searchMax. This improves compression |
| * ratio, and unlocks further simplifications with the next TODO. |
| * |
| * TODO: Try moving the repcode search into searchMax. After the re-winding |
| * and repcode search are in searchMax, there is no more logic in the match |
| * finder loop that requires knowledge about the dictMode. So we should be |
| * able to avoid force inlining it, and we can join the extDict loop with |
| * the single segment loop. It should go in searchMax instead of its own |
| * function to avoid having multiple virtual function calls per search. |
| */ |
| |
| #define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls |
| #define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls |
| #define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog |
| |
| #define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE |
| |
| #define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls) \ |
| ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)( \ |
| ZSTD_matchState_t* ms, \ |
| const BYTE* ip, const BYTE* const iLimit, \ |
| size_t* offBasePtr) \ |
| { \ |
| assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ |
| return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \ |
| } \ |
| |
| #define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls) \ |
| ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)( \ |
| ZSTD_matchState_t* ms, \ |
| const BYTE* ip, const BYTE* const iLimit, \ |
| size_t* offsetPtr) \ |
| { \ |
| assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ |
| return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \ |
| } \ |
| |
| #define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) \ |
| ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)( \ |
| ZSTD_matchState_t* ms, \ |
| const BYTE* ip, const BYTE* const iLimit, \ |
| size_t* offsetPtr) \ |
| { \ |
| assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \ |
| assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \ |
| return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \ |
| } \ |
| |
| #define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \ |
| X(dictMode, mls, 4) \ |
| X(dictMode, mls, 5) \ |
| X(dictMode, mls, 6) |
| |
| #define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \ |
| ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \ |
| ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \ |
| ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6) |
| |
| #define ZSTD_FOR_EACH_MLS(X, dictMode) \ |
| X(dictMode, 4) \ |
| X(dictMode, 5) \ |
| X(dictMode, 6) |
| |
| #define ZSTD_FOR_EACH_DICT_MODE(X, ...) \ |
| X(__VA_ARGS__, noDict) \ |
| X(__VA_ARGS__, extDict) \ |
| X(__VA_ARGS__, dictMatchState) \ |
| X(__VA_ARGS__, dedicatedDictSearch) |
| |
| /* Generate row search fns for each combination of (dictMode, mls, rowLog) */ |
| ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN) |
| /* Generate binary Tree search fns for each combination of (dictMode, mls) */ |
| ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN) |
| /* Generate hash chain search fns for each combination of (dictMode, mls) */ |
| ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN) |
| |
| typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e; |
| |
| #define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls) \ |
| case mls: \ |
| return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); |
| #define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls) \ |
| case mls: \ |
| return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr); |
| #define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog) \ |
| case rowLog: \ |
| return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr); |
| |
| #define ZSTD_SWITCH_MLS(X, dictMode) \ |
| switch (mls) { \ |
| ZSTD_FOR_EACH_MLS(X, dictMode) \ |
| } |
| |
| #define ZSTD_SWITCH_ROWLOG(dictMode, mls) \ |
| case mls: \ |
| switch (rowLog) { \ |
| ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \ |
| } \ |
| ZSTD_UNREACHABLE; \ |
| break; |
| |
| #define ZSTD_SWITCH_SEARCH_METHOD(dictMode) \ |
| switch (searchMethod) { \ |
| case search_hashChain: \ |
| ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \ |
| break; \ |
| case search_binaryTree: \ |
| ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \ |
| break; \ |
| case search_rowHash: \ |
| ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode) \ |
| break; \ |
| } \ |
| ZSTD_UNREACHABLE; |
| |
| /* |
| * Searches for the longest match at @p ip. |
| * Dispatches to the correct implementation function based on the |
| * (searchMethod, dictMode, mls, rowLog). We use switch statements |
| * here instead of using an indirect function call through a function |
| * pointer because after Spectre and Meltdown mitigations, indirect |
| * function calls can be very costly, especially in the kernel. |
| * |
| * NOTE: dictMode and searchMethod should be templated, so those switch |
| * statements should be optimized out. Only the mls & rowLog switches |
| * should be left. |
| * |
| * @param ms The match state. |
| * @param ip The position to search at. |
| * @param iend The end of the input data. |
| * @param[out] offsetPtr Stores the match offset into this pointer. |
| * @param mls The minimum search length, in the range [4, 6]. |
| * @param rowLog The row log (if applicable), in the range [4, 6]. |
| * @param searchMethod The search method to use (templated). |
| * @param dictMode The dictMode (templated). |
| * |
| * @returns The length of the longest match found, or < mls if no match is found. |
| * If a match is found its offset is stored in @p offsetPtr. |
| */ |
| FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax( |
| ZSTD_matchState_t* ms, |
| const BYTE* ip, |
| const BYTE* iend, |
| size_t* offsetPtr, |
| U32 const mls, |
| U32 const rowLog, |
| searchMethod_e const searchMethod, |
| ZSTD_dictMode_e const dictMode) |
| { |
| if (dictMode == ZSTD_noDict) { |
| ZSTD_SWITCH_SEARCH_METHOD(noDict) |
| } else if (dictMode == ZSTD_extDict) { |
| ZSTD_SWITCH_SEARCH_METHOD(extDict) |
| } else if (dictMode == ZSTD_dictMatchState) { |
| ZSTD_SWITCH_SEARCH_METHOD(dictMatchState) |
| } else if (dictMode == ZSTD_dedicatedDictSearch) { |
| ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch) |
| } |
| ZSTD_UNREACHABLE; |
| return 0; |
| } |
| |
| /* ******************************* |
| * Common parser - lazy strategy |
| *********************************/ |
| |
| FORCE_INLINE_TEMPLATE size_t |
| ZSTD_compressBlock_lazy_generic( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, |
| U32 rep[ZSTD_REP_NUM], |
| const void* src, size_t srcSize, |
| const searchMethod_e searchMethod, const U32 depth, |
| ZSTD_dictMode_e const dictMode) |
| { |
| const BYTE* const istart = (const BYTE*)src; |
| const BYTE* ip = istart; |
| const BYTE* anchor = istart; |
| const BYTE* const iend = istart + srcSize; |
| const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; |
| const BYTE* const base = ms->window.base; |
| const U32 prefixLowestIndex = ms->window.dictLimit; |
| const BYTE* const prefixLowest = base + prefixLowestIndex; |
| const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); |
| const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); |
| |
| U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0; |
| |
| const int isDMS = dictMode == ZSTD_dictMatchState; |
| const int isDDS = dictMode == ZSTD_dedicatedDictSearch; |
| const int isDxS = isDMS || isDDS; |
| const ZSTD_matchState_t* const dms = ms->dictMatchState; |
| const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0; |
| const BYTE* const dictBase = isDxS ? dms->window.base : NULL; |
| const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL; |
| const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL; |
| const U32 dictIndexDelta = isDxS ? |
| prefixLowestIndex - (U32)(dictEnd - dictBase) : |
| 0; |
| const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest)); |
| |
| DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod); |
| ip += (dictAndPrefixLength == 0); |
| if (dictMode == ZSTD_noDict) { |
| U32 const curr = (U32)(ip - base); |
| U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog); |
| U32 const maxRep = curr - windowLow; |
| if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0; |
| if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0; |
| } |
| if (isDxS) { |
| /* dictMatchState repCode checks don't currently handle repCode == 0 |
| * disabling. */ |
| assert(offset_1 <= dictAndPrefixLength); |
| assert(offset_2 <= dictAndPrefixLength); |
| } |
| |
| if (searchMethod == search_rowHash) { |
| ZSTD_row_fillHashCache(ms, base, rowLog, |
| MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */), |
| ms->nextToUpdate, ilimit); |
| } |
| |
| /* Match Loop */ |
| #if defined(__x86_64__) |
| /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the |
| * code alignment is perturbed. To fix the instability align the loop on 32-bytes. |
| */ |
| __asm__(".p2align 5"); |
| #endif |
| while (ip < ilimit) { |
| size_t matchLength=0; |
| size_t offcode=STORE_REPCODE_1; |
| const BYTE* start=ip+1; |
| DEBUGLOG(7, "search baseline (depth 0)"); |
| |
| /* check repCode */ |
| if (isDxS) { |
| const U32 repIndex = (U32)(ip - base) + 1 - offset_1; |
| const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch) |
| && repIndex < prefixLowestIndex) ? |
| dictBase + (repIndex - dictIndexDelta) : |
| base + repIndex; |
| if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) |
| && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { |
| const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; |
| matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; |
| if (depth==0) goto _storeSequence; |
| } |
| } |
| if ( dictMode == ZSTD_noDict |
| && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) { |
| matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; |
| if (depth==0) goto _storeSequence; |
| } |
| |
| /* first search (depth 0) */ |
| { size_t offsetFound = 999999999; |
| size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offsetFound, mls, rowLog, searchMethod, dictMode); |
| if (ml2 > matchLength) |
| matchLength = ml2, start = ip, offcode=offsetFound; |
| } |
| |
| if (matchLength < 4) { |
| ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */ |
| continue; |
| } |
| |
| /* let's try to find a better solution */ |
| if (depth>=1) |
| while (ip<ilimit) { |
| DEBUGLOG(7, "search depth 1"); |
| ip ++; |
| if ( (dictMode == ZSTD_noDict) |
| && (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { |
| size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; |
| int const gain2 = (int)(mlRep * 3); |
| int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1); |
| if ((mlRep >= 4) && (gain2 > gain1)) |
| matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip; |
| } |
| if (isDxS) { |
| const U32 repIndex = (U32)(ip - base) - offset_1; |
| const BYTE* repMatch = repIndex < prefixLowestIndex ? |
| dictBase + (repIndex - dictIndexDelta) : |
| base + repIndex; |
| if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) |
| && (MEM_read32(repMatch) == MEM_read32(ip)) ) { |
| const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; |
| size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; |
| int const gain2 = (int)(mlRep * 3); |
| int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1); |
| if ((mlRep >= 4) && (gain2 > gain1)) |
| matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip; |
| } |
| } |
| { size_t offset2=999999999; |
| size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offset2, mls, rowLog, searchMethod, dictMode); |
| int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */ |
| int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4); |
| if ((ml2 >= 4) && (gain2 > gain1)) { |
| matchLength = ml2, offcode = offset2, start = ip; |
| continue; /* search a better one */ |
| } } |
| |
| /* let's find an even better one */ |
| if ((depth==2) && (ip<ilimit)) { |
| DEBUGLOG(7, "search depth 2"); |
| ip ++; |
| if ( (dictMode == ZSTD_noDict) |
| && (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { |
| size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; |
| int const gain2 = (int)(mlRep * 4); |
| int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1); |
| if ((mlRep >= 4) && (gain2 > gain1)) |
| matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip; |
| } |
| if (isDxS) { |
| const U32 repIndex = (U32)(ip - base) - offset_1; |
| const BYTE* repMatch = repIndex < prefixLowestIndex ? |
| dictBase + (repIndex - dictIndexDelta) : |
| base + repIndex; |
| if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) |
| && (MEM_read32(repMatch) == MEM_read32(ip)) ) { |
| const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; |
| size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; |
| int const gain2 = (int)(mlRep * 4); |
| int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1); |
| if ((mlRep >= 4) && (gain2 > gain1)) |
| matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip; |
| } |
| } |
| { size_t offset2=999999999; |
| size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offset2, mls, rowLog, searchMethod, dictMode); |
| int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */ |
| int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7); |
| if ((ml2 >= 4) && (gain2 > gain1)) { |
| matchLength = ml2, offcode = offset2, start = ip; |
| continue; |
| } } } |
| break; /* nothing found : store previous solution */ |
| } |
| |
| /* NOTE: |
| * Pay attention that `start[-value]` can lead to strange undefined behavior |
| * notably if `value` is unsigned, resulting in a large positive `-value`. |
| */ |
| /* catch up */ |
| if (STORED_IS_OFFSET(offcode)) { |
| if (dictMode == ZSTD_noDict) { |
| while ( ((start > anchor) & (start - STORED_OFFSET(offcode) > prefixLowest)) |
| && (start[-1] == (start-STORED_OFFSET(offcode))[-1]) ) /* only search for offset within prefix */ |
| { start--; matchLength++; } |
| } |
| if (isDxS) { |
| U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode)); |
| const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex; |
| const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest; |
| while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ |
| } |
| offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode); |
| } |
| /* store sequence */ |
| _storeSequence: |
| { size_t const litLength = (size_t)(start - anchor); |
| ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength); |
| anchor = ip = start + matchLength; |
| } |
| |
| /* check immediate repcode */ |
| if (isDxS) { |
| while (ip <= ilimit) { |
| U32 const current2 = (U32)(ip-base); |
| U32 const repIndex = current2 - offset_2; |
| const BYTE* repMatch = repIndex < prefixLowestIndex ? |
| dictBase - dictIndexDelta + repIndex : |
| base + repIndex; |
| if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */) |
| && (MEM_read32(repMatch) == MEM_read32(ip)) ) { |
| const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend; |
| matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4; |
| offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap offset_2 <=> offset_1 */ |
| ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength); |
| ip += matchLength; |
| anchor = ip; |
| continue; |
| } |
| break; |
| } |
| } |
| |
| if (dictMode == ZSTD_noDict) { |
| while ( ((ip <= ilimit) & (offset_2>0)) |
| && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) { |
| /* store sequence */ |
| matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; |
| offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap repcodes */ |
| ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength); |
| ip += matchLength; |
| anchor = ip; |
| continue; /* faster when present ... (?) */ |
| } } } |
| |
| /* Save reps for next block */ |
| rep[0] = offset_1 ? offset_1 : savedOffset; |
| rep[1] = offset_2 ? offset_2 : savedOffset; |
| |
| /* Return the last literals size */ |
| return (size_t)(iend - anchor); |
| } |
| |
| |
| size_t ZSTD_compressBlock_btlazy2( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict); |
| } |
| |
| size_t ZSTD_compressBlock_lazy2( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict); |
| } |
| |
| size_t ZSTD_compressBlock_lazy( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict); |
| } |
| |
| size_t ZSTD_compressBlock_greedy( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict); |
| } |
| |
| size_t ZSTD_compressBlock_btlazy2_dictMatchState( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState); |
| } |
| |
| size_t ZSTD_compressBlock_lazy2_dictMatchState( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState); |
| } |
| |
| size_t ZSTD_compressBlock_lazy_dictMatchState( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState); |
| } |
| |
| size_t ZSTD_compressBlock_greedy_dictMatchState( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState); |
| } |
| |
| |
| size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch); |
| } |
| |
| size_t ZSTD_compressBlock_lazy_dedicatedDictSearch( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch); |
| } |
| |
| size_t ZSTD_compressBlock_greedy_dedicatedDictSearch( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch); |
| } |
| |
| /* Row-based matchfinder */ |
| size_t ZSTD_compressBlock_lazy2_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict); |
| } |
| |
| size_t ZSTD_compressBlock_lazy_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict); |
| } |
| |
| size_t ZSTD_compressBlock_greedy_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict); |
| } |
| |
| size_t ZSTD_compressBlock_lazy2_dictMatchState_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState); |
| } |
| |
| size_t ZSTD_compressBlock_lazy_dictMatchState_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState); |
| } |
| |
| size_t ZSTD_compressBlock_greedy_dictMatchState_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState); |
| } |
| |
| |
| size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch); |
| } |
| |
| size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch); |
| } |
| |
| size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch); |
| } |
| |
| FORCE_INLINE_TEMPLATE |
| size_t ZSTD_compressBlock_lazy_extDict_generic( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, |
| U32 rep[ZSTD_REP_NUM], |
| const void* src, size_t srcSize, |
| const searchMethod_e searchMethod, const U32 depth) |
| { |
| const BYTE* const istart = (const BYTE*)src; |
| const BYTE* ip = istart; |
| const BYTE* anchor = istart; |
| const BYTE* const iend = istart + srcSize; |
| const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8; |
| const BYTE* const base = ms->window.base; |
| const U32 dictLimit = ms->window.dictLimit; |
| const BYTE* const prefixStart = base + dictLimit; |
| const BYTE* const dictBase = ms->window.dictBase; |
| const BYTE* const dictEnd = dictBase + dictLimit; |
| const BYTE* const dictStart = dictBase + ms->window.lowLimit; |
| const U32 windowLog = ms->cParams.windowLog; |
| const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6); |
| const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6); |
| |
| U32 offset_1 = rep[0], offset_2 = rep[1]; |
| |
| DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod); |
| |
| /* init */ |
| ip += (ip == prefixStart); |
| if (searchMethod == search_rowHash) { |
| ZSTD_row_fillHashCache(ms, base, rowLog, |
| MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */), |
| ms->nextToUpdate, ilimit); |
| } |
| |
| /* Match Loop */ |
| #if defined(__x86_64__) |
| /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the |
| * code alignment is perturbed. To fix the instability align the loop on 32-bytes. |
| */ |
| __asm__(".p2align 5"); |
| #endif |
| while (ip < ilimit) { |
| size_t matchLength=0; |
| size_t offcode=STORE_REPCODE_1; |
| const BYTE* start=ip+1; |
| U32 curr = (U32)(ip-base); |
| |
| /* check repCode */ |
| { const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog); |
| const U32 repIndex = (U32)(curr+1 - offset_1); |
| const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
| const BYTE* const repMatch = repBase + repIndex; |
| if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */ |
| & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */ |
| if (MEM_read32(ip+1) == MEM_read32(repMatch)) { |
| /* repcode detected we should take it */ |
| const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
| matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
| if (depth==0) goto _storeSequence; |
| } } |
| |
| /* first search (depth 0) */ |
| { size_t offsetFound = 999999999; |
| size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offsetFound, mls, rowLog, searchMethod, ZSTD_extDict); |
| if (ml2 > matchLength) |
| matchLength = ml2, start = ip, offcode=offsetFound; |
| } |
| |
| if (matchLength < 4) { |
| ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */ |
| continue; |
| } |
| |
| /* let's try to find a better solution */ |
| if (depth>=1) |
| while (ip<ilimit) { |
| ip ++; |
| curr++; |
| /* check repCode */ |
| if (offcode) { |
| const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog); |
| const U32 repIndex = (U32)(curr - offset_1); |
| const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
| const BYTE* const repMatch = repBase + repIndex; |
| if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ |
| & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ |
| if (MEM_read32(ip) == MEM_read32(repMatch)) { |
| /* repcode detected */ |
| const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
| size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
| int const gain2 = (int)(repLength * 3); |
| int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1); |
| if ((repLength >= 4) && (gain2 > gain1)) |
| matchLength = repLength, offcode = STORE_REPCODE_1, start = ip; |
| } } |
| |
| /* search match, depth 1 */ |
| { size_t offset2=999999999; |
| size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offset2, mls, rowLog, searchMethod, ZSTD_extDict); |
| int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */ |
| int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4); |
| if ((ml2 >= 4) && (gain2 > gain1)) { |
| matchLength = ml2, offcode = offset2, start = ip; |
| continue; /* search a better one */ |
| } } |
| |
| /* let's find an even better one */ |
| if ((depth==2) && (ip<ilimit)) { |
| ip ++; |
| curr++; |
| /* check repCode */ |
| if (offcode) { |
| const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog); |
| const U32 repIndex = (U32)(curr - offset_1); |
| const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
| const BYTE* const repMatch = repBase + repIndex; |
| if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ |
| & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ |
| if (MEM_read32(ip) == MEM_read32(repMatch)) { |
| /* repcode detected */ |
| const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
| size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
| int const gain2 = (int)(repLength * 4); |
| int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1); |
| if ((repLength >= 4) && (gain2 > gain1)) |
| matchLength = repLength, offcode = STORE_REPCODE_1, start = ip; |
| } } |
| |
| /* search match, depth 2 */ |
| { size_t offset2=999999999; |
| size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offset2, mls, rowLog, searchMethod, ZSTD_extDict); |
| int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */ |
| int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7); |
| if ((ml2 >= 4) && (gain2 > gain1)) { |
| matchLength = ml2, offcode = offset2, start = ip; |
| continue; |
| } } } |
| break; /* nothing found : store previous solution */ |
| } |
| |
| /* catch up */ |
| if (STORED_IS_OFFSET(offcode)) { |
| U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode)); |
| const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex; |
| const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart; |
| while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ |
| offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode); |
| } |
| |
| /* store sequence */ |
| _storeSequence: |
| { size_t const litLength = (size_t)(start - anchor); |
| ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength); |
| anchor = ip = start + matchLength; |
| } |
| |
| /* check immediate repcode */ |
| while (ip <= ilimit) { |
| const U32 repCurrent = (U32)(ip-base); |
| const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog); |
| const U32 repIndex = repCurrent - offset_2; |
| const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; |
| const BYTE* const repMatch = repBase + repIndex; |
| if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */ |
| & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */ |
| if (MEM_read32(ip) == MEM_read32(repMatch)) { |
| /* repcode detected we should take it */ |
| const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; |
| matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; |
| offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap offset history */ |
| ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength); |
| ip += matchLength; |
| anchor = ip; |
| continue; /* faster when present ... (?) */ |
| } |
| break; |
| } } |
| |
| /* Save reps for next block */ |
| rep[0] = offset_1; |
| rep[1] = offset_2; |
| |
| /* Return the last literals size */ |
| return (size_t)(iend - anchor); |
| } |
| |
| |
| size_t ZSTD_compressBlock_greedy_extDict( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0); |
| } |
| |
| size_t ZSTD_compressBlock_lazy_extDict( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| |
| { |
| return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1); |
| } |
| |
| size_t ZSTD_compressBlock_lazy2_extDict( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| |
| { |
| return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2); |
| } |
| |
| size_t ZSTD_compressBlock_btlazy2_extDict( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| |
| { |
| return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2); |
| } |
| |
| size_t ZSTD_compressBlock_greedy_extDict_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| { |
| return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0); |
| } |
| |
| size_t ZSTD_compressBlock_lazy_extDict_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| |
| { |
| return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1); |
| } |
| |
| size_t ZSTD_compressBlock_lazy2_extDict_row( |
| ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], |
| void const* src, size_t srcSize) |
| |
| { |
| return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2); |
| } |