| #include <stdio.h> |
| #include "evsel.h" |
| #include "stat.h" |
| #include "color.h" |
| #include "pmu.h" |
| #include "rblist.h" |
| #include "evlist.h" |
| #include "expr.h" |
| #include "metricgroup.h" |
| |
| enum { |
| CTX_BIT_USER = 1 << 0, |
| CTX_BIT_KERNEL = 1 << 1, |
| CTX_BIT_HV = 1 << 2, |
| CTX_BIT_HOST = 1 << 3, |
| CTX_BIT_IDLE = 1 << 4, |
| CTX_BIT_MAX = 1 << 5, |
| }; |
| |
| #define NUM_CTX CTX_BIT_MAX |
| |
| /* |
| * AGGR_GLOBAL: Use CPU 0 |
| * AGGR_SOCKET: Use first CPU of socket |
| * AGGR_CORE: Use first CPU of core |
| * AGGR_NONE: Use matching CPU |
| * AGGR_THREAD: Not supported? |
| */ |
| static struct stats runtime_nsecs_stats[MAX_NR_CPUS]; |
| static struct stats runtime_cycles_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_stalled_cycles_front_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_stalled_cycles_back_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_branches_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_cacherefs_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_l1_dcache_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_l1_icache_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_ll_cache_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_itlb_cache_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_dtlb_cache_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_cycles_in_tx_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_transaction_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_elision_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_topdown_total_slots[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_topdown_slots_issued[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_topdown_slots_retired[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_topdown_fetch_bubbles[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_topdown_recovery_bubbles[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_smi_num_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct stats runtime_aperf_stats[NUM_CTX][MAX_NR_CPUS]; |
| static struct rblist runtime_saved_values; |
| static bool have_frontend_stalled; |
| |
| struct stats walltime_nsecs_stats; |
| |
| struct saved_value { |
| struct rb_node rb_node; |
| struct perf_evsel *evsel; |
| int cpu; |
| struct stats stats; |
| }; |
| |
| static int saved_value_cmp(struct rb_node *rb_node, const void *entry) |
| { |
| struct saved_value *a = container_of(rb_node, |
| struct saved_value, |
| rb_node); |
| const struct saved_value *b = entry; |
| |
| if (a->cpu != b->cpu) |
| return a->cpu - b->cpu; |
| if (a->evsel == b->evsel) |
| return 0; |
| if ((char *)a->evsel < (char *)b->evsel) |
| return -1; |
| return +1; |
| } |
| |
| static struct rb_node *saved_value_new(struct rblist *rblist __maybe_unused, |
| const void *entry) |
| { |
| struct saved_value *nd = malloc(sizeof(struct saved_value)); |
| |
| if (!nd) |
| return NULL; |
| memcpy(nd, entry, sizeof(struct saved_value)); |
| return &nd->rb_node; |
| } |
| |
| static struct saved_value *saved_value_lookup(struct perf_evsel *evsel, |
| int cpu, |
| bool create) |
| { |
| struct rb_node *nd; |
| struct saved_value dm = { |
| .cpu = cpu, |
| .evsel = evsel, |
| }; |
| nd = rblist__find(&runtime_saved_values, &dm); |
| if (nd) |
| return container_of(nd, struct saved_value, rb_node); |
| if (create) { |
| rblist__add_node(&runtime_saved_values, &dm); |
| nd = rblist__find(&runtime_saved_values, &dm); |
| if (nd) |
| return container_of(nd, struct saved_value, rb_node); |
| } |
| return NULL; |
| } |
| |
| void perf_stat__init_shadow_stats(void) |
| { |
| have_frontend_stalled = pmu_have_event("cpu", "stalled-cycles-frontend"); |
| rblist__init(&runtime_saved_values); |
| runtime_saved_values.node_cmp = saved_value_cmp; |
| runtime_saved_values.node_new = saved_value_new; |
| /* No delete for now */ |
| } |
| |
| static int evsel_context(struct perf_evsel *evsel) |
| { |
| int ctx = 0; |
| |
| if (evsel->attr.exclude_kernel) |
| ctx |= CTX_BIT_KERNEL; |
| if (evsel->attr.exclude_user) |
| ctx |= CTX_BIT_USER; |
| if (evsel->attr.exclude_hv) |
| ctx |= CTX_BIT_HV; |
| if (evsel->attr.exclude_host) |
| ctx |= CTX_BIT_HOST; |
| if (evsel->attr.exclude_idle) |
| ctx |= CTX_BIT_IDLE; |
| |
| return ctx; |
| } |
| |
| void perf_stat__reset_shadow_stats(void) |
| { |
| struct rb_node *pos, *next; |
| |
| memset(runtime_nsecs_stats, 0, sizeof(runtime_nsecs_stats)); |
| memset(runtime_cycles_stats, 0, sizeof(runtime_cycles_stats)); |
| memset(runtime_stalled_cycles_front_stats, 0, sizeof(runtime_stalled_cycles_front_stats)); |
| memset(runtime_stalled_cycles_back_stats, 0, sizeof(runtime_stalled_cycles_back_stats)); |
| memset(runtime_branches_stats, 0, sizeof(runtime_branches_stats)); |
| memset(runtime_cacherefs_stats, 0, sizeof(runtime_cacherefs_stats)); |
| memset(runtime_l1_dcache_stats, 0, sizeof(runtime_l1_dcache_stats)); |
| memset(runtime_l1_icache_stats, 0, sizeof(runtime_l1_icache_stats)); |
| memset(runtime_ll_cache_stats, 0, sizeof(runtime_ll_cache_stats)); |
| memset(runtime_itlb_cache_stats, 0, sizeof(runtime_itlb_cache_stats)); |
| memset(runtime_dtlb_cache_stats, 0, sizeof(runtime_dtlb_cache_stats)); |
| memset(runtime_cycles_in_tx_stats, 0, |
| sizeof(runtime_cycles_in_tx_stats)); |
| memset(runtime_transaction_stats, 0, |
| sizeof(runtime_transaction_stats)); |
| memset(runtime_elision_stats, 0, sizeof(runtime_elision_stats)); |
| memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats)); |
| memset(runtime_topdown_total_slots, 0, sizeof(runtime_topdown_total_slots)); |
| memset(runtime_topdown_slots_retired, 0, sizeof(runtime_topdown_slots_retired)); |
| memset(runtime_topdown_slots_issued, 0, sizeof(runtime_topdown_slots_issued)); |
| memset(runtime_topdown_fetch_bubbles, 0, sizeof(runtime_topdown_fetch_bubbles)); |
| memset(runtime_topdown_recovery_bubbles, 0, sizeof(runtime_topdown_recovery_bubbles)); |
| memset(runtime_smi_num_stats, 0, sizeof(runtime_smi_num_stats)); |
| memset(runtime_aperf_stats, 0, sizeof(runtime_aperf_stats)); |
| |
| next = rb_first(&runtime_saved_values.entries); |
| while (next) { |
| pos = next; |
| next = rb_next(pos); |
| memset(&container_of(pos, struct saved_value, rb_node)->stats, |
| 0, |
| sizeof(struct stats)); |
| } |
| } |
| |
| /* |
| * Update various tracking values we maintain to print |
| * more semantic information such as miss/hit ratios, |
| * instruction rates, etc: |
| */ |
| void perf_stat__update_shadow_stats(struct perf_evsel *counter, u64 *count, |
| int cpu) |
| { |
| int ctx = evsel_context(counter); |
| |
| if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK) || |
| perf_evsel__match(counter, SOFTWARE, SW_CPU_CLOCK)) |
| update_stats(&runtime_nsecs_stats[cpu], count[0]); |
| else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES)) |
| update_stats(&runtime_cycles_stats[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, CYCLES_IN_TX)) |
| update_stats(&runtime_cycles_in_tx_stats[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, TRANSACTION_START)) |
| update_stats(&runtime_transaction_stats[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, ELISION_START)) |
| update_stats(&runtime_elision_stats[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, TOPDOWN_TOTAL_SLOTS)) |
| update_stats(&runtime_topdown_total_slots[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_ISSUED)) |
| update_stats(&runtime_topdown_slots_issued[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_RETIRED)) |
| update_stats(&runtime_topdown_slots_retired[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_BUBBLES)) |
| update_stats(&runtime_topdown_fetch_bubbles[ctx][cpu],count[0]); |
| else if (perf_stat_evsel__is(counter, TOPDOWN_RECOVERY_BUBBLES)) |
| update_stats(&runtime_topdown_recovery_bubbles[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) |
| update_stats(&runtime_stalled_cycles_front_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND)) |
| update_stats(&runtime_stalled_cycles_back_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS)) |
| update_stats(&runtime_branches_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES)) |
| update_stats(&runtime_cacherefs_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D)) |
| update_stats(&runtime_l1_dcache_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I)) |
| update_stats(&runtime_ll_cache_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL)) |
| update_stats(&runtime_ll_cache_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB)) |
| update_stats(&runtime_dtlb_cache_stats[ctx][cpu], count[0]); |
| else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB)) |
| update_stats(&runtime_itlb_cache_stats[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, SMI_NUM)) |
| update_stats(&runtime_smi_num_stats[ctx][cpu], count[0]); |
| else if (perf_stat_evsel__is(counter, APERF)) |
| update_stats(&runtime_aperf_stats[ctx][cpu], count[0]); |
| |
| if (counter->collect_stat) { |
| struct saved_value *v = saved_value_lookup(counter, cpu, true); |
| update_stats(&v->stats, count[0]); |
| } |
| } |
| |
| /* used for get_ratio_color() */ |
| enum grc_type { |
| GRC_STALLED_CYCLES_FE, |
| GRC_STALLED_CYCLES_BE, |
| GRC_CACHE_MISSES, |
| GRC_MAX_NR |
| }; |
| |
| static const char *get_ratio_color(enum grc_type type, double ratio) |
| { |
| static const double grc_table[GRC_MAX_NR][3] = { |
| [GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 }, |
| [GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 }, |
| [GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 }, |
| }; |
| const char *color = PERF_COLOR_NORMAL; |
| |
| if (ratio > grc_table[type][0]) |
| color = PERF_COLOR_RED; |
| else if (ratio > grc_table[type][1]) |
| color = PERF_COLOR_MAGENTA; |
| else if (ratio > grc_table[type][2]) |
| color = PERF_COLOR_YELLOW; |
| |
| return color; |
| } |
| |
| static struct perf_evsel *perf_stat__find_event(struct perf_evlist *evsel_list, |
| const char *name) |
| { |
| struct perf_evsel *c2; |
| |
| evlist__for_each_entry (evsel_list, c2) { |
| if (!strcasecmp(c2->name, name)) |
| return c2; |
| } |
| return NULL; |
| } |
| |
| /* Mark MetricExpr target events and link events using them to them. */ |
| void perf_stat__collect_metric_expr(struct perf_evlist *evsel_list) |
| { |
| struct perf_evsel *counter, *leader, **metric_events, *oc; |
| bool found; |
| const char **metric_names; |
| int i; |
| int num_metric_names; |
| |
| evlist__for_each_entry(evsel_list, counter) { |
| bool invalid = false; |
| |
| leader = counter->leader; |
| if (!counter->metric_expr) |
| continue; |
| metric_events = counter->metric_events; |
| if (!metric_events) { |
| if (expr__find_other(counter->metric_expr, counter->name, |
| &metric_names, &num_metric_names) < 0) |
| continue; |
| |
| metric_events = calloc(sizeof(struct perf_evsel *), |
| num_metric_names + 1); |
| if (!metric_events) |
| return; |
| counter->metric_events = metric_events; |
| } |
| |
| for (i = 0; i < num_metric_names; i++) { |
| found = false; |
| if (leader) { |
| /* Search in group */ |
| for_each_group_member (oc, leader) { |
| if (!strcasecmp(oc->name, metric_names[i])) { |
| found = true; |
| break; |
| } |
| } |
| } |
| if (!found) { |
| /* Search ignoring groups */ |
| oc = perf_stat__find_event(evsel_list, metric_names[i]); |
| } |
| if (!oc) { |
| /* Deduping one is good enough to handle duplicated PMUs. */ |
| static char *printed; |
| |
| /* |
| * Adding events automatically would be difficult, because |
| * it would risk creating groups that are not schedulable. |
| * perf stat doesn't understand all the scheduling constraints |
| * of events. So we ask the user instead to add the missing |
| * events. |
| */ |
| if (!printed || strcasecmp(printed, metric_names[i])) { |
| fprintf(stderr, |
| "Add %s event to groups to get metric expression for %s\n", |
| metric_names[i], |
| counter->name); |
| printed = strdup(metric_names[i]); |
| } |
| invalid = true; |
| continue; |
| } |
| metric_events[i] = oc; |
| oc->collect_stat = true; |
| } |
| metric_events[i] = NULL; |
| free(metric_names); |
| if (invalid) { |
| free(metric_events); |
| counter->metric_events = NULL; |
| counter->metric_expr = NULL; |
| } |
| } |
| } |
| |
| static void print_stalled_cycles_frontend(int cpu, |
| struct perf_evsel *evsel, double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_cycles_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio); |
| |
| if (ratio) |
| out->print_metric(out->ctx, color, "%7.2f%%", "frontend cycles idle", |
| ratio); |
| else |
| out->print_metric(out->ctx, NULL, NULL, "frontend cycles idle", 0); |
| } |
| |
| static void print_stalled_cycles_backend(int cpu, |
| struct perf_evsel *evsel, double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_cycles_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio); |
| |
| out->print_metric(out->ctx, color, "%7.2f%%", "backend cycles idle", ratio); |
| } |
| |
| static void print_branch_misses(int cpu, |
| struct perf_evsel *evsel, |
| double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_branches_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_CACHE_MISSES, ratio); |
| |
| out->print_metric(out->ctx, color, "%7.2f%%", "of all branches", ratio); |
| } |
| |
| static void print_l1_dcache_misses(int cpu, |
| struct perf_evsel *evsel, |
| double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_l1_dcache_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_CACHE_MISSES, ratio); |
| |
| out->print_metric(out->ctx, color, "%7.2f%%", "of all L1-dcache hits", ratio); |
| } |
| |
| static void print_l1_icache_misses(int cpu, |
| struct perf_evsel *evsel, |
| double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_l1_icache_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_CACHE_MISSES, ratio); |
| out->print_metric(out->ctx, color, "%7.2f%%", "of all L1-icache hits", ratio); |
| } |
| |
| static void print_dtlb_cache_misses(int cpu, |
| struct perf_evsel *evsel, |
| double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_dtlb_cache_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_CACHE_MISSES, ratio); |
| out->print_metric(out->ctx, color, "%7.2f%%", "of all dTLB cache hits", ratio); |
| } |
| |
| static void print_itlb_cache_misses(int cpu, |
| struct perf_evsel *evsel, |
| double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_itlb_cache_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_CACHE_MISSES, ratio); |
| out->print_metric(out->ctx, color, "%7.2f%%", "of all iTLB cache hits", ratio); |
| } |
| |
| static void print_ll_cache_misses(int cpu, |
| struct perf_evsel *evsel, |
| double avg, |
| struct perf_stat_output_ctx *out) |
| { |
| double total, ratio = 0.0; |
| const char *color; |
| int ctx = evsel_context(evsel); |
| |
| total = avg_stats(&runtime_ll_cache_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg / total * 100.0; |
| |
| color = get_ratio_color(GRC_CACHE_MISSES, ratio); |
| out->print_metric(out->ctx, color, "%7.2f%%", "of all LL-cache hits", ratio); |
| } |
| |
| /* |
| * High level "TopDown" CPU core pipe line bottleneck break down. |
| * |
| * Basic concept following |
| * Yasin, A Top Down Method for Performance analysis and Counter architecture |
| * ISPASS14 |
| * |
| * The CPU pipeline is divided into 4 areas that can be bottlenecks: |
| * |
| * Frontend -> Backend -> Retiring |
| * BadSpeculation in addition means out of order execution that is thrown away |
| * (for example branch mispredictions) |
| * Frontend is instruction decoding. |
| * Backend is execution, like computation and accessing data in memory |
| * Retiring is good execution that is not directly bottlenecked |
| * |
| * The formulas are computed in slots. |
| * A slot is an entry in the pipeline each for the pipeline width |
| * (for example a 4-wide pipeline has 4 slots for each cycle) |
| * |
| * Formulas: |
| * BadSpeculation = ((SlotsIssued - SlotsRetired) + RecoveryBubbles) / |
| * TotalSlots |
| * Retiring = SlotsRetired / TotalSlots |
| * FrontendBound = FetchBubbles / TotalSlots |
| * BackendBound = 1.0 - BadSpeculation - Retiring - FrontendBound |
| * |
| * The kernel provides the mapping to the low level CPU events and any scaling |
| * needed for the CPU pipeline width, for example: |
| * |
| * TotalSlots = Cycles * 4 |
| * |
| * The scaling factor is communicated in the sysfs unit. |
| * |
| * In some cases the CPU may not be able to measure all the formulas due to |
| * missing events. In this case multiple formulas are combined, as possible. |
| * |
| * Full TopDown supports more levels to sub-divide each area: for example |
| * BackendBound into computing bound and memory bound. For now we only |
| * support Level 1 TopDown. |
| */ |
| |
| static double sanitize_val(double x) |
| { |
| if (x < 0 && x >= -0.02) |
| return 0.0; |
| return x; |
| } |
| |
| static double td_total_slots(int ctx, int cpu) |
| { |
| return avg_stats(&runtime_topdown_total_slots[ctx][cpu]); |
| } |
| |
| static double td_bad_spec(int ctx, int cpu) |
| { |
| double bad_spec = 0; |
| double total_slots; |
| double total; |
| |
| total = avg_stats(&runtime_topdown_slots_issued[ctx][cpu]) - |
| avg_stats(&runtime_topdown_slots_retired[ctx][cpu]) + |
| avg_stats(&runtime_topdown_recovery_bubbles[ctx][cpu]); |
| total_slots = td_total_slots(ctx, cpu); |
| if (total_slots) |
| bad_spec = total / total_slots; |
| return sanitize_val(bad_spec); |
| } |
| |
| static double td_retiring(int ctx, int cpu) |
| { |
| double retiring = 0; |
| double total_slots = td_total_slots(ctx, cpu); |
| double ret_slots = avg_stats(&runtime_topdown_slots_retired[ctx][cpu]); |
| |
| if (total_slots) |
| retiring = ret_slots / total_slots; |
| return retiring; |
| } |
| |
| static double td_fe_bound(int ctx, int cpu) |
| { |
| double fe_bound = 0; |
| double total_slots = td_total_slots(ctx, cpu); |
| double fetch_bub = avg_stats(&runtime_topdown_fetch_bubbles[ctx][cpu]); |
| |
| if (total_slots) |
| fe_bound = fetch_bub / total_slots; |
| return fe_bound; |
| } |
| |
| static double td_be_bound(int ctx, int cpu) |
| { |
| double sum = (td_fe_bound(ctx, cpu) + |
| td_bad_spec(ctx, cpu) + |
| td_retiring(ctx, cpu)); |
| if (sum == 0) |
| return 0; |
| return sanitize_val(1.0 - sum); |
| } |
| |
| static void print_smi_cost(int cpu, struct perf_evsel *evsel, |
| struct perf_stat_output_ctx *out) |
| { |
| double smi_num, aperf, cycles, cost = 0.0; |
| int ctx = evsel_context(evsel); |
| const char *color = NULL; |
| |
| smi_num = avg_stats(&runtime_smi_num_stats[ctx][cpu]); |
| aperf = avg_stats(&runtime_aperf_stats[ctx][cpu]); |
| cycles = avg_stats(&runtime_cycles_stats[ctx][cpu]); |
| |
| if ((cycles == 0) || (aperf == 0)) |
| return; |
| |
| if (smi_num) |
| cost = (aperf - cycles) / aperf * 100.00; |
| |
| if (cost > 10) |
| color = PERF_COLOR_RED; |
| out->print_metric(out->ctx, color, "%8.1f%%", "SMI cycles%", cost); |
| out->print_metric(out->ctx, NULL, "%4.0f", "SMI#", smi_num); |
| } |
| |
| static void generic_metric(const char *metric_expr, |
| struct perf_evsel **metric_events, |
| char *name, |
| const char *metric_name, |
| double avg, |
| int cpu, |
| struct perf_stat_output_ctx *out) |
| { |
| print_metric_t print_metric = out->print_metric; |
| struct parse_ctx pctx; |
| double ratio; |
| int i; |
| void *ctxp = out->ctx; |
| |
| expr__ctx_init(&pctx); |
| expr__add_id(&pctx, name, avg); |
| for (i = 0; metric_events[i]; i++) { |
| struct saved_value *v; |
| struct stats *stats; |
| double scale; |
| |
| if (!strcmp(metric_events[i]->name, "duration_time")) { |
| stats = &walltime_nsecs_stats; |
| scale = 1e-9; |
| } else { |
| v = saved_value_lookup(metric_events[i], cpu, false); |
| if (!v) |
| break; |
| stats = &v->stats; |
| scale = 1.0; |
| } |
| expr__add_id(&pctx, metric_events[i]->name, avg_stats(stats)*scale); |
| } |
| if (!metric_events[i]) { |
| const char *p = metric_expr; |
| |
| if (expr__parse(&ratio, &pctx, &p) == 0) |
| print_metric(ctxp, NULL, "%8.1f", |
| metric_name ? |
| metric_name : |
| out->force_header ? name : "", |
| ratio); |
| else |
| print_metric(ctxp, NULL, NULL, |
| out->force_header ? |
| (metric_name ? metric_name : name) : "", 0); |
| } else |
| print_metric(ctxp, NULL, NULL, "", 0); |
| } |
| |
| void perf_stat__print_shadow_stats(struct perf_evsel *evsel, |
| double avg, int cpu, |
| struct perf_stat_output_ctx *out, |
| struct rblist *metric_events) |
| { |
| void *ctxp = out->ctx; |
| print_metric_t print_metric = out->print_metric; |
| double total, ratio = 0.0, total2; |
| const char *color = NULL; |
| int ctx = evsel_context(evsel); |
| struct metric_event *me; |
| int num = 1; |
| |
| if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) { |
| total = avg_stats(&runtime_cycles_stats[ctx][cpu]); |
| if (total) { |
| ratio = avg / total; |
| print_metric(ctxp, NULL, "%7.2f ", |
| "insn per cycle", ratio); |
| } else { |
| print_metric(ctxp, NULL, NULL, "insn per cycle", 0); |
| } |
| total = avg_stats(&runtime_stalled_cycles_front_stats[ctx][cpu]); |
| total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[ctx][cpu])); |
| |
| if (total && avg) { |
| out->new_line(ctxp); |
| ratio = total / avg; |
| print_metric(ctxp, NULL, "%7.2f ", |
| "stalled cycles per insn", |
| ratio); |
| } else if (have_frontend_stalled) { |
| print_metric(ctxp, NULL, NULL, |
| "stalled cycles per insn", 0); |
| } |
| } else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES)) { |
| if (runtime_branches_stats[ctx][cpu].n != 0) |
| print_branch_misses(cpu, evsel, avg, out); |
| else |
| print_metric(ctxp, NULL, NULL, "of all branches", 0); |
| } else if ( |
| evsel->attr.type == PERF_TYPE_HW_CACHE && |
| evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1D | |
| ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | |
| ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { |
| if (runtime_l1_dcache_stats[ctx][cpu].n != 0) |
| print_l1_dcache_misses(cpu, evsel, avg, out); |
| else |
| print_metric(ctxp, NULL, NULL, "of all L1-dcache hits", 0); |
| } else if ( |
| evsel->attr.type == PERF_TYPE_HW_CACHE && |
| evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1I | |
| ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | |
| ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { |
| if (runtime_l1_icache_stats[ctx][cpu].n != 0) |
| print_l1_icache_misses(cpu, evsel, avg, out); |
| else |
| print_metric(ctxp, NULL, NULL, "of all L1-icache hits", 0); |
| } else if ( |
| evsel->attr.type == PERF_TYPE_HW_CACHE && |
| evsel->attr.config == ( PERF_COUNT_HW_CACHE_DTLB | |
| ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | |
| ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { |
| if (runtime_dtlb_cache_stats[ctx][cpu].n != 0) |
| print_dtlb_cache_misses(cpu, evsel, avg, out); |
| else |
| print_metric(ctxp, NULL, NULL, "of all dTLB cache hits", 0); |
| } else if ( |
| evsel->attr.type == PERF_TYPE_HW_CACHE && |
| evsel->attr.config == ( PERF_COUNT_HW_CACHE_ITLB | |
| ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | |
| ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { |
| if (runtime_itlb_cache_stats[ctx][cpu].n != 0) |
| print_itlb_cache_misses(cpu, evsel, avg, out); |
| else |
| print_metric(ctxp, NULL, NULL, "of all iTLB cache hits", 0); |
| } else if ( |
| evsel->attr.type == PERF_TYPE_HW_CACHE && |
| evsel->attr.config == ( PERF_COUNT_HW_CACHE_LL | |
| ((PERF_COUNT_HW_CACHE_OP_READ) << 8) | |
| ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) { |
| if (runtime_ll_cache_stats[ctx][cpu].n != 0) |
| print_ll_cache_misses(cpu, evsel, avg, out); |
| else |
| print_metric(ctxp, NULL, NULL, "of all LL-cache hits", 0); |
| } else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES)) { |
| total = avg_stats(&runtime_cacherefs_stats[ctx][cpu]); |
| |
| if (total) |
| ratio = avg * 100 / total; |
| |
| if (runtime_cacherefs_stats[ctx][cpu].n != 0) |
| print_metric(ctxp, NULL, "%8.3f %%", |
| "of all cache refs", ratio); |
| else |
| print_metric(ctxp, NULL, NULL, "of all cache refs", 0); |
| } else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) { |
| print_stalled_cycles_frontend(cpu, evsel, avg, out); |
| } else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) { |
| print_stalled_cycles_backend(cpu, evsel, avg, out); |
| } else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) { |
| total = avg_stats(&runtime_nsecs_stats[cpu]); |
| |
| if (total) { |
| ratio = avg / total; |
| print_metric(ctxp, NULL, "%8.3f", "GHz", ratio); |
| } else { |
| print_metric(ctxp, NULL, NULL, "Ghz", 0); |
| } |
| } else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX)) { |
| total = avg_stats(&runtime_cycles_stats[ctx][cpu]); |
| if (total) |
| print_metric(ctxp, NULL, |
| "%7.2f%%", "transactional cycles", |
| 100.0 * (avg / total)); |
| else |
| print_metric(ctxp, NULL, NULL, "transactional cycles", |
| 0); |
| } else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX_CP)) { |
| total = avg_stats(&runtime_cycles_stats[ctx][cpu]); |
| total2 = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]); |
| if (total2 < avg) |
| total2 = avg; |
| if (total) |
| print_metric(ctxp, NULL, "%7.2f%%", "aborted cycles", |
| 100.0 * ((total2-avg) / total)); |
| else |
| print_metric(ctxp, NULL, NULL, "aborted cycles", 0); |
| } else if (perf_stat_evsel__is(evsel, TRANSACTION_START)) { |
| total = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]); |
| |
| if (avg) |
| ratio = total / avg; |
| |
| if (runtime_cycles_in_tx_stats[ctx][cpu].n != 0) |
| print_metric(ctxp, NULL, "%8.0f", |
| "cycles / transaction", ratio); |
| else |
| print_metric(ctxp, NULL, NULL, "cycles / transaction", |
| 0); |
| } else if (perf_stat_evsel__is(evsel, ELISION_START)) { |
| total = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]); |
| |
| if (avg) |
| ratio = total / avg; |
| |
| print_metric(ctxp, NULL, "%8.0f", "cycles / elision", ratio); |
| } else if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK) || |
| perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK)) { |
| if ((ratio = avg_stats(&walltime_nsecs_stats)) != 0) |
| print_metric(ctxp, NULL, "%8.3f", "CPUs utilized", |
| avg / ratio); |
| else |
| print_metric(ctxp, NULL, NULL, "CPUs utilized", 0); |
| } else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_BUBBLES)) { |
| double fe_bound = td_fe_bound(ctx, cpu); |
| |
| if (fe_bound > 0.2) |
| color = PERF_COLOR_RED; |
| print_metric(ctxp, color, "%8.1f%%", "frontend bound", |
| fe_bound * 100.); |
| } else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_RETIRED)) { |
| double retiring = td_retiring(ctx, cpu); |
| |
| if (retiring > 0.7) |
| color = PERF_COLOR_GREEN; |
| print_metric(ctxp, color, "%8.1f%%", "retiring", |
| retiring * 100.); |
| } else if (perf_stat_evsel__is(evsel, TOPDOWN_RECOVERY_BUBBLES)) { |
| double bad_spec = td_bad_spec(ctx, cpu); |
| |
| if (bad_spec > 0.1) |
| color = PERF_COLOR_RED; |
| print_metric(ctxp, color, "%8.1f%%", "bad speculation", |
| bad_spec * 100.); |
| } else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_ISSUED)) { |
| double be_bound = td_be_bound(ctx, cpu); |
| const char *name = "backend bound"; |
| static int have_recovery_bubbles = -1; |
| |
| /* In case the CPU does not support topdown-recovery-bubbles */ |
| if (have_recovery_bubbles < 0) |
| have_recovery_bubbles = pmu_have_event("cpu", |
| "topdown-recovery-bubbles"); |
| if (!have_recovery_bubbles) |
| name = "backend bound/bad spec"; |
| |
| if (be_bound > 0.2) |
| color = PERF_COLOR_RED; |
| if (td_total_slots(ctx, cpu) > 0) |
| print_metric(ctxp, color, "%8.1f%%", name, |
| be_bound * 100.); |
| else |
| print_metric(ctxp, NULL, NULL, name, 0); |
| } else if (evsel->metric_expr) { |
| generic_metric(evsel->metric_expr, evsel->metric_events, evsel->name, |
| evsel->metric_name, avg, cpu, out); |
| } else if (runtime_nsecs_stats[cpu].n != 0) { |
| char unit = 'M'; |
| char unit_buf[10]; |
| |
| total = avg_stats(&runtime_nsecs_stats[cpu]); |
| |
| if (total) |
| ratio = 1000.0 * avg / total; |
| if (ratio < 0.001) { |
| ratio *= 1000; |
| unit = 'K'; |
| } |
| snprintf(unit_buf, sizeof(unit_buf), "%c/sec", unit); |
| print_metric(ctxp, NULL, "%8.3f", unit_buf, ratio); |
| } else if (perf_stat_evsel__is(evsel, SMI_NUM)) { |
| print_smi_cost(cpu, evsel, out); |
| } else { |
| num = 0; |
| } |
| |
| if ((me = metricgroup__lookup(metric_events, evsel, false)) != NULL) { |
| struct metric_expr *mexp; |
| |
| list_for_each_entry (mexp, &me->head, nd) { |
| if (num++ > 0) |
| out->new_line(ctxp); |
| generic_metric(mexp->metric_expr, mexp->metric_events, |
| evsel->name, mexp->metric_name, |
| avg, cpu, out); |
| } |
| } |
| if (num == 0) |
| print_metric(ctxp, NULL, NULL, NULL, 0); |
| } |