blob: ca22546e4d1a51e2097a5f3a29325caab88a6cb1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* CPU-agnostic AMD IO page table allocator.
*
* Copyright (C) 2020 Advanced Micro Devices, Inc.
* Author: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
*/
#define pr_fmt(fmt) "AMD-Vi: " fmt
#define dev_fmt(fmt) pr_fmt(fmt)
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/io-pgtable.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <asm/barrier.h>
#include "amd_iommu_types.h"
#include "amd_iommu.h"
static void v1_tlb_flush_all(void *cookie)
{
}
static void v1_tlb_flush_walk(unsigned long iova, size_t size,
size_t granule, void *cookie)
{
}
static void v1_tlb_add_page(struct iommu_iotlb_gather *gather,
unsigned long iova, size_t granule,
void *cookie)
{
}
static const struct iommu_flush_ops v1_flush_ops = {
.tlb_flush_all = v1_tlb_flush_all,
.tlb_flush_walk = v1_tlb_flush_walk,
.tlb_add_page = v1_tlb_add_page,
};
/*
* Helper function to get the first pte of a large mapping
*/
static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
unsigned long *count)
{
unsigned long pte_mask, pg_size, cnt;
u64 *fpte;
pg_size = PTE_PAGE_SIZE(*pte);
cnt = PAGE_SIZE_PTE_COUNT(pg_size);
pte_mask = ~((cnt << 3) - 1);
fpte = (u64 *)(((unsigned long)pte) & pte_mask);
if (page_size)
*page_size = pg_size;
if (count)
*count = cnt;
return fpte;
}
/****************************************************************************
*
* The functions below are used the create the page table mappings for
* unity mapped regions.
*
****************************************************************************/
static void free_pt_page(u64 *pt, struct list_head *freelist)
{
struct page *p = virt_to_page(pt);
list_add_tail(&p->lru, freelist);
}
static void free_pt_lvl(u64 *pt, struct list_head *freelist, int lvl)
{
u64 *p;
int i;
for (i = 0; i < 512; ++i) {
/* PTE present? */
if (!IOMMU_PTE_PRESENT(pt[i]))
continue;
/* Large PTE? */
if (PM_PTE_LEVEL(pt[i]) == 0 ||
PM_PTE_LEVEL(pt[i]) == 7)
continue;
/*
* Free the next level. No need to look at l1 tables here since
* they can only contain leaf PTEs; just free them directly.
*/
p = IOMMU_PTE_PAGE(pt[i]);
if (lvl > 2)
free_pt_lvl(p, freelist, lvl - 1);
else
free_pt_page(p, freelist);
}
free_pt_page(pt, freelist);
}
static void free_sub_pt(u64 *root, int mode, struct list_head *freelist)
{
switch (mode) {
case PAGE_MODE_NONE:
case PAGE_MODE_7_LEVEL:
break;
case PAGE_MODE_1_LEVEL:
free_pt_page(root, freelist);
break;
case PAGE_MODE_2_LEVEL:
case PAGE_MODE_3_LEVEL:
case PAGE_MODE_4_LEVEL:
case PAGE_MODE_5_LEVEL:
case PAGE_MODE_6_LEVEL:
free_pt_lvl(root, freelist, mode);
break;
default:
BUG();
}
}
void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
u64 *root, int mode)
{
u64 pt_root;
/* lowest 3 bits encode pgtable mode */
pt_root = mode & 7;
pt_root |= (u64)root;
amd_iommu_domain_set_pt_root(domain, pt_root);
}
/*
* This function is used to add another level to an IO page table. Adding
* another level increases the size of the address space by 9 bits to a size up
* to 64 bits.
*/
static bool increase_address_space(struct protection_domain *domain,
unsigned long address,
gfp_t gfp)
{
unsigned long flags;
bool ret = true;
u64 *pte;
pte = alloc_pgtable_page(domain->nid, gfp);
if (!pte)
return false;
spin_lock_irqsave(&domain->lock, flags);
if (address <= PM_LEVEL_SIZE(domain->iop.mode))
goto out;
ret = false;
if (WARN_ON_ONCE(domain->iop.mode == PAGE_MODE_6_LEVEL))
goto out;
*pte = PM_LEVEL_PDE(domain->iop.mode, iommu_virt_to_phys(domain->iop.root));
domain->iop.root = pte;
domain->iop.mode += 1;
amd_iommu_update_and_flush_device_table(domain);
amd_iommu_domain_flush_complete(domain);
/*
* Device Table needs to be updated and flushed before the new root can
* be published.
*/
amd_iommu_domain_set_pgtable(domain, pte, domain->iop.mode);
pte = NULL;
ret = true;
out:
spin_unlock_irqrestore(&domain->lock, flags);
free_page((unsigned long)pte);
return ret;
}
static u64 *alloc_pte(struct protection_domain *domain,
unsigned long address,
unsigned long page_size,
u64 **pte_page,
gfp_t gfp,
bool *updated)
{
int level, end_lvl;
u64 *pte, *page;
BUG_ON(!is_power_of_2(page_size));
while (address > PM_LEVEL_SIZE(domain->iop.mode)) {
/*
* Return an error if there is no memory to update the
* page-table.
*/
if (!increase_address_space(domain, address, gfp))
return NULL;
}
level = domain->iop.mode - 1;
pte = &domain->iop.root[PM_LEVEL_INDEX(level, address)];
address = PAGE_SIZE_ALIGN(address, page_size);
end_lvl = PAGE_SIZE_LEVEL(page_size);
while (level > end_lvl) {
u64 __pte, __npte;
int pte_level;
__pte = *pte;
pte_level = PM_PTE_LEVEL(__pte);
/*
* If we replace a series of large PTEs, we need
* to tear down all of them.
*/
if (IOMMU_PTE_PRESENT(__pte) &&
pte_level == PAGE_MODE_7_LEVEL) {
unsigned long count, i;
u64 *lpte;
lpte = first_pte_l7(pte, NULL, &count);
/*
* Unmap the replicated PTEs that still match the
* original large mapping
*/
for (i = 0; i < count; ++i)
cmpxchg64(&lpte[i], __pte, 0ULL);
*updated = true;
continue;
}
if (!IOMMU_PTE_PRESENT(__pte) ||
pte_level == PAGE_MODE_NONE) {
page = alloc_pgtable_page(domain->nid, gfp);
if (!page)
return NULL;
__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
/* pte could have been changed somewhere. */
if (!try_cmpxchg64(pte, &__pte, __npte))
free_page((unsigned long)page);
else if (IOMMU_PTE_PRESENT(__pte))
*updated = true;
continue;
}
/* No level skipping support yet */
if (pte_level != level)
return NULL;
level -= 1;
pte = IOMMU_PTE_PAGE(__pte);
if (pte_page && level == end_lvl)
*pte_page = pte;
pte = &pte[PM_LEVEL_INDEX(level, address)];
}
return pte;
}
/*
* This function checks if there is a PTE for a given dma address. If
* there is one, it returns the pointer to it.
*/
static u64 *fetch_pte(struct amd_io_pgtable *pgtable,
unsigned long address,
unsigned long *page_size)
{
int level;
u64 *pte;
*page_size = 0;
if (address > PM_LEVEL_SIZE(pgtable->mode))
return NULL;
level = pgtable->mode - 1;
pte = &pgtable->root[PM_LEVEL_INDEX(level, address)];
*page_size = PTE_LEVEL_PAGE_SIZE(level);
while (level > 0) {
/* Not Present */
if (!IOMMU_PTE_PRESENT(*pte))
return NULL;
/* Large PTE */
if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL ||
PM_PTE_LEVEL(*pte) == PAGE_MODE_NONE)
break;
/* No level skipping support yet */
if (PM_PTE_LEVEL(*pte) != level)
return NULL;
level -= 1;
/* Walk to the next level */
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[PM_LEVEL_INDEX(level, address)];
*page_size = PTE_LEVEL_PAGE_SIZE(level);
}
/*
* If we have a series of large PTEs, make
* sure to return a pointer to the first one.
*/
if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
pte = first_pte_l7(pte, page_size, NULL);
return pte;
}
static void free_clear_pte(u64 *pte, u64 pteval, struct list_head *freelist)
{
u64 *pt;
int mode;
while (!try_cmpxchg64(pte, &pteval, 0))
pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
if (!IOMMU_PTE_PRESENT(pteval))
return;
pt = IOMMU_PTE_PAGE(pteval);
mode = IOMMU_PTE_MODE(pteval);
free_sub_pt(pt, mode, freelist);
}
/*
* Generic mapping functions. It maps a physical address into a DMA
* address space. It allocates the page table pages if necessary.
* In the future it can be extended to a generic mapping function
* supporting all features of AMD IOMMU page tables like level skipping
* and full 64 bit address spaces.
*/
static int iommu_v1_map_pages(struct io_pgtable_ops *ops, unsigned long iova,
phys_addr_t paddr, size_t pgsize, size_t pgcount,
int prot, gfp_t gfp, size_t *mapped)
{
struct protection_domain *dom = io_pgtable_ops_to_domain(ops);
LIST_HEAD(freelist);
bool updated = false;
u64 __pte, *pte;
int ret, i, count;
BUG_ON(!IS_ALIGNED(iova, pgsize));
BUG_ON(!IS_ALIGNED(paddr, pgsize));
ret = -EINVAL;
if (!(prot & IOMMU_PROT_MASK))
goto out;
while (pgcount > 0) {
count = PAGE_SIZE_PTE_COUNT(pgsize);
pte = alloc_pte(dom, iova, pgsize, NULL, gfp, &updated);
ret = -ENOMEM;
if (!pte)
goto out;
for (i = 0; i < count; ++i)
free_clear_pte(&pte[i], pte[i], &freelist);
if (!list_empty(&freelist))
updated = true;
if (count > 1) {
__pte = PAGE_SIZE_PTE(__sme_set(paddr), pgsize);
__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
} else
__pte = __sme_set(paddr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
if (prot & IOMMU_PROT_IR)
__pte |= IOMMU_PTE_IR;
if (prot & IOMMU_PROT_IW)
__pte |= IOMMU_PTE_IW;
for (i = 0; i < count; ++i)
pte[i] = __pte;
iova += pgsize;
paddr += pgsize;
pgcount--;
if (mapped)
*mapped += pgsize;
}
ret = 0;
out:
if (updated) {
unsigned long flags;
spin_lock_irqsave(&dom->lock, flags);
/*
* Flush domain TLB(s) and wait for completion. Any Device-Table
* Updates and flushing already happened in
* increase_address_space().
*/
amd_iommu_domain_flush_tlb_pde(dom);
spin_unlock_irqrestore(&dom->lock, flags);
}
/* Everything flushed out, free pages now */
put_pages_list(&freelist);
return ret;
}
static unsigned long iommu_v1_unmap_pages(struct io_pgtable_ops *ops,
unsigned long iova,
size_t pgsize, size_t pgcount,
struct iommu_iotlb_gather *gather)
{
struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
unsigned long long unmapped;
unsigned long unmap_size;
u64 *pte;
size_t size = pgcount << __ffs(pgsize);
BUG_ON(!is_power_of_2(pgsize));
unmapped = 0;
while (unmapped < size) {
pte = fetch_pte(pgtable, iova, &unmap_size);
if (pte) {
int i, count;
count = PAGE_SIZE_PTE_COUNT(unmap_size);
for (i = 0; i < count; i++)
pte[i] = 0ULL;
} else {
return unmapped;
}
iova = (iova & ~(unmap_size - 1)) + unmap_size;
unmapped += unmap_size;
}
return unmapped;
}
static phys_addr_t iommu_v1_iova_to_phys(struct io_pgtable_ops *ops, unsigned long iova)
{
struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
unsigned long offset_mask, pte_pgsize;
u64 *pte, __pte;
pte = fetch_pte(pgtable, iova, &pte_pgsize);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
return 0;
offset_mask = pte_pgsize - 1;
__pte = __sme_clr(*pte & PM_ADDR_MASK);
return (__pte & ~offset_mask) | (iova & offset_mask);
}
static bool pte_test_and_clear_dirty(u64 *ptep, unsigned long size,
unsigned long flags)
{
bool test_only = flags & IOMMU_DIRTY_NO_CLEAR;
bool dirty = false;
int i, count;
/*
* 2.2.3.2 Host Dirty Support
* When a non-default page size is used , software must OR the
* Dirty bits in all of the replicated host PTEs used to map
* the page. The IOMMU does not guarantee the Dirty bits are
* set in all of the replicated PTEs. Any portion of the page
* may have been written even if the Dirty bit is set in only
* one of the replicated PTEs.
*/
count = PAGE_SIZE_PTE_COUNT(size);
for (i = 0; i < count && test_only; i++) {
if (test_bit(IOMMU_PTE_HD_BIT, (unsigned long *)&ptep[i])) {
dirty = true;
break;
}
}
for (i = 0; i < count && !test_only; i++) {
if (test_and_clear_bit(IOMMU_PTE_HD_BIT,
(unsigned long *)&ptep[i])) {
dirty = true;
}
}
return dirty;
}
static int iommu_v1_read_and_clear_dirty(struct io_pgtable_ops *ops,
unsigned long iova, size_t size,
unsigned long flags,
struct iommu_dirty_bitmap *dirty)
{
struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
unsigned long end = iova + size - 1;
do {
unsigned long pgsize = 0;
u64 *ptep, pte;
ptep = fetch_pte(pgtable, iova, &pgsize);
if (ptep)
pte = READ_ONCE(*ptep);
if (!ptep || !IOMMU_PTE_PRESENT(pte)) {
pgsize = pgsize ?: PTE_LEVEL_PAGE_SIZE(0);
iova += pgsize;
continue;
}
/*
* Mark the whole IOVA range as dirty even if only one of
* the replicated PTEs were marked dirty.
*/
if (pte_test_and_clear_dirty(ptep, pgsize, flags))
iommu_dirty_bitmap_record(dirty, iova, pgsize);
iova += pgsize;
} while (iova < end);
return 0;
}
/*
* ----------------------------------------------------
*/
static void v1_free_pgtable(struct io_pgtable *iop)
{
struct amd_io_pgtable *pgtable = container_of(iop, struct amd_io_pgtable, iop);
struct protection_domain *dom;
LIST_HEAD(freelist);
if (pgtable->mode == PAGE_MODE_NONE)
return;
dom = container_of(pgtable, struct protection_domain, iop);
/* Page-table is not visible to IOMMU anymore, so free it */
BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
pgtable->mode > PAGE_MODE_6_LEVEL);
free_sub_pt(pgtable->root, pgtable->mode, &freelist);
/* Update data structure */
amd_iommu_domain_clr_pt_root(dom);
/* Make changes visible to IOMMUs */
amd_iommu_domain_update(dom);
put_pages_list(&freelist);
}
static struct io_pgtable *v1_alloc_pgtable(struct io_pgtable_cfg *cfg, void *cookie)
{
struct amd_io_pgtable *pgtable = io_pgtable_cfg_to_data(cfg);
cfg->pgsize_bitmap = AMD_IOMMU_PGSIZES,
cfg->ias = IOMMU_IN_ADDR_BIT_SIZE,
cfg->oas = IOMMU_OUT_ADDR_BIT_SIZE,
cfg->tlb = &v1_flush_ops;
pgtable->iop.ops.map_pages = iommu_v1_map_pages;
pgtable->iop.ops.unmap_pages = iommu_v1_unmap_pages;
pgtable->iop.ops.iova_to_phys = iommu_v1_iova_to_phys;
pgtable->iop.ops.read_and_clear_dirty = iommu_v1_read_and_clear_dirty;
return &pgtable->iop;
}
struct io_pgtable_init_fns io_pgtable_amd_iommu_v1_init_fns = {
.alloc = v1_alloc_pgtable,
.free = v1_free_pgtable,
};