| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Authors: Adrian Hunter |
| * Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * This file contains journal replay code. It runs when the file-system is being |
| * mounted and requires no locking. |
| * |
| * The larger is the journal, the longer it takes to scan it, so the longer it |
| * takes to mount UBIFS. This is why the journal has limited size which may be |
| * changed depending on the system requirements. But a larger journal gives |
| * faster I/O speed because it writes the index less frequently. So this is a |
| * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the |
| * larger is the journal, the more memory its index may consume. |
| */ |
| |
| #include "ubifs.h" |
| #include <linux/list_sort.h> |
| #include <crypto/hash.h> |
| #include <crypto/algapi.h> |
| |
| /** |
| * struct replay_entry - replay list entry. |
| * @lnum: logical eraseblock number of the node |
| * @offs: node offset |
| * @len: node length |
| * @deletion: non-zero if this entry corresponds to a node deletion |
| * @sqnum: node sequence number |
| * @list: links the replay list |
| * @key: node key |
| * @nm: directory entry name |
| * @old_size: truncation old size |
| * @new_size: truncation new size |
| * |
| * The replay process first scans all buds and builds the replay list, then |
| * sorts the replay list in nodes sequence number order, and then inserts all |
| * the replay entries to the TNC. |
| */ |
| struct replay_entry { |
| int lnum; |
| int offs; |
| int len; |
| u8 hash[UBIFS_HASH_ARR_SZ]; |
| unsigned int deletion:1; |
| unsigned long long sqnum; |
| struct list_head list; |
| union ubifs_key key; |
| union { |
| struct fscrypt_name nm; |
| struct { |
| loff_t old_size; |
| loff_t new_size; |
| }; |
| }; |
| }; |
| |
| /** |
| * struct bud_entry - entry in the list of buds to replay. |
| * @list: next bud in the list |
| * @bud: bud description object |
| * @sqnum: reference node sequence number |
| * @free: free bytes in the bud |
| * @dirty: dirty bytes in the bud |
| */ |
| struct bud_entry { |
| struct list_head list; |
| struct ubifs_bud *bud; |
| unsigned long long sqnum; |
| int free; |
| int dirty; |
| }; |
| |
| /** |
| * set_bud_lprops - set free and dirty space used by a bud. |
| * @c: UBIFS file-system description object |
| * @b: bud entry which describes the bud |
| * |
| * This function makes sure the LEB properties of bud @b are set correctly |
| * after the replay. Returns zero in case of success and a negative error code |
| * in case of failure. |
| */ |
| static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) |
| { |
| const struct ubifs_lprops *lp; |
| int err = 0, dirty; |
| |
| ubifs_get_lprops(c); |
| |
| lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); |
| if (IS_ERR(lp)) { |
| err = PTR_ERR(lp); |
| goto out; |
| } |
| |
| dirty = lp->dirty; |
| if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { |
| /* |
| * The LEB was added to the journal with a starting offset of |
| * zero which means the LEB must have been empty. The LEB |
| * property values should be @lp->free == @c->leb_size and |
| * @lp->dirty == 0, but that is not the case. The reason is that |
| * the LEB had been garbage collected before it became the bud, |
| * and there was not commit inbetween. The garbage collector |
| * resets the free and dirty space without recording it |
| * anywhere except lprops, so if there was no commit then |
| * lprops does not have that information. |
| * |
| * We do not need to adjust free space because the scan has told |
| * us the exact value which is recorded in the replay entry as |
| * @b->free. |
| * |
| * However we do need to subtract from the dirty space the |
| * amount of space that the garbage collector reclaimed, which |
| * is the whole LEB minus the amount of space that was free. |
| */ |
| dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, |
| lp->free, lp->dirty); |
| dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, |
| lp->free, lp->dirty); |
| dirty -= c->leb_size - lp->free; |
| /* |
| * If the replay order was perfect the dirty space would now be |
| * zero. The order is not perfect because the journal heads |
| * race with each other. This is not a problem but is does mean |
| * that the dirty space may temporarily exceed c->leb_size |
| * during the replay. |
| */ |
| if (dirty != 0) |
| dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", |
| b->bud->lnum, lp->free, lp->dirty, b->free, |
| b->dirty); |
| } |
| lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, |
| lp->flags | LPROPS_TAKEN, 0); |
| if (IS_ERR(lp)) { |
| err = PTR_ERR(lp); |
| goto out; |
| } |
| |
| /* Make sure the journal head points to the latest bud */ |
| err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, |
| b->bud->lnum, c->leb_size - b->free); |
| |
| out: |
| ubifs_release_lprops(c); |
| return err; |
| } |
| |
| /** |
| * set_buds_lprops - set free and dirty space for all replayed buds. |
| * @c: UBIFS file-system description object |
| * |
| * This function sets LEB properties for all replayed buds. Returns zero in |
| * case of success and a negative error code in case of failure. |
| */ |
| static int set_buds_lprops(struct ubifs_info *c) |
| { |
| struct bud_entry *b; |
| int err; |
| |
| list_for_each_entry(b, &c->replay_buds, list) { |
| err = set_bud_lprops(c, b); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * trun_remove_range - apply a replay entry for a truncation to the TNC. |
| * @c: UBIFS file-system description object |
| * @r: replay entry of truncation |
| */ |
| static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) |
| { |
| unsigned min_blk, max_blk; |
| union ubifs_key min_key, max_key; |
| ino_t ino; |
| |
| min_blk = r->new_size / UBIFS_BLOCK_SIZE; |
| if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) |
| min_blk += 1; |
| |
| max_blk = r->old_size / UBIFS_BLOCK_SIZE; |
| if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) |
| max_blk -= 1; |
| |
| ino = key_inum(c, &r->key); |
| |
| data_key_init(c, &min_key, ino, min_blk); |
| data_key_init(c, &max_key, ino, max_blk); |
| |
| return ubifs_tnc_remove_range(c, &min_key, &max_key); |
| } |
| |
| /** |
| * apply_replay_entry - apply a replay entry to the TNC. |
| * @c: UBIFS file-system description object |
| * @r: replay entry to apply |
| * |
| * Apply a replay entry to the TNC. |
| */ |
| static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) |
| { |
| int err; |
| |
| dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", |
| r->lnum, r->offs, r->len, r->deletion, r->sqnum); |
| |
| if (is_hash_key(c, &r->key)) { |
| if (r->deletion) |
| err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); |
| else |
| err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, |
| r->len, r->hash, &r->nm); |
| } else { |
| if (r->deletion) |
| switch (key_type(c, &r->key)) { |
| case UBIFS_INO_KEY: |
| { |
| ino_t inum = key_inum(c, &r->key); |
| |
| err = ubifs_tnc_remove_ino(c, inum); |
| break; |
| } |
| case UBIFS_TRUN_KEY: |
| err = trun_remove_range(c, r); |
| break; |
| default: |
| err = ubifs_tnc_remove(c, &r->key); |
| break; |
| } |
| else |
| err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, |
| r->len, r->hash); |
| if (err) |
| return err; |
| |
| if (c->need_recovery) |
| err = ubifs_recover_size_accum(c, &r->key, r->deletion, |
| r->new_size); |
| } |
| |
| return err; |
| } |
| |
| /** |
| * replay_entries_cmp - compare 2 replay entries. |
| * @priv: UBIFS file-system description object |
| * @a: first replay entry |
| * @b: second replay entry |
| * |
| * This is a comparios function for 'list_sort()' which compares 2 replay |
| * entries @a and @b by comparing their sequence numer. Returns %1 if @a has |
| * greater sequence number and %-1 otherwise. |
| */ |
| static int replay_entries_cmp(void *priv, struct list_head *a, |
| struct list_head *b) |
| { |
| struct ubifs_info *c = priv; |
| struct replay_entry *ra, *rb; |
| |
| cond_resched(); |
| if (a == b) |
| return 0; |
| |
| ra = list_entry(a, struct replay_entry, list); |
| rb = list_entry(b, struct replay_entry, list); |
| ubifs_assert(c, ra->sqnum != rb->sqnum); |
| if (ra->sqnum > rb->sqnum) |
| return 1; |
| return -1; |
| } |
| |
| /** |
| * apply_replay_list - apply the replay list to the TNC. |
| * @c: UBIFS file-system description object |
| * |
| * Apply all entries in the replay list to the TNC. Returns zero in case of |
| * success and a negative error code in case of failure. |
| */ |
| static int apply_replay_list(struct ubifs_info *c) |
| { |
| struct replay_entry *r; |
| int err; |
| |
| list_sort(c, &c->replay_list, &replay_entries_cmp); |
| |
| list_for_each_entry(r, &c->replay_list, list) { |
| cond_resched(); |
| |
| err = apply_replay_entry(c, r); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * destroy_replay_list - destroy the replay. |
| * @c: UBIFS file-system description object |
| * |
| * Destroy the replay list. |
| */ |
| static void destroy_replay_list(struct ubifs_info *c) |
| { |
| struct replay_entry *r, *tmp; |
| |
| list_for_each_entry_safe(r, tmp, &c->replay_list, list) { |
| if (is_hash_key(c, &r->key)) |
| kfree(fname_name(&r->nm)); |
| list_del(&r->list); |
| kfree(r); |
| } |
| } |
| |
| /** |
| * insert_node - insert a node to the replay list |
| * @c: UBIFS file-system description object |
| * @lnum: node logical eraseblock number |
| * @offs: node offset |
| * @len: node length |
| * @key: node key |
| * @sqnum: sequence number |
| * @deletion: non-zero if this is a deletion |
| * @used: number of bytes in use in a LEB |
| * @old_size: truncation old size |
| * @new_size: truncation new size |
| * |
| * This function inserts a scanned non-direntry node to the replay list. The |
| * replay list contains @struct replay_entry elements, and we sort this list in |
| * sequence number order before applying it. The replay list is applied at the |
| * very end of the replay process. Since the list is sorted in sequence number |
| * order, the older modifications are applied first. This function returns zero |
| * in case of success and a negative error code in case of failure. |
| */ |
| static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, |
| const u8 *hash, union ubifs_key *key, |
| unsigned long long sqnum, int deletion, int *used, |
| loff_t old_size, loff_t new_size) |
| { |
| struct replay_entry *r; |
| |
| dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); |
| |
| if (key_inum(c, key) >= c->highest_inum) |
| c->highest_inum = key_inum(c, key); |
| |
| r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); |
| if (!r) |
| return -ENOMEM; |
| |
| if (!deletion) |
| *used += ALIGN(len, 8); |
| r->lnum = lnum; |
| r->offs = offs; |
| r->len = len; |
| ubifs_copy_hash(c, hash, r->hash); |
| r->deletion = !!deletion; |
| r->sqnum = sqnum; |
| key_copy(c, key, &r->key); |
| r->old_size = old_size; |
| r->new_size = new_size; |
| |
| list_add_tail(&r->list, &c->replay_list); |
| return 0; |
| } |
| |
| /** |
| * insert_dent - insert a directory entry node into the replay list. |
| * @c: UBIFS file-system description object |
| * @lnum: node logical eraseblock number |
| * @offs: node offset |
| * @len: node length |
| * @key: node key |
| * @name: directory entry name |
| * @nlen: directory entry name length |
| * @sqnum: sequence number |
| * @deletion: non-zero if this is a deletion |
| * @used: number of bytes in use in a LEB |
| * |
| * This function inserts a scanned directory entry node or an extended |
| * attribute entry to the replay list. Returns zero in case of success and a |
| * negative error code in case of failure. |
| */ |
| static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, |
| const u8 *hash, union ubifs_key *key, |
| const char *name, int nlen, unsigned long long sqnum, |
| int deletion, int *used) |
| { |
| struct replay_entry *r; |
| char *nbuf; |
| |
| dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); |
| if (key_inum(c, key) >= c->highest_inum) |
| c->highest_inum = key_inum(c, key); |
| |
| r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); |
| if (!r) |
| return -ENOMEM; |
| |
| nbuf = kmalloc(nlen + 1, GFP_KERNEL); |
| if (!nbuf) { |
| kfree(r); |
| return -ENOMEM; |
| } |
| |
| if (!deletion) |
| *used += ALIGN(len, 8); |
| r->lnum = lnum; |
| r->offs = offs; |
| r->len = len; |
| ubifs_copy_hash(c, hash, r->hash); |
| r->deletion = !!deletion; |
| r->sqnum = sqnum; |
| key_copy(c, key, &r->key); |
| fname_len(&r->nm) = nlen; |
| memcpy(nbuf, name, nlen); |
| nbuf[nlen] = '\0'; |
| fname_name(&r->nm) = nbuf; |
| |
| list_add_tail(&r->list, &c->replay_list); |
| return 0; |
| } |
| |
| /** |
| * ubifs_validate_entry - validate directory or extended attribute entry node. |
| * @c: UBIFS file-system description object |
| * @dent: the node to validate |
| * |
| * This function validates directory or extended attribute entry node @dent. |
| * Returns zero if the node is all right and a %-EINVAL if not. |
| */ |
| int ubifs_validate_entry(struct ubifs_info *c, |
| const struct ubifs_dent_node *dent) |
| { |
| int key_type = key_type_flash(c, dent->key); |
| int nlen = le16_to_cpu(dent->nlen); |
| |
| if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || |
| dent->type >= UBIFS_ITYPES_CNT || |
| nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || |
| (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) || |
| le64_to_cpu(dent->inum) > MAX_INUM) { |
| ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ? |
| "directory entry" : "extended attribute entry"); |
| return -EINVAL; |
| } |
| |
| if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { |
| ubifs_err(c, "bad key type %d", key_type); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * is_last_bud - check if the bud is the last in the journal head. |
| * @c: UBIFS file-system description object |
| * @bud: bud description object |
| * |
| * This function checks if bud @bud is the last bud in its journal head. This |
| * information is then used by 'replay_bud()' to decide whether the bud can |
| * have corruptions or not. Indeed, only last buds can be corrupted by power |
| * cuts. Returns %1 if this is the last bud, and %0 if not. |
| */ |
| static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) |
| { |
| struct ubifs_jhead *jh = &c->jheads[bud->jhead]; |
| struct ubifs_bud *next; |
| uint32_t data; |
| int err; |
| |
| if (list_is_last(&bud->list, &jh->buds_list)) |
| return 1; |
| |
| /* |
| * The following is a quirk to make sure we work correctly with UBIFS |
| * images used with older UBIFS. |
| * |
| * Normally, the last bud will be the last in the journal head's list |
| * of bud. However, there is one exception if the UBIFS image belongs |
| * to older UBIFS. This is fairly unlikely: one would need to use old |
| * UBIFS, then have a power cut exactly at the right point, and then |
| * try to mount this image with new UBIFS. |
| * |
| * The exception is: it is possible to have 2 buds A and B, A goes |
| * before B, and B is the last, bud B is contains no data, and bud A is |
| * corrupted at the end. The reason is that in older versions when the |
| * journal code switched the next bud (from A to B), it first added a |
| * log reference node for the new bud (B), and only after this it |
| * synchronized the write-buffer of current bud (A). But later this was |
| * changed and UBIFS started to always synchronize the write-buffer of |
| * the bud (A) before writing the log reference for the new bud (B). |
| * |
| * But because older UBIFS always synchronized A's write-buffer before |
| * writing to B, we can recognize this exceptional situation but |
| * checking the contents of bud B - if it is empty, then A can be |
| * treated as the last and we can recover it. |
| * |
| * TODO: remove this piece of code in a couple of years (today it is |
| * 16.05.2011). |
| */ |
| next = list_entry(bud->list.next, struct ubifs_bud, list); |
| if (!list_is_last(&next->list, &jh->buds_list)) |
| return 0; |
| |
| err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); |
| if (err) |
| return 0; |
| |
| return data == 0xFFFFFFFF; |
| } |
| |
| /** |
| * authenticate_sleb - authenticate one scan LEB |
| * @c: UBIFS file-system description object |
| * @sleb: the scan LEB to authenticate |
| * @log_hash: |
| * @is_last: if true, this is is the last LEB |
| * |
| * This function iterates over the buds of a single LEB authenticating all buds |
| * with the authentication nodes on this LEB. Authentication nodes are written |
| * after some buds and contain a HMAC covering the authentication node itself |
| * and the buds between the last authentication node and the current |
| * authentication node. It can happen that the last buds cannot be authenticated |
| * because a powercut happened when some nodes were written but not the |
| * corresponding authentication node. This function returns the number of nodes |
| * that could be authenticated or a negative error code. |
| */ |
| static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
| struct shash_desc *log_hash, int is_last) |
| { |
| int n_not_auth = 0; |
| struct ubifs_scan_node *snod; |
| int n_nodes = 0; |
| int err; |
| u8 *hash, *hmac; |
| |
| if (!ubifs_authenticated(c)) |
| return sleb->nodes_cnt; |
| |
| hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS); |
| hmac = kmalloc(c->hmac_desc_len, GFP_NOFS); |
| if (!hash || !hmac) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| |
| n_nodes++; |
| |
| if (snod->type == UBIFS_AUTH_NODE) { |
| struct ubifs_auth_node *auth = snod->node; |
| SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm); |
| SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm); |
| |
| hash_desc->tfm = c->hash_tfm; |
| hash_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| ubifs_shash_copy_state(c, log_hash, hash_desc); |
| err = crypto_shash_final(hash_desc, hash); |
| if (err) |
| goto out; |
| |
| hmac_desc->tfm = c->hmac_tfm; |
| hmac_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; |
| err = crypto_shash_digest(hmac_desc, hash, c->hash_len, |
| hmac); |
| if (err) |
| goto out; |
| |
| err = ubifs_check_hmac(c, auth->hmac, hmac); |
| if (err) { |
| err = -EPERM; |
| goto out; |
| } |
| n_not_auth = 0; |
| } else { |
| err = crypto_shash_update(log_hash, snod->node, |
| snod->len); |
| if (err) |
| goto out; |
| n_not_auth++; |
| } |
| } |
| |
| /* |
| * A powercut can happen when some nodes were written, but not yet |
| * the corresponding authentication node. This may only happen on |
| * the last bud though. |
| */ |
| if (n_not_auth) { |
| if (is_last) { |
| dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them", |
| n_not_auth, sleb->lnum); |
| err = 0; |
| } else { |
| dbg_mnt("%d unauthenticated nodes found on non-last LEB %d", |
| n_not_auth, sleb->lnum); |
| err = -EPERM; |
| } |
| } else { |
| err = 0; |
| } |
| out: |
| kfree(hash); |
| kfree(hmac); |
| |
| return err ? err : n_nodes - n_not_auth; |
| } |
| |
| /** |
| * replay_bud - replay a bud logical eraseblock. |
| * @c: UBIFS file-system description object |
| * @b: bud entry which describes the bud |
| * |
| * This function replays bud @bud, recovers it if needed, and adds all nodes |
| * from this bud to the replay list. Returns zero in case of success and a |
| * negative error code in case of failure. |
| */ |
| static int replay_bud(struct ubifs_info *c, struct bud_entry *b) |
| { |
| int is_last = is_last_bud(c, b->bud); |
| int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; |
| int n_nodes, n = 0; |
| struct ubifs_scan_leb *sleb; |
| struct ubifs_scan_node *snod; |
| |
| dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", |
| lnum, b->bud->jhead, offs, is_last); |
| |
| if (c->need_recovery && is_last) |
| /* |
| * Recover only last LEBs in the journal heads, because power |
| * cuts may cause corruptions only in these LEBs, because only |
| * these LEBs could possibly be written to at the power cut |
| * time. |
| */ |
| sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); |
| else |
| sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); |
| if (IS_ERR(sleb)) |
| return PTR_ERR(sleb); |
| |
| n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last); |
| if (n_nodes < 0) { |
| err = n_nodes; |
| goto out; |
| } |
| |
| ubifs_shash_copy_state(c, b->bud->log_hash, |
| c->jheads[b->bud->jhead].log_hash); |
| |
| /* |
| * The bud does not have to start from offset zero - the beginning of |
| * the 'lnum' LEB may contain previously committed data. One of the |
| * things we have to do in replay is to correctly update lprops with |
| * newer information about this LEB. |
| * |
| * At this point lprops thinks that this LEB has 'c->leb_size - offs' |
| * bytes of free space because it only contain information about |
| * committed data. |
| * |
| * But we know that real amount of free space is 'c->leb_size - |
| * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and |
| * 'sleb->endpt' is used by bud data. We have to correctly calculate |
| * how much of these data are dirty and update lprops with this |
| * information. |
| * |
| * The dirt in that LEB region is comprised of padding nodes, deletion |
| * nodes, truncation nodes and nodes which are obsoleted by subsequent |
| * nodes in this LEB. So instead of calculating clean space, we |
| * calculate used space ('used' variable). |
| */ |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| u8 hash[UBIFS_HASH_ARR_SZ]; |
| int deletion = 0; |
| |
| cond_resched(); |
| |
| if (snod->sqnum >= SQNUM_WATERMARK) { |
| ubifs_err(c, "file system's life ended"); |
| goto out_dump; |
| } |
| |
| ubifs_node_calc_hash(c, snod->node, hash); |
| |
| if (snod->sqnum > c->max_sqnum) |
| c->max_sqnum = snod->sqnum; |
| |
| switch (snod->type) { |
| case UBIFS_INO_NODE: |
| { |
| struct ubifs_ino_node *ino = snod->node; |
| loff_t new_size = le64_to_cpu(ino->size); |
| |
| if (le32_to_cpu(ino->nlink) == 0) |
| deletion = 1; |
| err = insert_node(c, lnum, snod->offs, snod->len, hash, |
| &snod->key, snod->sqnum, deletion, |
| &used, 0, new_size); |
| break; |
| } |
| case UBIFS_DATA_NODE: |
| { |
| struct ubifs_data_node *dn = snod->node; |
| loff_t new_size = le32_to_cpu(dn->size) + |
| key_block(c, &snod->key) * |
| UBIFS_BLOCK_SIZE; |
| |
| err = insert_node(c, lnum, snod->offs, snod->len, hash, |
| &snod->key, snod->sqnum, deletion, |
| &used, 0, new_size); |
| break; |
| } |
| case UBIFS_DENT_NODE: |
| case UBIFS_XENT_NODE: |
| { |
| struct ubifs_dent_node *dent = snod->node; |
| |
| err = ubifs_validate_entry(c, dent); |
| if (err) |
| goto out_dump; |
| |
| err = insert_dent(c, lnum, snod->offs, snod->len, hash, |
| &snod->key, dent->name, |
| le16_to_cpu(dent->nlen), snod->sqnum, |
| !le64_to_cpu(dent->inum), &used); |
| break; |
| } |
| case UBIFS_TRUN_NODE: |
| { |
| struct ubifs_trun_node *trun = snod->node; |
| loff_t old_size = le64_to_cpu(trun->old_size); |
| loff_t new_size = le64_to_cpu(trun->new_size); |
| union ubifs_key key; |
| |
| /* Validate truncation node */ |
| if (old_size < 0 || old_size > c->max_inode_sz || |
| new_size < 0 || new_size > c->max_inode_sz || |
| old_size <= new_size) { |
| ubifs_err(c, "bad truncation node"); |
| goto out_dump; |
| } |
| |
| /* |
| * Create a fake truncation key just to use the same |
| * functions which expect nodes to have keys. |
| */ |
| trun_key_init(c, &key, le32_to_cpu(trun->inum)); |
| err = insert_node(c, lnum, snod->offs, snod->len, hash, |
| &key, snod->sqnum, 1, &used, |
| old_size, new_size); |
| break; |
| } |
| case UBIFS_AUTH_NODE: |
| break; |
| default: |
| ubifs_err(c, "unexpected node type %d in bud LEB %d:%d", |
| snod->type, lnum, snod->offs); |
| err = -EINVAL; |
| goto out_dump; |
| } |
| if (err) |
| goto out; |
| |
| n++; |
| if (n == n_nodes) |
| break; |
| } |
| |
| ubifs_assert(c, ubifs_search_bud(c, lnum)); |
| ubifs_assert(c, sleb->endpt - offs >= used); |
| ubifs_assert(c, sleb->endpt % c->min_io_size == 0); |
| |
| b->dirty = sleb->endpt - offs - used; |
| b->free = c->leb_size - sleb->endpt; |
| dbg_mnt("bud LEB %d replied: dirty %d, free %d", |
| lnum, b->dirty, b->free); |
| |
| out: |
| ubifs_scan_destroy(sleb); |
| return err; |
| |
| out_dump: |
| ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs); |
| ubifs_dump_node(c, snod->node); |
| ubifs_scan_destroy(sleb); |
| return -EINVAL; |
| } |
| |
| /** |
| * replay_buds - replay all buds. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| static int replay_buds(struct ubifs_info *c) |
| { |
| struct bud_entry *b; |
| int err; |
| unsigned long long prev_sqnum = 0; |
| |
| list_for_each_entry(b, &c->replay_buds, list) { |
| err = replay_bud(c, b); |
| if (err) |
| return err; |
| |
| ubifs_assert(c, b->sqnum > prev_sqnum); |
| prev_sqnum = b->sqnum; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * destroy_bud_list - destroy the list of buds to replay. |
| * @c: UBIFS file-system description object |
| */ |
| static void destroy_bud_list(struct ubifs_info *c) |
| { |
| struct bud_entry *b; |
| |
| while (!list_empty(&c->replay_buds)) { |
| b = list_entry(c->replay_buds.next, struct bud_entry, list); |
| list_del(&b->list); |
| kfree(b); |
| } |
| } |
| |
| /** |
| * add_replay_bud - add a bud to the list of buds to replay. |
| * @c: UBIFS file-system description object |
| * @lnum: bud logical eraseblock number to replay |
| * @offs: bud start offset |
| * @jhead: journal head to which this bud belongs |
| * @sqnum: reference node sequence number |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, |
| unsigned long long sqnum) |
| { |
| struct ubifs_bud *bud; |
| struct bud_entry *b; |
| int err; |
| |
| dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); |
| |
| bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); |
| if (!bud) |
| return -ENOMEM; |
| |
| b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); |
| if (!b) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| bud->lnum = lnum; |
| bud->start = offs; |
| bud->jhead = jhead; |
| bud->log_hash = ubifs_hash_get_desc(c); |
| if (IS_ERR(bud->log_hash)) { |
| err = PTR_ERR(bud->log_hash); |
| goto out; |
| } |
| |
| ubifs_shash_copy_state(c, c->log_hash, bud->log_hash); |
| |
| ubifs_add_bud(c, bud); |
| |
| b->bud = bud; |
| b->sqnum = sqnum; |
| list_add_tail(&b->list, &c->replay_buds); |
| |
| return 0; |
| out: |
| kfree(bud); |
| kfree(b); |
| |
| return err; |
| } |
| |
| /** |
| * validate_ref - validate a reference node. |
| * @c: UBIFS file-system description object |
| * @ref: the reference node to validate |
| * @ref_lnum: LEB number of the reference node |
| * @ref_offs: reference node offset |
| * |
| * This function returns %1 if a bud reference already exists for the LEB. %0 is |
| * returned if the reference node is new, otherwise %-EINVAL is returned if |
| * validation failed. |
| */ |
| static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) |
| { |
| struct ubifs_bud *bud; |
| int lnum = le32_to_cpu(ref->lnum); |
| unsigned int offs = le32_to_cpu(ref->offs); |
| unsigned int jhead = le32_to_cpu(ref->jhead); |
| |
| /* |
| * ref->offs may point to the end of LEB when the journal head points |
| * to the end of LEB and we write reference node for it during commit. |
| * So this is why we require 'offs > c->leb_size'. |
| */ |
| if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || |
| lnum < c->main_first || offs > c->leb_size || |
| offs & (c->min_io_size - 1)) |
| return -EINVAL; |
| |
| /* Make sure we have not already looked at this bud */ |
| bud = ubifs_search_bud(c, lnum); |
| if (bud) { |
| if (bud->jhead == jhead && bud->start <= offs) |
| return 1; |
| ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * replay_log_leb - replay a log logical eraseblock. |
| * @c: UBIFS file-system description object |
| * @lnum: log logical eraseblock to replay |
| * @offs: offset to start replaying from |
| * @sbuf: scan buffer |
| * |
| * This function replays a log LEB and returns zero in case of success, %1 if |
| * this is the last LEB in the log, and a negative error code in case of |
| * failure. |
| */ |
| static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) |
| { |
| int err; |
| struct ubifs_scan_leb *sleb; |
| struct ubifs_scan_node *snod; |
| const struct ubifs_cs_node *node; |
| |
| dbg_mnt("replay log LEB %d:%d", lnum, offs); |
| sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); |
| if (IS_ERR(sleb)) { |
| if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) |
| return PTR_ERR(sleb); |
| /* |
| * Note, the below function will recover this log LEB only if |
| * it is the last, because unclean reboots can possibly corrupt |
| * only the tail of the log. |
| */ |
| sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); |
| if (IS_ERR(sleb)) |
| return PTR_ERR(sleb); |
| } |
| |
| if (sleb->nodes_cnt == 0) { |
| err = 1; |
| goto out; |
| } |
| |
| node = sleb->buf; |
| snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); |
| if (c->cs_sqnum == 0) { |
| /* |
| * This is the first log LEB we are looking at, make sure that |
| * the first node is a commit start node. Also record its |
| * sequence number so that UBIFS can determine where the log |
| * ends, because all nodes which were have higher sequence |
| * numbers. |
| */ |
| if (snod->type != UBIFS_CS_NODE) { |
| ubifs_err(c, "first log node at LEB %d:%d is not CS node", |
| lnum, offs); |
| goto out_dump; |
| } |
| if (le64_to_cpu(node->cmt_no) != c->cmt_no) { |
| ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu", |
| lnum, offs, |
| (unsigned long long)le64_to_cpu(node->cmt_no), |
| c->cmt_no); |
| goto out_dump; |
| } |
| |
| c->cs_sqnum = le64_to_cpu(node->ch.sqnum); |
| dbg_mnt("commit start sqnum %llu", c->cs_sqnum); |
| |
| err = ubifs_shash_init(c, c->log_hash); |
| if (err) |
| goto out; |
| |
| err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ); |
| if (err < 0) |
| goto out; |
| } |
| |
| if (snod->sqnum < c->cs_sqnum) { |
| /* |
| * This means that we reached end of log and now |
| * look to the older log data, which was already |
| * committed but the eraseblock was not erased (UBIFS |
| * only un-maps it). So this basically means we have to |
| * exit with "end of log" code. |
| */ |
| err = 1; |
| goto out; |
| } |
| |
| /* Make sure the first node sits at offset zero of the LEB */ |
| if (snod->offs != 0) { |
| ubifs_err(c, "first node is not at zero offset"); |
| goto out_dump; |
| } |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| cond_resched(); |
| |
| if (snod->sqnum >= SQNUM_WATERMARK) { |
| ubifs_err(c, "file system's life ended"); |
| goto out_dump; |
| } |
| |
| if (snod->sqnum < c->cs_sqnum) { |
| ubifs_err(c, "bad sqnum %llu, commit sqnum %llu", |
| snod->sqnum, c->cs_sqnum); |
| goto out_dump; |
| } |
| |
| if (snod->sqnum > c->max_sqnum) |
| c->max_sqnum = snod->sqnum; |
| |
| switch (snod->type) { |
| case UBIFS_REF_NODE: { |
| const struct ubifs_ref_node *ref = snod->node; |
| |
| err = validate_ref(c, ref); |
| if (err == 1) |
| break; /* Already have this bud */ |
| if (err) |
| goto out_dump; |
| |
| err = ubifs_shash_update(c, c->log_hash, ref, |
| UBIFS_REF_NODE_SZ); |
| if (err) |
| goto out; |
| |
| err = add_replay_bud(c, le32_to_cpu(ref->lnum), |
| le32_to_cpu(ref->offs), |
| le32_to_cpu(ref->jhead), |
| snod->sqnum); |
| if (err) |
| goto out; |
| |
| break; |
| } |
| case UBIFS_CS_NODE: |
| /* Make sure it sits at the beginning of LEB */ |
| if (snod->offs != 0) { |
| ubifs_err(c, "unexpected node in log"); |
| goto out_dump; |
| } |
| break; |
| default: |
| ubifs_err(c, "unexpected node in log"); |
| goto out_dump; |
| } |
| } |
| |
| if (sleb->endpt || c->lhead_offs >= c->leb_size) { |
| c->lhead_lnum = lnum; |
| c->lhead_offs = sleb->endpt; |
| } |
| |
| err = !sleb->endpt; |
| out: |
| ubifs_scan_destroy(sleb); |
| return err; |
| |
| out_dump: |
| ubifs_err(c, "log error detected while replaying the log at LEB %d:%d", |
| lnum, offs + snod->offs); |
| ubifs_dump_node(c, snod->node); |
| ubifs_scan_destroy(sleb); |
| return -EINVAL; |
| } |
| |
| /** |
| * take_ihead - update the status of the index head in lprops to 'taken'. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns the amount of free space in the index head LEB or a |
| * negative error code. |
| */ |
| static int take_ihead(struct ubifs_info *c) |
| { |
| const struct ubifs_lprops *lp; |
| int err, free; |
| |
| ubifs_get_lprops(c); |
| |
| lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); |
| if (IS_ERR(lp)) { |
| err = PTR_ERR(lp); |
| goto out; |
| } |
| |
| free = lp->free; |
| |
| lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| lp->flags | LPROPS_TAKEN, 0); |
| if (IS_ERR(lp)) { |
| err = PTR_ERR(lp); |
| goto out; |
| } |
| |
| err = free; |
| out: |
| ubifs_release_lprops(c); |
| return err; |
| } |
| |
| /** |
| * ubifs_replay_journal - replay journal. |
| * @c: UBIFS file-system description object |
| * |
| * This function scans the journal, replays and cleans it up. It makes sure all |
| * memory data structures related to uncommitted journal are built (dirty TNC |
| * tree, tree of buds, modified lprops, etc). |
| */ |
| int ubifs_replay_journal(struct ubifs_info *c) |
| { |
| int err, lnum, free; |
| |
| BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); |
| |
| /* Update the status of the index head in lprops to 'taken' */ |
| free = take_ihead(c); |
| if (free < 0) |
| return free; /* Error code */ |
| |
| if (c->ihead_offs != c->leb_size - free) { |
| ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum, |
| c->ihead_offs); |
| return -EINVAL; |
| } |
| |
| dbg_mnt("start replaying the journal"); |
| c->replaying = 1; |
| lnum = c->ltail_lnum = c->lhead_lnum; |
| |
| do { |
| err = replay_log_leb(c, lnum, 0, c->sbuf); |
| if (err == 1) { |
| if (lnum != c->lhead_lnum) |
| /* We hit the end of the log */ |
| break; |
| |
| /* |
| * The head of the log must always start with the |
| * "commit start" node on a properly formatted UBIFS. |
| * But we found no nodes at all, which means that |
| * something went wrong and we cannot proceed mounting |
| * the file-system. |
| */ |
| ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted", |
| lnum, 0); |
| err = -EINVAL; |
| } |
| if (err) |
| goto out; |
| lnum = ubifs_next_log_lnum(c, lnum); |
| } while (lnum != c->ltail_lnum); |
| |
| err = replay_buds(c); |
| if (err) |
| goto out; |
| |
| err = apply_replay_list(c); |
| if (err) |
| goto out; |
| |
| err = set_buds_lprops(c); |
| if (err) |
| goto out; |
| |
| /* |
| * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable |
| * to roughly estimate index growth. Things like @c->bi.min_idx_lebs |
| * depend on it. This means we have to initialize it to make sure |
| * budgeting works properly. |
| */ |
| c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); |
| c->bi.uncommitted_idx *= c->max_idx_node_sz; |
| |
| ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery); |
| dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", |
| c->lhead_lnum, c->lhead_offs, c->max_sqnum, |
| (unsigned long)c->highest_inum); |
| out: |
| destroy_replay_list(c); |
| destroy_bud_list(c); |
| c->replaying = 0; |
| return err; |
| } |