blob: cade1acbcea9420dc7c69622888d820af24eea99 [file] [log] [blame]
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License version 2.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/gfs2_ondisk.h>
#include <linux/quotaops.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "recovery.h"
#include "rgrp.h"
#include "super.h"
#include "sys.h"
#include "util.h"
#include "log.h"
#include "quota.h"
#include "dir.h"
#include "trace_gfs2.h"
#define DO 0
#define UNDO 1
/**
* gfs2_tune_init - Fill a gfs2_tune structure with default values
* @gt: tune
*
*/
static void gfs2_tune_init(struct gfs2_tune *gt)
{
spin_lock_init(&gt->gt_spin);
gt->gt_quota_simul_sync = 64;
gt->gt_quota_warn_period = 10;
gt->gt_quota_scale_num = 1;
gt->gt_quota_scale_den = 1;
gt->gt_new_files_jdata = 0;
gt->gt_max_readahead = 1 << 18;
gt->gt_complain_secs = 10;
}
static struct gfs2_sbd *init_sbd(struct super_block *sb)
{
struct gfs2_sbd *sdp;
sdp = kzalloc(sizeof(struct gfs2_sbd), GFP_KERNEL);
if (!sdp)
return NULL;
sb->s_fs_info = sdp;
sdp->sd_vfs = sb;
set_bit(SDF_NOJOURNALID, &sdp->sd_flags);
gfs2_tune_init(&sdp->sd_tune);
init_waitqueue_head(&sdp->sd_glock_wait);
atomic_set(&sdp->sd_glock_disposal, 0);
spin_lock_init(&sdp->sd_statfs_spin);
spin_lock_init(&sdp->sd_rindex_spin);
mutex_init(&sdp->sd_rindex_mutex);
INIT_LIST_HEAD(&sdp->sd_rindex_list);
INIT_LIST_HEAD(&sdp->sd_rindex_mru_list);
INIT_LIST_HEAD(&sdp->sd_jindex_list);
spin_lock_init(&sdp->sd_jindex_spin);
mutex_init(&sdp->sd_jindex_mutex);
INIT_LIST_HEAD(&sdp->sd_quota_list);
mutex_init(&sdp->sd_quota_mutex);
init_waitqueue_head(&sdp->sd_quota_wait);
INIT_LIST_HEAD(&sdp->sd_trunc_list);
spin_lock_init(&sdp->sd_trunc_lock);
spin_lock_init(&sdp->sd_log_lock);
atomic_set(&sdp->sd_log_pinned, 0);
INIT_LIST_HEAD(&sdp->sd_log_le_buf);
INIT_LIST_HEAD(&sdp->sd_log_le_revoke);
INIT_LIST_HEAD(&sdp->sd_log_le_rg);
INIT_LIST_HEAD(&sdp->sd_log_le_databuf);
INIT_LIST_HEAD(&sdp->sd_log_le_ordered);
init_waitqueue_head(&sdp->sd_log_waitq);
init_waitqueue_head(&sdp->sd_logd_waitq);
INIT_LIST_HEAD(&sdp->sd_ail1_list);
INIT_LIST_HEAD(&sdp->sd_ail2_list);
init_rwsem(&sdp->sd_log_flush_lock);
atomic_set(&sdp->sd_log_in_flight, 0);
init_waitqueue_head(&sdp->sd_log_flush_wait);
INIT_LIST_HEAD(&sdp->sd_revoke_list);
mutex_init(&sdp->sd_freeze_lock);
return sdp;
}
/**
* gfs2_check_sb - Check superblock
* @sdp: the filesystem
* @sb: The superblock
* @silent: Don't print a message if the check fails
*
* Checks the version code of the FS is one that we understand how to
* read and that the sizes of the various on-disk structures have not
* changed.
*/
static int gfs2_check_sb(struct gfs2_sbd *sdp, struct gfs2_sb_host *sb, int silent)
{
if (sb->sb_magic != GFS2_MAGIC ||
sb->sb_type != GFS2_METATYPE_SB) {
if (!silent)
printk(KERN_WARNING "GFS2: not a GFS2 filesystem\n");
return -EINVAL;
}
/* If format numbers match exactly, we're done. */
if (sb->sb_fs_format == GFS2_FORMAT_FS &&
sb->sb_multihost_format == GFS2_FORMAT_MULTI)
return 0;
fs_warn(sdp, "Unknown on-disk format, unable to mount\n");
return -EINVAL;
}
static void end_bio_io_page(struct bio *bio, int error)
{
struct page *page = bio->bi_private;
if (!error)
SetPageUptodate(page);
else
printk(KERN_WARNING "gfs2: error %d reading superblock\n", error);
unlock_page(page);
}
static void gfs2_sb_in(struct gfs2_sb_host *sb, const void *buf)
{
const struct gfs2_sb *str = buf;
sb->sb_magic = be32_to_cpu(str->sb_header.mh_magic);
sb->sb_type = be32_to_cpu(str->sb_header.mh_type);
sb->sb_format = be32_to_cpu(str->sb_header.mh_format);
sb->sb_fs_format = be32_to_cpu(str->sb_fs_format);
sb->sb_multihost_format = be32_to_cpu(str->sb_multihost_format);
sb->sb_bsize = be32_to_cpu(str->sb_bsize);
sb->sb_bsize_shift = be32_to_cpu(str->sb_bsize_shift);
sb->sb_master_dir.no_addr = be64_to_cpu(str->sb_master_dir.no_addr);
sb->sb_master_dir.no_formal_ino = be64_to_cpu(str->sb_master_dir.no_formal_ino);
sb->sb_root_dir.no_addr = be64_to_cpu(str->sb_root_dir.no_addr);
sb->sb_root_dir.no_formal_ino = be64_to_cpu(str->sb_root_dir.no_formal_ino);
memcpy(sb->sb_lockproto, str->sb_lockproto, GFS2_LOCKNAME_LEN);
memcpy(sb->sb_locktable, str->sb_locktable, GFS2_LOCKNAME_LEN);
memcpy(sb->sb_uuid, str->sb_uuid, 16);
}
/**
* gfs2_read_super - Read the gfs2 super block from disk
* @sdp: The GFS2 super block
* @sector: The location of the super block
* @error: The error code to return
*
* This uses the bio functions to read the super block from disk
* because we want to be 100% sure that we never read cached data.
* A super block is read twice only during each GFS2 mount and is
* never written to by the filesystem. The first time its read no
* locks are held, and the only details which are looked at are those
* relating to the locking protocol. Once locking is up and working,
* the sb is read again under the lock to establish the location of
* the master directory (contains pointers to journals etc) and the
* root directory.
*
* Returns: 0 on success or error
*/
static int gfs2_read_super(struct gfs2_sbd *sdp, sector_t sector)
{
struct super_block *sb = sdp->sd_vfs;
struct gfs2_sb *p;
struct page *page;
struct bio *bio;
page = alloc_page(GFP_NOFS);
if (unlikely(!page))
return -ENOBUFS;
ClearPageUptodate(page);
ClearPageDirty(page);
lock_page(page);
bio = bio_alloc(GFP_NOFS, 1);
bio->bi_sector = sector * (sb->s_blocksize >> 9);
bio->bi_bdev = sb->s_bdev;
bio_add_page(bio, page, PAGE_SIZE, 0);
bio->bi_end_io = end_bio_io_page;
bio->bi_private = page;
submit_bio(READ_SYNC | REQ_META, bio);
wait_on_page_locked(page);
bio_put(bio);
if (!PageUptodate(page)) {
__free_page(page);
return -EIO;
}
p = kmap(page);
gfs2_sb_in(&sdp->sd_sb, p);
kunmap(page);
__free_page(page);
return 0;
}
/**
* gfs2_read_sb - Read super block
* @sdp: The GFS2 superblock
* @silent: Don't print message if mount fails
*
*/
static int gfs2_read_sb(struct gfs2_sbd *sdp, int silent)
{
u32 hash_blocks, ind_blocks, leaf_blocks;
u32 tmp_blocks;
unsigned int x;
int error;
error = gfs2_read_super(sdp, GFS2_SB_ADDR >> sdp->sd_fsb2bb_shift);
if (error) {
if (!silent)
fs_err(sdp, "can't read superblock\n");
return error;
}
error = gfs2_check_sb(sdp, &sdp->sd_sb, silent);
if (error)
return error;
sdp->sd_fsb2bb_shift = sdp->sd_sb.sb_bsize_shift -
GFS2_BASIC_BLOCK_SHIFT;
sdp->sd_fsb2bb = 1 << sdp->sd_fsb2bb_shift;
sdp->sd_diptrs = (sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_dinode)) / sizeof(u64);
sdp->sd_inptrs = (sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_meta_header)) / sizeof(u64);
sdp->sd_jbsize = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header);
sdp->sd_hash_bsize = sdp->sd_sb.sb_bsize / 2;
sdp->sd_hash_bsize_shift = sdp->sd_sb.sb_bsize_shift - 1;
sdp->sd_hash_ptrs = sdp->sd_hash_bsize / sizeof(u64);
sdp->sd_qc_per_block = (sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_meta_header)) /
sizeof(struct gfs2_quota_change);
/* Compute maximum reservation required to add a entry to a directory */
hash_blocks = DIV_ROUND_UP(sizeof(u64) * (1 << GFS2_DIR_MAX_DEPTH),
sdp->sd_jbsize);
ind_blocks = 0;
for (tmp_blocks = hash_blocks; tmp_blocks > sdp->sd_diptrs;) {
tmp_blocks = DIV_ROUND_UP(tmp_blocks, sdp->sd_inptrs);
ind_blocks += tmp_blocks;
}
leaf_blocks = 2 + GFS2_DIR_MAX_DEPTH;
sdp->sd_max_dirres = hash_blocks + ind_blocks + leaf_blocks;
sdp->sd_heightsize[0] = sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_dinode);
sdp->sd_heightsize[1] = sdp->sd_sb.sb_bsize * sdp->sd_diptrs;
for (x = 2;; x++) {
u64 space, d;
u32 m;
space = sdp->sd_heightsize[x - 1] * sdp->sd_inptrs;
d = space;
m = do_div(d, sdp->sd_inptrs);
if (d != sdp->sd_heightsize[x - 1] || m)
break;
sdp->sd_heightsize[x] = space;
}
sdp->sd_max_height = x;
sdp->sd_heightsize[x] = ~0;
gfs2_assert(sdp, sdp->sd_max_height <= GFS2_MAX_META_HEIGHT);
sdp->sd_jheightsize[0] = sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_dinode);
sdp->sd_jheightsize[1] = sdp->sd_jbsize * sdp->sd_diptrs;
for (x = 2;; x++) {
u64 space, d;
u32 m;
space = sdp->sd_jheightsize[x - 1] * sdp->sd_inptrs;
d = space;
m = do_div(d, sdp->sd_inptrs);
if (d != sdp->sd_jheightsize[x - 1] || m)
break;
sdp->sd_jheightsize[x] = space;
}
sdp->sd_max_jheight = x;
sdp->sd_jheightsize[x] = ~0;
gfs2_assert(sdp, sdp->sd_max_jheight <= GFS2_MAX_META_HEIGHT);
return 0;
}
static int init_names(struct gfs2_sbd *sdp, int silent)
{
char *proto, *table;
int error = 0;
proto = sdp->sd_args.ar_lockproto;
table = sdp->sd_args.ar_locktable;
/* Try to autodetect */
if (!proto[0] || !table[0]) {
error = gfs2_read_super(sdp, GFS2_SB_ADDR >> sdp->sd_fsb2bb_shift);
if (error)
return error;
error = gfs2_check_sb(sdp, &sdp->sd_sb, silent);
if (error)
goto out;
if (!proto[0])
proto = sdp->sd_sb.sb_lockproto;
if (!table[0])
table = sdp->sd_sb.sb_locktable;
}
if (!table[0])
table = sdp->sd_vfs->s_id;
strlcpy(sdp->sd_proto_name, proto, GFS2_FSNAME_LEN);
strlcpy(sdp->sd_table_name, table, GFS2_FSNAME_LEN);
table = sdp->sd_table_name;
while ((table = strchr(table, '/')))
*table = '_';
out:
return error;
}
static int init_locking(struct gfs2_sbd *sdp, struct gfs2_holder *mount_gh,
int undo)
{
int error = 0;
if (undo)
goto fail_trans;
error = gfs2_glock_nq_num(sdp,
GFS2_MOUNT_LOCK, &gfs2_nondisk_glops,
LM_ST_EXCLUSIVE, LM_FLAG_NOEXP | GL_NOCACHE,
mount_gh);
if (error) {
fs_err(sdp, "can't acquire mount glock: %d\n", error);
goto fail;
}
error = gfs2_glock_nq_num(sdp,
GFS2_LIVE_LOCK, &gfs2_nondisk_glops,
LM_ST_SHARED,
LM_FLAG_NOEXP | GL_EXACT,
&sdp->sd_live_gh);
if (error) {
fs_err(sdp, "can't acquire live glock: %d\n", error);
goto fail_mount;
}
error = gfs2_glock_get(sdp, GFS2_RENAME_LOCK, &gfs2_nondisk_glops,
CREATE, &sdp->sd_rename_gl);
if (error) {
fs_err(sdp, "can't create rename glock: %d\n", error);
goto fail_live;
}
error = gfs2_glock_get(sdp, GFS2_TRANS_LOCK, &gfs2_trans_glops,
CREATE, &sdp->sd_trans_gl);
if (error) {
fs_err(sdp, "can't create transaction glock: %d\n", error);
goto fail_rename;
}
return 0;
fail_trans:
gfs2_glock_put(sdp->sd_trans_gl);
fail_rename:
gfs2_glock_put(sdp->sd_rename_gl);
fail_live:
gfs2_glock_dq_uninit(&sdp->sd_live_gh);
fail_mount:
gfs2_glock_dq_uninit(mount_gh);
fail:
return error;
}
static int gfs2_lookup_root(struct super_block *sb, struct dentry **dptr,
u64 no_addr, const char *name)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
struct dentry *dentry;
struct inode *inode;
inode = gfs2_inode_lookup(sb, DT_DIR, no_addr, 0);
if (IS_ERR(inode)) {
fs_err(sdp, "can't read in %s inode: %ld\n", name, PTR_ERR(inode));
return PTR_ERR(inode);
}
dentry = d_alloc_root(inode);
if (!dentry) {
fs_err(sdp, "can't alloc %s dentry\n", name);
iput(inode);
return -ENOMEM;
}
dentry->d_op = &gfs2_dops;
*dptr = dentry;
return 0;
}
static int init_sb(struct gfs2_sbd *sdp, int silent)
{
struct super_block *sb = sdp->sd_vfs;
struct gfs2_holder sb_gh;
u64 no_addr;
int ret;
ret = gfs2_glock_nq_num(sdp, GFS2_SB_LOCK, &gfs2_meta_glops,
LM_ST_SHARED, 0, &sb_gh);
if (ret) {
fs_err(sdp, "can't acquire superblock glock: %d\n", ret);
return ret;
}
ret = gfs2_read_sb(sdp, silent);
if (ret) {
fs_err(sdp, "can't read superblock: %d\n", ret);
goto out;
}
/* Set up the buffer cache and SB for real */
if (sdp->sd_sb.sb_bsize < bdev_logical_block_size(sb->s_bdev)) {
ret = -EINVAL;
fs_err(sdp, "FS block size (%u) is too small for device "
"block size (%u)\n",
sdp->sd_sb.sb_bsize, bdev_logical_block_size(sb->s_bdev));
goto out;
}
if (sdp->sd_sb.sb_bsize > PAGE_SIZE) {
ret = -EINVAL;
fs_err(sdp, "FS block size (%u) is too big for machine "
"page size (%u)\n",
sdp->sd_sb.sb_bsize, (unsigned int)PAGE_SIZE);
goto out;
}
sb_set_blocksize(sb, sdp->sd_sb.sb_bsize);
/* Get the root inode */
no_addr = sdp->sd_sb.sb_root_dir.no_addr;
ret = gfs2_lookup_root(sb, &sdp->sd_root_dir, no_addr, "root");
if (ret)
goto out;
/* Get the master inode */
no_addr = sdp->sd_sb.sb_master_dir.no_addr;
ret = gfs2_lookup_root(sb, &sdp->sd_master_dir, no_addr, "master");
if (ret) {
dput(sdp->sd_root_dir);
goto out;
}
sb->s_root = dget(sdp->sd_args.ar_meta ? sdp->sd_master_dir : sdp->sd_root_dir);
out:
gfs2_glock_dq_uninit(&sb_gh);
return ret;
}
/**
* map_journal_extents - create a reusable "extent" mapping from all logical
* blocks to all physical blocks for the given journal. This will save
* us time when writing journal blocks. Most journals will have only one
* extent that maps all their logical blocks. That's because gfs2.mkfs
* arranges the journal blocks sequentially to maximize performance.
* So the extent would map the first block for the entire file length.
* However, gfs2_jadd can happen while file activity is happening, so
* those journals may not be sequential. Less likely is the case where
* the users created their own journals by mounting the metafs and
* laying it out. But it's still possible. These journals might have
* several extents.
*
* TODO: This should be done in bigger chunks rather than one block at a time,
* but since it's only done at mount time, I'm not worried about the
* time it takes.
*/
static int map_journal_extents(struct gfs2_sbd *sdp)
{
struct gfs2_jdesc *jd = sdp->sd_jdesc;
unsigned int lb;
u64 db, prev_db; /* logical block, disk block, prev disk block */
struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
struct gfs2_journal_extent *jext = NULL;
struct buffer_head bh;
int rc = 0;
prev_db = 0;
for (lb = 0; lb < i_size_read(jd->jd_inode) >> sdp->sd_sb.sb_bsize_shift; lb++) {
bh.b_state = 0;
bh.b_blocknr = 0;
bh.b_size = 1 << ip->i_inode.i_blkbits;
rc = gfs2_block_map(jd->jd_inode, lb, &bh, 0);
db = bh.b_blocknr;
if (rc || !db) {
printk(KERN_INFO "GFS2 journal mapping error %d: lb="
"%u db=%llu\n", rc, lb, (unsigned long long)db);
break;
}
if (!prev_db || db != prev_db + 1) {
jext = kzalloc(sizeof(struct gfs2_journal_extent),
GFP_KERNEL);
if (!jext) {
printk(KERN_INFO "GFS2 error: out of memory "
"mapping journal extents.\n");
rc = -ENOMEM;
break;
}
jext->dblock = db;
jext->lblock = lb;
jext->blocks = 1;
list_add_tail(&jext->extent_list, &jd->extent_list);
} else {
jext->blocks++;
}
prev_db = db;
}
return rc;
}
static void gfs2_others_may_mount(struct gfs2_sbd *sdp)
{
char *message = "FIRSTMOUNT=Done";
char *envp[] = { message, NULL };
struct lm_lockstruct *ls = &sdp->sd_lockstruct;
ls->ls_first_done = 1;
kobject_uevent_env(&sdp->sd_kobj, KOBJ_CHANGE, envp);
}
/**
* gfs2_jindex_hold - Grab a lock on the jindex
* @sdp: The GFS2 superblock
* @ji_gh: the holder for the jindex glock
*
* Returns: errno
*/
static int gfs2_jindex_hold(struct gfs2_sbd *sdp, struct gfs2_holder *ji_gh)
{
struct gfs2_inode *dip = GFS2_I(sdp->sd_jindex);
struct qstr name;
char buf[20];
struct gfs2_jdesc *jd;
int error;
name.name = buf;
mutex_lock(&sdp->sd_jindex_mutex);
for (;;) {
error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, ji_gh);
if (error)
break;
name.len = sprintf(buf, "journal%u", sdp->sd_journals);
name.hash = gfs2_disk_hash(name.name, name.len);
error = gfs2_dir_check(sdp->sd_jindex, &name, NULL);
if (error == -ENOENT) {
error = 0;
break;
}
gfs2_glock_dq_uninit(ji_gh);
if (error)
break;
error = -ENOMEM;
jd = kzalloc(sizeof(struct gfs2_jdesc), GFP_KERNEL);
if (!jd)
break;
INIT_LIST_HEAD(&jd->extent_list);
INIT_WORK(&jd->jd_work, gfs2_recover_func);
jd->jd_inode = gfs2_lookupi(sdp->sd_jindex, &name, 1);
if (!jd->jd_inode || IS_ERR(jd->jd_inode)) {
if (!jd->jd_inode)
error = -ENOENT;
else
error = PTR_ERR(jd->jd_inode);
kfree(jd);
break;
}
spin_lock(&sdp->sd_jindex_spin);
jd->jd_jid = sdp->sd_journals++;
list_add_tail(&jd->jd_list, &sdp->sd_jindex_list);
spin_unlock(&sdp->sd_jindex_spin);
}
mutex_unlock(&sdp->sd_jindex_mutex);
return error;
}
static int init_journal(struct gfs2_sbd *sdp, int undo)
{
struct inode *master = sdp->sd_master_dir->d_inode;
struct gfs2_holder ji_gh;
struct gfs2_inode *ip;
int jindex = 1;
int error = 0;
if (undo) {
jindex = 0;
goto fail_jinode_gh;
}
sdp->sd_jindex = gfs2_lookup_simple(master, "jindex");
if (IS_ERR(sdp->sd_jindex)) {
fs_err(sdp, "can't lookup journal index: %d\n", error);
return PTR_ERR(sdp->sd_jindex);
}
ip = GFS2_I(sdp->sd_jindex);
/* Load in the journal index special file */
error = gfs2_jindex_hold(sdp, &ji_gh);
if (error) {
fs_err(sdp, "can't read journal index: %d\n", error);
goto fail;
}
error = -EUSERS;
if (!gfs2_jindex_size(sdp)) {
fs_err(sdp, "no journals!\n");
goto fail_jindex;
}
if (sdp->sd_args.ar_spectator) {
sdp->sd_jdesc = gfs2_jdesc_find(sdp, 0);
atomic_set(&sdp->sd_log_blks_free, sdp->sd_jdesc->jd_blocks);
atomic_set(&sdp->sd_log_thresh1, 2*sdp->sd_jdesc->jd_blocks/5);
atomic_set(&sdp->sd_log_thresh2, 4*sdp->sd_jdesc->jd_blocks/5);
} else {
if (sdp->sd_lockstruct.ls_jid >= gfs2_jindex_size(sdp)) {
fs_err(sdp, "can't mount journal #%u\n",
sdp->sd_lockstruct.ls_jid);
fs_err(sdp, "there are only %u journals (0 - %u)\n",
gfs2_jindex_size(sdp),
gfs2_jindex_size(sdp) - 1);
goto fail_jindex;
}
sdp->sd_jdesc = gfs2_jdesc_find(sdp, sdp->sd_lockstruct.ls_jid);
error = gfs2_glock_nq_num(sdp, sdp->sd_lockstruct.ls_jid,
&gfs2_journal_glops,
LM_ST_EXCLUSIVE, LM_FLAG_NOEXP,
&sdp->sd_journal_gh);
if (error) {
fs_err(sdp, "can't acquire journal glock: %d\n", error);
goto fail_jindex;
}
ip = GFS2_I(sdp->sd_jdesc->jd_inode);
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED,
LM_FLAG_NOEXP | GL_EXACT | GL_NOCACHE,
&sdp->sd_jinode_gh);
if (error) {
fs_err(sdp, "can't acquire journal inode glock: %d\n",
error);
goto fail_journal_gh;
}
error = gfs2_jdesc_check(sdp->sd_jdesc);
if (error) {
fs_err(sdp, "my journal (%u) is bad: %d\n",
sdp->sd_jdesc->jd_jid, error);
goto fail_jinode_gh;
}
atomic_set(&sdp->sd_log_blks_free, sdp->sd_jdesc->jd_blocks);
atomic_set(&sdp->sd_log_thresh1, 2*sdp->sd_jdesc->jd_blocks/5);
atomic_set(&sdp->sd_log_thresh2, 4*sdp->sd_jdesc->jd_blocks/5);
/* Map the extents for this journal's blocks */
map_journal_extents(sdp);
}
trace_gfs2_log_blocks(sdp, atomic_read(&sdp->sd_log_blks_free));
if (sdp->sd_lockstruct.ls_first) {
unsigned int x;
for (x = 0; x < sdp->sd_journals; x++) {
error = gfs2_recover_journal(gfs2_jdesc_find(sdp, x),
true);
if (error) {
fs_err(sdp, "error recovering journal %u: %d\n",
x, error);
goto fail_jinode_gh;
}
}
gfs2_others_may_mount(sdp);
} else if (!sdp->sd_args.ar_spectator) {
error = gfs2_recover_journal(sdp->sd_jdesc, true);
if (error) {
fs_err(sdp, "error recovering my journal: %d\n", error);
goto fail_jinode_gh;
}
}
set_bit(SDF_JOURNAL_CHECKED, &sdp->sd_flags);
gfs2_glock_dq_uninit(&ji_gh);
jindex = 0;
return 0;
fail_jinode_gh:
if (!sdp->sd_args.ar_spectator)
gfs2_glock_dq_uninit(&sdp->sd_jinode_gh);
fail_journal_gh:
if (!sdp->sd_args.ar_spectator)
gfs2_glock_dq_uninit(&sdp->sd_journal_gh);
fail_jindex:
gfs2_jindex_free(sdp);
if (jindex)
gfs2_glock_dq_uninit(&ji_gh);
fail:
iput(sdp->sd_jindex);
return error;
}
static int init_inodes(struct gfs2_sbd *sdp, int undo)
{
int error = 0;
struct gfs2_inode *ip;
struct inode *master = sdp->sd_master_dir->d_inode;
if (undo)
goto fail_qinode;
error = init_journal(sdp, undo);
if (error)
goto fail;
/* Read in the master statfs inode */
sdp->sd_statfs_inode = gfs2_lookup_simple(master, "statfs");
if (IS_ERR(sdp->sd_statfs_inode)) {
error = PTR_ERR(sdp->sd_statfs_inode);
fs_err(sdp, "can't read in statfs inode: %d\n", error);
goto fail_journal;
}
/* Read in the resource index inode */
sdp->sd_rindex = gfs2_lookup_simple(master, "rindex");
if (IS_ERR(sdp->sd_rindex)) {
error = PTR_ERR(sdp->sd_rindex);
fs_err(sdp, "can't get resource index inode: %d\n", error);
goto fail_statfs;
}
ip = GFS2_I(sdp->sd_rindex);
sdp->sd_rindex_uptodate = 0;
/* Read in the quota inode */
sdp->sd_quota_inode = gfs2_lookup_simple(master, "quota");
if (IS_ERR(sdp->sd_quota_inode)) {
error = PTR_ERR(sdp->sd_quota_inode);
fs_err(sdp, "can't get quota file inode: %d\n", error);
goto fail_rindex;
}
return 0;
fail_qinode:
iput(sdp->sd_quota_inode);
fail_rindex:
gfs2_clear_rgrpd(sdp);
iput(sdp->sd_rindex);
fail_statfs:
iput(sdp->sd_statfs_inode);
fail_journal:
init_journal(sdp, UNDO);
fail:
return error;
}
static int init_per_node(struct gfs2_sbd *sdp, int undo)
{
struct inode *pn = NULL;
char buf[30];
int error = 0;
struct gfs2_inode *ip;
struct inode *master = sdp->sd_master_dir->d_inode;
if (sdp->sd_args.ar_spectator)
return 0;
if (undo)
goto fail_qc_gh;
pn = gfs2_lookup_simple(master, "per_node");
if (IS_ERR(pn)) {
error = PTR_ERR(pn);
fs_err(sdp, "can't find per_node directory: %d\n", error);
return error;
}
sprintf(buf, "statfs_change%u", sdp->sd_jdesc->jd_jid);
sdp->sd_sc_inode = gfs2_lookup_simple(pn, buf);
if (IS_ERR(sdp->sd_sc_inode)) {
error = PTR_ERR(sdp->sd_sc_inode);
fs_err(sdp, "can't find local \"sc\" file: %d\n", error);
goto fail;
}
sprintf(buf, "quota_change%u", sdp->sd_jdesc->jd_jid);
sdp->sd_qc_inode = gfs2_lookup_simple(pn, buf);
if (IS_ERR(sdp->sd_qc_inode)) {
error = PTR_ERR(sdp->sd_qc_inode);
fs_err(sdp, "can't find local \"qc\" file: %d\n", error);
goto fail_ut_i;
}
iput(pn);
pn = NULL;
ip = GFS2_I(sdp->sd_sc_inode);
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0,
&sdp->sd_sc_gh);
if (error) {
fs_err(sdp, "can't lock local \"sc\" file: %d\n", error);
goto fail_qc_i;
}
ip = GFS2_I(sdp->sd_qc_inode);
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0,
&sdp->sd_qc_gh);
if (error) {
fs_err(sdp, "can't lock local \"qc\" file: %d\n", error);
goto fail_ut_gh;
}
return 0;
fail_qc_gh:
gfs2_glock_dq_uninit(&sdp->sd_qc_gh);
fail_ut_gh:
gfs2_glock_dq_uninit(&sdp->sd_sc_gh);
fail_qc_i:
iput(sdp->sd_qc_inode);
fail_ut_i:
iput(sdp->sd_sc_inode);
fail:
if (pn)
iput(pn);
return error;
}
static int init_threads(struct gfs2_sbd *sdp, int undo)
{
struct task_struct *p;
int error = 0;
if (undo)
goto fail_quotad;
p = kthread_run(gfs2_logd, sdp, "gfs2_logd");
error = IS_ERR(p);
if (error) {
fs_err(sdp, "can't start logd thread: %d\n", error);
return error;
}
sdp->sd_logd_process = p;
p = kthread_run(gfs2_quotad, sdp, "gfs2_quotad");
error = IS_ERR(p);
if (error) {
fs_err(sdp, "can't start quotad thread: %d\n", error);
goto fail;
}
sdp->sd_quotad_process = p;
return 0;
fail_quotad:
kthread_stop(sdp->sd_quotad_process);
fail:
kthread_stop(sdp->sd_logd_process);
return error;
}
static const match_table_t nolock_tokens = {
{ Opt_jid, "jid=%d\n", },
{ Opt_err, NULL },
};
static void nolock_put_lock(struct kmem_cache *cachep, struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_sbd;
kmem_cache_free(cachep, gl);
if (atomic_dec_and_test(&sdp->sd_glock_disposal))
wake_up(&sdp->sd_glock_wait);
}
static const struct lm_lockops nolock_ops = {
.lm_proto_name = "lock_nolock",
.lm_put_lock = nolock_put_lock,
.lm_tokens = &nolock_tokens,
};
/**
* gfs2_lm_mount - mount a locking protocol
* @sdp: the filesystem
* @args: mount arguments
* @silent: if 1, don't complain if the FS isn't a GFS2 fs
*
* Returns: errno
*/
static int gfs2_lm_mount(struct gfs2_sbd *sdp, int silent)
{
const struct lm_lockops *lm;
struct lm_lockstruct *ls = &sdp->sd_lockstruct;
struct gfs2_args *args = &sdp->sd_args;
const char *proto = sdp->sd_proto_name;
const char *table = sdp->sd_table_name;
const char *fsname;
char *o, *options;
int ret;
if (!strcmp("lock_nolock", proto)) {
lm = &nolock_ops;
sdp->sd_args.ar_localflocks = 1;
#ifdef CONFIG_GFS2_FS_LOCKING_DLM
} else if (!strcmp("lock_dlm", proto)) {
lm = &gfs2_dlm_ops;
#endif
} else {
printk(KERN_INFO "GFS2: can't find protocol %s\n", proto);
return -ENOENT;
}
fs_info(sdp, "Trying to join cluster \"%s\", \"%s\"\n", proto, table);
ls->ls_ops = lm;
ls->ls_first = 1;
for (options = args->ar_hostdata; (o = strsep(&options, ":")); ) {
substring_t tmp[MAX_OPT_ARGS];
int token, option;
if (!o || !*o)
continue;
token = match_token(o, *lm->lm_tokens, tmp);
switch (token) {
case Opt_jid:
ret = match_int(&tmp[0], &option);
if (ret || option < 0)
goto hostdata_error;
if (test_and_clear_bit(SDF_NOJOURNALID, &sdp->sd_flags))
ls->ls_jid = option;
break;
case Opt_id:
/* Obsolete, but left for backward compat purposes */
break;
case Opt_first:
ret = match_int(&tmp[0], &option);
if (ret || (option != 0 && option != 1))
goto hostdata_error;
ls->ls_first = option;
break;
case Opt_nodir:
ret = match_int(&tmp[0], &option);
if (ret || (option != 0 && option != 1))
goto hostdata_error;
ls->ls_nodir = option;
break;
case Opt_err:
default:
hostdata_error:
fs_info(sdp, "unknown hostdata (%s)\n", o);
return -EINVAL;
}
}
if (sdp->sd_args.ar_spectator)
snprintf(sdp->sd_fsname, GFS2_FSNAME_LEN, "%s.s", table);
else
snprintf(sdp->sd_fsname, GFS2_FSNAME_LEN, "%s.%u", table,
sdp->sd_lockstruct.ls_jid);
fsname = strchr(table, ':');
if (fsname)
fsname++;
if (lm->lm_mount == NULL) {
fs_info(sdp, "Now mounting FS...\n");
return 0;
}
ret = lm->lm_mount(sdp, fsname);
if (ret == 0)
fs_info(sdp, "Joined cluster. Now mounting FS...\n");
return ret;
}
void gfs2_lm_unmount(struct gfs2_sbd *sdp)
{
const struct lm_lockops *lm = sdp->sd_lockstruct.ls_ops;
if (likely(!test_bit(SDF_SHUTDOWN, &sdp->sd_flags)) &&
lm->lm_unmount)
lm->lm_unmount(sdp);
}
static int gfs2_journalid_wait(void *word)
{
if (signal_pending(current))
return -EINTR;
schedule();
return 0;
}
static int wait_on_journal(struct gfs2_sbd *sdp)
{
if (sdp->sd_lockstruct.ls_ops->lm_mount == NULL)
return 0;
return wait_on_bit(&sdp->sd_flags, SDF_NOJOURNALID, gfs2_journalid_wait, TASK_INTERRUPTIBLE);
}
void gfs2_online_uevent(struct gfs2_sbd *sdp)
{
struct super_block *sb = sdp->sd_vfs;
char ro[20];
char spectator[20];
char *envp[] = { ro, spectator, NULL };
sprintf(ro, "RDONLY=%d", (sb->s_flags & MS_RDONLY) ? 1 : 0);
sprintf(spectator, "SPECTATOR=%d", sdp->sd_args.ar_spectator ? 1 : 0);
kobject_uevent_env(&sdp->sd_kobj, KOBJ_ONLINE, envp);
}
/**
* fill_super - Read in superblock
* @sb: The VFS superblock
* @data: Mount options
* @silent: Don't complain if it's not a GFS2 filesystem
*
* Returns: errno
*/
static int fill_super(struct super_block *sb, struct gfs2_args *args, int silent)
{
struct gfs2_sbd *sdp;
struct gfs2_holder mount_gh;
int error;
sdp = init_sbd(sb);
if (!sdp) {
printk(KERN_WARNING "GFS2: can't alloc struct gfs2_sbd\n");
return -ENOMEM;
}
sdp->sd_args = *args;
if (sdp->sd_args.ar_spectator) {
sb->s_flags |= MS_RDONLY;
set_bit(SDF_NORECOVERY, &sdp->sd_flags);
}
if (sdp->sd_args.ar_posix_acl)
sb->s_flags |= MS_POSIXACL;
if (sdp->sd_args.ar_nobarrier)
set_bit(SDF_NOBARRIERS, &sdp->sd_flags);
sb->s_magic = GFS2_MAGIC;
sb->s_op = &gfs2_super_ops;
sb->s_export_op = &gfs2_export_ops;
sb->s_xattr = gfs2_xattr_handlers;
sb->s_qcop = &gfs2_quotactl_ops;
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
sb->s_time_gran = 1;
sb->s_maxbytes = MAX_LFS_FILESIZE;
/* Set up the buffer cache and fill in some fake block size values
to allow us to read-in the on-disk superblock. */
sdp->sd_sb.sb_bsize = sb_min_blocksize(sb, GFS2_BASIC_BLOCK);
sdp->sd_sb.sb_bsize_shift = sb->s_blocksize_bits;
sdp->sd_fsb2bb_shift = sdp->sd_sb.sb_bsize_shift -
GFS2_BASIC_BLOCK_SHIFT;
sdp->sd_fsb2bb = 1 << sdp->sd_fsb2bb_shift;
sdp->sd_tune.gt_logd_secs = sdp->sd_args.ar_commit;
sdp->sd_tune.gt_quota_quantum = sdp->sd_args.ar_quota_quantum;
if (sdp->sd_args.ar_statfs_quantum) {
sdp->sd_tune.gt_statfs_slow = 0;
sdp->sd_tune.gt_statfs_quantum = sdp->sd_args.ar_statfs_quantum;
}
else {
sdp->sd_tune.gt_statfs_slow = 1;
sdp->sd_tune.gt_statfs_quantum = 30;
}
error = init_names(sdp, silent);
if (error)
goto fail;
gfs2_create_debugfs_file(sdp);
error = gfs2_sys_fs_add(sdp);
if (error)
goto fail;
error = gfs2_lm_mount(sdp, silent);
if (error)
goto fail_sys;
error = init_locking(sdp, &mount_gh, DO);
if (error)
goto fail_lm;
error = init_sb(sdp, silent);
if (error)
goto fail_locking;
error = wait_on_journal(sdp);
if (error)
goto fail_sb;
/*
* If user space has failed to join the cluster or some similar
* failure has occurred, then the journal id will contain a
* negative (error) number. This will then be returned to the
* caller (of the mount syscall). We do this even for spectator
* mounts (which just write a jid of 0 to indicate "ok" even though
* the jid is unused in the spectator case)
*/
if (sdp->sd_lockstruct.ls_jid < 0) {
error = sdp->sd_lockstruct.ls_jid;
sdp->sd_lockstruct.ls_jid = 0;
goto fail_sb;
}
error = init_inodes(sdp, DO);
if (error)
goto fail_sb;
error = init_per_node(sdp, DO);
if (error)
goto fail_inodes;
error = gfs2_statfs_init(sdp);
if (error) {
fs_err(sdp, "can't initialize statfs subsystem: %d\n", error);
goto fail_per_node;
}
error = init_threads(sdp, DO);
if (error)
goto fail_per_node;
if (!(sb->s_flags & MS_RDONLY)) {
error = gfs2_make_fs_rw(sdp);
if (error) {
fs_err(sdp, "can't make FS RW: %d\n", error);
goto fail_threads;
}
}
gfs2_glock_dq_uninit(&mount_gh);
gfs2_online_uevent(sdp);
return 0;
fail_threads:
init_threads(sdp, UNDO);
fail_per_node:
init_per_node(sdp, UNDO);
fail_inodes:
init_inodes(sdp, UNDO);
fail_sb:
if (sdp->sd_root_dir)
dput(sdp->sd_root_dir);
if (sdp->sd_master_dir)
dput(sdp->sd_master_dir);
if (sb->s_root)
dput(sb->s_root);
sb->s_root = NULL;
fail_locking:
init_locking(sdp, &mount_gh, UNDO);
fail_lm:
gfs2_gl_hash_clear(sdp);
gfs2_lm_unmount(sdp);
fail_sys:
gfs2_sys_fs_del(sdp);
fail:
gfs2_delete_debugfs_file(sdp);
kfree(sdp);
sb->s_fs_info = NULL;
return error;
}
static int set_gfs2_super(struct super_block *s, void *data)
{
s->s_bdev = data;
s->s_dev = s->s_bdev->bd_dev;
/*
* We set the bdi here to the queue backing, file systems can
* overwrite this in ->fill_super()
*/
s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
return 0;
}
static int test_gfs2_super(struct super_block *s, void *ptr)
{
struct block_device *bdev = ptr;
return (bdev == s->s_bdev);
}
/**
* gfs2_get_sb - Get the GFS2 superblock
* @fs_type: The GFS2 filesystem type
* @flags: Mount flags
* @dev_name: The name of the device
* @data: The mount arguments
* @mnt: The vfsmnt for this mount
*
* Q. Why not use get_sb_bdev() ?
* A. We need to select one of two root directories to mount, independent
* of whether this is the initial, or subsequent, mount of this sb
*
* Returns: 0 or -ve on error
*/
static int gfs2_get_sb(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data, struct vfsmount *mnt)
{
struct block_device *bdev;
struct super_block *s;
fmode_t mode = FMODE_READ;
int error;
struct gfs2_args args;
struct gfs2_sbd *sdp;
if (!(flags & MS_RDONLY))
mode |= FMODE_WRITE;
bdev = open_bdev_exclusive(dev_name, mode, fs_type);
if (IS_ERR(bdev))
return PTR_ERR(bdev);
/*
* once the super is inserted into the list by sget, s_umount
* will protect the lockfs code from trying to start a snapshot
* while we are mounting
*/
mutex_lock(&bdev->bd_fsfreeze_mutex);
if (bdev->bd_fsfreeze_count > 0) {
mutex_unlock(&bdev->bd_fsfreeze_mutex);
error = -EBUSY;
goto error_bdev;
}
s = sget(fs_type, test_gfs2_super, set_gfs2_super, bdev);
mutex_unlock(&bdev->bd_fsfreeze_mutex);
error = PTR_ERR(s);
if (IS_ERR(s))
goto error_bdev;
memset(&args, 0, sizeof(args));
args.ar_quota = GFS2_QUOTA_DEFAULT;
args.ar_data = GFS2_DATA_DEFAULT;
args.ar_commit = 30;
args.ar_statfs_quantum = 30;
args.ar_quota_quantum = 60;
args.ar_errors = GFS2_ERRORS_DEFAULT;
error = gfs2_mount_args(&args, data);
if (error) {
printk(KERN_WARNING "GFS2: can't parse mount arguments\n");
if (s->s_root)
goto error_super;
deactivate_locked_super(s);
return error;
}
if (s->s_root) {
error = -EBUSY;
if ((flags ^ s->s_flags) & MS_RDONLY)
goto error_super;
close_bdev_exclusive(bdev, mode);
} else {
char b[BDEVNAME_SIZE];
s->s_flags = flags;
s->s_mode = mode;
strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
sb_set_blocksize(s, block_size(bdev));
error = fill_super(s, &args, flags & MS_SILENT ? 1 : 0);
if (error) {
deactivate_locked_super(s);
return error;
}
s->s_flags |= MS_ACTIVE;
bdev->bd_super = s;
}
sdp = s->s_fs_info;
mnt->mnt_sb = s;
if (args.ar_meta)
mnt->mnt_root = dget(sdp->sd_master_dir);
else
mnt->mnt_root = dget(sdp->sd_root_dir);
return 0;
error_super:
deactivate_locked_super(s);
error_bdev:
close_bdev_exclusive(bdev, mode);
return error;
}
static int set_meta_super(struct super_block *s, void *ptr)
{
return -EINVAL;
}
static int gfs2_get_sb_meta(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data, struct vfsmount *mnt)
{
struct super_block *s;
struct gfs2_sbd *sdp;
struct path path;
int error;
error = kern_path(dev_name, LOOKUP_FOLLOW, &path);
if (error) {
printk(KERN_WARNING "GFS2: path_lookup on %s returned error %d\n",
dev_name, error);
return error;
}
s = sget(&gfs2_fs_type, test_gfs2_super, set_meta_super,
path.dentry->d_inode->i_sb->s_bdev);
path_put(&path);
if (IS_ERR(s)) {
printk(KERN_WARNING "GFS2: gfs2 mount does not exist\n");
return PTR_ERR(s);
}
if ((flags ^ s->s_flags) & MS_RDONLY) {
deactivate_locked_super(s);
return -EBUSY;
}
sdp = s->s_fs_info;
mnt->mnt_sb = s;
mnt->mnt_root = dget(sdp->sd_master_dir);
return 0;
}
static void gfs2_kill_sb(struct super_block *sb)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
if (sdp == NULL) {
kill_block_super(sb);
return;
}
gfs2_meta_syncfs(sdp);
dput(sdp->sd_root_dir);
dput(sdp->sd_master_dir);
sdp->sd_root_dir = NULL;
sdp->sd_master_dir = NULL;
shrink_dcache_sb(sb);
kill_block_super(sb);
gfs2_delete_debugfs_file(sdp);
kfree(sdp);
}
struct file_system_type gfs2_fs_type = {
.name = "gfs2",
.fs_flags = FS_REQUIRES_DEV,
.get_sb = gfs2_get_sb,
.kill_sb = gfs2_kill_sb,
.owner = THIS_MODULE,
};
struct file_system_type gfs2meta_fs_type = {
.name = "gfs2meta",
.fs_flags = FS_REQUIRES_DEV,
.get_sb = gfs2_get_sb_meta,
.owner = THIS_MODULE,
};