blob: fc196e389ffb541cfad9ddef28c00a4804532452 [file] [log] [blame]
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "isci.h"
#include "host.h"
#include "phy.h"
#include "scu_event_codes.h"
#include "probe_roms.h"
/* Maximum arbitration wait time in micro-seconds */
#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
enum sas_linkrate sci_phy_linkrate(struct scic_sds_phy *sci_phy)
{
return sci_phy->max_negotiated_speed;
}
/*
* *****************************************************************************
* * SCIC SDS PHY Internal Methods
* ***************************************************************************** */
/**
* This method will initialize the phy transport layer registers
* @sci_phy:
* @transport_layer_registers
*
* enum sci_status
*/
static enum sci_status scic_sds_phy_transport_layer_initialization(
struct scic_sds_phy *sci_phy,
struct scu_transport_layer_registers __iomem *transport_layer_registers)
{
u32 tl_control;
sci_phy->transport_layer_registers = transport_layer_registers;
writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
&sci_phy->transport_layer_registers->stp_rni);
/*
* Hardware team recommends that we enable the STP prefetch for all
* transports
*/
tl_control = readl(&sci_phy->transport_layer_registers->control);
tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
writel(tl_control, &sci_phy->transport_layer_registers->control);
return SCI_SUCCESS;
}
/**
* This method will initialize the phy link layer registers
* @sci_phy:
* @link_layer_registers:
*
* enum sci_status
*/
static enum sci_status
scic_sds_phy_link_layer_initialization(struct scic_sds_phy *sci_phy,
struct scu_link_layer_registers __iomem *link_layer_registers)
{
struct scic_sds_controller *scic =
sci_phy->owning_port->owning_controller;
int phy_idx = sci_phy->phy_index;
struct sci_phy_user_params *phy_user =
&scic->user_parameters.sds1.phys[phy_idx];
struct sci_phy_oem_params *phy_oem =
&scic->oem_parameters.sds1.phys[phy_idx];
u32 phy_configuration;
struct scic_phy_cap phy_cap;
u32 parity_check = 0;
u32 parity_count = 0;
u32 llctl, link_rate;
u32 clksm_value = 0;
sci_phy->link_layer_registers = link_layer_registers;
/* Set our IDENTIFY frame data */
#define SCI_END_DEVICE 0x01
writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
&sci_phy->link_layer_registers->transmit_identification);
/* Write the device SAS Address */
writel(0xFEDCBA98,
&sci_phy->link_layer_registers->sas_device_name_high);
writel(phy_idx, &sci_phy->link_layer_registers->sas_device_name_low);
/* Write the source SAS Address */
writel(phy_oem->sas_address.high,
&sci_phy->link_layer_registers->source_sas_address_high);
writel(phy_oem->sas_address.low,
&sci_phy->link_layer_registers->source_sas_address_low);
/* Clear and Set the PHY Identifier */
writel(0, &sci_phy->link_layer_registers->identify_frame_phy_id);
writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx),
&sci_phy->link_layer_registers->identify_frame_phy_id);
/* Change the initial state of the phy configuration register */
phy_configuration =
readl(&sci_phy->link_layer_registers->phy_configuration);
/* Hold OOB state machine in reset */
phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
writel(phy_configuration,
&sci_phy->link_layer_registers->phy_configuration);
/* Configure the SNW capabilities */
phy_cap.all = 0;
phy_cap.start = 1;
phy_cap.gen3_no_ssc = 1;
phy_cap.gen2_no_ssc = 1;
phy_cap.gen1_no_ssc = 1;
if (scic->oem_parameters.sds1.controller.do_enable_ssc == true) {
phy_cap.gen3_ssc = 1;
phy_cap.gen2_ssc = 1;
phy_cap.gen1_ssc = 1;
}
/*
* The SAS specification indicates that the phy_capabilities that
* are transmitted shall have an even parity. Calculate the parity. */
parity_check = phy_cap.all;
while (parity_check != 0) {
if (parity_check & 0x1)
parity_count++;
parity_check >>= 1;
}
/*
* If parity indicates there are an odd number of bits set, then
* set the parity bit to 1 in the phy capabilities. */
if ((parity_count % 2) != 0)
phy_cap.parity = 1;
writel(phy_cap.all, &sci_phy->link_layer_registers->phy_capabilities);
/* Set the enable spinup period but disable the ability to send
* notify enable spinup
*/
writel(SCU_ENSPINUP_GEN_VAL(COUNT,
phy_user->notify_enable_spin_up_insertion_frequency),
&sci_phy->link_layer_registers->notify_enable_spinup_control);
/* Write the ALIGN Insertion Ferequency for connected phy and
* inpendent of connected state
*/
clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
phy_user->in_connection_align_insertion_frequency);
clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
phy_user->align_insertion_frequency);
writel(clksm_value, &sci_phy->link_layer_registers->clock_skew_management);
/* @todo Provide a way to write this register correctly */
writel(0x02108421,
&sci_phy->link_layer_registers->afe_lookup_table_control);
llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
(u8)scic->user_parameters.sds1.no_outbound_task_timeout);
switch(phy_user->max_speed_generation) {
case SCIC_SDS_PARM_GEN3_SPEED:
link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
break;
case SCIC_SDS_PARM_GEN2_SPEED:
link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
break;
default:
link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
break;
}
llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
writel(llctl, &sci_phy->link_layer_registers->link_layer_control);
if (is_a0() || is_a2()) {
/* Program the max ARB time for the PHY to 700us so we inter-operate with
* the PMC expander which shuts down PHYs if the expander PHY generates too
* many breaks. This time value will guarantee that the initiator PHY will
* generate the break.
*/
writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
&sci_phy->link_layer_registers->maximum_arbitration_wait_timer_timeout);
}
/*
* Set the link layer hang detection to 500ms (0x1F4) from its default
* value of 128ms. Max value is 511 ms.
*/
writel(0x1F4, &sci_phy->link_layer_registers->link_layer_hang_detection_timeout);
/* We can exit the initial state to the stopped state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STOPPED);
return SCI_SUCCESS;
}
static void phy_sata_timeout(unsigned long data)
{
struct sci_timer *tmr = (struct sci_timer *)data;
struct scic_sds_phy *sci_phy = container_of(tmr, typeof(*sci_phy), sata_timer);
struct isci_host *ihost = scic_to_ihost(sci_phy->owning_port->owning_controller);
unsigned long flags;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
dev_dbg(sciphy_to_dev(sci_phy),
"%s: SCIC SDS Phy 0x%p did not receive signature fis before "
"timeout.\n",
__func__,
sci_phy);
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
/**
* This method returns the port currently containing this phy. If the phy is
* currently contained by the dummy port, then the phy is considered to not
* be part of a port.
* @sci_phy: This parameter specifies the phy for which to retrieve the
* containing port.
*
* This method returns a handle to a port that contains the supplied phy.
* NULL This value is returned if the phy is not part of a real
* port (i.e. it's contained in the dummy port). !NULL All other
* values indicate a handle/pointer to the port containing the phy.
*/
struct scic_sds_port *phy_get_non_dummy_port(
struct scic_sds_phy *sci_phy)
{
if (scic_sds_port_get_index(sci_phy->owning_port) == SCIC_SDS_DUMMY_PORT)
return NULL;
return sci_phy->owning_port;
}
/**
* This method will assign a port to the phy object.
* @out]: sci_phy This parameter specifies the phy for which to assign a port
* object.
*
*
*/
void scic_sds_phy_set_port(
struct scic_sds_phy *sci_phy,
struct scic_sds_port *sci_port)
{
sci_phy->owning_port = sci_port;
if (sci_phy->bcn_received_while_port_unassigned) {
sci_phy->bcn_received_while_port_unassigned = false;
scic_sds_port_broadcast_change_received(sci_phy->owning_port, sci_phy);
}
}
/**
* This method will initialize the constructed phy
* @sci_phy:
* @link_layer_registers:
*
* enum sci_status
*/
enum sci_status scic_sds_phy_initialize(
struct scic_sds_phy *sci_phy,
struct scu_transport_layer_registers __iomem *transport_layer_registers,
struct scu_link_layer_registers __iomem *link_layer_registers)
{
/* Perfrom the initialization of the TL hardware */
scic_sds_phy_transport_layer_initialization(
sci_phy,
transport_layer_registers);
/* Perofrm the initialization of the PE hardware */
scic_sds_phy_link_layer_initialization(sci_phy, link_layer_registers);
/*
* There is nothing that needs to be done in this state just
* transition to the stopped state. */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STOPPED);
return SCI_SUCCESS;
}
/**
* This method assigns the direct attached device ID for this phy.
*
* @sci_phy The phy for which the direct attached device id is to
* be assigned.
* @device_id The direct attached device ID to assign to the phy.
* This will either be the RNi for the device or an invalid RNi if there
* is no current device assigned to the phy.
*/
void scic_sds_phy_setup_transport(
struct scic_sds_phy *sci_phy,
u32 device_id)
{
u32 tl_control;
writel(device_id, &sci_phy->transport_layer_registers->stp_rni);
/*
* The read should guarantee that the first write gets posted
* before the next write
*/
tl_control = readl(&sci_phy->transport_layer_registers->control);
tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
writel(tl_control, &sci_phy->transport_layer_registers->control);
}
/**
*
* @sci_phy: The phy object to be suspended.
*
* This function will perform the register reads/writes to suspend the SCU
* hardware protocol engine. none
*/
static void scic_sds_phy_suspend(
struct scic_sds_phy *sci_phy)
{
u32 scu_sas_pcfg_value;
scu_sas_pcfg_value =
readl(&sci_phy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
writel(scu_sas_pcfg_value,
&sci_phy->link_layer_registers->phy_configuration);
scic_sds_phy_setup_transport(
sci_phy,
SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
}
void scic_sds_phy_resume(struct scic_sds_phy *sci_phy)
{
u32 scu_sas_pcfg_value;
scu_sas_pcfg_value =
readl(&sci_phy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
writel(scu_sas_pcfg_value,
&sci_phy->link_layer_registers->phy_configuration);
}
void scic_sds_phy_get_sas_address(struct scic_sds_phy *sci_phy,
struct sci_sas_address *sas_address)
{
sas_address->high = readl(&sci_phy->link_layer_registers->source_sas_address_high);
sas_address->low = readl(&sci_phy->link_layer_registers->source_sas_address_low);
}
void scic_sds_phy_get_attached_sas_address(struct scic_sds_phy *sci_phy,
struct sci_sas_address *sas_address)
{
struct sas_identify_frame *iaf;
struct isci_phy *iphy = sci_phy_to_iphy(sci_phy);
iaf = &iphy->frame_rcvd.iaf;
memcpy(sas_address, iaf->sas_addr, SAS_ADDR_SIZE);
}
void scic_sds_phy_get_protocols(struct scic_sds_phy *sci_phy,
struct scic_phy_proto *protocols)
{
protocols->all =
(u16)(readl(&sci_phy->
link_layer_registers->transmit_identification) &
0x0000FFFF);
}
enum sci_status scic_sds_phy_start(struct scic_sds_phy *sci_phy)
{
enum scic_sds_phy_states state = sci_phy->state_machine.current_state_id;
if (state != SCI_BASE_PHY_STATE_STOPPED) {
dev_dbg(sciphy_to_dev(sci_phy),
"%s: in wrong state: %d\n", __func__, state);
return SCI_FAILURE_INVALID_STATE;
}
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
return SCI_SUCCESS;
}
enum sci_status scic_sds_phy_stop(struct scic_sds_phy *sci_phy)
{
enum scic_sds_phy_states state = sci_phy->state_machine.current_state_id;
switch (state) {
case SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL:
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN:
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN:
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER:
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER:
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN:
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN:
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF:
case SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL:
case SCI_BASE_PHY_STATE_READY:
break;
default:
dev_dbg(sciphy_to_dev(sci_phy),
"%s: in wrong state: %d\n", __func__, state);
return SCI_FAILURE_INVALID_STATE;
}
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STOPPED);
return SCI_SUCCESS;
}
enum sci_status scic_sds_phy_reset(struct scic_sds_phy *sci_phy)
{
enum scic_sds_phy_states state = sci_phy->state_machine.current_state_id;
if (state != SCI_BASE_PHY_STATE_READY) {
dev_dbg(sciphy_to_dev(sci_phy),
"%s: in wrong state: %d\n", __func__, state);
return SCI_FAILURE_INVALID_STATE;
}
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_RESETTING);
return SCI_SUCCESS;
}
enum sci_status scic_sds_phy_consume_power_handler(struct scic_sds_phy *sci_phy)
{
enum scic_sds_phy_states state = sci_phy->state_machine.current_state_id;
switch (state) {
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER: {
u32 enable_spinup;
enable_spinup = readl(&sci_phy->link_layer_registers->notify_enable_spinup_control);
enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
writel(enable_spinup, &sci_phy->link_layer_registers->notify_enable_spinup_control);
/* Change state to the final state this substate machine has run to completion */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL);
return SCI_SUCCESS;
}
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER: {
u32 scu_sas_pcfg_value;
/* Release the spinup hold state and reset the OOB state machine */
scu_sas_pcfg_value =
readl(&sci_phy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value &=
~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
writel(scu_sas_pcfg_value,
&sci_phy->link_layer_registers->phy_configuration);
/* Now restart the OOB operation */
scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
writel(scu_sas_pcfg_value,
&sci_phy->link_layer_registers->phy_configuration);
/* Change state to the final state this substate machine has run to completion */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN);
return SCI_SUCCESS;
}
default:
dev_dbg(sciphy_to_dev(sci_phy),
"%s: in wrong state: %d\n", __func__, state);
return SCI_FAILURE_INVALID_STATE;
}
}
/*
* *****************************************************************************
* * SCIC SDS PHY HELPER FUNCTIONS
* ***************************************************************************** */
/**
*
* @sci_phy: The phy object that received SAS PHY DETECTED.
*
* This method continues the link training for the phy as if it were a SAS PHY
* instead of a SATA PHY. This is done because the completion queue had a SAS
* PHY DETECTED event when the state machine was expecting a SATA PHY event.
* none
*/
static void scic_sds_phy_start_sas_link_training(
struct scic_sds_phy *sci_phy)
{
u32 phy_control;
phy_control =
readl(&sci_phy->link_layer_registers->phy_configuration);
phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
writel(phy_control,
&sci_phy->link_layer_registers->phy_configuration);
sci_base_state_machine_change_state(
&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
);
sci_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
}
/**
*
* @sci_phy: The phy object that received a SATA SPINUP HOLD event
*
* This method continues the link training for the phy as if it were a SATA PHY
* instead of a SAS PHY. This is done because the completion queue had a SATA
* SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
*/
static void scic_sds_phy_start_sata_link_training(
struct scic_sds_phy *sci_phy)
{
sci_base_state_machine_change_state(
&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER
);
sci_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
}
/**
* scic_sds_phy_complete_link_training - perform processing common to
* all protocols upon completion of link training.
* @sci_phy: This parameter specifies the phy object for which link training
* has completed.
* @max_link_rate: This parameter specifies the maximum link rate to be
* associated with this phy.
* @next_state: This parameter specifies the next state for the phy's starting
* sub-state machine.
*
*/
static void scic_sds_phy_complete_link_training(
struct scic_sds_phy *sci_phy,
enum sas_linkrate max_link_rate,
u32 next_state)
{
sci_phy->max_negotiated_speed = max_link_rate;
sci_base_state_machine_change_state(&sci_phy->state_machine,
next_state);
}
enum sci_status scic_sds_phy_event_handler(struct scic_sds_phy *sci_phy,
u32 event_code)
{
enum scic_sds_phy_states state = sci_phy->state_machine.current_state_id;
switch (state) {
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SAS_PHY_DETECTED:
scic_sds_phy_start_sas_link_training(sci_phy);
sci_phy->is_in_link_training = true;
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
scic_sds_phy_start_sata_link_training(sci_phy);
sci_phy->is_in_link_training = true;
break;
default:
dev_dbg(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected event_code %x\n",
__func__,
event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SAS_PHY_DETECTED:
/*
* Why is this being reported again by the controller?
* We would re-enter this state so just stay here */
break;
case SCU_EVENT_SAS_15:
case SCU_EVENT_SAS_15_SSC:
scic_sds_phy_complete_link_training(
sci_phy,
SAS_LINK_RATE_1_5_GBPS,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF);
break;
case SCU_EVENT_SAS_30:
case SCU_EVENT_SAS_30_SSC:
scic_sds_phy_complete_link_training(
sci_phy,
SAS_LINK_RATE_3_0_GBPS,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF);
break;
case SCU_EVENT_SAS_60:
case SCU_EVENT_SAS_60_SSC:
scic_sds_phy_complete_link_training(
sci_phy,
SAS_LINK_RATE_6_0_GBPS,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/*
* We were doing SAS PHY link training and received a SATA PHY event
* continue OOB/SN as if this were a SATA PHY */
scic_sds_phy_start_sata_link_training(sci_phy);
break;
case SCU_EVENT_LINK_FAILURE:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected event_code %x\n",
__func__, event_code);
return SCI_FAILURE;
break;
}
return SCI_SUCCESS;
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SAS_PHY_DETECTED:
/* Backup the state machine */
scic_sds_phy_start_sas_link_training(sci_phy);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/* We were doing SAS PHY link training and received a
* SATA PHY event continue OOB/SN as if this were a
* SATA PHY
*/
scic_sds_phy_start_sata_link_training(sci_phy);
break;
case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
case SCU_EVENT_LINK_FAILURE:
case SCU_EVENT_HARD_RESET_RECEIVED:
/* Start the oob/sn state machine over again */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected event_code %x\n",
__func__, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received unexpected "
"event_code %x\n",
__func__,
event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/* These events are received every 10ms and are
* expected while in this state
*/
break;
case SCU_EVENT_SAS_PHY_DETECTED:
/* There has been a change in the phy type before OOB/SN for the
* SATA finished start down the SAS link traning path.
*/
scic_sds_phy_start_sas_link_training(sci_phy);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected event_code %x\n",
__func__, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
case SCU_EVENT_SATA_SPINUP_HOLD:
/* These events might be received since we dont know how many may be in
* the completion queue while waiting for power
*/
break;
case SCU_EVENT_SATA_PHY_DETECTED:
sci_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
/* We have received the SATA PHY notification change state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN);
break;
case SCU_EVENT_SAS_PHY_DETECTED:
/* There has been a change in the phy type before OOB/SN for the
* SATA finished start down the SAS link traning path.
*/
scic_sds_phy_start_sas_link_training(sci_phy);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected event_code %x\n",
__func__,
event_code);
return SCI_FAILURE;;
}
return SCI_SUCCESS;
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SATA_PHY_DETECTED:
/*
* The hardware reports multiple SATA PHY detected events
* ignore the extras */
break;
case SCU_EVENT_SATA_15:
case SCU_EVENT_SATA_15_SSC:
scic_sds_phy_complete_link_training(
sci_phy,
SAS_LINK_RATE_1_5_GBPS,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF);
break;
case SCU_EVENT_SATA_30:
case SCU_EVENT_SATA_30_SSC:
scic_sds_phy_complete_link_training(
sci_phy,
SAS_LINK_RATE_3_0_GBPS,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF);
break;
case SCU_EVENT_SATA_60:
case SCU_EVENT_SATA_60_SSC:
scic_sds_phy_complete_link_training(
sci_phy,
SAS_LINK_RATE_6_0_GBPS,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF);
break;
case SCU_EVENT_LINK_FAILURE:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
case SCU_EVENT_SAS_PHY_DETECTED:
/*
* There has been a change in the phy type before OOB/SN for the
* SATA finished start down the SAS link traning path. */
scic_sds_phy_start_sas_link_training(sci_phy);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected event_code %x\n",
__func__, event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_SATA_PHY_DETECTED:
/* Backup the state machine */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN);
break;
case SCU_EVENT_LINK_FAILURE:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected event_code %x\n",
__func__,
event_code);
return SCI_FAILURE;
}
return SCI_SUCCESS;
case SCI_BASE_PHY_STATE_READY:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_LINK_FAILURE:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
case SCU_EVENT_BROADCAST_CHANGE:
/* Broadcast change received. Notify the port. */
if (phy_get_non_dummy_port(sci_phy) != NULL)
scic_sds_port_broadcast_change_received(sci_phy->owning_port, sci_phy);
else
sci_phy->bcn_received_while_port_unassigned = true;
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%sP SCIC PHY 0x%p ready state machine received "
"unexpected event_code %x\n",
__func__, sci_phy, event_code);
return SCI_FAILURE_INVALID_STATE;
}
return SCI_SUCCESS;
case SCI_BASE_PHY_STATE_RESETTING:
switch (scu_get_event_code(event_code)) {
case SCU_EVENT_HARD_RESET_TRANSMITTED:
/* Link failure change state back to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
break;
default:
dev_warn(sciphy_to_dev(sci_phy),
"%s: SCIC PHY 0x%p resetting state machine received "
"unexpected event_code %x\n",
__func__, sci_phy, event_code);
return SCI_FAILURE_INVALID_STATE;
break;
}
return SCI_SUCCESS;
default:
dev_dbg(sciphy_to_dev(sci_phy),
"%s: in wrong state: %d\n", __func__, state);
return SCI_FAILURE_INVALID_STATE;
}
}
enum sci_status scic_sds_phy_frame_handler(struct scic_sds_phy *sci_phy,
u32 frame_index)
{
enum scic_sds_phy_states state = sci_phy->state_machine.current_state_id;
struct scic_sds_controller *scic = sci_phy->owning_port->owning_controller;
enum sci_status result;
switch (state) {
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF: {
u32 *frame_words;
struct sas_identify_frame iaf;
struct isci_phy *iphy = sci_phy_to_iphy(sci_phy);
result = scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
(void **)&frame_words);
if (result != SCI_SUCCESS)
return result;
sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
if (iaf.frame_type == 0) {
u32 state;
memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
if (iaf.smp_tport) {
/* We got the IAF for an expander PHY go to the final
* state since there are no power requirements for
* expander phys.
*/
state = SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL;
} else {
/* We got the IAF we can now go to the await spinup
* semaphore state
*/
state = SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER;
}
sci_base_state_machine_change_state(&sci_phy->state_machine,
state);
result = SCI_SUCCESS;
} else
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected frame id %x\n",
__func__, frame_index);
scic_sds_controller_release_frame(scic, frame_index);
return result;
}
case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF: {
struct dev_to_host_fis *frame_header;
u32 *fis_frame_data;
struct isci_phy *iphy = sci_phy_to_iphy(sci_phy);
result = scic_sds_unsolicited_frame_control_get_header(
&(scic_sds_phy_get_controller(sci_phy)->uf_control),
frame_index,
(void **)&frame_header);
if (result != SCI_SUCCESS)
return result;
if ((frame_header->fis_type == FIS_REGD2H) &&
!(frame_header->status & ATA_BUSY)) {
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&fis_frame_data);
scic_sds_controller_copy_sata_response(&iphy->frame_rcvd.fis,
frame_header,
fis_frame_data);
/* got IAF we can now go to the await spinup semaphore state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL);
result = SCI_SUCCESS;
} else
dev_warn(sciphy_to_dev(sci_phy),
"%s: PHY starting substate machine received "
"unexpected frame id %x\n",
__func__, frame_index);
/* Regardless of the result we are done with this frame with it */
scic_sds_controller_release_frame(scic, frame_index);
return result;
}
default:
dev_dbg(sciphy_to_dev(sci_phy),
"%s: in wrong state: %d\n", __func__, state);
return SCI_FAILURE_INVALID_STATE;
}
}
static void scic_sds_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
/* This is just an temporary state go off to the starting state */
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN);
}
static void scic_sds_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
struct scic_sds_controller *scic = sci_phy->owning_port->owning_controller;
scic_sds_controller_power_control_queue_insert(scic, sci_phy);
}
static void scic_sds_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
struct scic_sds_controller *scic = sci_phy->owning_port->owning_controller;
scic_sds_controller_power_control_queue_remove(scic, sci_phy);
}
static void scic_sds_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
struct scic_sds_controller *scic = sci_phy->owning_port->owning_controller;
scic_sds_controller_power_control_queue_insert(scic, sci_phy);
}
static void scic_sds_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
struct scic_sds_controller *scic = sci_phy->owning_port->owning_controller;
scic_sds_controller_power_control_queue_remove(scic, sci_phy);
}
static void scic_sds_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
sci_mod_timer(&sci_phy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
}
static void scic_sds_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
sci_del_timer(&sci_phy->sata_timer);
}
static void scic_sds_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
sci_mod_timer(&sci_phy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
}
static void scic_sds_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
sci_del_timer(&sci_phy->sata_timer);
}
static void scic_sds_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
if (scic_sds_port_link_detected(sci_phy->owning_port, sci_phy)) {
/*
* Clear the PE suspend condition so we can actually
* receive SIG FIS
* The hardware will not respond to the XRDY until the PE
* suspend condition is cleared.
*/
scic_sds_phy_resume(sci_phy);
sci_mod_timer(&sci_phy->sata_timer,
SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
} else
sci_phy->is_in_link_training = false;
}
static void scic_sds_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
sci_del_timer(&sci_phy->sata_timer);
}
static void scic_sds_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
/* State machine has run to completion so exit out and change
* the base state machine to the ready state
*/
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_READY);
}
/**
*
* @sci_phy: This is the struct scic_sds_phy object to stop.
*
* This method will stop the struct scic_sds_phy object. This does not reset the
* protocol engine it just suspends it and places it in a state where it will
* not cause the end device to power up. none
*/
static void scu_link_layer_stop_protocol_engine(
struct scic_sds_phy *sci_phy)
{
u32 scu_sas_pcfg_value;
u32 enable_spinup_value;
/* Suspend the protocol engine and place it in a sata spinup hold state */
scu_sas_pcfg_value =
readl(&sci_phy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value |=
(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
writel(scu_sas_pcfg_value,
&sci_phy->link_layer_registers->phy_configuration);
/* Disable the notify enable spinup primitives */
enable_spinup_value = readl(&sci_phy->link_layer_registers->notify_enable_spinup_control);
enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
writel(enable_spinup_value, &sci_phy->link_layer_registers->notify_enable_spinup_control);
}
/**
*
*
* This method will start the OOB/SN state machine for this struct scic_sds_phy object.
*/
static void scu_link_layer_start_oob(
struct scic_sds_phy *sci_phy)
{
u32 scu_sas_pcfg_value;
scu_sas_pcfg_value =
readl(&sci_phy->link_layer_registers->phy_configuration);
scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
scu_sas_pcfg_value &=
~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
writel(scu_sas_pcfg_value,
&sci_phy->link_layer_registers->phy_configuration);
}
/**
*
*
* This method will transmit a hard reset request on the specified phy. The SCU
* hardware requires that we reset the OOB state machine and set the hard reset
* bit in the phy configuration register. We then must start OOB over with the
* hard reset bit set.
*/
static void scu_link_layer_tx_hard_reset(
struct scic_sds_phy *sci_phy)
{
u32 phy_configuration_value;
/*
* SAS Phys must wait for the HARD_RESET_TX event notification to transition
* to the starting state. */
phy_configuration_value =
readl(&sci_phy->link_layer_registers->phy_configuration);
phy_configuration_value |=
(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
writel(phy_configuration_value,
&sci_phy->link_layer_registers->phy_configuration);
/* Now take the OOB state machine out of reset */
phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
writel(phy_configuration_value,
&sci_phy->link_layer_registers->phy_configuration);
}
static void scic_sds_phy_stopped_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
/*
* @todo We need to get to the controller to place this PE in a
* reset state
*/
sci_del_timer(&sci_phy->sata_timer);
scu_link_layer_stop_protocol_engine(sci_phy);
if (sci_phy->state_machine.previous_state_id != SCI_BASE_PHY_STATE_INITIAL)
scic_sds_controller_link_down(scic_sds_phy_get_controller(sci_phy),
phy_get_non_dummy_port(sci_phy),
sci_phy);
}
static void scic_sds_phy_starting_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
scu_link_layer_stop_protocol_engine(sci_phy);
scu_link_layer_start_oob(sci_phy);
/* We don't know what kind of phy we are going to be just yet */
sci_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
sci_phy->bcn_received_while_port_unassigned = false;
if (sci_phy->state_machine.previous_state_id == SCI_BASE_PHY_STATE_READY)
scic_sds_controller_link_down(scic_sds_phy_get_controller(sci_phy),
phy_get_non_dummy_port(sci_phy),
sci_phy);
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL);
}
static void scic_sds_phy_ready_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
scic_sds_controller_link_up(scic_sds_phy_get_controller(sci_phy),
phy_get_non_dummy_port(sci_phy),
sci_phy);
}
static void scic_sds_phy_ready_state_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
scic_sds_phy_suspend(sci_phy);
}
static void scic_sds_phy_resetting_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_phy *sci_phy = container_of(sm, typeof(*sci_phy), state_machine);
/* The phy is being reset, therefore deactivate it from the port. In
* the resetting state we don't notify the user regarding link up and
* link down notifications
*/
scic_sds_port_deactivate_phy(sci_phy->owning_port, sci_phy, false);
if (sci_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
scu_link_layer_tx_hard_reset(sci_phy);
} else {
/* The SCU does not need to have a discrete reset state so
* just go back to the starting state.
*/
sci_base_state_machine_change_state(&sci_phy->state_machine,
SCI_BASE_PHY_STATE_STARTING);
}
}
static const struct sci_base_state scic_sds_phy_state_table[] = {
[SCI_BASE_PHY_STATE_INITIAL] = { },
[SCI_BASE_PHY_STATE_STOPPED] = {
.enter_state = scic_sds_phy_stopped_state_enter,
},
[SCI_BASE_PHY_STATE_STARTING] = {
.enter_state = scic_sds_phy_starting_state_enter,
},
[SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL] = {
.enter_state = scic_sds_phy_starting_initial_substate_enter,
},
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN] = { },
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN] = { },
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF] = { },
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER] = {
.enter_state = scic_sds_phy_starting_await_sas_power_substate_enter,
.exit_state = scic_sds_phy_starting_await_sas_power_substate_exit,
},
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER] = {
.enter_state = scic_sds_phy_starting_await_sata_power_substate_enter,
.exit_state = scic_sds_phy_starting_await_sata_power_substate_exit
},
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN] = {
.enter_state = scic_sds_phy_starting_await_sata_phy_substate_enter,
.exit_state = scic_sds_phy_starting_await_sata_phy_substate_exit
},
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN] = {
.enter_state = scic_sds_phy_starting_await_sata_speed_substate_enter,
.exit_state = scic_sds_phy_starting_await_sata_speed_substate_exit
},
[SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF] = {
.enter_state = scic_sds_phy_starting_await_sig_fis_uf_substate_enter,
.exit_state = scic_sds_phy_starting_await_sig_fis_uf_substate_exit
},
[SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL] = {
.enter_state = scic_sds_phy_starting_final_substate_enter,
},
[SCI_BASE_PHY_STATE_READY] = {
.enter_state = scic_sds_phy_ready_state_enter,
.exit_state = scic_sds_phy_ready_state_exit,
},
[SCI_BASE_PHY_STATE_RESETTING] = {
.enter_state = scic_sds_phy_resetting_state_enter,
},
[SCI_BASE_PHY_STATE_FINAL] = { },
};
void scic_sds_phy_construct(struct scic_sds_phy *sci_phy,
struct scic_sds_port *owning_port, u8 phy_index)
{
sci_base_state_machine_construct(&sci_phy->state_machine,
scic_sds_phy_state_table,
SCI_BASE_PHY_STATE_INITIAL);
sci_base_state_machine_start(&sci_phy->state_machine);
/* Copy the rest of the input data to our locals */
sci_phy->owning_port = owning_port;
sci_phy->phy_index = phy_index;
sci_phy->bcn_received_while_port_unassigned = false;
sci_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
sci_phy->link_layer_registers = NULL;
sci_phy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
/* Create the SIGNATURE FIS Timeout timer for this phy */
sci_init_timer(&sci_phy->sata_timer, phy_sata_timeout);
}
void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
{
union scic_oem_parameters oem;
u64 sci_sas_addr;
__be64 sas_addr;
scic_oem_parameters_get(&ihost->sci, &oem);
sci_sas_addr = oem.sds1.phys[index].sas_address.high;
sci_sas_addr <<= 32;
sci_sas_addr |= oem.sds1.phys[index].sas_address.low;
sas_addr = cpu_to_be64(sci_sas_addr);
memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
iphy->isci_port = NULL;
iphy->sas_phy.enabled = 0;
iphy->sas_phy.id = index;
iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
iphy->sas_phy.ha = &ihost->sas_ha;
iphy->sas_phy.lldd_phy = iphy;
iphy->sas_phy.enabled = 1;
iphy->sas_phy.class = SAS;
iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
iphy->sas_phy.tproto = 0;
iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
iphy->sas_phy.role = PHY_ROLE_INITIATOR;
iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
}
/**
* isci_phy_control() - This function is one of the SAS Domain Template
* functions. This is a phy management function.
* @phy: This parameter specifies the sphy being controlled.
* @func: This parameter specifies the phy control function being invoked.
* @buf: This parameter is specific to the phy function being invoked.
*
* status, zero indicates success.
*/
int isci_phy_control(struct asd_sas_phy *sas_phy,
enum phy_func func,
void *buf)
{
int ret = 0;
struct isci_phy *iphy = sas_phy->lldd_phy;
struct isci_port *iport = iphy->isci_port;
struct isci_host *ihost = sas_phy->ha->lldd_ha;
unsigned long flags;
dev_dbg(&ihost->pdev->dev,
"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
__func__, sas_phy, func, buf, iphy, iport);
switch (func) {
case PHY_FUNC_DISABLE:
spin_lock_irqsave(&ihost->scic_lock, flags);
scic_sds_phy_stop(&iphy->sci);
spin_unlock_irqrestore(&ihost->scic_lock, flags);
break;
case PHY_FUNC_LINK_RESET:
spin_lock_irqsave(&ihost->scic_lock, flags);
scic_sds_phy_stop(&iphy->sci);
scic_sds_phy_start(&iphy->sci);
spin_unlock_irqrestore(&ihost->scic_lock, flags);
break;
case PHY_FUNC_HARD_RESET:
if (!iport)
return -ENODEV;
/* Perform the port reset. */
ret = isci_port_perform_hard_reset(ihost, iport, iphy);
break;
default:
dev_dbg(&ihost->pdev->dev,
"%s: phy %p; func %d NOT IMPLEMENTED!\n",
__func__, sas_phy, func);
ret = -ENOSYS;
break;
}
return ret;
}