blob: 1363d9f89181d231d2cdc77d40af8d486052cbbe [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Hardware monitoring driver for PMBus devices
*
* Copyright (c) 2010, 2011 Ericsson AB.
* Copyright (c) 2012 Guenter Roeck
*/
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/pmbus.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/of.h>
#include <linux/thermal.h>
#include "pmbus.h"
/*
* Number of additional attribute pointers to allocate
* with each call to krealloc
*/
#define PMBUS_ATTR_ALLOC_SIZE 32
#define PMBUS_NAME_SIZE 24
struct pmbus_sensor {
struct pmbus_sensor *next;
char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
struct device_attribute attribute;
u8 page; /* page number */
u8 phase; /* phase number, 0xff for all phases */
u16 reg; /* register */
enum pmbus_sensor_classes class; /* sensor class */
bool update; /* runtime sensor update needed */
bool convert; /* Whether or not to apply linear/vid/direct */
int data; /* Sensor data.
Negative if there was a read error */
};
#define to_pmbus_sensor(_attr) \
container_of(_attr, struct pmbus_sensor, attribute)
struct pmbus_boolean {
char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
struct sensor_device_attribute attribute;
struct pmbus_sensor *s1;
struct pmbus_sensor *s2;
};
#define to_pmbus_boolean(_attr) \
container_of(_attr, struct pmbus_boolean, attribute)
struct pmbus_label {
char name[PMBUS_NAME_SIZE]; /* sysfs label name */
struct device_attribute attribute;
char label[PMBUS_NAME_SIZE]; /* label */
};
#define to_pmbus_label(_attr) \
container_of(_attr, struct pmbus_label, attribute)
/* Macros for converting between sensor index and register/page/status mask */
#define PB_STATUS_MASK 0xffff
#define PB_REG_SHIFT 16
#define PB_REG_MASK 0x3ff
#define PB_PAGE_SHIFT 26
#define PB_PAGE_MASK 0x3f
#define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
((reg) << PB_REG_SHIFT) | (mask))
#define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
#define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
#define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
struct pmbus_data {
struct device *dev;
struct device *hwmon_dev;
struct regulator_dev **rdevs;
u32 flags; /* from platform data */
int exponent[PMBUS_PAGES];
/* linear mode: exponent for output voltages */
const struct pmbus_driver_info *info;
int max_attributes;
int num_attributes;
struct attribute_group group;
const struct attribute_group **groups;
struct dentry *debugfs; /* debugfs device directory */
struct pmbus_sensor *sensors;
struct mutex update_lock;
bool has_status_word; /* device uses STATUS_WORD register */
int (*read_status)(struct i2c_client *client, int page);
s16 currpage; /* current page, -1 for unknown/unset */
s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
int vout_low[PMBUS_PAGES]; /* voltage low margin */
int vout_high[PMBUS_PAGES]; /* voltage high margin */
};
struct pmbus_debugfs_entry {
struct i2c_client *client;
u8 page;
u8 reg;
};
static const int pmbus_fan_rpm_mask[] = {
PB_FAN_1_RPM,
PB_FAN_2_RPM,
PB_FAN_1_RPM,
PB_FAN_2_RPM,
};
static const int pmbus_fan_config_registers[] = {
PMBUS_FAN_CONFIG_12,
PMBUS_FAN_CONFIG_12,
PMBUS_FAN_CONFIG_34,
PMBUS_FAN_CONFIG_34
};
static const int pmbus_fan_command_registers[] = {
PMBUS_FAN_COMMAND_1,
PMBUS_FAN_COMMAND_2,
PMBUS_FAN_COMMAND_3,
PMBUS_FAN_COMMAND_4,
};
void pmbus_clear_cache(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor *sensor;
for (sensor = data->sensors; sensor; sensor = sensor->next)
sensor->data = -ENODATA;
}
EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
{
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor *sensor;
for (sensor = data->sensors; sensor; sensor = sensor->next)
if (sensor->reg == reg)
sensor->update = update;
}
EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
int pmbus_set_page(struct i2c_client *client, int page, int phase)
{
struct pmbus_data *data = i2c_get_clientdata(client);
int rv;
if (page < 0)
return 0;
if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
data->info->pages > 1 && page != data->currpage) {
rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
if (rv < 0)
return rv;
rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
if (rv < 0)
return rv;
if (rv != page)
return -EIO;
}
data->currpage = page;
if (data->info->phases[page] && data->currphase != phase &&
!(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
phase);
if (rv)
return rv;
}
data->currphase = phase;
return 0;
}
EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
{
int rv;
rv = pmbus_set_page(client, page, 0xff);
if (rv < 0)
return rv;
return i2c_smbus_write_byte(client, value);
}
EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
/*
* _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
* a device specific mapping function exists and calls it if necessary.
*/
static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
{
struct pmbus_data *data = i2c_get_clientdata(client);
const struct pmbus_driver_info *info = data->info;
int status;
if (info->write_byte) {
status = info->write_byte(client, page, value);
if (status != -ENODATA)
return status;
}
return pmbus_write_byte(client, page, value);
}
int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
u16 word)
{
int rv;
rv = pmbus_set_page(client, page, 0xff);
if (rv < 0)
return rv;
return i2c_smbus_write_word_data(client, reg, word);
}
EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
u16 word)
{
int bit;
int id;
int rv;
switch (reg) {
case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
id = reg - PMBUS_VIRT_FAN_TARGET_1;
bit = pmbus_fan_rpm_mask[id];
rv = pmbus_update_fan(client, page, id, bit, bit, word);
break;
default:
rv = -ENXIO;
break;
}
return rv;
}
/*
* _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
* a device specific mapping function exists and calls it if necessary.
*/
static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
u16 word)
{
struct pmbus_data *data = i2c_get_clientdata(client);
const struct pmbus_driver_info *info = data->info;
int status;
if (info->write_word_data) {
status = info->write_word_data(client, page, reg, word);
if (status != -ENODATA)
return status;
}
if (reg >= PMBUS_VIRT_BASE)
return pmbus_write_virt_reg(client, page, reg, word);
return pmbus_write_word_data(client, page, reg, word);
}
/*
* _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
* a device specific mapping function exists and calls it if necessary.
*/
static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
{
struct pmbus_data *data = i2c_get_clientdata(client);
const struct pmbus_driver_info *info = data->info;
int status;
if (info->write_byte_data) {
status = info->write_byte_data(client, page, reg, value);
if (status != -ENODATA)
return status;
}
return pmbus_write_byte_data(client, page, reg, value);
}
/*
* _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
* a device specific mapping function exists and calls it if necessary.
*/
static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
{
struct pmbus_data *data = i2c_get_clientdata(client);
const struct pmbus_driver_info *info = data->info;
int status;
if (info->read_byte_data) {
status = info->read_byte_data(client, page, reg);
if (status != -ENODATA)
return status;
}
return pmbus_read_byte_data(client, page, reg);
}
int pmbus_update_fan(struct i2c_client *client, int page, int id,
u8 config, u8 mask, u16 command)
{
int from;
int rv;
u8 to;
from = _pmbus_read_byte_data(client, page,
pmbus_fan_config_registers[id]);
if (from < 0)
return from;
to = (from & ~mask) | (config & mask);
if (to != from) {
rv = _pmbus_write_byte_data(client, page,
pmbus_fan_config_registers[id], to);
if (rv < 0)
return rv;
}
return _pmbus_write_word_data(client, page,
pmbus_fan_command_registers[id], command);
}
EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
{
int rv;
rv = pmbus_set_page(client, page, phase);
if (rv < 0)
return rv;
return i2c_smbus_read_word_data(client, reg);
}
EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
{
int rv;
int id;
switch (reg) {
case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
id = reg - PMBUS_VIRT_FAN_TARGET_1;
rv = pmbus_get_fan_rate_device(client, page, id, rpm);
break;
default:
rv = -ENXIO;
break;
}
return rv;
}
/*
* _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
* a device specific mapping function exists and calls it if necessary.
*/
static int _pmbus_read_word_data(struct i2c_client *client, int page,
int phase, int reg)
{
struct pmbus_data *data = i2c_get_clientdata(client);
const struct pmbus_driver_info *info = data->info;
int status;
if (info->read_word_data) {
status = info->read_word_data(client, page, phase, reg);
if (status != -ENODATA)
return status;
}
if (reg >= PMBUS_VIRT_BASE)
return pmbus_read_virt_reg(client, page, reg);
return pmbus_read_word_data(client, page, phase, reg);
}
/* Same as above, but without phase parameter, for use in check functions */
static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
{
return _pmbus_read_word_data(client, page, 0xff, reg);
}
int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
{
int rv;
rv = pmbus_set_page(client, page, 0xff);
if (rv < 0)
return rv;
return i2c_smbus_read_byte_data(client, reg);
}
EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
{
int rv;
rv = pmbus_set_page(client, page, 0xff);
if (rv < 0)
return rv;
return i2c_smbus_write_byte_data(client, reg, value);
}
EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
u8 mask, u8 value)
{
unsigned int tmp;
int rv;
rv = _pmbus_read_byte_data(client, page, reg);
if (rv < 0)
return rv;
tmp = (rv & ~mask) | (value & mask);
if (tmp != rv)
rv = _pmbus_write_byte_data(client, page, reg, tmp);
return rv;
}
EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
char *data_buf)
{
int rv;
rv = pmbus_set_page(client, page, 0xff);
if (rv < 0)
return rv;
return i2c_smbus_read_block_data(client, reg, data_buf);
}
static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
int reg)
{
struct pmbus_sensor *sensor;
for (sensor = data->sensors; sensor; sensor = sensor->next) {
if (sensor->page == page && sensor->reg == reg)
return sensor;
}
return ERR_PTR(-EINVAL);
}
static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
enum pmbus_fan_mode mode,
bool from_cache)
{
struct pmbus_data *data = i2c_get_clientdata(client);
bool want_rpm, have_rpm;
struct pmbus_sensor *s;
int config;
int reg;
want_rpm = (mode == rpm);
if (from_cache) {
reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
s = pmbus_find_sensor(data, page, reg + id);
if (IS_ERR(s))
return PTR_ERR(s);
return s->data;
}
config = _pmbus_read_byte_data(client, page,
pmbus_fan_config_registers[id]);
if (config < 0)
return config;
have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
if (want_rpm == have_rpm)
return pmbus_read_word_data(client, page, 0xff,
pmbus_fan_command_registers[id]);
/* Can't sensibly map between RPM and PWM, just return zero */
return 0;
}
int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
enum pmbus_fan_mode mode)
{
return pmbus_get_fan_rate(client, page, id, mode, false);
}
EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
enum pmbus_fan_mode mode)
{
return pmbus_get_fan_rate(client, page, id, mode, true);
}
EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
static void pmbus_clear_fault_page(struct i2c_client *client, int page)
{
_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
}
void pmbus_clear_faults(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
int i;
for (i = 0; i < data->info->pages; i++)
pmbus_clear_fault_page(client, i);
}
EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
static int pmbus_check_status_cml(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
int status, status2;
status = data->read_status(client, -1);
if (status < 0 || (status & PB_STATUS_CML)) {
status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
return -EIO;
}
return 0;
}
static bool pmbus_check_register(struct i2c_client *client,
int (*func)(struct i2c_client *client,
int page, int reg),
int page, int reg)
{
int rv;
struct pmbus_data *data = i2c_get_clientdata(client);
rv = func(client, page, reg);
if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
rv = pmbus_check_status_cml(client);
if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
data->read_status(client, -1);
if (reg < PMBUS_VIRT_BASE)
pmbus_clear_fault_page(client, -1);
return rv >= 0;
}
static bool pmbus_check_status_register(struct i2c_client *client, int page)
{
int status;
struct pmbus_data *data = i2c_get_clientdata(client);
status = data->read_status(client, page);
if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
(status & PB_STATUS_CML)) {
status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
status = -EIO;
}
pmbus_clear_fault_page(client, -1);
return status >= 0;
}
bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
{
return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
}
EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
{
return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
}
EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
int page, int reg)
{
int rv;
struct pmbus_data *data = i2c_get_clientdata(client);
char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
rv = pmbus_read_block_data(client, page, reg, data_buf);
if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
rv = pmbus_check_status_cml(client);
if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
data->read_status(client, -1);
pmbus_clear_fault_page(client, -1);
return rv >= 0;
}
const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
return data->info;
}
EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
static int pmbus_get_status(struct i2c_client *client, int page, int reg)
{
struct pmbus_data *data = i2c_get_clientdata(client);
int status;
switch (reg) {
case PMBUS_STATUS_WORD:
status = data->read_status(client, page);
break;
default:
status = _pmbus_read_byte_data(client, page, reg);
break;
}
if (status < 0)
pmbus_clear_faults(client);
return status;
}
static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
{
if (sensor->data < 0 || sensor->update)
sensor->data = _pmbus_read_word_data(client, sensor->page,
sensor->phase, sensor->reg);
}
/*
* Convert ieee754 sensor values to milli- or micro-units
* depending on sensor type.
*
* ieee754 data format:
* bit 15: sign
* bit 10..14: exponent
* bit 0..9: mantissa
* exponent=0:
* v=(−1)^signbit * 2^(−14) * 0.significantbits
* exponent=1..30:
* v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
* exponent=31:
* v=NaN
*
* Add the number mantissa bits into the calculations for simplicity.
* To do that, add '10' to the exponent. By doing that, we can just add
* 0x400 to normal values and get the expected result.
*/
static long pmbus_reg2data_ieee754(struct pmbus_data *data,
struct pmbus_sensor *sensor)
{
int exponent;
bool sign;
long val;
/* only support half precision for now */
sign = sensor->data & 0x8000;
exponent = (sensor->data >> 10) & 0x1f;
val = sensor->data & 0x3ff;
if (exponent == 0) { /* subnormal */
exponent = -(14 + 10);
} else if (exponent == 0x1f) { /* NaN, convert to min/max */
exponent = 0;
val = 65504;
} else {
exponent -= (15 + 10); /* normal */
val |= 0x400;
}
/* scale result to milli-units for all sensors except fans */
if (sensor->class != PSC_FAN)
val = val * 1000L;
/* scale result to micro-units for power sensors */
if (sensor->class == PSC_POWER)
val = val * 1000L;
if (exponent >= 0)
val <<= exponent;
else
val >>= -exponent;
if (sign)
val = -val;
return val;
}
/*
* Convert linear sensor values to milli- or micro-units
* depending on sensor type.
*/
static s64 pmbus_reg2data_linear(struct pmbus_data *data,
struct pmbus_sensor *sensor)
{
s16 exponent;
s32 mantissa;
s64 val;
if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
exponent = data->exponent[sensor->page];
mantissa = (u16) sensor->data;
} else { /* LINEAR11 */
exponent = ((s16)sensor->data) >> 11;
mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
}
val = mantissa;
/* scale result to milli-units for all sensors except fans */
if (sensor->class != PSC_FAN)
val = val * 1000LL;
/* scale result to micro-units for power sensors */
if (sensor->class == PSC_POWER)
val = val * 1000LL;
if (exponent >= 0)
val <<= exponent;
else
val >>= -exponent;
return val;
}
/*
* Convert direct sensor values to milli- or micro-units
* depending on sensor type.
*/
static s64 pmbus_reg2data_direct(struct pmbus_data *data,
struct pmbus_sensor *sensor)
{
s64 b, val = (s16)sensor->data;
s32 m, R;
m = data->info->m[sensor->class];
b = data->info->b[sensor->class];
R = data->info->R[sensor->class];
if (m == 0)
return 0;
/* X = 1/m * (Y * 10^-R - b) */
R = -R;
/* scale result to milli-units for everything but fans */
if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
R += 3;
b *= 1000;
}
/* scale result to micro-units for power sensors */
if (sensor->class == PSC_POWER) {
R += 3;
b *= 1000;
}
while (R > 0) {
val *= 10;
R--;
}
while (R < 0) {
val = div_s64(val + 5LL, 10L); /* round closest */
R++;
}
val = div_s64(val - b, m);
return val;
}
/*
* Convert VID sensor values to milli- or micro-units
* depending on sensor type.
*/
static s64 pmbus_reg2data_vid(struct pmbus_data *data,
struct pmbus_sensor *sensor)
{
long val = sensor->data;
long rv = 0;
switch (data->info->vrm_version[sensor->page]) {
case vr11:
if (val >= 0x02 && val <= 0xb2)
rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
break;
case vr12:
if (val >= 0x01)
rv = 250 + (val - 1) * 5;
break;
case vr13:
if (val >= 0x01)
rv = 500 + (val - 1) * 10;
break;
case imvp9:
if (val >= 0x01)
rv = 200 + (val - 1) * 10;
break;
case amd625mv:
if (val >= 0x0 && val <= 0xd8)
rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
break;
}
return rv;
}
static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
{
s64 val;
if (!sensor->convert)
return sensor->data;
switch (data->info->format[sensor->class]) {
case direct:
val = pmbus_reg2data_direct(data, sensor);
break;
case vid:
val = pmbus_reg2data_vid(data, sensor);
break;
case ieee754:
val = pmbus_reg2data_ieee754(data, sensor);
break;
case linear:
default:
val = pmbus_reg2data_linear(data, sensor);
break;
}
return val;
}
#define MAX_IEEE_MANTISSA (0x7ff * 1000)
#define MIN_IEEE_MANTISSA (0x400 * 1000)
static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
struct pmbus_sensor *sensor, long val)
{
u16 exponent = (15 + 10);
long mantissa;
u16 sign = 0;
/* simple case */
if (val == 0)
return 0;
if (val < 0) {
sign = 0x8000;
val = -val;
}
/* Power is in uW. Convert to mW before converting. */
if (sensor->class == PSC_POWER)
val = DIV_ROUND_CLOSEST(val, 1000L);
/*
* For simplicity, convert fan data to milli-units
* before calculating the exponent.
*/
if (sensor->class == PSC_FAN)
val = val * 1000;
/* Reduce large mantissa until it fits into 10 bit */
while (val > MAX_IEEE_MANTISSA && exponent < 30) {
exponent++;
val >>= 1;
}
/*
* Increase small mantissa to generate valid 'normal'
* number
*/
while (val < MIN_IEEE_MANTISSA && exponent > 1) {
exponent--;
val <<= 1;
}
/* Convert mantissa from milli-units to units */
mantissa = DIV_ROUND_CLOSEST(val, 1000);
/*
* Ensure that the resulting number is within range.
* Valid range is 0x400..0x7ff, where bit 10 reflects
* the implied high bit in normalized ieee754 numbers.
* Set the range to 0x400..0x7ff to reflect this.
* The upper bit is then removed by the mask against
* 0x3ff in the final assignment.
*/
if (mantissa > 0x7ff)
mantissa = 0x7ff;
else if (mantissa < 0x400)
mantissa = 0x400;
/* Convert to sign, 5 bit exponent, 10 bit mantissa */
return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
}
#define MAX_LIN_MANTISSA (1023 * 1000)
#define MIN_LIN_MANTISSA (511 * 1000)
static u16 pmbus_data2reg_linear(struct pmbus_data *data,
struct pmbus_sensor *sensor, s64 val)
{
s16 exponent = 0, mantissa;
bool negative = false;
/* simple case */
if (val == 0)
return 0;
if (sensor->class == PSC_VOLTAGE_OUT) {
/* LINEAR16 does not support negative voltages */
if (val < 0)
return 0;
/*
* For a static exponents, we don't have a choice
* but to adjust the value to it.
*/
if (data->exponent[sensor->page] < 0)
val <<= -data->exponent[sensor->page];
else
val >>= data->exponent[sensor->page];
val = DIV_ROUND_CLOSEST_ULL(val, 1000);
return clamp_val(val, 0, 0xffff);
}
if (val < 0) {
negative = true;
val = -val;
}
/* Power is in uW. Convert to mW before converting. */
if (sensor->class == PSC_POWER)
val = DIV_ROUND_CLOSEST_ULL(val, 1000);
/*
* For simplicity, convert fan data to milli-units
* before calculating the exponent.
*/
if (sensor->class == PSC_FAN)
val = val * 1000LL;
/* Reduce large mantissa until it fits into 10 bit */
while (val >= MAX_LIN_MANTISSA && exponent < 15) {
exponent++;
val >>= 1;
}
/* Increase small mantissa to improve precision */
while (val < MIN_LIN_MANTISSA && exponent > -15) {
exponent--;
val <<= 1;
}
/* Convert mantissa from milli-units to units */
mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
/* restore sign */
if (negative)
mantissa = -mantissa;
/* Convert to 5 bit exponent, 11 bit mantissa */
return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
}
static u16 pmbus_data2reg_direct(struct pmbus_data *data,
struct pmbus_sensor *sensor, s64 val)
{
s64 b;
s32 m, R;
m = data->info->m[sensor->class];
b = data->info->b[sensor->class];
R = data->info->R[sensor->class];
/* Power is in uW. Adjust R and b. */
if (sensor->class == PSC_POWER) {
R -= 3;
b *= 1000;
}
/* Calculate Y = (m * X + b) * 10^R */
if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
R -= 3; /* Adjust R and b for data in milli-units */
b *= 1000;
}
val = val * m + b;
while (R > 0) {
val *= 10;
R--;
}
while (R < 0) {
val = div_s64(val + 5LL, 10L); /* round closest */
R++;
}
return (u16)clamp_val(val, S16_MIN, S16_MAX);
}
static u16 pmbus_data2reg_vid(struct pmbus_data *data,
struct pmbus_sensor *sensor, s64 val)
{
val = clamp_val(val, 500, 1600);
return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
}
static u16 pmbus_data2reg(struct pmbus_data *data,
struct pmbus_sensor *sensor, s64 val)
{
u16 regval;
if (!sensor->convert)
return val;
switch (data->info->format[sensor->class]) {
case direct:
regval = pmbus_data2reg_direct(data, sensor, val);
break;
case vid:
regval = pmbus_data2reg_vid(data, sensor, val);
break;
case ieee754:
regval = pmbus_data2reg_ieee754(data, sensor, val);
break;
case linear:
default:
regval = pmbus_data2reg_linear(data, sensor, val);
break;
}
return regval;
}
/*
* Return boolean calculated from converted data.
* <index> defines a status register index and mask.
* The mask is in the lower 8 bits, the register index is in bits 8..23.
*
* The associated pmbus_boolean structure contains optional pointers to two
* sensor attributes. If specified, those attributes are compared against each
* other to determine if a limit has been exceeded.
*
* If the sensor attribute pointers are NULL, the function returns true if
* (status[reg] & mask) is true.
*
* If sensor attribute pointers are provided, a comparison against a specified
* limit has to be performed to determine the boolean result.
* In this case, the function returns true if v1 >= v2 (where v1 and v2 are
* sensor values referenced by sensor attribute pointers s1 and s2).
*
* To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
* To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
*
* If a negative value is stored in any of the referenced registers, this value
* reflects an error code which will be returned.
*/
static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
int index)
{
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor *s1 = b->s1;
struct pmbus_sensor *s2 = b->s2;
u16 mask = pb_index_to_mask(index);
u8 page = pb_index_to_page(index);
u16 reg = pb_index_to_reg(index);
int ret, status;
u16 regval;
mutex_lock(&data->update_lock);
status = pmbus_get_status(client, page, reg);
if (status < 0) {
ret = status;
goto unlock;
}
if (s1)
pmbus_update_sensor_data(client, s1);
if (s2)
pmbus_update_sensor_data(client, s2);
regval = status & mask;
if (regval) {
ret = _pmbus_write_byte_data(client, page, reg, regval);
if (ret)
goto unlock;
}
if (s1 && s2) {
s64 v1, v2;
if (s1->data < 0) {
ret = s1->data;
goto unlock;
}
if (s2->data < 0) {
ret = s2->data;
goto unlock;
}
v1 = pmbus_reg2data(data, s1);
v2 = pmbus_reg2data(data, s2);
ret = !!(regval && v1 >= v2);
} else {
ret = !!regval;
}
unlock:
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t pmbus_show_boolean(struct device *dev,
struct device_attribute *da, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
struct i2c_client *client = to_i2c_client(dev->parent);
int val;
val = pmbus_get_boolean(client, boolean, attr->index);
if (val < 0)
return val;
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t pmbus_show_sensor(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
struct pmbus_data *data = i2c_get_clientdata(client);
ssize_t ret;
mutex_lock(&data->update_lock);
pmbus_update_sensor_data(client, sensor);
if (sensor->data < 0)
ret = sensor->data;
else
ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t pmbus_set_sensor(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
ssize_t rv = count;
s64 val;
int ret;
u16 regval;
if (kstrtos64(buf, 10, &val) < 0)
return -EINVAL;
mutex_lock(&data->update_lock);
regval = pmbus_data2reg(data, sensor, val);
ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
if (ret < 0)
rv = ret;
else
sensor->data = -ENODATA;
mutex_unlock(&data->update_lock);
return rv;
}
static ssize_t pmbus_show_label(struct device *dev,
struct device_attribute *da, char *buf)
{
struct pmbus_label *label = to_pmbus_label(da);
return sysfs_emit(buf, "%s\n", label->label);
}
static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
{
if (data->num_attributes >= data->max_attributes - 1) {
int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
new_max_attrs, sizeof(void *),
GFP_KERNEL);
if (!new_attrs)
return -ENOMEM;
data->group.attrs = new_attrs;
data->max_attributes = new_max_attrs;
}
data->group.attrs[data->num_attributes++] = attr;
data->group.attrs[data->num_attributes] = NULL;
return 0;
}
static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
const char *name,
umode_t mode,
ssize_t (*show)(struct device *dev,
struct device_attribute *attr,
char *buf),
ssize_t (*store)(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count))
{
sysfs_attr_init(&dev_attr->attr);
dev_attr->attr.name = name;
dev_attr->attr.mode = mode;
dev_attr->show = show;
dev_attr->store = store;
}
static void pmbus_attr_init(struct sensor_device_attribute *a,
const char *name,
umode_t mode,
ssize_t (*show)(struct device *dev,
struct device_attribute *attr,
char *buf),
ssize_t (*store)(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count),
int idx)
{
pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
a->index = idx;
}
static int pmbus_add_boolean(struct pmbus_data *data,
const char *name, const char *type, int seq,
struct pmbus_sensor *s1,
struct pmbus_sensor *s2,
u8 page, u16 reg, u16 mask)
{
struct pmbus_boolean *boolean;
struct sensor_device_attribute *a;
if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
return -EINVAL;
boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
if (!boolean)
return -ENOMEM;
a = &boolean->attribute;
snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
name, seq, type);
boolean->s1 = s1;
boolean->s2 = s2;
pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
pb_reg_to_index(page, reg, mask));
return pmbus_add_attribute(data, &a->dev_attr.attr);
}
/* of thermal for pmbus temperature sensors */
struct pmbus_thermal_data {
struct pmbus_data *pmbus_data;
struct pmbus_sensor *sensor;
};
static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
struct pmbus_sensor *sensor = tdata->sensor;
struct pmbus_data *pmbus_data = tdata->pmbus_data;
struct i2c_client *client = to_i2c_client(pmbus_data->dev);
struct device *dev = pmbus_data->hwmon_dev;
int ret = 0;
if (!dev) {
/* May not even get to hwmon yet */
*temp = 0;
return 0;
}
mutex_lock(&pmbus_data->update_lock);
pmbus_update_sensor_data(client, sensor);
if (sensor->data < 0)
ret = sensor->data;
else
*temp = (int)pmbus_reg2data(pmbus_data, sensor);
mutex_unlock(&pmbus_data->update_lock);
return ret;
}
static const struct thermal_zone_device_ops pmbus_thermal_ops = {
.get_temp = pmbus_thermal_get_temp,
};
static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
struct pmbus_sensor *sensor, int index)
{
struct device *dev = pmbus_data->dev;
struct pmbus_thermal_data *tdata;
struct thermal_zone_device *tzd;
tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
if (!tdata)
return -ENOMEM;
tdata->sensor = sensor;
tdata->pmbus_data = pmbus_data;
tzd = devm_thermal_of_zone_register(dev, index, tdata,
&pmbus_thermal_ops);
/*
* If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
* so ignore that error but forward any other error.
*/
if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
return PTR_ERR(tzd);
return 0;
}
static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
const char *name, const char *type,
int seq, int page, int phase,
int reg,
enum pmbus_sensor_classes class,
bool update, bool readonly,
bool convert)
{
struct pmbus_sensor *sensor;
struct device_attribute *a;
sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return NULL;
a = &sensor->attribute;
if (type)
snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
name, seq, type);
else
snprintf(sensor->name, sizeof(sensor->name), "%s%d",
name, seq);
if (data->flags & PMBUS_WRITE_PROTECTED)
readonly = true;
sensor->page = page;
sensor->phase = phase;
sensor->reg = reg;
sensor->class = class;
sensor->update = update;
sensor->convert = convert;
sensor->data = -ENODATA;
pmbus_dev_attr_init(a, sensor->name,
readonly ? 0444 : 0644,
pmbus_show_sensor, pmbus_set_sensor);
if (pmbus_add_attribute(data, &a->attr))
return NULL;
sensor->next = data->sensors;
data->sensors = sensor;
/* temperature sensors with _input values are registered with thermal */
if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
pmbus_thermal_add_sensor(data, sensor, seq);
return sensor;
}
static int pmbus_add_label(struct pmbus_data *data,
const char *name, int seq,
const char *lstring, int index, int phase)
{
struct pmbus_label *label;
struct device_attribute *a;
label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
if (!label)
return -ENOMEM;
a = &label->attribute;
snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
if (!index) {
if (phase == 0xff)
strncpy(label->label, lstring,
sizeof(label->label) - 1);
else
snprintf(label->label, sizeof(label->label), "%s.%d",
lstring, phase);
} else {
if (phase == 0xff)
snprintf(label->label, sizeof(label->label), "%s%d",
lstring, index);
else
snprintf(label->label, sizeof(label->label), "%s%d.%d",
lstring, index, phase);
}
pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
return pmbus_add_attribute(data, &a->attr);
}
/*
* Search for attributes. Allocate sensors, booleans, and labels as needed.
*/
/*
* The pmbus_limit_attr structure describes a single limit attribute
* and its associated alarm attribute.
*/
struct pmbus_limit_attr {
u16 reg; /* Limit register */
u16 sbit; /* Alarm attribute status bit */
bool update; /* True if register needs updates */
bool low; /* True if low limit; for limits with compare
functions only */
const char *attr; /* Attribute name */
const char *alarm; /* Alarm attribute name */
};
/*
* The pmbus_sensor_attr structure describes one sensor attribute. This
* description includes a reference to the associated limit attributes.
*/
struct pmbus_sensor_attr {
u16 reg; /* sensor register */
u16 gbit; /* generic status bit */
u8 nlimit; /* # of limit registers */
enum pmbus_sensor_classes class;/* sensor class */
const char *label; /* sensor label */
bool paged; /* true if paged sensor */
bool update; /* true if update needed */
bool compare; /* true if compare function needed */
u32 func; /* sensor mask */
u32 sfunc; /* sensor status mask */
int sreg; /* status register */
const struct pmbus_limit_attr *limit;/* limit registers */
};
/*
* Add a set of limit attributes and, if supported, the associated
* alarm attributes.
* returns 0 if no alarm register found, 1 if an alarm register was found,
* < 0 on errors.
*/
static int pmbus_add_limit_attrs(struct i2c_client *client,
struct pmbus_data *data,
const struct pmbus_driver_info *info,
const char *name, int index, int page,
struct pmbus_sensor *base,
const struct pmbus_sensor_attr *attr)
{
const struct pmbus_limit_attr *l = attr->limit;
int nlimit = attr->nlimit;
int have_alarm = 0;
int i, ret;
struct pmbus_sensor *curr;
for (i = 0; i < nlimit; i++) {
if (pmbus_check_word_register(client, page, l->reg)) {
curr = pmbus_add_sensor(data, name, l->attr, index,
page, 0xff, l->reg, attr->class,
attr->update || l->update,
false, true);
if (!curr)
return -ENOMEM;
if (l->sbit && (info->func[page] & attr->sfunc)) {
ret = pmbus_add_boolean(data, name,
l->alarm, index,
attr->compare ? l->low ? curr : base
: NULL,
attr->compare ? l->low ? base : curr
: NULL,
page, attr->sreg, l->sbit);
if (ret)
return ret;
have_alarm = 1;
}
}
l++;
}
return have_alarm;
}
static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
struct pmbus_data *data,
const struct pmbus_driver_info *info,
const char *name,
int index, int page, int phase,
const struct pmbus_sensor_attr *attr,
bool paged)
{
struct pmbus_sensor *base;
bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
int ret;
if (attr->label) {
ret = pmbus_add_label(data, name, index, attr->label,
paged ? page + 1 : 0, phase);
if (ret)
return ret;
}
base = pmbus_add_sensor(data, name, "input", index, page, phase,
attr->reg, attr->class, true, true, true);
if (!base)
return -ENOMEM;
/* No limit and alarm attributes for phase specific sensors */
if (attr->sfunc && phase == 0xff) {
ret = pmbus_add_limit_attrs(client, data, info, name,
index, page, base, attr);
if (ret < 0)
return ret;
/*
* Add generic alarm attribute only if there are no individual
* alarm attributes, if there is a global alarm bit, and if
* the generic status register (word or byte, depending on
* which global bit is set) for this page is accessible.
*/
if (!ret && attr->gbit &&
(!upper || data->has_status_word) &&
pmbus_check_status_register(client, page)) {
ret = pmbus_add_boolean(data, name, "alarm", index,
NULL, NULL,
page, PMBUS_STATUS_WORD,
attr->gbit);
if (ret)
return ret;
}
}
return 0;
}
static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
const struct pmbus_sensor_attr *attr)
{
int p;
if (attr->paged)
return true;
/*
* Some attributes may be present on more than one page despite
* not being marked with the paged attribute. If that is the case,
* then treat the sensor as being paged and add the page suffix to the
* attribute name.
* We don't just add the paged attribute to all such attributes, in
* order to maintain the un-suffixed labels in the case where the
* attribute is only on page 0.
*/
for (p = 1; p < info->pages; p++) {
if (info->func[p] & attr->func)
return true;
}
return false;
}
static int pmbus_add_sensor_attrs(struct i2c_client *client,
struct pmbus_data *data,
const char *name,
const struct pmbus_sensor_attr *attrs,
int nattrs)
{
const struct pmbus_driver_info *info = data->info;
int index, i;
int ret;
index = 1;
for (i = 0; i < nattrs; i++) {
int page, pages;
bool paged = pmbus_sensor_is_paged(info, attrs);
pages = paged ? info->pages : 1;
for (page = 0; page < pages; page++) {
if (info->func[page] & attrs->func) {
ret = pmbus_add_sensor_attrs_one(client, data, info,
name, index, page,
0xff, attrs, paged);
if (ret)
return ret;
index++;
}
if (info->phases[page]) {
int phase;
for (phase = 0; phase < info->phases[page];
phase++) {
if (!(info->pfunc[phase] & attrs->func))
continue;
ret = pmbus_add_sensor_attrs_one(client,
data, info, name, index, page,
phase, attrs, paged);
if (ret)
return ret;
index++;
}
}
}
attrs++;
}
return 0;
}
static const struct pmbus_limit_attr vin_limit_attrs[] = {
{
.reg = PMBUS_VIN_UV_WARN_LIMIT,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_VOLTAGE_UV_WARNING,
}, {
.reg = PMBUS_VIN_UV_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
}, {
.reg = PMBUS_VIN_OV_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_VOLTAGE_OV_WARNING,
}, {
.reg = PMBUS_VIN_OV_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_VOLTAGE_OV_FAULT,
}, {
.reg = PMBUS_VIRT_READ_VIN_AVG,
.update = true,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_VIN_MIN,
.update = true,
.attr = "lowest",
}, {
.reg = PMBUS_VIRT_READ_VIN_MAX,
.update = true,
.attr = "highest",
}, {
.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_VIN_MIN,
.attr = "rated_min",
}, {
.reg = PMBUS_MFR_VIN_MAX,
.attr = "rated_max",
},
};
static const struct pmbus_limit_attr vmon_limit_attrs[] = {
{
.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_VOLTAGE_UV_WARNING,
}, {
.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_VOLTAGE_UV_FAULT,
}, {
.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_VOLTAGE_OV_WARNING,
}, {
.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_VOLTAGE_OV_FAULT,
}
};
static const struct pmbus_limit_attr vout_limit_attrs[] = {
{
.reg = PMBUS_VOUT_UV_WARN_LIMIT,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_VOLTAGE_UV_WARNING,
}, {
.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_VOLTAGE_UV_FAULT,
}, {
.reg = PMBUS_VOUT_OV_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_VOLTAGE_OV_WARNING,
}, {
.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_VOLTAGE_OV_FAULT,
}, {
.reg = PMBUS_VIRT_READ_VOUT_AVG,
.update = true,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_VOUT_MIN,
.update = true,
.attr = "lowest",
}, {
.reg = PMBUS_VIRT_READ_VOUT_MAX,
.update = true,
.attr = "highest",
}, {
.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_VOUT_MIN,
.attr = "rated_min",
}, {
.reg = PMBUS_MFR_VOUT_MAX,
.attr = "rated_max",
},
};
static const struct pmbus_sensor_attr voltage_attributes[] = {
{
.reg = PMBUS_READ_VIN,
.class = PSC_VOLTAGE_IN,
.label = "vin",
.func = PMBUS_HAVE_VIN,
.sfunc = PMBUS_HAVE_STATUS_INPUT,
.sreg = PMBUS_STATUS_INPUT,
.gbit = PB_STATUS_VIN_UV,
.limit = vin_limit_attrs,
.nlimit = ARRAY_SIZE(vin_limit_attrs),
}, {
.reg = PMBUS_VIRT_READ_VMON,
.class = PSC_VOLTAGE_IN,
.label = "vmon",
.func = PMBUS_HAVE_VMON,
.sfunc = PMBUS_HAVE_STATUS_VMON,
.sreg = PMBUS_VIRT_STATUS_VMON,
.limit = vmon_limit_attrs,
.nlimit = ARRAY_SIZE(vmon_limit_attrs),
}, {
.reg = PMBUS_READ_VCAP,
.class = PSC_VOLTAGE_IN,
.label = "vcap",
.func = PMBUS_HAVE_VCAP,
}, {
.reg = PMBUS_READ_VOUT,
.class = PSC_VOLTAGE_OUT,
.label = "vout",
.paged = true,
.func = PMBUS_HAVE_VOUT,
.sfunc = PMBUS_HAVE_STATUS_VOUT,
.sreg = PMBUS_STATUS_VOUT,
.gbit = PB_STATUS_VOUT_OV,
.limit = vout_limit_attrs,
.nlimit = ARRAY_SIZE(vout_limit_attrs),
}
};
/* Current attributes */
static const struct pmbus_limit_attr iin_limit_attrs[] = {
{
.reg = PMBUS_IIN_OC_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_IIN_OC_WARNING,
}, {
.reg = PMBUS_IIN_OC_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_IIN_OC_FAULT,
}, {
.reg = PMBUS_VIRT_READ_IIN_AVG,
.update = true,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_IIN_MIN,
.update = true,
.attr = "lowest",
}, {
.reg = PMBUS_VIRT_READ_IIN_MAX,
.update = true,
.attr = "highest",
}, {
.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_IIN_MAX,
.attr = "rated_max",
},
};
static const struct pmbus_limit_attr iout_limit_attrs[] = {
{
.reg = PMBUS_IOUT_OC_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_IOUT_OC_WARNING,
}, {
.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_IOUT_UC_FAULT,
}, {
.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_IOUT_OC_FAULT,
}, {
.reg = PMBUS_VIRT_READ_IOUT_AVG,
.update = true,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_IOUT_MIN,
.update = true,
.attr = "lowest",
}, {
.reg = PMBUS_VIRT_READ_IOUT_MAX,
.update = true,
.attr = "highest",
}, {
.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_IOUT_MAX,
.attr = "rated_max",
},
};
static const struct pmbus_sensor_attr current_attributes[] = {
{
.reg = PMBUS_READ_IIN,
.class = PSC_CURRENT_IN,
.label = "iin",
.func = PMBUS_HAVE_IIN,
.sfunc = PMBUS_HAVE_STATUS_INPUT,
.sreg = PMBUS_STATUS_INPUT,
.gbit = PB_STATUS_INPUT,
.limit = iin_limit_attrs,
.nlimit = ARRAY_SIZE(iin_limit_attrs),
}, {
.reg = PMBUS_READ_IOUT,
.class = PSC_CURRENT_OUT,
.label = "iout",
.paged = true,
.func = PMBUS_HAVE_IOUT,
.sfunc = PMBUS_HAVE_STATUS_IOUT,
.sreg = PMBUS_STATUS_IOUT,
.gbit = PB_STATUS_IOUT_OC,
.limit = iout_limit_attrs,
.nlimit = ARRAY_SIZE(iout_limit_attrs),
}
};
/* Power attributes */
static const struct pmbus_limit_attr pin_limit_attrs[] = {
{
.reg = PMBUS_PIN_OP_WARN_LIMIT,
.attr = "max",
.alarm = "alarm",
.sbit = PB_PIN_OP_WARNING,
}, {
.reg = PMBUS_VIRT_READ_PIN_AVG,
.update = true,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_PIN_MIN,
.update = true,
.attr = "input_lowest",
}, {
.reg = PMBUS_VIRT_READ_PIN_MAX,
.update = true,
.attr = "input_highest",
}, {
.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_PIN_MAX,
.attr = "rated_max",
},
};
static const struct pmbus_limit_attr pout_limit_attrs[] = {
{
.reg = PMBUS_POUT_MAX,
.attr = "cap",
.alarm = "cap_alarm",
.sbit = PB_POWER_LIMITING,
}, {
.reg = PMBUS_POUT_OP_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_POUT_OP_WARNING,
}, {
.reg = PMBUS_POUT_OP_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_POUT_OP_FAULT,
}, {
.reg = PMBUS_VIRT_READ_POUT_AVG,
.update = true,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_POUT_MIN,
.update = true,
.attr = "input_lowest",
}, {
.reg = PMBUS_VIRT_READ_POUT_MAX,
.update = true,
.attr = "input_highest",
}, {
.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_POUT_MAX,
.attr = "rated_max",
},
};
static const struct pmbus_sensor_attr power_attributes[] = {
{
.reg = PMBUS_READ_PIN,
.class = PSC_POWER,
.label = "pin",
.func = PMBUS_HAVE_PIN,
.sfunc = PMBUS_HAVE_STATUS_INPUT,
.sreg = PMBUS_STATUS_INPUT,
.gbit = PB_STATUS_INPUT,
.limit = pin_limit_attrs,
.nlimit = ARRAY_SIZE(pin_limit_attrs),
}, {
.reg = PMBUS_READ_POUT,
.class = PSC_POWER,
.label = "pout",
.paged = true,
.func = PMBUS_HAVE_POUT,
.sfunc = PMBUS_HAVE_STATUS_IOUT,
.sreg = PMBUS_STATUS_IOUT,
.limit = pout_limit_attrs,
.nlimit = ARRAY_SIZE(pout_limit_attrs),
}
};
/* Temperature atributes */
static const struct pmbus_limit_attr temp_limit_attrs[] = {
{
.reg = PMBUS_UT_WARN_LIMIT,
.low = true,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_TEMP_UT_WARNING,
}, {
.reg = PMBUS_UT_FAULT_LIMIT,
.low = true,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_TEMP_UT_FAULT,
}, {
.reg = PMBUS_OT_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_TEMP_OT_WARNING,
}, {
.reg = PMBUS_OT_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_TEMP_OT_FAULT,
}, {
.reg = PMBUS_VIRT_READ_TEMP_MIN,
.attr = "lowest",
}, {
.reg = PMBUS_VIRT_READ_TEMP_AVG,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_TEMP_MAX,
.attr = "highest",
}, {
.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_MAX_TEMP_1,
.attr = "rated_max",
},
};
static const struct pmbus_limit_attr temp_limit_attrs2[] = {
{
.reg = PMBUS_UT_WARN_LIMIT,
.low = true,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_TEMP_UT_WARNING,
}, {
.reg = PMBUS_UT_FAULT_LIMIT,
.low = true,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_TEMP_UT_FAULT,
}, {
.reg = PMBUS_OT_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_TEMP_OT_WARNING,
}, {
.reg = PMBUS_OT_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_TEMP_OT_FAULT,
}, {
.reg = PMBUS_VIRT_READ_TEMP2_MIN,
.attr = "lowest",
}, {
.reg = PMBUS_VIRT_READ_TEMP2_AVG,
.attr = "average",
}, {
.reg = PMBUS_VIRT_READ_TEMP2_MAX,
.attr = "highest",
}, {
.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
.attr = "reset_history",
}, {
.reg = PMBUS_MFR_MAX_TEMP_2,
.attr = "rated_max",
},
};
static const struct pmbus_limit_attr temp_limit_attrs3[] = {
{
.reg = PMBUS_UT_WARN_LIMIT,
.low = true,
.attr = "min",
.alarm = "min_alarm",
.sbit = PB_TEMP_UT_WARNING,
}, {
.reg = PMBUS_UT_FAULT_LIMIT,
.low = true,
.attr = "lcrit",
.alarm = "lcrit_alarm",
.sbit = PB_TEMP_UT_FAULT,
}, {
.reg = PMBUS_OT_WARN_LIMIT,
.attr = "max",
.alarm = "max_alarm",
.sbit = PB_TEMP_OT_WARNING,
}, {
.reg = PMBUS_OT_FAULT_LIMIT,
.attr = "crit",
.alarm = "crit_alarm",
.sbit = PB_TEMP_OT_FAULT,
}, {
.reg = PMBUS_MFR_MAX_TEMP_3,
.attr = "rated_max",
},
};
static const struct pmbus_sensor_attr temp_attributes[] = {
{
.reg = PMBUS_READ_TEMPERATURE_1,
.class = PSC_TEMPERATURE,
.paged = true,
.update = true,
.compare = true,
.func = PMBUS_HAVE_TEMP,
.sfunc = PMBUS_HAVE_STATUS_TEMP,
.sreg = PMBUS_STATUS_TEMPERATURE,
.gbit = PB_STATUS_TEMPERATURE,
.limit = temp_limit_attrs,
.nlimit = ARRAY_SIZE(temp_limit_attrs),
}, {
.reg = PMBUS_READ_TEMPERATURE_2,
.class = PSC_TEMPERATURE,
.paged = true,
.update = true,
.compare = true,
.func = PMBUS_HAVE_TEMP2,
.sfunc = PMBUS_HAVE_STATUS_TEMP,
.sreg = PMBUS_STATUS_TEMPERATURE,
.gbit = PB_STATUS_TEMPERATURE,
.limit = temp_limit_attrs2,
.nlimit = ARRAY_SIZE(temp_limit_attrs2),
}, {
.reg = PMBUS_READ_TEMPERATURE_3,
.class = PSC_TEMPERATURE,
.paged = true,
.update = true,
.compare = true,
.func = PMBUS_HAVE_TEMP3,
.sfunc = PMBUS_HAVE_STATUS_TEMP,
.sreg = PMBUS_STATUS_TEMPERATURE,
.gbit = PB_STATUS_TEMPERATURE,
.limit = temp_limit_attrs3,
.nlimit = ARRAY_SIZE(temp_limit_attrs3),
}
};
static const int pmbus_fan_registers[] = {
PMBUS_READ_FAN_SPEED_1,
PMBUS_READ_FAN_SPEED_2,
PMBUS_READ_FAN_SPEED_3,
PMBUS_READ_FAN_SPEED_4
};
static const int pmbus_fan_status_registers[] = {
PMBUS_STATUS_FAN_12,
PMBUS_STATUS_FAN_12,
PMBUS_STATUS_FAN_34,
PMBUS_STATUS_FAN_34
};
static const u32 pmbus_fan_flags[] = {
PMBUS_HAVE_FAN12,
PMBUS_HAVE_FAN12,
PMBUS_HAVE_FAN34,
PMBUS_HAVE_FAN34
};
static const u32 pmbus_fan_status_flags[] = {
PMBUS_HAVE_STATUS_FAN12,
PMBUS_HAVE_STATUS_FAN12,
PMBUS_HAVE_STATUS_FAN34,
PMBUS_HAVE_STATUS_FAN34
};
/* Fans */
/* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
static int pmbus_add_fan_ctrl(struct i2c_client *client,
struct pmbus_data *data, int index, int page, int id,
u8 config)
{
struct pmbus_sensor *sensor;
sensor = pmbus_add_sensor(data, "fan", "target", index, page,
0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
false, false, true);
if (!sensor)
return -ENOMEM;
if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
(data->info->func[page] & PMBUS_HAVE_PWM34)))
return 0;
sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
false, false, true);
if (!sensor)
return -ENOMEM;
sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
true, false, false);
if (!sensor)
return -ENOMEM;
return 0;
}
static int pmbus_add_fan_attributes(struct i2c_client *client,
struct pmbus_data *data)
{
const struct pmbus_driver_info *info = data->info;
int index = 1;
int page;
int ret;
for (page = 0; page < info->pages; page++) {
int f;
for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
int regval;
if (!(info->func[page] & pmbus_fan_flags[f]))
break;
if (!pmbus_check_word_register(client, page,
pmbus_fan_registers[f]))
break;
/*
* Skip fan if not installed.
* Each fan configuration register covers multiple fans,
* so we have to do some magic.
*/
regval = _pmbus_read_byte_data(client, page,
pmbus_fan_config_registers[f]);
if (regval < 0 ||
(!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
continue;
if (pmbus_add_sensor(data, "fan", "input", index,
page, 0xff, pmbus_fan_registers[f],
PSC_FAN, true, true, true) == NULL)
return -ENOMEM;
/* Fan control */
if (pmbus_check_word_register(client, page,
pmbus_fan_command_registers[f])) {
ret = pmbus_add_fan_ctrl(client, data, index,
page, f, regval);
if (ret < 0)
return ret;
}
/*
* Each fan status register covers multiple fans,
* so we have to do some magic.
*/
if ((info->func[page] & pmbus_fan_status_flags[f]) &&
pmbus_check_byte_register(client,
page, pmbus_fan_status_registers[f])) {
int reg;
if (f > 1) /* fan 3, 4 */
reg = PMBUS_STATUS_FAN_34;
else
reg = PMBUS_STATUS_FAN_12;
ret = pmbus_add_boolean(data, "fan",
"alarm", index, NULL, NULL, page, reg,
PB_FAN_FAN1_WARNING >> (f & 1));
if (ret)
return ret;
ret = pmbus_add_boolean(data, "fan",
"fault", index, NULL, NULL, page, reg,
PB_FAN_FAN1_FAULT >> (f & 1));
if (ret)
return ret;
}
index++;
}
}
return 0;
}
struct pmbus_samples_attr {
int reg;
char *name;
};
struct pmbus_samples_reg {
int page;
struct pmbus_samples_attr *attr;
struct device_attribute dev_attr;
};
static struct pmbus_samples_attr pmbus_samples_registers[] = {
{
.reg = PMBUS_VIRT_SAMPLES,
.name = "samples",
}, {
.reg = PMBUS_VIRT_IN_SAMPLES,
.name = "in_samples",
}, {
.reg = PMBUS_VIRT_CURR_SAMPLES,
.name = "curr_samples",
}, {
.reg = PMBUS_VIRT_POWER_SAMPLES,
.name = "power_samples",
}, {
.reg = PMBUS_VIRT_TEMP_SAMPLES,
.name = "temp_samples",
}
};
#define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
static ssize_t pmbus_show_samples(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int val;
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_samples_reg *reg = to_samples_reg(devattr);
struct pmbus_data *data = i2c_get_clientdata(client);
mutex_lock(&data->update_lock);
val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
mutex_unlock(&data->update_lock);
if (val < 0)
return val;
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t pmbus_set_samples(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
int ret;
long val;
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_samples_reg *reg = to_samples_reg(devattr);
struct pmbus_data *data = i2c_get_clientdata(client);
if (kstrtol(buf, 0, &val) < 0)
return -EINVAL;
mutex_lock(&data->update_lock);
ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
mutex_unlock(&data->update_lock);
return ret ? : count;
}
static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
struct pmbus_samples_attr *attr)
{
struct pmbus_samples_reg *reg;
reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
if (!reg)
return -ENOMEM;
reg->attr = attr;
reg->page = page;
pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
pmbus_show_samples, pmbus_set_samples);
return pmbus_add_attribute(data, &reg->dev_attr.attr);
}
static int pmbus_add_samples_attributes(struct i2c_client *client,
struct pmbus_data *data)
{
const struct pmbus_driver_info *info = data->info;
int s;
if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
return 0;
for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
struct pmbus_samples_attr *attr;
int ret;
attr = &pmbus_samples_registers[s];
if (!pmbus_check_word_register(client, 0, attr->reg))
continue;
ret = pmbus_add_samples_attr(data, 0, attr);
if (ret)
return ret;
}
return 0;
}
static int pmbus_find_attributes(struct i2c_client *client,
struct pmbus_data *data)
{
int ret;
/* Voltage sensors */
ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
ARRAY_SIZE(voltage_attributes));
if (ret)
return ret;
/* Current sensors */
ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
ARRAY_SIZE(current_attributes));
if (ret)
return ret;
/* Power sensors */
ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
ARRAY_SIZE(power_attributes));
if (ret)
return ret;
/* Temperature sensors */
ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
ARRAY_SIZE(temp_attributes));
if (ret)
return ret;
/* Fans */
ret = pmbus_add_fan_attributes(client, data);
if (ret)
return ret;
ret = pmbus_add_samples_attributes(client, data);
return ret;
}
/*
* The pmbus_class_attr_map structure maps one sensor class to
* it's corresponding sensor attributes array.
*/
struct pmbus_class_attr_map {
enum pmbus_sensor_classes class;
int nattr;
const struct pmbus_sensor_attr *attr;
};
static const struct pmbus_class_attr_map class_attr_map[] = {
{
.class = PSC_VOLTAGE_IN,
.attr = voltage_attributes,
.nattr = ARRAY_SIZE(voltage_attributes),
}, {
.class = PSC_VOLTAGE_OUT,
.attr = voltage_attributes,
.nattr = ARRAY_SIZE(voltage_attributes),
}, {
.class = PSC_CURRENT_IN,
.attr = current_attributes,
.nattr = ARRAY_SIZE(current_attributes),
}, {
.class = PSC_CURRENT_OUT,
.attr = current_attributes,
.nattr = ARRAY_SIZE(current_attributes),
}, {
.class = PSC_POWER,
.attr = power_attributes,
.nattr = ARRAY_SIZE(power_attributes),
}, {
.class = PSC_TEMPERATURE,
.attr = temp_attributes,
.nattr = ARRAY_SIZE(temp_attributes),
}
};
/*
* Read the coefficients for direct mode.
*/
static int pmbus_read_coefficients(struct i2c_client *client,
struct pmbus_driver_info *info,
const struct pmbus_sensor_attr *attr)
{
int rv;
union i2c_smbus_data data;
enum pmbus_sensor_classes class = attr->class;
s8 R;
s16 m, b;
data.block[0] = 2;
data.block[1] = attr->reg;
data.block[2] = 0x01;
rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
I2C_SMBUS_BLOCK_PROC_CALL, &data);
if (rv < 0)
return rv;
if (data.block[0] != 5)
return -EIO;
m = data.block[1] | (data.block[2] << 8);
b = data.block[3] | (data.block[4] << 8);
R = data.block[5];
info->m[class] = m;
info->b[class] = b;
info->R[class] = R;
return rv;
}
static int pmbus_init_coefficients(struct i2c_client *client,
struct pmbus_driver_info *info)
{
int i, n, ret = -EINVAL;
const struct pmbus_class_attr_map *map;
const struct pmbus_sensor_attr *attr;
for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
map = &class_attr_map[i];
if (info->format[map->class] != direct)
continue;
for (n = 0; n < map->nattr; n++) {
attr = &map->attr[n];
if (map->class != attr->class)
continue;
ret = pmbus_read_coefficients(client, info, attr);
if (ret >= 0)
break;
}
if (ret < 0) {
dev_err(&client->dev,
"No coefficients found for sensor class %d\n",
map->class);
return -EINVAL;
}
}
return 0;
}
/*
* Identify chip parameters.
* This function is called for all chips.
*/
static int pmbus_identify_common(struct i2c_client *client,
struct pmbus_data *data, int page)
{
int vout_mode = -1;
if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
vout_mode = _pmbus_read_byte_data(client, page,
PMBUS_VOUT_MODE);
if (vout_mode >= 0 && vout_mode != 0xff) {
/*
* Not all chips support the VOUT_MODE command,
* so a failure to read it is not an error.
*/
switch (vout_mode >> 5) {
case 0: /* linear mode */
if (data->info->format[PSC_VOLTAGE_OUT] != linear)
return -ENODEV;
data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
break;
case 1: /* VID mode */
if (data->info->format[PSC_VOLTAGE_OUT] != vid)
return -ENODEV;
break;
case 2: /* direct mode */
if (data->info->format[PSC_VOLTAGE_OUT] != direct)
return -ENODEV;
break;
case 3: /* ieee 754 half precision */
if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
return -ENODEV;
break;
default:
return -ENODEV;
}
}
return 0;
}
static int pmbus_read_status_byte(struct i2c_client *client, int page)
{
return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
}
static int pmbus_read_status_word(struct i2c_client *client, int page)
{
return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
}
/* PEC attribute support */
static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
}
static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
bool enable;
int err;
err = kstrtobool(buf, &enable);
if (err < 0)
return err;
if (enable)
client->flags |= I2C_CLIENT_PEC;
else
client->flags &= ~I2C_CLIENT_PEC;
return count;
}
static DEVICE_ATTR_RW(pec);
static void pmbus_remove_pec(void *dev)
{
device_remove_file(dev, &dev_attr_pec);
}
static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
struct pmbus_driver_info *info)
{
struct device *dev = &client->dev;
int page, ret;
/*
* Figure out if PEC is enabled before accessing any other register.
* Make sure PEC is disabled, will be enabled later if needed.
*/
client->flags &= ~I2C_CLIENT_PEC;
/* Enable PEC if the controller and bus supports it */
if (!(data->flags & PMBUS_NO_CAPABILITY)) {
ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
client->flags |= I2C_CLIENT_PEC;
}
}
/*
* Some PMBus chips don't support PMBUS_STATUS_WORD, so try
* to use PMBUS_STATUS_BYTE instead if that is the case.
* Bail out if both registers are not supported.
*/
data->read_status = pmbus_read_status_word;
ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
if (ret < 0 || ret == 0xffff) {
data->read_status = pmbus_read_status_byte;
ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
if (ret < 0 || ret == 0xff) {
dev_err(dev, "PMBus status register not found\n");
return -ENODEV;
}
} else {
data->has_status_word = true;
}
/*
* Check if the chip is write protected. If it is, we can not clear
* faults, and we should not try it. Also, in that case, writes into
* limit registers need to be disabled.
*/
if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
if (ret > 0 && (ret & PB_WP_ANY))
data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
}
if (data->info->pages)
pmbus_clear_faults(client);
else
pmbus_clear_fault_page(client, -1);
if (info->identify) {
ret = (*info->identify)(client, info);
if (ret < 0) {
dev_err(dev, "Chip identification failed\n");
return ret;
}
}
if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
return -ENODEV;
}
for (page = 0; page < info->pages; page++) {
ret = pmbus_identify_common(client, data, page);
if (ret < 0) {
dev_err(dev, "Failed to identify chip capabilities\n");
return ret;
}
}
if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
return -ENODEV;
ret = pmbus_init_coefficients(client, info);
if (ret < 0)
return ret;
}
if (client->flags & I2C_CLIENT_PEC) {
/*
* If I2C_CLIENT_PEC is set here, both the I2C adapter and the
* chip support PEC. Add 'pec' attribute to client device to let
* the user control it.
*/
ret = device_create_file(dev, &dev_attr_pec);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
if (ret)
return ret;
}
return 0;
}
/* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
struct pmbus_status_assoc {
int pflag, rflag, eflag;
};
/* PMBus->regulator bit mappings for a PMBus status register */
struct pmbus_status_category {
int func;
int reg;
const struct pmbus_status_assoc *bits; /* zero-terminated */
};
static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
{
.func = PMBUS_HAVE_STATUS_VOUT,
.reg = PMBUS_STATUS_VOUT,
.bits = (const struct pmbus_status_assoc[]) {
{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
{ PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
REGULATOR_EVENT_UNDER_VOLTAGE },
{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
REGULATOR_EVENT_OVER_VOLTAGE_WARN },
{ PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
REGULATOR_EVENT_OVER_VOLTAGE_WARN },
{ },
},
}, {
.func = PMBUS_HAVE_STATUS_IOUT,
.reg = PMBUS_STATUS_IOUT,
.bits = (const struct pmbus_status_assoc[]) {
{ PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
REGULATOR_EVENT_OVER_CURRENT_WARN },
{ PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
REGULATOR_EVENT_OVER_CURRENT },
{ PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
REGULATOR_EVENT_OVER_CURRENT },
{ },
},
}, {
.func = PMBUS_HAVE_STATUS_TEMP,
.reg = PMBUS_STATUS_TEMPERATURE,
.bits = (const struct pmbus_status_assoc[]) {
{ PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
REGULATOR_EVENT_OVER_TEMP_WARN },
{ PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
REGULATOR_EVENT_OVER_TEMP },
{ },
},
},
};
static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
{
int ret;
ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
if (ret < 0)
return ret;
return !!(ret & PB_OPERATION_CONTROL_ON);
}
static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
{
struct pmbus_data *data = i2c_get_clientdata(client);
int ret;
mutex_lock(&data->update_lock);
ret = _pmbus_is_enabled(client, page);
mutex_unlock(&data->update_lock);
return ret;
}
#define to_dev_attr(_dev_attr) \
container_of(_dev_attr, struct device_attribute, attr)
static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
{
int i;
for (i = 0; i < data->num_attributes; i++) {
struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int index = attr->index;
u16 smask = pb_index_to_mask(index);
u8 spage = pb_index_to_page(index);
u16 sreg = pb_index_to_reg(index);
if (reg == sreg && page == spage && (smask & flags)) {
dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
flags &= ~smask;
}
if (!flags)
break;
}
}
static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
unsigned int *event, bool notify)
{
int i, status;
const struct pmbus_status_category *cat;
const struct pmbus_status_assoc *bit;
struct device *dev = data->dev;
struct i2c_client *client = to_i2c_client(dev);
int func = data->info->func[page];
*flags = 0;
*event = 0;
for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
cat = &pmbus_status_flag_map[i];
if (!(func & cat->func))
continue;
status = _pmbus_read_byte_data(client, page, cat->reg);
if (status < 0)
return status;
for (bit = cat->bits; bit->pflag; bit++)
if (status & bit->pflag) {
*flags |= bit->rflag;
*event |= bit->eflag;
}
if (notify && status)
pmbus_notify(data, page, cat->reg, status);
}
/*
* Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
* bits. Some of the other bits are tempting (especially for cases
* where we don't have the relevant PMBUS_HAVE_STATUS_*
* functionality), but there's an unfortunate ambiguity in that
* they're defined as indicating a fault *or* a warning, so we can't
* easily determine whether to report REGULATOR_ERROR_<foo> or
* REGULATOR_ERROR_<foo>_WARN.
*/
status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
if (status < 0)
return status;
if (_pmbus_is_enabled(client, page)) {
if (status & PB_STATUS_OFF) {
*flags |= REGULATOR_ERROR_FAIL;
*event |= REGULATOR_EVENT_FAIL;
}
if (status & PB_STATUS_POWER_GOOD_N) {
*flags |= REGULATOR_ERROR_REGULATION_OUT;
*event |= REGULATOR_EVENT_REGULATION_OUT;
}
}
/*
* Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
* defined strictly as fault indicators (not warnings).
*/
if (status & PB_STATUS_IOUT_OC) {
*flags |= REGULATOR_ERROR_OVER_CURRENT;
*event |= REGULATOR_EVENT_OVER_CURRENT;
}
if (status & PB_STATUS_VOUT_OV) {
*flags |= REGULATOR_ERROR_REGULATION_OUT;
*event |= REGULATOR_EVENT_FAIL;
}
/*
* If we haven't discovered any thermal faults or warnings via
* PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
* a (conservative) best-effort interpretation.
*/
if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
(status & PB_STATUS_TEMPERATURE)) {
*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
}
return 0;
}
static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
unsigned int *event, bool notify)
{
int ret;
mutex_lock(&data->update_lock);
ret = _pmbus_get_flags(data, page, flags, event, notify);
mutex_unlock(&data->update_lock);
return ret;
}
#if IS_ENABLED(CONFIG_REGULATOR)
static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
{
struct device *dev = rdev_get_dev(rdev);
struct i2c_client *client = to_i2c_client(dev->parent);
return pmbus_is_enabled(client, rdev_get_id(rdev));
}
static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
{
struct device *dev = rdev_get_dev(rdev);
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_data *data = i2c_get_clientdata(client);
u8 page = rdev_get_id(rdev);
int ret;
mutex_lock(&data->update_lock);
ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
PB_OPERATION_CONTROL_ON,
enable ? PB_OPERATION_CONTROL_ON : 0);
mutex_unlock(&data->update_lock);
return ret;
}
static int pmbus_regulator_enable(struct regulator_dev *rdev)
{
return _pmbus_regulator_on_off(rdev, 1);
}
static int pmbus_regulator_disable(struct regulator_dev *rdev)
{
return _pmbus_regulator_on_off(rdev, 0);
}
static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
{
struct device *dev = rdev_get_dev(rdev);
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_data *data = i2c_get_clientdata(client);
int event;
return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
}
static int pmbus_regulator_get_status(struct regulator_dev *rdev)
{
struct device *dev = rdev_get_dev(rdev);
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_data *data = i2c_get_clientdata(client);
u8 page = rdev_get_id(rdev);
int status, ret;
int event;
mutex_lock(&data->update_lock);
status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
if (status < 0) {
ret = status;
goto unlock;
}
if (status & PB_STATUS_OFF) {
ret = REGULATOR_STATUS_OFF;
goto unlock;
}
/* If regulator is ON & reports power good then return ON */
if (!(status & PB_STATUS_POWER_GOOD_N)) {
ret = REGULATOR_STATUS_ON;
goto unlock;
}
ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
if (ret)
goto unlock;
if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
ret = REGULATOR_STATUS_ERROR;
goto unlock;
}
ret = REGULATOR_STATUS_UNDEFINED;
unlock:
mutex_unlock(&data->update_lock);
return ret;
}
static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
{
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor s = {
.page = page,
.class = PSC_VOLTAGE_OUT,
.convert = true,
.data = -1,
};
if (data->vout_low[page] < 0) {
if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
s.data = _pmbus_read_word_data(client, page, 0xff,
PMBUS_MFR_VOUT_MIN);
if (s.data < 0) {
s.data = _pmbus_read_word_data(client, page, 0xff,
PMBUS_VOUT_MARGIN_LOW);
if (s.data < 0)
return s.data;
}
data->vout_low[page] = pmbus_reg2data(data, &s);
}
return data->vout_low[page];
}
static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
{
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor s = {
.page = page,
.class = PSC_VOLTAGE_OUT,
.convert = true,
.data = -1,
};
if (data->vout_high[page] < 0) {
if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
s.data = _pmbus_read_word_data(client, page, 0xff,
PMBUS_MFR_VOUT_MAX);
if (s.data < 0) {
s.data = _pmbus_read_word_data(client, page, 0xff,
PMBUS_VOUT_MARGIN_HIGH);
if (s.data < 0)
return s.data;
}
data->vout_high[page] = pmbus_reg2data(data, &s);
}
return data->vout_high[page];
}
static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
{
struct device *dev = rdev_get_dev(rdev);
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor s = {
.page = rdev_get_id(rdev),
.class = PSC_VOLTAGE_OUT,
.convert = true,
};
s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
if (s.data < 0)
return s.data;
return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
}
static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
int max_uv, unsigned int *selector)
{
struct device *dev = rdev_get_dev(rdev);
struct i2c_client *client = to_i2c_client(dev->parent);
struct pmbus_data *data = i2c_get_clientdata(client);
struct pmbus_sensor s = {
.page = rdev_get_id(rdev),
.class = PSC_VOLTAGE_OUT,
.convert = true,
.data = -1,
};
int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
int low, high;
*selector = 0;
low = pmbus_regulator_get_low_margin(client, s.page);
if (low < 0)
return low;
high = pmbus_regulator_get_high_margin(client, s.page);
if (high < 0)
return high;
/* Make sure we are within margins */
if (low > val)
val = low;
if (high < val)
val = high;
val = pmbus_data2reg(data, &s, val);
return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
}
static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
unsigned int selector)
{
struct device *dev = rdev_get_dev(rdev);
struct i2c_client *client = to_i2c_client(dev->parent);
int val, low, high;
if (selector >= rdev->desc->n_voltages ||
selector < rdev->desc->linear_min_sel)
return -EINVAL;
selector -= rdev->desc->linear_min_sel;
val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
(rdev->desc->uV_step * selector), 1000); /* convert to mV */
low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
if (low < 0)
return low;
high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
if (high < 0)
return high;
if (val >= low && val <= high)
return val * 1000; /* unit is uV */
return 0;
}
const struct regulator_ops pmbus_regulator_ops = {
.enable = pmbus_regulator_enable,
.disable = pmbus_regulator_disable,
.is_enabled = pmbus_regulator_is_enabled,
.get_error_flags = pmbus_regulator_get_error_flags,
.get_status = pmbus_regulator_get_status,
.get_voltage = pmbus_regulator_get_voltage,
.set_voltage = pmbus_regulator_set_voltage,
.list_voltage = pmbus_regulator_list_voltage,
};
EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
static int pmbus_regulator_register(struct pmbus_data *data)
{
struct device *dev = data->dev;
const struct pmbus_driver_info *info = data->info;
const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
int i;
data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
GFP_KERNEL);
if (!data->rdevs)
return -ENOMEM;
for (i = 0; i < info->num_regulators; i++) {
struct regulator_config config = { };
config.dev = dev;
config.driver_data = data;
if (pdata && pdata->reg_init_data)
config.init_data = &pdata->reg_init_data[i];
data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
&config);
if (IS_ERR(data->rdevs[i]))
return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
"Failed to register %s regulator\n",
info->reg_desc[i].name);
}
return 0;
}
static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
{
int j;
for (j = 0; j < data->info->num_regulators; j++) {
if (page == rdev_get_id(data->rdevs[j])) {
regulator_notifier_call_chain(data->rdevs[j], event, NULL);
break;
}
}
return 0;
}
#else
static int pmbus_regulator_register(struct pmbus_data *data)
{
return 0;
}
static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
{
return 0;
}
#endif
static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
{
return pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
}
static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
{
struct pmbus_data *data = pdata;
struct i2c_client *client = to_i2c_client(data->dev);
int i, status, event;
mutex_lock(&data->update_lock);
for (i = 0; i < data->info->pages; i++) {
_pmbus_get_flags(data, i, &status, &event, true);
if (event)
pmbus_regulator_notify(data, i, event);
}
pmbus_clear_faults(client);
mutex_unlock(&data->update_lock);
return IRQ_HANDLED;
}
static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
{
struct device *dev = &client->dev;
const struct pmbus_status_category *cat;
const struct pmbus_status_assoc *bit;
int i, j, err, func;
u8 mask;
static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
PMBUS_STATUS_FAN_34};
if (!client->irq)
return 0;
for (i = 0; i < data->info->pages; i++) {
func = data->info->func[i];
for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
cat = &pmbus_status_flag_map[j];
if (!(func & cat->func))
continue;
mask = 0;
for (bit = cat->bits; bit->pflag; bit++)
mask |= bit->pflag;
err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
if (err)
dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
cat->reg);
}
for (j = 0; j < ARRAY_SIZE(misc_status); j++)
pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
}
/* Register notifiers */
err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
IRQF_ONESHOT, "pmbus-irq", data);
if (err) {
dev_err(dev, "failed to request an irq %d\n", err);
return err;
}
return 0;
}
static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
#if IS_ENABLED(CONFIG_DEBUG_FS)
static int pmbus_debugfs_get(void *data, u64 *val)
{
int rc;
struct pmbus_debugfs_entry *entry = data;
struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
rc = mutex_lock_interruptible(&pdata->update_lock);
if (rc)
return rc;
rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
mutex_unlock(&pdata->update_lock);
if (rc < 0)
return rc;
*val = rc;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
"0x%02llx\n");
static int pmbus_debugfs_get_status(void *data, u64 *val)
{
int rc;
struct pmbus_debugfs_entry *entry = data;
struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
rc = mutex_lock_interruptible(&pdata->update_lock);
if (rc)
return rc;
rc = pdata->read_status(entry->client, entry->page);
mutex_unlock(&pdata->update_lock);
if (rc < 0)
return rc;
*val = rc;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
NULL, "0x%04llx\n");
static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int rc;
struct pmbus_debugfs_entry *entry = file->private_data;
struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
rc = mutex_lock_interruptible(&pdata->update_lock);
if (rc)
return rc;
rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
data);
mutex_unlock(&pdata->update_lock);
if (rc < 0)
return rc;
/* Add newline at the end of a read data */
data[rc] = '\n';
/* Include newline into the length */
rc += 1;
return simple_read_from_buffer(buf, count, ppos, data, rc);
}
static const struct file_operations pmbus_debugfs_ops_mfr = {
.llseek = noop_llseek,
.read = pmbus_debugfs_mfr_read,
.write = NULL,
.open = simple_open,
};
static void pmbus_remove_debugfs(void *data)
{
struct dentry *entry = data;
debugfs_remove_recursive(entry);
}
static int pmbus_init_debugfs(struct i2c_client *client,
struct pmbus_data *data)
{
int i, idx = 0;
char name[PMBUS_NAME_SIZE];
struct pmbus_debugfs_entry *entries;
if (!pmbus_debugfs_dir)
return -ENODEV;
/*
* Create the debugfs directory for this device. Use the hwmon device
* name to avoid conflicts (hwmon numbers are globally unique).
*/
data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
pmbus_debugfs_dir);
if (IS_ERR_OR_NULL(data->debugfs)) {
data->debugfs = NULL;
return -ENODEV;
}
/*
* Allocate the max possible entries we need.
* 6 entries device-specific
* 10 entries page-specific
*/
entries = devm_kcalloc(data->dev,
6 + data->info->pages * 10, sizeof(*entries),
GFP_KERNEL);
if (!entries)
return -ENOMEM;
/*
* Add device-specific entries.
* Please note that the PMBUS standard allows all registers to be
* page-specific.
* To reduce the number of debugfs entries for devices with many pages
* assume that values of the following registers are the same for all
* pages and report values only for page 0.
*/
if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
entries[idx].client = client;
entries[idx].page = 0;
entries[idx].reg = PMBUS_MFR_ID;
debugfs_create_file("mfr_id", 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops_mfr);
}
if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
entries[idx].client = client;
entries[idx].page = 0;
entries[idx].reg = PMBUS_MFR_MODEL;
debugfs_create_file("mfr_model", 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops_mfr);
}
if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
entries[idx].client = client;
entries[idx].page = 0;
entries[idx].reg = PMBUS_MFR_REVISION;
debugfs_create_file("mfr_revision", 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops_mfr);
}
if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
entries[idx].client = client;
entries[idx].page = 0;
entries[idx].reg = PMBUS_MFR_LOCATION;
debugfs_create_file("mfr_location", 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops_mfr);
}
if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
entries[idx].client = client;
entries[idx].page = 0;
entries[idx].reg = PMBUS_MFR_DATE;
debugfs_create_file("mfr_date", 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops_mfr);
}
if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
entries[idx].client = client;
entries[idx].page = 0;
entries[idx].reg = PMBUS_MFR_SERIAL;
debugfs_create_file("mfr_serial", 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops_mfr);
}
/* Add page specific entries */
for (i = 0; i < data->info->pages; ++i) {
/* Check accessibility of status register if it's not page 0 */
if (!i || pmbus_check_status_register(client, i)) {
/* No need to set reg as we have special read op. */
entries[idx].client = client;
entries[idx].page = i;
scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops_status);
}
if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_VOUT;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_IOUT;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_INPUT;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_CML;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_OTHER;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (pmbus_check_byte_register(client, i,
PMBUS_STATUS_MFR_SPECIFIC)) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_FAN_12;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
entries[idx].client = client;
entries[idx].page = i;
entries[idx].reg = PMBUS_STATUS_FAN_34;
scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
debugfs_create_file(name, 0444, data->debugfs,
&entries[idx++],
&pmbus_debugfs_ops);
}
}
return devm_add_action_or_reset(data->dev,
pmbus_remove_debugfs, data->debugfs);
}
#else
static int pmbus_init_debugfs(struct i2c_client *client,
struct pmbus_data *data)
{
return 0;
}
#endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
{
struct device *dev = &client->dev;
const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
struct pmbus_data *data;
size_t groups_num = 0;
int ret;
int i;
char *name;
if (!info)
return -ENODEV;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
| I2C_FUNC_SMBUS_BYTE_DATA
| I2C_FUNC_SMBUS_WORD_DATA))
return -ENODEV;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
if (info->groups)
while (info->groups[groups_num])
groups_num++;
data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
GFP_KERNEL);
if (!data->groups)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
data->dev = dev;
if (pdata)
data->flags = pdata->flags;
data->info = info;
data->currpage = -1;
data->currphase = -1;
for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
data->vout_low[i] = -1;
data->vout_high[i] = -1;
}
ret = pmbus_init_common(client, data, info);
if (ret < 0)
return ret;
ret = pmbus_find_attributes(client, data);
if (ret)
return ret;
/*
* If there are no attributes, something is wrong.
* Bail out instead of trying to register nothing.
*/
if (!data->num_attributes) {
dev_err(dev, "No attributes found\n");
return -ENODEV;
}
name = devm_kstrdup(dev, client->name, GFP_KERNEL);
if (!name)
return -ENOMEM;
strreplace(name, '-', '_');
data->groups[0] = &data->group;
memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
name, data, data->groups);
if (IS_ERR(data->hwmon_dev)) {
dev_err(dev, "Failed to register hwmon device\n");
return PTR_ERR(data->hwmon_dev);
}
ret = pmbus_regulator_register(data);
if (ret)
return ret;
ret = pmbus_irq_setup(client, data);
if (ret)
return ret;
ret = pmbus_init_debugfs(client, data);
if (ret)
dev_warn(dev, "Failed to register debugfs\n");
return 0;
}
EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
return data->debugfs;
}
EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
int pmbus_lock_interruptible(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
return mutex_lock_interruptible(&data->update_lock);
}
EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
void pmbus_unlock(struct i2c_client *client)
{
struct pmbus_data *data = i2c_get_clientdata(client);
mutex_unlock(&data->update_lock);
}
EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
static int __init pmbus_core_init(void)
{
pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
if (IS_ERR(pmbus_debugfs_dir))
pmbus_debugfs_dir = NULL;
return 0;
}
static void __exit pmbus_core_exit(void)
{
debugfs_remove_recursive(pmbus_debugfs_dir);
}
module_init(pmbus_core_init);
module_exit(pmbus_core_exit);
MODULE_AUTHOR("Guenter Roeck");
MODULE_DESCRIPTION("PMBus core driver");
MODULE_LICENSE("GPL");