blob: ecef949f3baae022d46082f4a1dc32d18cb082ec [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */
#include <linux/types.h>
#include <linux/module.h>
#include <net/ipv6.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <linux/if_macvlan.h>
#include <linux/prefetch.h>
#include "fm10k.h"
#define DRV_VERSION "0.26.1-k"
#define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
const char fm10k_driver_version[] = DRV_VERSION;
char fm10k_driver_name[] = "fm10k";
static const char fm10k_driver_string[] = DRV_SUMMARY;
static const char fm10k_copyright[] =
"Copyright(c) 2013 - 2018 Intel Corporation.";
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(DRV_SUMMARY);
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
/* single workqueue for entire fm10k driver */
struct workqueue_struct *fm10k_workqueue;
/**
* fm10k_init_module - Driver Registration Routine
*
* fm10k_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init fm10k_init_module(void)
{
pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
pr_info("%s\n", fm10k_copyright);
/* create driver workqueue */
fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
fm10k_driver_name);
if (!fm10k_workqueue)
return -ENOMEM;
fm10k_dbg_init();
return fm10k_register_pci_driver();
}
module_init(fm10k_init_module);
/**
* fm10k_exit_module - Driver Exit Cleanup Routine
*
* fm10k_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit fm10k_exit_module(void)
{
fm10k_unregister_pci_driver();
fm10k_dbg_exit();
/* destroy driver workqueue */
destroy_workqueue(fm10k_workqueue);
}
module_exit(fm10k_exit_module);
static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
struct fm10k_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* Only page will be NULL if buffer was consumed */
if (likely(page))
return true;
/* alloc new page for storage */
page = dev_alloc_page();
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
/* map page for use */
dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_page(page);
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = 0;
return true;
}
/**
* fm10k_alloc_rx_buffers - Replace used receive buffers
* @rx_ring: ring to place buffers on
* @cleaned_count: number of buffers to replace
**/
void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
{
union fm10k_rx_desc *rx_desc;
struct fm10k_rx_buffer *bi;
u16 i = rx_ring->next_to_use;
/* nothing to do */
if (!cleaned_count)
return;
rx_desc = FM10K_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer[i];
i -= rx_ring->count;
do {
if (!fm10k_alloc_mapped_page(rx_ring, bi))
break;
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = FM10K_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer;
i -= rx_ring->count;
}
/* clear the status bits for the next_to_use descriptor */
rx_desc->d.staterr = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
/* record the next descriptor to use */
rx_ring->next_to_use = i;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
/* notify hardware of new descriptors */
writel(i, rx_ring->tail);
}
}
/**
* fm10k_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: rx descriptor ring to store buffers on
* @old_buff: donor buffer to have page reused
*
* Synchronizes page for reuse by the interface
**/
static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
struct fm10k_rx_buffer *old_buff)
{
struct fm10k_rx_buffer *new_buff;
u16 nta = rx_ring->next_to_alloc;
new_buff = &rx_ring->rx_buffer[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* transfer page from old buffer to new buffer */
*new_buff = *old_buff;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
old_buff->page_offset,
FM10K_RX_BUFSZ,
DMA_FROM_DEVICE);
}
static inline bool fm10k_page_is_reserved(struct page *page)
{
return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}
static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
struct page *page,
unsigned int __maybe_unused truesize)
{
/* avoid re-using remote pages */
if (unlikely(fm10k_page_is_reserved(page)))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely(page_count(page) != 1))
return false;
/* flip page offset to other buffer */
rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
#else
/* move offset up to the next cache line */
rx_buffer->page_offset += truesize;
if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
return false;
#endif
/* Even if we own the page, we are not allowed to use atomic_set()
* This would break get_page_unless_zero() users.
*/
page_ref_inc(page);
return true;
}
/**
* fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
* @rx_buffer: buffer containing page to add
* @size: packet size from rx_desc
* @rx_desc: descriptor containing length of buffer written by hardware
* @skb: sk_buff to place the data into
*
* This function will add the data contained in rx_buffer->page to the skb.
* This is done either through a direct copy if the data in the buffer is
* less than the skb header size, otherwise it will just attach the page as
* a frag to the skb.
*
* The function will then update the page offset if necessary and return
* true if the buffer can be reused by the interface.
**/
static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
unsigned int size,
union fm10k_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct page *page = rx_buffer->page;
unsigned char *va = page_address(page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
unsigned int truesize = FM10K_RX_BUFSZ;
#else
unsigned int truesize = ALIGN(size, 512);
#endif
unsigned int pull_len;
if (unlikely(skb_is_nonlinear(skb)))
goto add_tail_frag;
if (likely(size <= FM10K_RX_HDR_LEN)) {
memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
/* page is not reserved, we can reuse buffer as-is */
if (likely(!fm10k_page_is_reserved(page)))
return true;
/* this page cannot be reused so discard it */
__free_page(page);
return false;
}
/* we need the header to contain the greater of either ETH_HLEN or
* 60 bytes if the skb->len is less than 60 for skb_pad.
*/
pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
/* update all of the pointers */
va += pull_len;
size -= pull_len;
add_tail_frag:
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
(unsigned long)va & ~PAGE_MASK, size, truesize);
return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
}
static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
union fm10k_rx_desc *rx_desc,
struct sk_buff *skb)
{
unsigned int size = le16_to_cpu(rx_desc->w.length);
struct fm10k_rx_buffer *rx_buffer;
struct page *page;
rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
page = rx_buffer->page;
prefetchw(page);
if (likely(!skb)) {
void *page_addr = page_address(page) +
rx_buffer->page_offset;
/* prefetch first cache line of first page */
prefetch(page_addr);
#if L1_CACHE_BYTES < 128
prefetch(page_addr + L1_CACHE_BYTES);
#endif
/* allocate a skb to store the frags */
skb = napi_alloc_skb(&rx_ring->q_vector->napi,
FM10K_RX_HDR_LEN);
if (unlikely(!skb)) {
rx_ring->rx_stats.alloc_failed++;
return NULL;
}
/* we will be copying header into skb->data in
* pskb_may_pull so it is in our interest to prefetch
* it now to avoid a possible cache miss
*/
prefetchw(skb->data);
}
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
size,
DMA_FROM_DEVICE);
/* pull page into skb */
if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
/* hand second half of page back to the ring */
fm10k_reuse_rx_page(rx_ring, rx_buffer);
} else {
/* we are not reusing the buffer so unmap it */
dma_unmap_page(rx_ring->dev, rx_buffer->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
}
/* clear contents of rx_buffer */
rx_buffer->page = NULL;
return skb;
}
static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
union fm10k_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Rx checksum disabled via ethtool */
if (!(ring->netdev->features & NETIF_F_RXCSUM))
return;
/* TCP/UDP checksum error bit is set */
if (fm10k_test_staterr(rx_desc,
FM10K_RXD_STATUS_L4E |
FM10K_RXD_STATUS_L4E2 |
FM10K_RXD_STATUS_IPE |
FM10K_RXD_STATUS_IPE2)) {
ring->rx_stats.csum_err++;
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
skb->encapsulation = true;
else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
return;
skb->ip_summed = CHECKSUM_UNNECESSARY;
ring->rx_stats.csum_good++;
}
#define FM10K_RSS_L4_TYPES_MASK \
(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
BIT(FM10K_RSSTYPE_IPV4_UDP) | \
BIT(FM10K_RSSTYPE_IPV6_TCP) | \
BIT(FM10K_RSSTYPE_IPV6_UDP))
static inline void fm10k_rx_hash(struct fm10k_ring *ring,
union fm10k_rx_desc *rx_desc,
struct sk_buff *skb)
{
u16 rss_type;
if (!(ring->netdev->features & NETIF_F_RXHASH))
return;
rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
if (!rss_type)
return;
skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
(BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
}
static void fm10k_type_trans(struct fm10k_ring *rx_ring,
union fm10k_rx_desc __maybe_unused *rx_desc,
struct sk_buff *skb)
{
struct net_device *dev = rx_ring->netdev;
struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
/* check to see if DGLORT belongs to a MACVLAN */
if (l2_accel) {
u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
idx -= l2_accel->dglort;
if (idx < l2_accel->size && l2_accel->macvlan[idx])
dev = l2_accel->macvlan[idx];
else
l2_accel = NULL;
}
/* Record Rx queue, or update macvlan statistics */
if (!l2_accel)
skb_record_rx_queue(skb, rx_ring->queue_index);
else
macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
false);
skb->protocol = eth_type_trans(skb, dev);
}
/**
* fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, VLAN, timestamp, protocol, and
* other fields within the skb.
**/
static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
union fm10k_rx_desc *rx_desc,
struct sk_buff *skb)
{
unsigned int len = skb->len;
fm10k_rx_hash(rx_ring, rx_desc, skb);
fm10k_rx_checksum(rx_ring, rx_desc, skb);
FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
if (rx_desc->w.vlan) {
u16 vid = le16_to_cpu(rx_desc->w.vlan);
if ((vid & VLAN_VID_MASK) != rx_ring->vid)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
else if (vid & VLAN_PRIO_MASK)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
vid & VLAN_PRIO_MASK);
}
fm10k_type_trans(rx_ring, rx_desc, skb);
return len;
}
/**
* fm10k_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
**/
static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
union fm10k_rx_desc *rx_desc)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(FM10K_RX_DESC(rx_ring, ntc));
if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
return false;
return true;
}
/**
* fm10k_cleanup_headers - Correct corrupted or empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being fixed
*
* Address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
**/
static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
union fm10k_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (unlikely((fm10k_test_staterr(rx_desc,
FM10K_RXD_STATUS_RXE)))) {
#define FM10K_TEST_RXD_BIT(rxd, bit) \
((rxd)->w.csum_err & cpu_to_le16(bit))
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
rx_ring->rx_stats.switch_errors++;
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
rx_ring->rx_stats.drops++;
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
rx_ring->rx_stats.pp_errors++;
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
rx_ring->rx_stats.link_errors++;
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
rx_ring->rx_stats.length_errors++;
dev_kfree_skb_any(skb);
rx_ring->rx_stats.errors++;
return true;
}
/* if eth_skb_pad returns an error the skb was freed */
if (eth_skb_pad(skb))
return true;
return false;
}
/**
* fm10k_receive_skb - helper function to handle rx indications
* @q_vector: structure containing interrupt and ring information
* @skb: packet to send up
**/
static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
struct sk_buff *skb)
{
napi_gro_receive(&q_vector->napi, skb);
}
static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
struct fm10k_ring *rx_ring,
int budget)
{
struct sk_buff *skb = rx_ring->skb;
unsigned int total_bytes = 0, total_packets = 0;
u16 cleaned_count = fm10k_desc_unused(rx_ring);
while (likely(total_packets < budget)) {
union fm10k_rx_desc *rx_desc;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
if (!rx_desc->d.staterr)
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* descriptor has been written back
*/
dma_rmb();
/* retrieve a buffer from the ring */
skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
/* exit if we failed to retrieve a buffer */
if (!skb)
break;
cleaned_count++;
/* fetch next buffer in frame if non-eop */
if (fm10k_is_non_eop(rx_ring, rx_desc))
continue;
/* verify the packet layout is correct */
if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
skb = NULL;
continue;
}
/* populate checksum, timestamp, VLAN, and protocol */
total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
fm10k_receive_skb(q_vector, skb);
/* reset skb pointer */
skb = NULL;
/* update budget accounting */
total_packets++;
}
/* place incomplete frames back on ring for completion */
rx_ring->skb = skb;
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->stats.packets += total_packets;
rx_ring->stats.bytes += total_bytes;
u64_stats_update_end(&rx_ring->syncp);
q_vector->rx.total_packets += total_packets;
q_vector->rx.total_bytes += total_bytes;
return total_packets;
}
#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
{
struct fm10k_intfc *interface = netdev_priv(skb->dev);
struct fm10k_udp_port *vxlan_port;
/* we can only offload a vxlan if we recognize it as such */
vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
struct fm10k_udp_port, list);
if (!vxlan_port)
return NULL;
if (vxlan_port->port != udp_hdr(skb)->dest)
return NULL;
/* return offset of udp_hdr plus 8 bytes for VXLAN header */
return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
}
#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
#define NVGRE_TNI htons(0x2000)
struct fm10k_nvgre_hdr {
__be16 flags;
__be16 proto;
__be32 tni;
};
static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
{
struct fm10k_nvgre_hdr *nvgre_hdr;
int hlen = ip_hdrlen(skb);
/* currently only IPv4 is supported due to hlen above */
if (vlan_get_protocol(skb) != htons(ETH_P_IP))
return NULL;
/* our transport header should be NVGRE */
nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
/* verify all reserved flags are 0 */
if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
return NULL;
/* report start of ethernet header */
if (nvgre_hdr->flags & NVGRE_TNI)
return (struct ethhdr *)(nvgre_hdr + 1);
return (struct ethhdr *)(&nvgre_hdr->tni);
}
__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
{
u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
struct ethhdr *eth_hdr;
if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
skb->inner_protocol != htons(ETH_P_TEB))
return 0;
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
l4_hdr = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
l4_hdr = ipv6_hdr(skb)->nexthdr;
break;
default:
return 0;
}
switch (l4_hdr) {
case IPPROTO_UDP:
eth_hdr = fm10k_port_is_vxlan(skb);
break;
case IPPROTO_GRE:
eth_hdr = fm10k_gre_is_nvgre(skb);
break;
default:
return 0;
}
if (!eth_hdr)
return 0;
switch (eth_hdr->h_proto) {
case htons(ETH_P_IP):
inner_l4_hdr = inner_ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
break;
default:
return 0;
}
switch (inner_l4_hdr) {
case IPPROTO_TCP:
inner_l4_hlen = inner_tcp_hdrlen(skb);
break;
case IPPROTO_UDP:
inner_l4_hlen = 8;
break;
default:
return 0;
}
/* The hardware allows tunnel offloads only if the combined inner and
* outer header is 184 bytes or less
*/
if (skb_inner_transport_header(skb) + inner_l4_hlen -
skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
return 0;
return eth_hdr->h_proto;
}
static int fm10k_tso(struct fm10k_ring *tx_ring,
struct fm10k_tx_buffer *first)
{
struct sk_buff *skb = first->skb;
struct fm10k_tx_desc *tx_desc;
unsigned char *th;
u8 hdrlen;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
/* compute header lengths */
if (skb->encapsulation) {
if (!fm10k_tx_encap_offload(skb))
goto err_vxlan;
th = skb_inner_transport_header(skb);
} else {
th = skb_transport_header(skb);
}
/* compute offset from SOF to transport header and add header len */
hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
first->tx_flags |= FM10K_TX_FLAGS_CSUM;
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * hdrlen;
/* populate Tx descriptor header size and mss */
tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
tx_desc->hdrlen = hdrlen;
tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
return 1;
err_vxlan:
tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
if (net_ratelimit())
netdev_err(tx_ring->netdev,
"TSO requested for unsupported tunnel, disabling offload\n");
return -1;
}
static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
struct fm10k_tx_buffer *first)
{
struct sk_buff *skb = first->skb;
struct fm10k_tx_desc *tx_desc;
union {
struct iphdr *ipv4;
struct ipv6hdr *ipv6;
u8 *raw;
} network_hdr;
u8 *transport_hdr;
__be16 frag_off;
__be16 protocol;
u8 l4_hdr = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL)
goto no_csum;
if (skb->encapsulation) {
protocol = fm10k_tx_encap_offload(skb);
if (!protocol) {
if (skb_checksum_help(skb)) {
dev_warn(tx_ring->dev,
"failed to offload encap csum!\n");
tx_ring->tx_stats.csum_err++;
}
goto no_csum;
}
network_hdr.raw = skb_inner_network_header(skb);
transport_hdr = skb_inner_transport_header(skb);
} else {
protocol = vlan_get_protocol(skb);
network_hdr.raw = skb_network_header(skb);
transport_hdr = skb_transport_header(skb);
}
switch (protocol) {
case htons(ETH_P_IP):
l4_hdr = network_hdr.ipv4->protocol;
break;
case htons(ETH_P_IPV6):
l4_hdr = network_hdr.ipv6->nexthdr;
if (likely((transport_hdr - network_hdr.raw) ==
sizeof(struct ipv6hdr)))
break;
ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
sizeof(struct ipv6hdr),
&l4_hdr, &frag_off);
if (unlikely(frag_off))
l4_hdr = NEXTHDR_FRAGMENT;
break;
default:
break;
}
switch (l4_hdr) {
case IPPROTO_TCP:
case IPPROTO_UDP:
break;
case IPPROTO_GRE:
if (skb->encapsulation)
break;
/* fall through */
default:
if (unlikely(net_ratelimit())) {
dev_warn(tx_ring->dev,
"partial checksum, version=%d l4 proto=%x\n",
protocol, l4_hdr);
}
skb_checksum_help(skb);
tx_ring->tx_stats.csum_err++;
goto no_csum;
}
/* update TX checksum flag */
first->tx_flags |= FM10K_TX_FLAGS_CSUM;
tx_ring->tx_stats.csum_good++;
no_csum:
/* populate Tx descriptor header size and mss */
tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
tx_desc->hdrlen = 0;
tx_desc->mss = 0;
}
#define FM10K_SET_FLAG(_input, _flag, _result) \
((_flag <= _result) ? \
((u32)(_input & _flag) * (_result / _flag)) : \
((u32)(_input & _flag) / (_flag / _result)))
static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
u32 desc_flags = 0;
/* set checksum offload bits */
desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
FM10K_TXD_FLAG_CSUM);
return desc_flags;
}
static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
struct fm10k_tx_desc *tx_desc, u16 i,
dma_addr_t dma, unsigned int size, u8 desc_flags)
{
/* set RS and INT for last frame in a cache line */
if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
/* record values to descriptor */
tx_desc->buffer_addr = cpu_to_le64(dma);
tx_desc->flags = desc_flags;
tx_desc->buflen = cpu_to_le16(size);
/* return true if we just wrapped the ring */
return i == tx_ring->count;
}
static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
{
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
/* Memory barrier before checking head and tail */
smp_mb();
/* Check again in a case another CPU has just made room available */
if (likely(fm10k_desc_unused(tx_ring) < size))
return -EBUSY;
/* A reprieve! - use start_queue because it doesn't call schedule */
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
return 0;
}
static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
{
if (likely(fm10k_desc_unused(tx_ring) >= size))
return 0;
return __fm10k_maybe_stop_tx(tx_ring, size);
}
static void fm10k_tx_map(struct fm10k_ring *tx_ring,
struct fm10k_tx_buffer *first)
{
struct sk_buff *skb = first->skb;
struct fm10k_tx_buffer *tx_buffer;
struct fm10k_tx_desc *tx_desc;
struct skb_frag_struct *frag;
unsigned char *data;
dma_addr_t dma;
unsigned int data_len, size;
u32 tx_flags = first->tx_flags;
u16 i = tx_ring->next_to_use;
u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
tx_desc = FM10K_TX_DESC(tx_ring, i);
/* add HW VLAN tag */
if (skb_vlan_tag_present(skb))
tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
else
tx_desc->vlan = 0;
size = skb_headlen(skb);
data = skb->data;
dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
data_len = skb->data_len;
tx_buffer = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
FM10K_MAX_DATA_PER_TXD, flags)) {
tx_desc = FM10K_TX_DESC(tx_ring, 0);
i = 0;
}
dma += FM10K_MAX_DATA_PER_TXD;
size -= FM10K_MAX_DATA_PER_TXD;
}
if (likely(!data_len))
break;
if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
dma, size, flags)) {
tx_desc = FM10K_TX_DESC(tx_ring, 0);
i = 0;
}
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_buffer = &tx_ring->tx_buffer[i];
}
/* write last descriptor with LAST bit set */
flags |= FM10K_TXD_FLAG_LAST;
if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
i = 0;
/* record bytecount for BQL */
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
/* record SW timestamp if HW timestamp is not available */
skb_tx_timestamp(first->skb);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
tx_ring->next_to_use = i;
/* Make sure there is space in the ring for the next send. */
fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
/* notify HW of packet */
if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
writel(i, tx_ring->tail);
/* we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb();
}
return;
dma_error:
dev_err(tx_ring->dev, "TX DMA map failed\n");
/* clear dma mappings for failed tx_buffer map */
for (;;) {
tx_buffer = &tx_ring->tx_buffer[i];
fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
if (tx_buffer == first)
break;
if (i == 0)
i = tx_ring->count;
i--;
}
tx_ring->next_to_use = i;
}
netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
struct fm10k_ring *tx_ring)
{
u16 count = TXD_USE_COUNT(skb_headlen(skb));
struct fm10k_tx_buffer *first;
unsigned short f;
u32 tx_flags = 0;
int tso;
/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
* + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
* + 2 desc gap to keep tail from touching head
* otherwise try next time
*/
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
tx_ring->tx_stats.tx_busy++;
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
first->gso_segs = 1;
/* record initial flags and protocol */
first->tx_flags = tx_flags;
tso = fm10k_tso(tx_ring, first);
if (tso < 0)
goto out_drop;
else if (!tso)
fm10k_tx_csum(tx_ring, first);
fm10k_tx_map(tx_ring, first);
return NETDEV_TX_OK;
out_drop:
dev_kfree_skb_any(first->skb);
first->skb = NULL;
return NETDEV_TX_OK;
}
static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
{
return ring->stats.packets;
}
/**
* fm10k_get_tx_pending - how many Tx descriptors not processed
* @ring: the ring structure
* @in_sw: is tx_pending being checked in SW or in HW?
*/
u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
{
struct fm10k_intfc *interface = ring->q_vector->interface;
struct fm10k_hw *hw = &interface->hw;
u32 head, tail;
if (likely(in_sw)) {
head = ring->next_to_clean;
tail = ring->next_to_use;
} else {
head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
}
return ((head <= tail) ? tail : tail + ring->count) - head;
}
bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
{
u32 tx_done = fm10k_get_tx_completed(tx_ring);
u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
clear_check_for_tx_hang(tx_ring);
/* Check for a hung queue, but be thorough. This verifies
* that a transmit has been completed since the previous
* check AND there is at least one packet pending. By
* requiring this to fail twice we avoid races with
* clearing the ARMED bit and conditions where we
* run the check_tx_hang logic with a transmit completion
* pending but without time to complete it yet.
*/
if (!tx_pending || (tx_done_old != tx_done)) {
/* update completed stats and continue */
tx_ring->tx_stats.tx_done_old = tx_done;
/* reset the countdown */
clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
return false;
}
/* make sure it is true for two checks in a row */
return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
}
/**
* fm10k_tx_timeout_reset - initiate reset due to Tx timeout
* @interface: driver private struct
**/
void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
{
/* Do the reset outside of interrupt context */
if (!test_bit(__FM10K_DOWN, interface->state)) {
interface->tx_timeout_count++;
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
fm10k_service_event_schedule(interface);
}
}
/**
* fm10k_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: structure containing interrupt and ring information
* @tx_ring: tx ring to clean
* @napi_budget: Used to determine if we are in netpoll
**/
static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
struct fm10k_ring *tx_ring, int napi_budget)
{
struct fm10k_intfc *interface = q_vector->interface;
struct fm10k_tx_buffer *tx_buffer;
struct fm10k_tx_desc *tx_desc;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int budget = q_vector->tx.work_limit;
unsigned int i = tx_ring->next_to_clean;
if (test_bit(__FM10K_DOWN, interface->state))
return true;
tx_buffer = &tx_ring->tx_buffer[i];
tx_desc = FM10K_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
/* free the skb */
napi_consume_skb(tx_buffer->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer;
tx_desc = FM10K_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer;
tx_desc = FM10K_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->stats.bytes += total_bytes;
tx_ring->stats.packets += total_packets;
u64_stats_update_end(&tx_ring->syncp);
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
/* schedule immediate reset if we believe we hung */
struct fm10k_hw *hw = &interface->hw;
netif_err(interface, drv, tx_ring->netdev,
"Detected Tx Unit Hang\n"
" Tx Queue <%d>\n"
" TDH, TDT <%x>, <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n",
tx_ring->queue_index,
fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
tx_ring->next_to_use, i);
netif_stop_subqueue(tx_ring->netdev,
tx_ring->queue_index);
netif_info(interface, probe, tx_ring->netdev,
"tx hang %d detected on queue %d, resetting interface\n",
interface->tx_timeout_count + 1,
tx_ring->queue_index);
fm10k_tx_timeout_reset(interface);
/* the netdev is about to reset, no point in enabling stuff */
return true;
}
/* notify netdev of completed buffers */
netdev_tx_completed_queue(txring_txq(tx_ring),
total_packets, total_bytes);
#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
(fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->queue_index) &&
!test_bit(__FM10K_DOWN, interface->state)) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
}
}
return !!budget;
}
/**
* fm10k_update_itr - update the dynamic ITR value based on packet size
*
* Stores a new ITR value based on strictly on packet size. The
* divisors and thresholds used by this function were determined based
* on theoretical maximum wire speed and testing data, in order to
* minimize response time while increasing bulk throughput.
*
* @ring_container: Container for rings to have ITR updated
**/
static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
{
unsigned int avg_wire_size, packets, itr_round;
/* Only update ITR if we are using adaptive setting */
if (!ITR_IS_ADAPTIVE(ring_container->itr))
goto clear_counts;
packets = ring_container->total_packets;
if (!packets)
goto clear_counts;
avg_wire_size = ring_container->total_bytes / packets;
/* The following is a crude approximation of:
* wmem_default / (size + overhead) = desired_pkts_per_int
* rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
* (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
*
* Assuming wmem_default is 212992 and overhead is 640 bytes per
* packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
* formula down to
*
* (34 * (size + 24)) / (size + 640) = ITR
*
* We first do some math on the packet size and then finally bitshift
* by 8 after rounding up. We also have to account for PCIe link speed
* difference as ITR scales based on this.
*/
if (avg_wire_size <= 360) {
/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
avg_wire_size *= 8;
avg_wire_size += 376;
} else if (avg_wire_size <= 1152) {
/* 77K ints/sec to 45K ints/sec */
avg_wire_size *= 3;
avg_wire_size += 2176;
} else if (avg_wire_size <= 1920) {
/* 45K ints/sec to 38K ints/sec */
avg_wire_size += 4480;
} else {
/* plateau at a limit of 38K ints/sec */
avg_wire_size = 6656;
}
/* Perform final bitshift for division after rounding up to ensure
* that the calculation will never get below a 1. The bit shift
* accounts for changes in the ITR due to PCIe link speed.
*/
itr_round = READ_ONCE(ring_container->itr_scale) + 8;
avg_wire_size += BIT(itr_round) - 1;
avg_wire_size >>= itr_round;
/* write back value and retain adaptive flag */
ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
clear_counts:
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
}
static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
{
/* Enable auto-mask and clear the current mask */
u32 itr = FM10K_ITR_ENABLE;
/* Update Tx ITR */
fm10k_update_itr(&q_vector->tx);
/* Update Rx ITR */
fm10k_update_itr(&q_vector->rx);
/* Store Tx itr in timer slot 0 */
itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
/* Shift Rx itr to timer slot 1 */
itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
/* Write the final value to the ITR register */
writel(itr, q_vector->itr);
}
static int fm10k_poll(struct napi_struct *napi, int budget)
{
struct fm10k_q_vector *q_vector =
container_of(napi, struct fm10k_q_vector, napi);
struct fm10k_ring *ring;
int per_ring_budget, work_done = 0;
bool clean_complete = true;
fm10k_for_each_ring(ring, q_vector->tx) {
if (!fm10k_clean_tx_irq(q_vector, ring, budget))
clean_complete = false;
}
/* Handle case where we are called by netpoll with a budget of 0 */
if (budget <= 0)
return budget;
/* attempt to distribute budget to each queue fairly, but don't
* allow the budget to go below 1 because we'll exit polling
*/
if (q_vector->rx.count > 1)
per_ring_budget = max(budget / q_vector->rx.count, 1);
else
per_ring_budget = budget;
fm10k_for_each_ring(ring, q_vector->rx) {
int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
work_done += work;
if (work >= per_ring_budget)
clean_complete = false;
}
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
fm10k_qv_enable(q_vector);
return min(work_done, budget - 1);
}
/**
* fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
* @interface: board private structure to initialize
*
* When QoS (Quality of Service) is enabled, allocate queues for
* each traffic class. If multiqueue isn't available,then abort QoS
* initialization.
*
* This function handles all combinations of Qos and RSS.
*
**/
static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
{
struct net_device *dev = interface->netdev;
struct fm10k_ring_feature *f;
int rss_i, i;
int pcs;
/* Map queue offset and counts onto allocated tx queues */
pcs = netdev_get_num_tc(dev);
if (pcs <= 1)
return false;
/* set QoS mask and indices */
f = &interface->ring_feature[RING_F_QOS];
f->indices = pcs;
f->mask = BIT(fls(pcs - 1)) - 1;
/* determine the upper limit for our current DCB mode */
rss_i = interface->hw.mac.max_queues / pcs;
rss_i = BIT(fls(rss_i) - 1);
/* set RSS mask and indices */
f = &interface->ring_feature[RING_F_RSS];
rss_i = min_t(u16, rss_i, f->limit);
f->indices = rss_i;
f->mask = BIT(fls(rss_i - 1)) - 1;
/* configure pause class to queue mapping */
for (i = 0; i < pcs; i++)
netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
interface->num_rx_queues = rss_i * pcs;
interface->num_tx_queues = rss_i * pcs;
return true;
}
/**
* fm10k_set_rss_queues: Allocate queues for RSS
* @interface: board private structure to initialize
*
* This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
* to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
*
**/
static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
{
struct fm10k_ring_feature *f;
u16 rss_i;
f = &interface->ring_feature[RING_F_RSS];
rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
/* record indices and power of 2 mask for RSS */
f->indices = rss_i;
f->mask = BIT(fls(rss_i - 1)) - 1;
interface->num_rx_queues = rss_i;
interface->num_tx_queues = rss_i;
return true;
}
/**
* fm10k_set_num_queues: Allocate queues for device, feature dependent
* @interface: board private structure to initialize
*
* This is the top level queue allocation routine. The order here is very
* important, starting with the "most" number of features turned on at once,
* and ending with the smallest set of features. This way large combinations
* can be allocated if they're turned on, and smaller combinations are the
* fallthrough conditions.
*
**/
static void fm10k_set_num_queues(struct fm10k_intfc *interface)
{
/* Attempt to setup QoS and RSS first */
if (fm10k_set_qos_queues(interface))
return;
/* If we don't have QoS, just fallback to only RSS. */
fm10k_set_rss_queues(interface);
}
/**
* fm10k_reset_num_queues - Reset the number of queues to zero
* @interface: board private structure
*
* This function should be called whenever we need to reset the number of
* queues after an error condition.
*/
static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
{
interface->num_tx_queues = 0;
interface->num_rx_queues = 0;
interface->num_q_vectors = 0;
}
/**
* fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
* @interface: board private structure to initialize
* @v_count: q_vectors allocated on interface, used for ring interleaving
* @v_idx: index of vector in interface struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
unsigned int v_count, unsigned int v_idx,
unsigned int txr_count, unsigned int txr_idx,
unsigned int rxr_count, unsigned int rxr_idx)
{
struct fm10k_q_vector *q_vector;
struct fm10k_ring *ring;
int ring_count;
ring_count = txr_count + rxr_count;
/* allocate q_vector and rings */
q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(interface->netdev, &q_vector->napi,
fm10k_poll, NAPI_POLL_WEIGHT);
/* tie q_vector and interface together */
interface->q_vector[v_idx] = q_vector;
q_vector->interface = interface;
q_vector->v_idx = v_idx;
/* initialize pointer to rings */
ring = q_vector->ring;
/* save Tx ring container info */
q_vector->tx.ring = ring;
q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
q_vector->tx.itr = interface->tx_itr;
q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
q_vector->tx.count = txr_count;
while (txr_count) {
/* assign generic ring traits */
ring->dev = &interface->pdev->dev;
ring->netdev = interface->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* apply Tx specific ring traits */
ring->count = interface->tx_ring_count;
ring->queue_index = txr_idx;
/* assign ring to interface */
interface->tx_ring[txr_idx] = ring;
/* update count and index */
txr_count--;
txr_idx += v_count;
/* push pointer to next ring */
ring++;
}
/* save Rx ring container info */
q_vector->rx.ring = ring;
q_vector->rx.itr = interface->rx_itr;
q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
q_vector->rx.count = rxr_count;
while (rxr_count) {
/* assign generic ring traits */
ring->dev = &interface->pdev->dev;
ring->netdev = interface->netdev;
rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
/* configure backlink on ring */
ring->q_vector = q_vector;
/* apply Rx specific ring traits */
ring->count = interface->rx_ring_count;
ring->queue_index = rxr_idx;
/* assign ring to interface */
interface->rx_ring[rxr_idx] = ring;
/* update count and index */
rxr_count--;
rxr_idx += v_count;
/* push pointer to next ring */
ring++;
}
fm10k_dbg_q_vector_init(q_vector);
return 0;
}
/**
* fm10k_free_q_vector - Free memory allocated for specific interrupt vector
* @interface: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
{
struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
struct fm10k_ring *ring;
fm10k_dbg_q_vector_exit(q_vector);
fm10k_for_each_ring(ring, q_vector->tx)
interface->tx_ring[ring->queue_index] = NULL;
fm10k_for_each_ring(ring, q_vector->rx)
interface->rx_ring[ring->queue_index] = NULL;
interface->q_vector[v_idx] = NULL;
netif_napi_del(&q_vector->napi);
kfree_rcu(q_vector, rcu);
}
/**
* fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
* @interface: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
{
unsigned int q_vectors = interface->num_q_vectors;
unsigned int rxr_remaining = interface->num_rx_queues;
unsigned int txr_remaining = interface->num_tx_queues;
unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
tqpv, txr_idx,
rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
fm10k_reset_num_queues(interface);
while (v_idx--)
fm10k_free_q_vector(interface, v_idx);
return -ENOMEM;
}
/**
* fm10k_free_q_vectors - Free memory allocated for interrupt vectors
* @interface: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
{
int v_idx = interface->num_q_vectors;
fm10k_reset_num_queues(interface);
while (v_idx--)
fm10k_free_q_vector(interface, v_idx);
}
/**
* f10k_reset_msix_capability - reset MSI-X capability
* @interface: board private structure to initialize
*
* Reset the MSI-X capability back to its starting state
**/
static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
{
pci_disable_msix(interface->pdev);
kfree(interface->msix_entries);
interface->msix_entries = NULL;
}
/**
* f10k_init_msix_capability - configure MSI-X capability
* @interface: board private structure to initialize
*
* Attempt to configure the interrupts using the best available
* capabilities of the hardware and the kernel.
**/
static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
int v_budget, vector;
/* It's easy to be greedy for MSI-X vectors, but it really
* doesn't do us much good if we have a lot more vectors
* than CPU's. So let's be conservative and only ask for
* (roughly) the same number of vectors as there are CPU's.
* the default is to use pairs of vectors
*/
v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
v_budget = min_t(u16, v_budget, num_online_cpus());
/* account for vectors not related to queues */
v_budget += NON_Q_VECTORS(hw);
/* At the same time, hardware can only support a maximum of
* hw.mac->max_msix_vectors vectors. With features
* such as RSS and VMDq, we can easily surpass the number of Rx and Tx
* descriptor queues supported by our device. Thus, we cap it off in
* those rare cases where the cpu count also exceeds our vector limit.
*/
v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
/* A failure in MSI-X entry allocation is fatal. */
interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
GFP_KERNEL);
if (!interface->msix_entries)
return -ENOMEM;
/* populate entry values */
for (vector = 0; vector < v_budget; vector++)
interface->msix_entries[vector].entry = vector;
/* Attempt to enable MSI-X with requested value */
v_budget = pci_enable_msix_range(interface->pdev,
interface->msix_entries,
MIN_MSIX_COUNT(hw),
v_budget);
if (v_budget < 0) {
kfree(interface->msix_entries);
interface->msix_entries = NULL;
return v_budget;
}
/* record the number of queues available for q_vectors */
interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
return 0;
}
/**
* fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
* @interface: Interface structure continaining rings and devices
*
* Cache the descriptor ring offsets for Qos
**/
static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
{
struct net_device *dev = interface->netdev;
int pc, offset, rss_i, i, q_idx;
u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
u8 num_pcs = netdev_get_num_tc(dev);
if (num_pcs <= 1)
return false;
rss_i = interface->ring_feature[RING_F_RSS].indices;
for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
q_idx = pc;
for (i = 0; i < rss_i; i++) {
interface->tx_ring[offset + i]->reg_idx = q_idx;
interface->tx_ring[offset + i]->qos_pc = pc;
interface->rx_ring[offset + i]->reg_idx = q_idx;
interface->rx_ring[offset + i]->qos_pc = pc;
q_idx += pc_stride;
}
}
return true;
}
/**
* fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
* @interface: Interface structure continaining rings and devices
*
* Cache the descriptor ring offsets for RSS
**/
static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
{
int i;
for (i = 0; i < interface->num_rx_queues; i++)
interface->rx_ring[i]->reg_idx = i;
for (i = 0; i < interface->num_tx_queues; i++)
interface->tx_ring[i]->reg_idx = i;
}
/**
* fm10k_assign_rings - Map rings to network devices
* @interface: Interface structure containing rings and devices
*
* This function is meant to go though and configure both the network
* devices so that they contain rings, and configure the rings so that
* they function with their network devices.
**/
static void fm10k_assign_rings(struct fm10k_intfc *interface)
{
if (fm10k_cache_ring_qos(interface))
return;
fm10k_cache_ring_rss(interface);
}
static void fm10k_init_reta(struct fm10k_intfc *interface)
{
u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
u32 reta;
/* If the Rx flow indirection table has been configured manually, we
* need to maintain it when possible.
*/
if (netif_is_rxfh_configured(interface->netdev)) {
for (i = FM10K_RETA_SIZE; i--;) {
reta = interface->reta[i];
if ((((reta << 24) >> 24) < rss_i) &&
(((reta << 16) >> 24) < rss_i) &&
(((reta << 8) >> 24) < rss_i) &&
(((reta) >> 24) < rss_i))
continue;
/* this should never happen */
dev_err(&interface->pdev->dev,
"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
goto repopulate_reta;
}
/* do nothing if all of the elements are in bounds */
return;
}
repopulate_reta:
fm10k_write_reta(interface, NULL);
}
/**
* fm10k_init_queueing_scheme - Determine proper queueing scheme
* @interface: board private structure to initialize
*
* We determine which queueing scheme to use based on...
* - Hardware queue count (num_*_queues)
* - defined by miscellaneous hardware support/features (RSS, etc.)
**/
int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
{
int err;
/* Number of supported queues */
fm10k_set_num_queues(interface);
/* Configure MSI-X capability */
err = fm10k_init_msix_capability(interface);
if (err) {
dev_err(&interface->pdev->dev,
"Unable to initialize MSI-X capability\n");
goto err_init_msix;
}
/* Allocate memory for queues */
err = fm10k_alloc_q_vectors(interface);
if (err) {
dev_err(&interface->pdev->dev,
"Unable to allocate queue vectors\n");
goto err_alloc_q_vectors;
}
/* Map rings to devices, and map devices to physical queues */
fm10k_assign_rings(interface);
/* Initialize RSS redirection table */
fm10k_init_reta(interface);
return 0;
err_alloc_q_vectors:
fm10k_reset_msix_capability(interface);
err_init_msix:
fm10k_reset_num_queues(interface);
return err;
}
/**
* fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
* @interface: board private structure to clear queueing scheme on
*
* We go through and clear queueing specific resources and reset the structure
* to pre-load conditions
**/
void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
{
fm10k_free_q_vectors(interface);
fm10k_reset_msix_capability(interface);
}