| /* |
| * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> |
| * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu> |
| * |
| * Module name: iSeries_setup.c |
| * |
| * Description: |
| * Architecture- / platform-specific boot-time initialization code for |
| * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and |
| * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek |
| * <dan@net4x.com>. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/config.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/smp.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/initrd.h> |
| #include <linux/seq_file.h> |
| #include <linux/kdev_t.h> |
| #include <linux/major.h> |
| #include <linux/root_dev.h> |
| |
| #include <asm/processor.h> |
| #include <asm/machdep.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cputable.h> |
| #include <asm/sections.h> |
| #include <asm/iommu.h> |
| |
| #include <asm/time.h> |
| #include "iSeries_setup.h" |
| #include <asm/naca.h> |
| #include <asm/paca.h> |
| #include <asm/cache.h> |
| #include <asm/sections.h> |
| #include <asm/abs_addr.h> |
| #include <asm/iSeries/HvCallHpt.h> |
| #include <asm/iSeries/HvLpConfig.h> |
| #include <asm/iSeries/HvCallEvent.h> |
| #include <asm/iSeries/HvCallSm.h> |
| #include <asm/iSeries/HvCallXm.h> |
| #include <asm/iSeries/ItLpQueue.h> |
| #include <asm/iSeries/IoHriMainStore.h> |
| #include <asm/iSeries/mf.h> |
| #include <asm/iSeries/HvLpEvent.h> |
| #include <asm/iSeries/iSeries_irq.h> |
| #include <asm/iSeries/IoHriProcessorVpd.h> |
| #include <asm/iSeries/ItVpdAreas.h> |
| #include <asm/iSeries/LparMap.h> |
| |
| extern void hvlog(char *fmt, ...); |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) hvlog(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| /* Function Prototypes */ |
| extern void ppcdbg_initialize(void); |
| |
| static void build_iSeries_Memory_Map(void); |
| static void setup_iSeries_cache_sizes(void); |
| static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr); |
| #ifdef CONFIG_PCI |
| extern void iSeries_pci_final_fixup(void); |
| #else |
| static void iSeries_pci_final_fixup(void) { } |
| #endif |
| |
| /* Global Variables */ |
| static unsigned long procFreqHz; |
| static unsigned long procFreqMhz; |
| static unsigned long procFreqMhzHundreths; |
| |
| static unsigned long tbFreqHz; |
| static unsigned long tbFreqMhz; |
| static unsigned long tbFreqMhzHundreths; |
| |
| int piranha_simulator; |
| |
| extern int rd_size; /* Defined in drivers/block/rd.c */ |
| extern unsigned long klimit; |
| extern unsigned long embedded_sysmap_start; |
| extern unsigned long embedded_sysmap_end; |
| |
| extern unsigned long iSeries_recal_tb; |
| extern unsigned long iSeries_recal_titan; |
| |
| static int mf_initialized; |
| |
| struct MemoryBlock { |
| unsigned long absStart; |
| unsigned long absEnd; |
| unsigned long logicalStart; |
| unsigned long logicalEnd; |
| }; |
| |
| /* |
| * Process the main store vpd to determine where the holes in memory are |
| * and return the number of physical blocks and fill in the array of |
| * block data. |
| */ |
| static unsigned long iSeries_process_Condor_mainstore_vpd( |
| struct MemoryBlock *mb_array, unsigned long max_entries) |
| { |
| unsigned long holeFirstChunk, holeSizeChunks; |
| unsigned long numMemoryBlocks = 1; |
| struct IoHriMainStoreSegment4 *msVpd = |
| (struct IoHriMainStoreSegment4 *)xMsVpd; |
| unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr; |
| unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr; |
| unsigned long holeSize = holeEnd - holeStart; |
| |
| printk("Mainstore_VPD: Condor\n"); |
| /* |
| * Determine if absolute memory has any |
| * holes so that we can interpret the |
| * access map we get back from the hypervisor |
| * correctly. |
| */ |
| mb_array[0].logicalStart = 0; |
| mb_array[0].logicalEnd = 0x100000000; |
| mb_array[0].absStart = 0; |
| mb_array[0].absEnd = 0x100000000; |
| |
| if (holeSize) { |
| numMemoryBlocks = 2; |
| holeStart = holeStart & 0x000fffffffffffff; |
| holeStart = addr_to_chunk(holeStart); |
| holeFirstChunk = holeStart; |
| holeSize = addr_to_chunk(holeSize); |
| holeSizeChunks = holeSize; |
| printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n", |
| holeFirstChunk, holeSizeChunks ); |
| mb_array[0].logicalEnd = holeFirstChunk; |
| mb_array[0].absEnd = holeFirstChunk; |
| mb_array[1].logicalStart = holeFirstChunk; |
| mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks; |
| mb_array[1].absStart = holeFirstChunk + holeSizeChunks; |
| mb_array[1].absEnd = 0x100000000; |
| } |
| return numMemoryBlocks; |
| } |
| |
| #define MaxSegmentAreas 32 |
| #define MaxSegmentAdrRangeBlocks 128 |
| #define MaxAreaRangeBlocks 4 |
| |
| static unsigned long iSeries_process_Regatta_mainstore_vpd( |
| struct MemoryBlock *mb_array, unsigned long max_entries) |
| { |
| struct IoHriMainStoreSegment5 *msVpdP = |
| (struct IoHriMainStoreSegment5 *)xMsVpd; |
| unsigned long numSegmentBlocks = 0; |
| u32 existsBits = msVpdP->msAreaExists; |
| unsigned long area_num; |
| |
| printk("Mainstore_VPD: Regatta\n"); |
| |
| for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) { |
| unsigned long numAreaBlocks; |
| struct IoHriMainStoreArea4 *currentArea; |
| |
| if (existsBits & 0x80000000) { |
| unsigned long block_num; |
| |
| currentArea = &msVpdP->msAreaArray[area_num]; |
| numAreaBlocks = currentArea->numAdrRangeBlocks; |
| printk("ms_vpd: processing area %2ld blocks=%ld", |
| area_num, numAreaBlocks); |
| for (block_num = 0; block_num < numAreaBlocks; |
| ++block_num ) { |
| /* Process an address range block */ |
| struct MemoryBlock tempBlock; |
| unsigned long i; |
| |
| tempBlock.absStart = |
| (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart; |
| tempBlock.absEnd = |
| (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd; |
| tempBlock.logicalStart = 0; |
| tempBlock.logicalEnd = 0; |
| printk("\n block %ld absStart=%016lx absEnd=%016lx", |
| block_num, tempBlock.absStart, |
| tempBlock.absEnd); |
| |
| for (i = 0; i < numSegmentBlocks; ++i) { |
| if (mb_array[i].absStart == |
| tempBlock.absStart) |
| break; |
| } |
| if (i == numSegmentBlocks) { |
| if (numSegmentBlocks == max_entries) |
| panic("iSeries_process_mainstore_vpd: too many memory blocks"); |
| mb_array[numSegmentBlocks] = tempBlock; |
| ++numSegmentBlocks; |
| } else |
| printk(" (duplicate)"); |
| } |
| printk("\n"); |
| } |
| existsBits <<= 1; |
| } |
| /* Now sort the blocks found into ascending sequence */ |
| if (numSegmentBlocks > 1) { |
| unsigned long m, n; |
| |
| for (m = 0; m < numSegmentBlocks - 1; ++m) { |
| for (n = numSegmentBlocks - 1; m < n; --n) { |
| if (mb_array[n].absStart < |
| mb_array[n-1].absStart) { |
| struct MemoryBlock tempBlock; |
| |
| tempBlock = mb_array[n]; |
| mb_array[n] = mb_array[n-1]; |
| mb_array[n-1] = tempBlock; |
| } |
| } |
| } |
| } |
| /* |
| * Assign "logical" addresses to each block. These |
| * addresses correspond to the hypervisor "bitmap" space. |
| * Convert all addresses into units of 256K chunks. |
| */ |
| { |
| unsigned long i, nextBitmapAddress; |
| |
| printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks); |
| nextBitmapAddress = 0; |
| for (i = 0; i < numSegmentBlocks; ++i) { |
| unsigned long length = mb_array[i].absEnd - |
| mb_array[i].absStart; |
| |
| mb_array[i].logicalStart = nextBitmapAddress; |
| mb_array[i].logicalEnd = nextBitmapAddress + length; |
| nextBitmapAddress += length; |
| printk(" Bitmap range: %016lx - %016lx\n" |
| " Absolute range: %016lx - %016lx\n", |
| mb_array[i].logicalStart, |
| mb_array[i].logicalEnd, |
| mb_array[i].absStart, mb_array[i].absEnd); |
| mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart & |
| 0x000fffffffffffff); |
| mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd & |
| 0x000fffffffffffff); |
| mb_array[i].logicalStart = |
| addr_to_chunk(mb_array[i].logicalStart); |
| mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd); |
| } |
| } |
| |
| return numSegmentBlocks; |
| } |
| |
| static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array, |
| unsigned long max_entries) |
| { |
| unsigned long i; |
| unsigned long mem_blocks = 0; |
| |
| if (cpu_has_feature(CPU_FTR_SLB)) |
| mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array, |
| max_entries); |
| else |
| mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array, |
| max_entries); |
| |
| printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks); |
| for (i = 0; i < mem_blocks; ++i) { |
| printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n" |
| " abs chunks %016lx - %016lx\n", |
| i, mb_array[i].logicalStart, mb_array[i].logicalEnd, |
| mb_array[i].absStart, mb_array[i].absEnd); |
| } |
| return mem_blocks; |
| } |
| |
| static void __init iSeries_get_cmdline(void) |
| { |
| char *p, *q; |
| |
| /* copy the command line parameter from the primary VSP */ |
| HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256, |
| HvLpDma_Direction_RemoteToLocal); |
| |
| p = cmd_line; |
| q = cmd_line + 255; |
| while(p < q) { |
| if (!*p || *p == '\n') |
| break; |
| ++p; |
| } |
| *p = 0; |
| } |
| |
| static void __init iSeries_init_early(void) |
| { |
| extern unsigned long memory_limit; |
| |
| DBG(" -> iSeries_init_early()\n"); |
| |
| ppcdbg_initialize(); |
| |
| #if defined(CONFIG_BLK_DEV_INITRD) |
| /* |
| * If the init RAM disk has been configured and there is |
| * a non-zero starting address for it, set it up |
| */ |
| if (naca.xRamDisk) { |
| initrd_start = (unsigned long)__va(naca.xRamDisk); |
| initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE; |
| initrd_below_start_ok = 1; // ramdisk in kernel space |
| ROOT_DEV = Root_RAM0; |
| if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize) |
| rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024; |
| } else |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| { |
| /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */ |
| } |
| |
| iSeries_recal_tb = get_tb(); |
| iSeries_recal_titan = HvCallXm_loadTod(); |
| |
| /* |
| * Cache sizes must be initialized before hpte_init_iSeries is called |
| * as the later need them for flush_icache_range() |
| */ |
| setup_iSeries_cache_sizes(); |
| |
| /* |
| * Initialize the hash table management pointers |
| */ |
| hpte_init_iSeries(); |
| |
| /* |
| * Initialize the DMA/TCE management |
| */ |
| iommu_init_early_iSeries(); |
| |
| /* |
| * Initialize the table which translate Linux physical addresses to |
| * AS/400 absolute addresses |
| */ |
| build_iSeries_Memory_Map(); |
| |
| iSeries_get_cmdline(); |
| |
| /* Save unparsed command line copy for /proc/cmdline */ |
| strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE); |
| |
| /* Parse early parameters, in particular mem=x */ |
| parse_early_param(); |
| |
| if (memory_limit) { |
| if (memory_limit < systemcfg->physicalMemorySize) |
| systemcfg->physicalMemorySize = memory_limit; |
| else { |
| printk("Ignoring mem=%lu >= ram_top.\n", memory_limit); |
| memory_limit = 0; |
| } |
| } |
| |
| /* Bolt kernel mappings for all of memory (or just a bit if we've got a limit) */ |
| iSeries_bolt_kernel(0, systemcfg->physicalMemorySize); |
| |
| lmb_init(); |
| lmb_add(0, systemcfg->physicalMemorySize); |
| lmb_analyze(); |
| lmb_reserve(0, __pa(klimit)); |
| |
| /* Initialize machine-dependency vectors */ |
| #ifdef CONFIG_SMP |
| smp_init_iSeries(); |
| #endif |
| if (itLpNaca.xPirEnvironMode == 0) |
| piranha_simulator = 1; |
| |
| /* Associate Lp Event Queue 0 with processor 0 */ |
| HvCallEvent_setLpEventQueueInterruptProc(0, 0); |
| |
| mf_init(); |
| mf_initialized = 1; |
| mb(); |
| |
| /* If we were passed an initrd, set the ROOT_DEV properly if the values |
| * look sensible. If not, clear initrd reference. |
| */ |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE && |
| initrd_end > initrd_start) |
| ROOT_DEV = Root_RAM0; |
| else |
| initrd_start = initrd_end = 0; |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| DBG(" <- iSeries_init_early()\n"); |
| } |
| |
| /* |
| * The iSeries may have very large memories ( > 128 GB ) and a partition |
| * may get memory in "chunks" that may be anywhere in the 2**52 real |
| * address space. The chunks are 256K in size. To map this to the |
| * memory model Linux expects, the AS/400 specific code builds a |
| * translation table to translate what Linux thinks are "physical" |
| * addresses to the actual real addresses. This allows us to make |
| * it appear to Linux that we have contiguous memory starting at |
| * physical address zero while in fact this could be far from the truth. |
| * To avoid confusion, I'll let the words physical and/or real address |
| * apply to the Linux addresses while I'll use "absolute address" to |
| * refer to the actual hardware real address. |
| * |
| * build_iSeries_Memory_Map gets information from the Hypervisor and |
| * looks at the Main Store VPD to determine the absolute addresses |
| * of the memory that has been assigned to our partition and builds |
| * a table used to translate Linux's physical addresses to these |
| * absolute addresses. Absolute addresses are needed when |
| * communicating with the hypervisor (e.g. to build HPT entries) |
| */ |
| |
| static void __init build_iSeries_Memory_Map(void) |
| { |
| u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize; |
| u32 nextPhysChunk; |
| u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages; |
| u32 num_ptegs; |
| u32 totalChunks,moreChunks; |
| u32 currChunk, thisChunk, absChunk; |
| u32 currDword; |
| u32 chunkBit; |
| u64 map; |
| struct MemoryBlock mb[32]; |
| unsigned long numMemoryBlocks, curBlock; |
| |
| /* Chunk size on iSeries is 256K bytes */ |
| totalChunks = (u32)HvLpConfig_getMsChunks(); |
| klimit = msChunks_alloc(klimit, totalChunks, 1UL << 18); |
| |
| /* |
| * Get absolute address of our load area |
| * and map it to physical address 0 |
| * This guarantees that the loadarea ends up at physical 0 |
| * otherwise, it might not be returned by PLIC as the first |
| * chunks |
| */ |
| |
| loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr); |
| loadAreaSize = itLpNaca.xLoadAreaChunks; |
| |
| /* |
| * Only add the pages already mapped here. |
| * Otherwise we might add the hpt pages |
| * The rest of the pages of the load area |
| * aren't in the HPT yet and can still |
| * be assigned an arbitrary physical address |
| */ |
| if ((loadAreaSize * 64) > HvPagesToMap) |
| loadAreaSize = HvPagesToMap / 64; |
| |
| loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1; |
| |
| /* |
| * TODO Do we need to do something if the HPT is in the 64MB load area? |
| * This would be required if the itLpNaca.xLoadAreaChunks includes |
| * the HPT size |
| */ |
| |
| printk("Mapping load area - physical addr = 0000000000000000\n" |
| " absolute addr = %016lx\n", |
| chunk_to_addr(loadAreaFirstChunk)); |
| printk("Load area size %dK\n", loadAreaSize * 256); |
| |
| for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk) |
| msChunks.abs[nextPhysChunk] = |
| loadAreaFirstChunk + nextPhysChunk; |
| |
| /* |
| * Get absolute address of our HPT and remember it so |
| * we won't map it to any physical address |
| */ |
| hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress()); |
| hptSizePages = (u32)HvCallHpt_getHptPages(); |
| hptSizeChunks = hptSizePages >> (msChunks.chunk_shift - PAGE_SHIFT); |
| hptLastChunk = hptFirstChunk + hptSizeChunks - 1; |
| |
| printk("HPT absolute addr = %016lx, size = %dK\n", |
| chunk_to_addr(hptFirstChunk), hptSizeChunks * 256); |
| |
| /* Fill in the hashed page table hash mask */ |
| num_ptegs = hptSizePages * |
| (PAGE_SIZE / (sizeof(HPTE) * HPTES_PER_GROUP)); |
| htab_hash_mask = num_ptegs - 1; |
| |
| /* |
| * The actual hashed page table is in the hypervisor, |
| * we have no direct access |
| */ |
| htab_address = NULL; |
| |
| /* |
| * Determine if absolute memory has any |
| * holes so that we can interpret the |
| * access map we get back from the hypervisor |
| * correctly. |
| */ |
| numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32); |
| |
| /* |
| * Process the main store access map from the hypervisor |
| * to build up our physical -> absolute translation table |
| */ |
| curBlock = 0; |
| currChunk = 0; |
| currDword = 0; |
| moreChunks = totalChunks; |
| |
| while (moreChunks) { |
| map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex, |
| currDword); |
| thisChunk = currChunk; |
| while (map) { |
| chunkBit = map >> 63; |
| map <<= 1; |
| if (chunkBit) { |
| --moreChunks; |
| while (thisChunk >= mb[curBlock].logicalEnd) { |
| ++curBlock; |
| if (curBlock >= numMemoryBlocks) |
| panic("out of memory blocks"); |
| } |
| if (thisChunk < mb[curBlock].logicalStart) |
| panic("memory block error"); |
| |
| absChunk = mb[curBlock].absStart + |
| (thisChunk - mb[curBlock].logicalStart); |
| if (((absChunk < hptFirstChunk) || |
| (absChunk > hptLastChunk)) && |
| ((absChunk < loadAreaFirstChunk) || |
| (absChunk > loadAreaLastChunk))) { |
| msChunks.abs[nextPhysChunk] = absChunk; |
| ++nextPhysChunk; |
| } |
| } |
| ++thisChunk; |
| } |
| ++currDword; |
| currChunk += 64; |
| } |
| |
| /* |
| * main store size (in chunks) is |
| * totalChunks - hptSizeChunks |
| * which should be equal to |
| * nextPhysChunk |
| */ |
| systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk); |
| } |
| |
| /* |
| * Set up the variables that describe the cache line sizes |
| * for this machine. |
| */ |
| static void __init setup_iSeries_cache_sizes(void) |
| { |
| unsigned int i, n; |
| unsigned int procIx = get_paca()->lppaca.dyn_hv_phys_proc_index; |
| |
| systemcfg->icache_size = |
| ppc64_caches.isize = xIoHriProcessorVpd[procIx].xInstCacheSize * 1024; |
| systemcfg->icache_line_size = |
| ppc64_caches.iline_size = |
| xIoHriProcessorVpd[procIx].xInstCacheOperandSize; |
| systemcfg->dcache_size = |
| ppc64_caches.dsize = |
| xIoHriProcessorVpd[procIx].xDataL1CacheSizeKB * 1024; |
| systemcfg->dcache_line_size = |
| ppc64_caches.dline_size = |
| xIoHriProcessorVpd[procIx].xDataCacheOperandSize; |
| ppc64_caches.ilines_per_page = PAGE_SIZE / ppc64_caches.iline_size; |
| ppc64_caches.dlines_per_page = PAGE_SIZE / ppc64_caches.dline_size; |
| |
| i = ppc64_caches.iline_size; |
| n = 0; |
| while ((i = (i / 2))) |
| ++n; |
| ppc64_caches.log_iline_size = n; |
| |
| i = ppc64_caches.dline_size; |
| n = 0; |
| while ((i = (i / 2))) |
| ++n; |
| ppc64_caches.log_dline_size = n; |
| |
| printk("D-cache line size = %d\n", |
| (unsigned int)ppc64_caches.dline_size); |
| printk("I-cache line size = %d\n", |
| (unsigned int)ppc64_caches.iline_size); |
| } |
| |
| /* |
| * Create a pte. Used during initialization only. |
| */ |
| static void iSeries_make_pte(unsigned long va, unsigned long pa, |
| int mode) |
| { |
| HPTE local_hpte, rhpte; |
| unsigned long hash, vpn; |
| long slot; |
| |
| vpn = va >> PAGE_SHIFT; |
| hash = hpt_hash(vpn, 0); |
| |
| local_hpte.dw1.dword1 = pa | mode; |
| local_hpte.dw0.dword0 = 0; |
| local_hpte.dw0.dw0.avpn = va >> 23; |
| local_hpte.dw0.dw0.bolted = 1; /* bolted */ |
| local_hpte.dw0.dw0.v = 1; |
| |
| slot = HvCallHpt_findValid(&rhpte, vpn); |
| if (slot < 0) { |
| /* Must find space in primary group */ |
| panic("hash_page: hpte already exists\n"); |
| } |
| HvCallHpt_addValidate(slot, 0, (HPTE *)&local_hpte ); |
| } |
| |
| /* |
| * Bolt the kernel addr space into the HPT |
| */ |
| static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr) |
| { |
| unsigned long pa; |
| unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX; |
| HPTE hpte; |
| |
| for (pa = saddr; pa < eaddr ;pa += PAGE_SIZE) { |
| unsigned long ea = (unsigned long)__va(pa); |
| unsigned long vsid = get_kernel_vsid(ea); |
| unsigned long va = (vsid << 28) | (pa & 0xfffffff); |
| unsigned long vpn = va >> PAGE_SHIFT; |
| unsigned long slot = HvCallHpt_findValid(&hpte, vpn); |
| |
| /* Make non-kernel text non-executable */ |
| if (!in_kernel_text(ea)) |
| mode_rw |= HW_NO_EXEC; |
| |
| if (hpte.dw0.dw0.v) { |
| /* HPTE exists, so just bolt it */ |
| HvCallHpt_setSwBits(slot, 0x10, 0); |
| /* And make sure the pp bits are correct */ |
| HvCallHpt_setPp(slot, PP_RWXX); |
| } else |
| /* No HPTE exists, so create a new bolted one */ |
| iSeries_make_pte(va, phys_to_abs(pa), mode_rw); |
| } |
| } |
| |
| /* |
| * Document me. |
| */ |
| static void __init iSeries_setup_arch(void) |
| { |
| unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index; |
| |
| /* Add an eye catcher and the systemcfg layout version number */ |
| strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64"); |
| systemcfg->version.major = SYSTEMCFG_MAJOR; |
| systemcfg->version.minor = SYSTEMCFG_MINOR; |
| |
| /* Setup the Lp Event Queue */ |
| setup_hvlpevent_queue(); |
| |
| /* Compute processor frequency */ |
| procFreqHz = ((1UL << 34) * 1000000) / |
| xIoHriProcessorVpd[procIx].xProcFreq; |
| procFreqMhz = procFreqHz / 1000000; |
| procFreqMhzHundreths = (procFreqHz / 10000) - (procFreqMhz * 100); |
| ppc_proc_freq = procFreqHz; |
| |
| /* Compute time base frequency */ |
| tbFreqHz = ((1UL << 32) * 1000000) / |
| xIoHriProcessorVpd[procIx].xTimeBaseFreq; |
| tbFreqMhz = tbFreqHz / 1000000; |
| tbFreqMhzHundreths = (tbFreqHz / 10000) - (tbFreqMhz * 100); |
| ppc_tb_freq = tbFreqHz; |
| |
| printk("Max logical processors = %d\n", |
| itVpdAreas.xSlicMaxLogicalProcs); |
| printk("Max physical processors = %d\n", |
| itVpdAreas.xSlicMaxPhysicalProcs); |
| printk("Processor frequency = %lu.%02lu\n", procFreqMhz, |
| procFreqMhzHundreths); |
| printk("Time base frequency = %lu.%02lu\n", tbFreqMhz, |
| tbFreqMhzHundreths); |
| systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR; |
| printk("Processor version = %x\n", systemcfg->processor); |
| } |
| |
| static void iSeries_get_cpuinfo(struct seq_file *m) |
| { |
| seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n"); |
| } |
| |
| /* |
| * Document me. |
| * and Implement me. |
| */ |
| static int iSeries_get_irq(struct pt_regs *regs) |
| { |
| /* -2 means ignore this interrupt */ |
| return -2; |
| } |
| |
| /* |
| * Document me. |
| */ |
| static void iSeries_restart(char *cmd) |
| { |
| mf_reboot(); |
| } |
| |
| /* |
| * Document me. |
| */ |
| static void iSeries_power_off(void) |
| { |
| mf_power_off(); |
| } |
| |
| /* |
| * Document me. |
| */ |
| static void iSeries_halt(void) |
| { |
| mf_power_off(); |
| } |
| |
| /* |
| * void __init iSeries_calibrate_decr() |
| * |
| * Description: |
| * This routine retrieves the internal processor frequency from the VPD, |
| * and sets up the kernel timer decrementer based on that value. |
| * |
| */ |
| static void __init iSeries_calibrate_decr(void) |
| { |
| unsigned long cyclesPerUsec; |
| struct div_result divres; |
| |
| /* Compute decrementer (and TB) frequency in cycles/sec */ |
| cyclesPerUsec = ppc_tb_freq / 1000000; |
| |
| /* |
| * Set the amount to refresh the decrementer by. This |
| * is the number of decrementer ticks it takes for |
| * 1/HZ seconds. |
| */ |
| tb_ticks_per_jiffy = ppc_tb_freq / HZ; |
| |
| #if 0 |
| /* TEST CODE FOR ADJTIME */ |
| tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000; |
| /* END OF TEST CODE */ |
| #endif |
| |
| /* |
| * tb_ticks_per_sec = freq; would give better accuracy |
| * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures |
| * that jiffies (and xtime) will match the time returned |
| * by do_gettimeofday. |
| */ |
| tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; |
| tb_ticks_per_usec = cyclesPerUsec; |
| tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); |
| div128_by_32(1024 * 1024, 0, tb_ticks_per_sec, &divres); |
| tb_to_xs = divres.result_low; |
| setup_default_decr(); |
| } |
| |
| static void __init iSeries_progress(char * st, unsigned short code) |
| { |
| printk("Progress: [%04x] - %s\n", (unsigned)code, st); |
| if (!piranha_simulator && mf_initialized) { |
| if (code != 0xffff) |
| mf_display_progress(code); |
| else |
| mf_clear_src(); |
| } |
| } |
| |
| static void __init iSeries_fixup_klimit(void) |
| { |
| /* |
| * Change klimit to take into account any ram disk |
| * that may be included |
| */ |
| if (naca.xRamDisk) |
| klimit = KERNELBASE + (u64)naca.xRamDisk + |
| (naca.xRamDiskSize * PAGE_SIZE); |
| else { |
| /* |
| * No ram disk was included - check and see if there |
| * was an embedded system map. Change klimit to take |
| * into account any embedded system map |
| */ |
| if (embedded_sysmap_end) |
| klimit = KERNELBASE + ((embedded_sysmap_end + 4095) & |
| 0xfffffffffffff000); |
| } |
| } |
| |
| static int __init iSeries_src_init(void) |
| { |
| /* clear the progress line */ |
| ppc_md.progress(" ", 0xffff); |
| return 0; |
| } |
| |
| late_initcall(iSeries_src_init); |
| |
| static inline void process_iSeries_events(void) |
| { |
| asm volatile ("li 0,0x5555; sc" : : : "r0", "r3"); |
| } |
| |
| static void yield_shared_processor(void) |
| { |
| unsigned long tb; |
| |
| HvCall_setEnabledInterrupts(HvCall_MaskIPI | |
| HvCall_MaskLpEvent | |
| HvCall_MaskLpProd | |
| HvCall_MaskTimeout); |
| |
| tb = get_tb(); |
| /* Compute future tb value when yield should expire */ |
| HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy); |
| |
| /* |
| * The decrementer stops during the yield. Force a fake decrementer |
| * here and let the timer_interrupt code sort out the actual time. |
| */ |
| get_paca()->lppaca.int_dword.fields.decr_int = 1; |
| process_iSeries_events(); |
| } |
| |
| static int iseries_shared_idle(void) |
| { |
| while (1) { |
| while (!need_resched() && !hvlpevent_is_pending()) { |
| local_irq_disable(); |
| ppc64_runlatch_off(); |
| |
| /* Recheck with irqs off */ |
| if (!need_resched() && !hvlpevent_is_pending()) |
| yield_shared_processor(); |
| |
| HMT_medium(); |
| local_irq_enable(); |
| } |
| |
| ppc64_runlatch_on(); |
| |
| if (hvlpevent_is_pending()) |
| process_iSeries_events(); |
| |
| schedule(); |
| } |
| |
| return 0; |
| } |
| |
| static int iseries_dedicated_idle(void) |
| { |
| long oldval; |
| |
| while (1) { |
| oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED); |
| |
| if (!oldval) { |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| |
| while (!need_resched()) { |
| ppc64_runlatch_off(); |
| HMT_low(); |
| |
| if (hvlpevent_is_pending()) { |
| HMT_medium(); |
| ppc64_runlatch_on(); |
| process_iSeries_events(); |
| } |
| } |
| |
| HMT_medium(); |
| clear_thread_flag(TIF_POLLING_NRFLAG); |
| } else { |
| set_need_resched(); |
| } |
| |
| ppc64_runlatch_on(); |
| schedule(); |
| } |
| |
| return 0; |
| } |
| |
| #ifndef CONFIG_PCI |
| void __init iSeries_init_IRQ(void) { } |
| #endif |
| |
| void __init iSeries_early_setup(void) |
| { |
| iSeries_fixup_klimit(); |
| |
| ppc_md.setup_arch = iSeries_setup_arch; |
| ppc_md.get_cpuinfo = iSeries_get_cpuinfo; |
| ppc_md.init_IRQ = iSeries_init_IRQ; |
| ppc_md.get_irq = iSeries_get_irq; |
| ppc_md.init_early = iSeries_init_early, |
| |
| ppc_md.pcibios_fixup = iSeries_pci_final_fixup; |
| |
| ppc_md.restart = iSeries_restart; |
| ppc_md.power_off = iSeries_power_off; |
| ppc_md.halt = iSeries_halt; |
| |
| ppc_md.get_boot_time = iSeries_get_boot_time; |
| ppc_md.set_rtc_time = iSeries_set_rtc_time; |
| ppc_md.get_rtc_time = iSeries_get_rtc_time; |
| ppc_md.calibrate_decr = iSeries_calibrate_decr; |
| ppc_md.progress = iSeries_progress; |
| |
| if (get_paca()->lppaca.shared_proc) { |
| ppc_md.idle_loop = iseries_shared_idle; |
| printk(KERN_INFO "Using shared processor idle loop\n"); |
| } else { |
| ppc_md.idle_loop = iseries_dedicated_idle; |
| printk(KERN_INFO "Using dedicated idle loop\n"); |
| } |
| } |
| |