| /* |
| * Performance events - AMD IBS |
| * |
| * Copyright (C) 2011 Advanced Micro Devices, Inc., Robert Richter |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/init.h> |
| #include <linux/export.h> |
| #include <linux/pci.h> |
| #include <linux/ptrace.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/sched/clock.h> |
| |
| #include <asm/apic.h> |
| |
| #include "../perf_event.h" |
| |
| static u32 ibs_caps; |
| |
| #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) |
| |
| #include <linux/kprobes.h> |
| #include <linux/hardirq.h> |
| |
| #include <asm/nmi.h> |
| #include <asm/amd-ibs.h> |
| |
| #define IBS_FETCH_CONFIG_MASK (IBS_FETCH_RAND_EN | IBS_FETCH_MAX_CNT) |
| #define IBS_OP_CONFIG_MASK IBS_OP_MAX_CNT |
| |
| |
| /* |
| * IBS states: |
| * |
| * ENABLED; tracks the pmu::add(), pmu::del() state, when set the counter is taken |
| * and any further add()s must fail. |
| * |
| * STARTED/STOPPING/STOPPED; deal with pmu::start(), pmu::stop() state but are |
| * complicated by the fact that the IBS hardware can send late NMIs (ie. after |
| * we've cleared the EN bit). |
| * |
| * In order to consume these late NMIs we have the STOPPED state, any NMI that |
| * happens after we've cleared the EN state will clear this bit and report the |
| * NMI handled (this is fundamentally racy in the face or multiple NMI sources, |
| * someone else can consume our BIT and our NMI will go unhandled). |
| * |
| * And since we cannot set/clear this separate bit together with the EN bit, |
| * there are races; if we cleared STARTED early, an NMI could land in |
| * between clearing STARTED and clearing the EN bit (in fact multiple NMIs |
| * could happen if the period is small enough), and consume our STOPPED bit |
| * and trigger streams of unhandled NMIs. |
| * |
| * If, however, we clear STARTED late, an NMI can hit between clearing the |
| * EN bit and clearing STARTED, still see STARTED set and process the event. |
| * If this event will have the VALID bit clear, we bail properly, but this |
| * is not a given. With VALID set we can end up calling pmu::stop() again |
| * (the throttle logic) and trigger the WARNs in there. |
| * |
| * So what we do is set STOPPING before clearing EN to avoid the pmu::stop() |
| * nesting, and clear STARTED late, so that we have a well defined state over |
| * the clearing of the EN bit. |
| * |
| * XXX: we could probably be using !atomic bitops for all this. |
| */ |
| |
| enum ibs_states { |
| IBS_ENABLED = 0, |
| IBS_STARTED = 1, |
| IBS_STOPPING = 2, |
| IBS_STOPPED = 3, |
| |
| IBS_MAX_STATES, |
| }; |
| |
| struct cpu_perf_ibs { |
| struct perf_event *event; |
| unsigned long state[BITS_TO_LONGS(IBS_MAX_STATES)]; |
| }; |
| |
| struct perf_ibs { |
| struct pmu pmu; |
| unsigned int msr; |
| u64 config_mask; |
| u64 cnt_mask; |
| u64 enable_mask; |
| u64 valid_mask; |
| u64 max_period; |
| unsigned long offset_mask[1]; |
| int offset_max; |
| unsigned int fetch_count_reset_broken : 1; |
| unsigned int fetch_ignore_if_zero_rip : 1; |
| struct cpu_perf_ibs __percpu *pcpu; |
| |
| u64 (*get_count)(u64 config); |
| }; |
| |
| static int |
| perf_event_set_period(struct hw_perf_event *hwc, u64 min, u64 max, u64 *hw_period) |
| { |
| s64 left = local64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int overflow = 0; |
| |
| /* |
| * If we are way outside a reasonable range then just skip forward: |
| */ |
| if (unlikely(left <= -period)) { |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| overflow = 1; |
| } |
| |
| if (unlikely(left < (s64)min)) { |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| overflow = 1; |
| } |
| |
| /* |
| * If the hw period that triggers the sw overflow is too short |
| * we might hit the irq handler. This biases the results. |
| * Thus we shorten the next-to-last period and set the last |
| * period to the max period. |
| */ |
| if (left > max) { |
| left -= max; |
| if (left > max) |
| left = max; |
| else if (left < min) |
| left = min; |
| } |
| |
| *hw_period = (u64)left; |
| |
| return overflow; |
| } |
| |
| static int |
| perf_event_try_update(struct perf_event *event, u64 new_raw_count, int width) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int shift = 64 - width; |
| u64 prev_raw_count; |
| u64 delta; |
| |
| /* |
| * Careful: an NMI might modify the previous event value. |
| * |
| * Our tactic to handle this is to first atomically read and |
| * exchange a new raw count - then add that new-prev delta |
| * count to the generic event atomically: |
| */ |
| prev_raw_count = local64_read(&hwc->prev_count); |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| return 0; |
| |
| /* |
| * Now we have the new raw value and have updated the prev |
| * timestamp already. We can now calculate the elapsed delta |
| * (event-)time and add that to the generic event. |
| * |
| * Careful, not all hw sign-extends above the physical width |
| * of the count. |
| */ |
| delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| delta >>= shift; |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| |
| return 1; |
| } |
| |
| static struct perf_ibs perf_ibs_fetch; |
| static struct perf_ibs perf_ibs_op; |
| |
| static struct perf_ibs *get_ibs_pmu(int type) |
| { |
| if (perf_ibs_fetch.pmu.type == type) |
| return &perf_ibs_fetch; |
| if (perf_ibs_op.pmu.type == type) |
| return &perf_ibs_op; |
| return NULL; |
| } |
| |
| /* |
| * Use IBS for precise event sampling: |
| * |
| * perf record -a -e cpu-cycles:p ... # use ibs op counting cycle count |
| * perf record -a -e r076:p ... # same as -e cpu-cycles:p |
| * perf record -a -e r0C1:p ... # use ibs op counting micro-ops |
| * |
| * IbsOpCntCtl (bit 19) of IBS Execution Control Register (IbsOpCtl, |
| * MSRC001_1033) is used to select either cycle or micro-ops counting |
| * mode. |
| * |
| * The rip of IBS samples has skid 0. Thus, IBS supports precise |
| * levels 1 and 2 and the PERF_EFLAGS_EXACT is set. In rare cases the |
| * rip is invalid when IBS was not able to record the rip correctly. |
| * We clear PERF_EFLAGS_EXACT and take the rip from pt_regs then. |
| * |
| */ |
| static int perf_ibs_precise_event(struct perf_event *event, u64 *config) |
| { |
| switch (event->attr.precise_ip) { |
| case 0: |
| return -ENOENT; |
| case 1: |
| case 2: |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_HARDWARE: |
| switch (event->attr.config) { |
| case PERF_COUNT_HW_CPU_CYCLES: |
| *config = 0; |
| return 0; |
| } |
| break; |
| case PERF_TYPE_RAW: |
| switch (event->attr.config) { |
| case 0x0076: |
| *config = 0; |
| return 0; |
| case 0x00C1: |
| *config = IBS_OP_CNT_CTL; |
| return 0; |
| } |
| break; |
| default: |
| return -ENOENT; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int perf_ibs_init(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct perf_ibs *perf_ibs; |
| u64 max_cnt, config; |
| int ret; |
| |
| perf_ibs = get_ibs_pmu(event->attr.type); |
| if (perf_ibs) { |
| config = event->attr.config; |
| } else { |
| perf_ibs = &perf_ibs_op; |
| ret = perf_ibs_precise_event(event, &config); |
| if (ret) |
| return ret; |
| } |
| |
| if (event->pmu != &perf_ibs->pmu) |
| return -ENOENT; |
| |
| if (config & ~perf_ibs->config_mask) |
| return -EINVAL; |
| |
| if (hwc->sample_period) { |
| if (config & perf_ibs->cnt_mask) |
| /* raw max_cnt may not be set */ |
| return -EINVAL; |
| if (!event->attr.sample_freq && hwc->sample_period & 0x0f) |
| /* |
| * lower 4 bits can not be set in ibs max cnt, |
| * but allowing it in case we adjust the |
| * sample period to set a frequency. |
| */ |
| return -EINVAL; |
| hwc->sample_period &= ~0x0FULL; |
| if (!hwc->sample_period) |
| hwc->sample_period = 0x10; |
| } else { |
| max_cnt = config & perf_ibs->cnt_mask; |
| config &= ~perf_ibs->cnt_mask; |
| event->attr.sample_period = max_cnt << 4; |
| hwc->sample_period = event->attr.sample_period; |
| } |
| |
| if (!hwc->sample_period) |
| return -EINVAL; |
| |
| /* |
| * If we modify hwc->sample_period, we also need to update |
| * hwc->last_period and hwc->period_left. |
| */ |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| |
| hwc->config_base = perf_ibs->msr; |
| hwc->config = config; |
| |
| return 0; |
| } |
| |
| static int perf_ibs_set_period(struct perf_ibs *perf_ibs, |
| struct hw_perf_event *hwc, u64 *period) |
| { |
| int overflow; |
| |
| /* ignore lower 4 bits in min count: */ |
| overflow = perf_event_set_period(hwc, 1<<4, perf_ibs->max_period, period); |
| local64_set(&hwc->prev_count, 0); |
| |
| return overflow; |
| } |
| |
| static u64 get_ibs_fetch_count(u64 config) |
| { |
| union ibs_fetch_ctl fetch_ctl = (union ibs_fetch_ctl)config; |
| |
| return fetch_ctl.fetch_cnt << 4; |
| } |
| |
| static u64 get_ibs_op_count(u64 config) |
| { |
| union ibs_op_ctl op_ctl = (union ibs_op_ctl)config; |
| u64 count = 0; |
| |
| /* |
| * If the internal 27-bit counter rolled over, the count is MaxCnt |
| * and the lower 7 bits of CurCnt are randomized. |
| * Otherwise CurCnt has the full 27-bit current counter value. |
| */ |
| if (op_ctl.op_val) { |
| count = op_ctl.opmaxcnt << 4; |
| if (ibs_caps & IBS_CAPS_OPCNTEXT) |
| count += op_ctl.opmaxcnt_ext << 20; |
| } else if (ibs_caps & IBS_CAPS_RDWROPCNT) { |
| count = op_ctl.opcurcnt; |
| } |
| |
| return count; |
| } |
| |
| static void |
| perf_ibs_event_update(struct perf_ibs *perf_ibs, struct perf_event *event, |
| u64 *config) |
| { |
| u64 count = perf_ibs->get_count(*config); |
| |
| /* |
| * Set width to 64 since we do not overflow on max width but |
| * instead on max count. In perf_ibs_set_period() we clear |
| * prev count manually on overflow. |
| */ |
| while (!perf_event_try_update(event, count, 64)) { |
| rdmsrl(event->hw.config_base, *config); |
| count = perf_ibs->get_count(*config); |
| } |
| } |
| |
| static inline void perf_ibs_enable_event(struct perf_ibs *perf_ibs, |
| struct hw_perf_event *hwc, u64 config) |
| { |
| u64 tmp = hwc->config | config; |
| |
| if (perf_ibs->fetch_count_reset_broken) |
| wrmsrl(hwc->config_base, tmp & ~perf_ibs->enable_mask); |
| |
| wrmsrl(hwc->config_base, tmp | perf_ibs->enable_mask); |
| } |
| |
| /* |
| * Erratum #420 Instruction-Based Sampling Engine May Generate |
| * Interrupt that Cannot Be Cleared: |
| * |
| * Must clear counter mask first, then clear the enable bit. See |
| * Revision Guide for AMD Family 10h Processors, Publication #41322. |
| */ |
| static inline void perf_ibs_disable_event(struct perf_ibs *perf_ibs, |
| struct hw_perf_event *hwc, u64 config) |
| { |
| config &= ~perf_ibs->cnt_mask; |
| if (boot_cpu_data.x86 == 0x10) |
| wrmsrl(hwc->config_base, config); |
| config &= ~perf_ibs->enable_mask; |
| wrmsrl(hwc->config_base, config); |
| } |
| |
| /* |
| * We cannot restore the ibs pmu state, so we always needs to update |
| * the event while stopping it and then reset the state when starting |
| * again. Thus, ignoring PERF_EF_RELOAD and PERF_EF_UPDATE flags in |
| * perf_ibs_start()/perf_ibs_stop() and instead always do it. |
| */ |
| static void perf_ibs_start(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); |
| struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); |
| u64 period, config = 0; |
| |
| if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) |
| return; |
| |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| hwc->state = 0; |
| |
| perf_ibs_set_period(perf_ibs, hwc, &period); |
| if (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_OPCNTEXT)) { |
| config |= period & IBS_OP_MAX_CNT_EXT_MASK; |
| period &= ~IBS_OP_MAX_CNT_EXT_MASK; |
| } |
| config |= period >> 4; |
| |
| /* |
| * Set STARTED before enabling the hardware, such that a subsequent NMI |
| * must observe it. |
| */ |
| set_bit(IBS_STARTED, pcpu->state); |
| clear_bit(IBS_STOPPING, pcpu->state); |
| perf_ibs_enable_event(perf_ibs, hwc, config); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static void perf_ibs_stop(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); |
| struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); |
| u64 config; |
| int stopping; |
| |
| if (test_and_set_bit(IBS_STOPPING, pcpu->state)) |
| return; |
| |
| stopping = test_bit(IBS_STARTED, pcpu->state); |
| |
| if (!stopping && (hwc->state & PERF_HES_UPTODATE)) |
| return; |
| |
| rdmsrl(hwc->config_base, config); |
| |
| if (stopping) { |
| /* |
| * Set STOPPED before disabling the hardware, such that it |
| * must be visible to NMIs the moment we clear the EN bit, |
| * at which point we can generate an !VALID sample which |
| * we need to consume. |
| */ |
| set_bit(IBS_STOPPED, pcpu->state); |
| perf_ibs_disable_event(perf_ibs, hwc, config); |
| /* |
| * Clear STARTED after disabling the hardware; if it were |
| * cleared before an NMI hitting after the clear but before |
| * clearing the EN bit might think it a spurious NMI and not |
| * handle it. |
| * |
| * Clearing it after, however, creates the problem of the NMI |
| * handler seeing STARTED but not having a valid sample. |
| */ |
| clear_bit(IBS_STARTED, pcpu->state); |
| WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); |
| hwc->state |= PERF_HES_STOPPED; |
| } |
| |
| if (hwc->state & PERF_HES_UPTODATE) |
| return; |
| |
| /* |
| * Clear valid bit to not count rollovers on update, rollovers |
| * are only updated in the irq handler. |
| */ |
| config &= ~perf_ibs->valid_mask; |
| |
| perf_ibs_event_update(perf_ibs, event, &config); |
| hwc->state |= PERF_HES_UPTODATE; |
| } |
| |
| static int perf_ibs_add(struct perf_event *event, int flags) |
| { |
| struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); |
| struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); |
| |
| if (test_and_set_bit(IBS_ENABLED, pcpu->state)) |
| return -ENOSPC; |
| |
| event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| |
| pcpu->event = event; |
| |
| if (flags & PERF_EF_START) |
| perf_ibs_start(event, PERF_EF_RELOAD); |
| |
| return 0; |
| } |
| |
| static void perf_ibs_del(struct perf_event *event, int flags) |
| { |
| struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); |
| struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); |
| |
| if (!test_and_clear_bit(IBS_ENABLED, pcpu->state)) |
| return; |
| |
| perf_ibs_stop(event, PERF_EF_UPDATE); |
| |
| pcpu->event = NULL; |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static void perf_ibs_read(struct perf_event *event) { } |
| |
| /* |
| * We need to initialize with empty group if all attributes in the |
| * group are dynamic. |
| */ |
| static struct attribute *attrs_empty[] = { |
| NULL, |
| }; |
| |
| static struct attribute_group empty_format_group = { |
| .name = "format", |
| .attrs = attrs_empty, |
| }; |
| |
| static struct attribute_group empty_caps_group = { |
| .name = "caps", |
| .attrs = attrs_empty, |
| }; |
| |
| static const struct attribute_group *empty_attr_groups[] = { |
| &empty_format_group, |
| &empty_caps_group, |
| NULL, |
| }; |
| |
| PMU_FORMAT_ATTR(rand_en, "config:57"); |
| PMU_FORMAT_ATTR(cnt_ctl, "config:19"); |
| PMU_EVENT_ATTR_STRING(l3missonly, fetch_l3missonly, "config:59"); |
| PMU_EVENT_ATTR_STRING(l3missonly, op_l3missonly, "config:16"); |
| PMU_EVENT_ATTR_STRING(zen4_ibs_extensions, zen4_ibs_extensions, "1"); |
| |
| static umode_t |
| zen4_ibs_extensions_is_visible(struct kobject *kobj, struct attribute *attr, int i) |
| { |
| return ibs_caps & IBS_CAPS_ZEN4 ? attr->mode : 0; |
| } |
| |
| static struct attribute *rand_en_attrs[] = { |
| &format_attr_rand_en.attr, |
| NULL, |
| }; |
| |
| static struct attribute *fetch_l3missonly_attrs[] = { |
| &fetch_l3missonly.attr.attr, |
| NULL, |
| }; |
| |
| static struct attribute *zen4_ibs_extensions_attrs[] = { |
| &zen4_ibs_extensions.attr.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group group_rand_en = { |
| .name = "format", |
| .attrs = rand_en_attrs, |
| }; |
| |
| static struct attribute_group group_fetch_l3missonly = { |
| .name = "format", |
| .attrs = fetch_l3missonly_attrs, |
| .is_visible = zen4_ibs_extensions_is_visible, |
| }; |
| |
| static struct attribute_group group_zen4_ibs_extensions = { |
| .name = "caps", |
| .attrs = zen4_ibs_extensions_attrs, |
| .is_visible = zen4_ibs_extensions_is_visible, |
| }; |
| |
| static const struct attribute_group *fetch_attr_groups[] = { |
| &group_rand_en, |
| &empty_caps_group, |
| NULL, |
| }; |
| |
| static const struct attribute_group *fetch_attr_update[] = { |
| &group_fetch_l3missonly, |
| &group_zen4_ibs_extensions, |
| NULL, |
| }; |
| |
| static umode_t |
| cnt_ctl_is_visible(struct kobject *kobj, struct attribute *attr, int i) |
| { |
| return ibs_caps & IBS_CAPS_OPCNT ? attr->mode : 0; |
| } |
| |
| static struct attribute *cnt_ctl_attrs[] = { |
| &format_attr_cnt_ctl.attr, |
| NULL, |
| }; |
| |
| static struct attribute *op_l3missonly_attrs[] = { |
| &op_l3missonly.attr.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group group_cnt_ctl = { |
| .name = "format", |
| .attrs = cnt_ctl_attrs, |
| .is_visible = cnt_ctl_is_visible, |
| }; |
| |
| static struct attribute_group group_op_l3missonly = { |
| .name = "format", |
| .attrs = op_l3missonly_attrs, |
| .is_visible = zen4_ibs_extensions_is_visible, |
| }; |
| |
| static const struct attribute_group *op_attr_update[] = { |
| &group_cnt_ctl, |
| &group_op_l3missonly, |
| &group_zen4_ibs_extensions, |
| NULL, |
| }; |
| |
| static struct perf_ibs perf_ibs_fetch = { |
| .pmu = { |
| .task_ctx_nr = perf_invalid_context, |
| |
| .event_init = perf_ibs_init, |
| .add = perf_ibs_add, |
| .del = perf_ibs_del, |
| .start = perf_ibs_start, |
| .stop = perf_ibs_stop, |
| .read = perf_ibs_read, |
| .capabilities = PERF_PMU_CAP_NO_EXCLUDE, |
| }, |
| .msr = MSR_AMD64_IBSFETCHCTL, |
| .config_mask = IBS_FETCH_CONFIG_MASK, |
| .cnt_mask = IBS_FETCH_MAX_CNT, |
| .enable_mask = IBS_FETCH_ENABLE, |
| .valid_mask = IBS_FETCH_VAL, |
| .max_period = IBS_FETCH_MAX_CNT << 4, |
| .offset_mask = { MSR_AMD64_IBSFETCH_REG_MASK }, |
| .offset_max = MSR_AMD64_IBSFETCH_REG_COUNT, |
| |
| .get_count = get_ibs_fetch_count, |
| }; |
| |
| static struct perf_ibs perf_ibs_op = { |
| .pmu = { |
| .task_ctx_nr = perf_invalid_context, |
| |
| .event_init = perf_ibs_init, |
| .add = perf_ibs_add, |
| .del = perf_ibs_del, |
| .start = perf_ibs_start, |
| .stop = perf_ibs_stop, |
| .read = perf_ibs_read, |
| .capabilities = PERF_PMU_CAP_NO_EXCLUDE, |
| }, |
| .msr = MSR_AMD64_IBSOPCTL, |
| .config_mask = IBS_OP_CONFIG_MASK, |
| .cnt_mask = IBS_OP_MAX_CNT | IBS_OP_CUR_CNT | |
| IBS_OP_CUR_CNT_RAND, |
| .enable_mask = IBS_OP_ENABLE, |
| .valid_mask = IBS_OP_VAL, |
| .max_period = IBS_OP_MAX_CNT << 4, |
| .offset_mask = { MSR_AMD64_IBSOP_REG_MASK }, |
| .offset_max = MSR_AMD64_IBSOP_REG_COUNT, |
| |
| .get_count = get_ibs_op_count, |
| }; |
| |
| static void perf_ibs_get_mem_op(union ibs_op_data3 *op_data3, |
| struct perf_sample_data *data) |
| { |
| union perf_mem_data_src *data_src = &data->data_src; |
| |
| data_src->mem_op = PERF_MEM_OP_NA; |
| |
| if (op_data3->ld_op) |
| data_src->mem_op = PERF_MEM_OP_LOAD; |
| else if (op_data3->st_op) |
| data_src->mem_op = PERF_MEM_OP_STORE; |
| } |
| |
| /* |
| * Processors having CPUID_Fn8000001B_EAX[11] aka IBS_CAPS_ZEN4 has |
| * more fine granular DataSrc encodings. Others have coarse. |
| */ |
| static u8 perf_ibs_data_src(union ibs_op_data2 *op_data2) |
| { |
| if (ibs_caps & IBS_CAPS_ZEN4) |
| return (op_data2->data_src_hi << 3) | op_data2->data_src_lo; |
| |
| return op_data2->data_src_lo; |
| } |
| |
| static void perf_ibs_get_mem_lvl(union ibs_op_data2 *op_data2, |
| union ibs_op_data3 *op_data3, |
| struct perf_sample_data *data) |
| { |
| union perf_mem_data_src *data_src = &data->data_src; |
| u8 ibs_data_src = perf_ibs_data_src(op_data2); |
| |
| data_src->mem_lvl = 0; |
| |
| /* |
| * DcMiss, L2Miss, DataSrc, DcMissLat etc. are all invalid for Uncached |
| * memory accesses. So, check DcUcMemAcc bit early. |
| */ |
| if (op_data3->dc_uc_mem_acc && ibs_data_src != IBS_DATA_SRC_EXT_IO) { |
| data_src->mem_lvl = PERF_MEM_LVL_UNC | PERF_MEM_LVL_HIT; |
| return; |
| } |
| |
| /* L1 Hit */ |
| if (op_data3->dc_miss == 0) { |
| data_src->mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; |
| return; |
| } |
| |
| /* L2 Hit */ |
| if (op_data3->l2_miss == 0) { |
| /* Erratum #1293 */ |
| if (boot_cpu_data.x86 != 0x19 || boot_cpu_data.x86_model > 0xF || |
| !(op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) { |
| data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT; |
| return; |
| } |
| } |
| |
| /* |
| * OP_DATA2 is valid only for load ops. Skip all checks which |
| * uses OP_DATA2[DataSrc]. |
| */ |
| if (data_src->mem_op != PERF_MEM_OP_LOAD) |
| goto check_mab; |
| |
| /* L3 Hit */ |
| if (ibs_caps & IBS_CAPS_ZEN4) { |
| if (ibs_data_src == IBS_DATA_SRC_EXT_LOC_CACHE) { |
| data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT; |
| return; |
| } |
| } else { |
| if (ibs_data_src == IBS_DATA_SRC_LOC_CACHE) { |
| data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_REM_CCE1 | |
| PERF_MEM_LVL_HIT; |
| return; |
| } |
| } |
| |
| /* A peer cache in a near CCX */ |
| if (ibs_caps & IBS_CAPS_ZEN4 && |
| ibs_data_src == IBS_DATA_SRC_EXT_NEAR_CCX_CACHE) { |
| data_src->mem_lvl = PERF_MEM_LVL_REM_CCE1 | PERF_MEM_LVL_HIT; |
| return; |
| } |
| |
| /* A peer cache in a far CCX */ |
| if (ibs_caps & IBS_CAPS_ZEN4) { |
| if (ibs_data_src == IBS_DATA_SRC_EXT_FAR_CCX_CACHE) { |
| data_src->mem_lvl = PERF_MEM_LVL_REM_CCE2 | PERF_MEM_LVL_HIT; |
| return; |
| } |
| } else { |
| if (ibs_data_src == IBS_DATA_SRC_REM_CACHE) { |
| data_src->mem_lvl = PERF_MEM_LVL_REM_CCE2 | PERF_MEM_LVL_HIT; |
| return; |
| } |
| } |
| |
| /* DRAM */ |
| if (ibs_data_src == IBS_DATA_SRC_EXT_DRAM) { |
| if (op_data2->rmt_node == 0) |
| data_src->mem_lvl = PERF_MEM_LVL_LOC_RAM | PERF_MEM_LVL_HIT; |
| else |
| data_src->mem_lvl = PERF_MEM_LVL_REM_RAM1 | PERF_MEM_LVL_HIT; |
| return; |
| } |
| |
| /* PMEM */ |
| if (ibs_caps & IBS_CAPS_ZEN4 && ibs_data_src == IBS_DATA_SRC_EXT_PMEM) { |
| data_src->mem_lvl_num = PERF_MEM_LVLNUM_PMEM; |
| if (op_data2->rmt_node) { |
| data_src->mem_remote = PERF_MEM_REMOTE_REMOTE; |
| /* IBS doesn't provide Remote socket detail */ |
| data_src->mem_hops = PERF_MEM_HOPS_1; |
| } |
| return; |
| } |
| |
| /* Extension Memory */ |
| if (ibs_caps & IBS_CAPS_ZEN4 && |
| ibs_data_src == IBS_DATA_SRC_EXT_EXT_MEM) { |
| data_src->mem_lvl_num = PERF_MEM_LVLNUM_CXL; |
| if (op_data2->rmt_node) { |
| data_src->mem_remote = PERF_MEM_REMOTE_REMOTE; |
| /* IBS doesn't provide Remote socket detail */ |
| data_src->mem_hops = PERF_MEM_HOPS_1; |
| } |
| return; |
| } |
| |
| /* IO */ |
| if (ibs_data_src == IBS_DATA_SRC_EXT_IO) { |
| data_src->mem_lvl = PERF_MEM_LVL_IO; |
| data_src->mem_lvl_num = PERF_MEM_LVLNUM_IO; |
| if (op_data2->rmt_node) { |
| data_src->mem_remote = PERF_MEM_REMOTE_REMOTE; |
| /* IBS doesn't provide Remote socket detail */ |
| data_src->mem_hops = PERF_MEM_HOPS_1; |
| } |
| return; |
| } |
| |
| check_mab: |
| /* |
| * MAB (Miss Address Buffer) Hit. MAB keeps track of outstanding |
| * DC misses. However, such data may come from any level in mem |
| * hierarchy. IBS provides detail about both MAB as well as actual |
| * DataSrc simultaneously. Prioritize DataSrc over MAB, i.e. set |
| * MAB only when IBS fails to provide DataSrc. |
| */ |
| if (op_data3->dc_miss_no_mab_alloc) { |
| data_src->mem_lvl = PERF_MEM_LVL_LFB | PERF_MEM_LVL_HIT; |
| return; |
| } |
| |
| data_src->mem_lvl = PERF_MEM_LVL_NA; |
| } |
| |
| static bool perf_ibs_cache_hit_st_valid(void) |
| { |
| /* 0: Uninitialized, 1: Valid, -1: Invalid */ |
| static int cache_hit_st_valid; |
| |
| if (unlikely(!cache_hit_st_valid)) { |
| if (boot_cpu_data.x86 == 0x19 && |
| (boot_cpu_data.x86_model <= 0xF || |
| (boot_cpu_data.x86_model >= 0x20 && |
| boot_cpu_data.x86_model <= 0x5F))) { |
| cache_hit_st_valid = -1; |
| } else { |
| cache_hit_st_valid = 1; |
| } |
| } |
| |
| return cache_hit_st_valid == 1; |
| } |
| |
| static void perf_ibs_get_mem_snoop(union ibs_op_data2 *op_data2, |
| struct perf_sample_data *data) |
| { |
| union perf_mem_data_src *data_src = &data->data_src; |
| u8 ibs_data_src; |
| |
| data_src->mem_snoop = PERF_MEM_SNOOP_NA; |
| |
| if (!perf_ibs_cache_hit_st_valid() || |
| data_src->mem_op != PERF_MEM_OP_LOAD || |
| data_src->mem_lvl & PERF_MEM_LVL_L1 || |
| data_src->mem_lvl & PERF_MEM_LVL_L2 || |
| op_data2->cache_hit_st) |
| return; |
| |
| ibs_data_src = perf_ibs_data_src(op_data2); |
| |
| if (ibs_caps & IBS_CAPS_ZEN4) { |
| if (ibs_data_src == IBS_DATA_SRC_EXT_LOC_CACHE || |
| ibs_data_src == IBS_DATA_SRC_EXT_NEAR_CCX_CACHE || |
| ibs_data_src == IBS_DATA_SRC_EXT_FAR_CCX_CACHE) |
| data_src->mem_snoop = PERF_MEM_SNOOP_HITM; |
| } else if (ibs_data_src == IBS_DATA_SRC_LOC_CACHE) { |
| data_src->mem_snoop = PERF_MEM_SNOOP_HITM; |
| } |
| } |
| |
| static void perf_ibs_get_tlb_lvl(union ibs_op_data3 *op_data3, |
| struct perf_sample_data *data) |
| { |
| union perf_mem_data_src *data_src = &data->data_src; |
| |
| data_src->mem_dtlb = PERF_MEM_TLB_NA; |
| |
| if (!op_data3->dc_lin_addr_valid) |
| return; |
| |
| if (!op_data3->dc_l1tlb_miss) { |
| data_src->mem_dtlb = PERF_MEM_TLB_L1 | PERF_MEM_TLB_HIT; |
| return; |
| } |
| |
| if (!op_data3->dc_l2tlb_miss) { |
| data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_HIT; |
| return; |
| } |
| |
| data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_MISS; |
| } |
| |
| static void perf_ibs_get_mem_lock(union ibs_op_data3 *op_data3, |
| struct perf_sample_data *data) |
| { |
| union perf_mem_data_src *data_src = &data->data_src; |
| |
| data_src->mem_lock = PERF_MEM_LOCK_NA; |
| |
| if (op_data3->dc_locked_op) |
| data_src->mem_lock = PERF_MEM_LOCK_LOCKED; |
| } |
| |
| #define ibs_op_msr_idx(msr) (msr - MSR_AMD64_IBSOPCTL) |
| |
| static void perf_ibs_get_data_src(struct perf_ibs_data *ibs_data, |
| struct perf_sample_data *data, |
| union ibs_op_data2 *op_data2, |
| union ibs_op_data3 *op_data3) |
| { |
| perf_ibs_get_mem_lvl(op_data2, op_data3, data); |
| perf_ibs_get_mem_snoop(op_data2, data); |
| perf_ibs_get_tlb_lvl(op_data3, data); |
| perf_ibs_get_mem_lock(op_data3, data); |
| } |
| |
| static __u64 perf_ibs_get_op_data2(struct perf_ibs_data *ibs_data, |
| union ibs_op_data3 *op_data3) |
| { |
| __u64 val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA2)]; |
| |
| /* Erratum #1293 */ |
| if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model <= 0xF && |
| (op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) { |
| /* |
| * OP_DATA2 has only two fields on Zen3: DataSrc and RmtNode. |
| * DataSrc=0 is 'No valid status' and RmtNode is invalid when |
| * DataSrc=0. |
| */ |
| val = 0; |
| } |
| return val; |
| } |
| |
| static void perf_ibs_parse_ld_st_data(__u64 sample_type, |
| struct perf_ibs_data *ibs_data, |
| struct perf_sample_data *data) |
| { |
| union ibs_op_data3 op_data3; |
| union ibs_op_data2 op_data2; |
| union ibs_op_data op_data; |
| |
| data->data_src.val = PERF_MEM_NA; |
| op_data3.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA3)]; |
| |
| perf_ibs_get_mem_op(&op_data3, data); |
| if (data->data_src.mem_op != PERF_MEM_OP_LOAD && |
| data->data_src.mem_op != PERF_MEM_OP_STORE) |
| return; |
| |
| op_data2.val = perf_ibs_get_op_data2(ibs_data, &op_data3); |
| |
| if (sample_type & PERF_SAMPLE_DATA_SRC) { |
| perf_ibs_get_data_src(ibs_data, data, &op_data2, &op_data3); |
| data->sample_flags |= PERF_SAMPLE_DATA_SRC; |
| } |
| |
| if (sample_type & PERF_SAMPLE_WEIGHT_TYPE && op_data3.dc_miss && |
| data->data_src.mem_op == PERF_MEM_OP_LOAD) { |
| op_data.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA)]; |
| |
| if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) { |
| data->weight.var1_dw = op_data3.dc_miss_lat; |
| data->weight.var2_w = op_data.tag_to_ret_ctr; |
| } else if (sample_type & PERF_SAMPLE_WEIGHT) { |
| data->weight.full = op_data3.dc_miss_lat; |
| } |
| data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; |
| } |
| |
| if (sample_type & PERF_SAMPLE_ADDR && op_data3.dc_lin_addr_valid) { |
| data->addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCLINAD)]; |
| data->sample_flags |= PERF_SAMPLE_ADDR; |
| } |
| |
| if (sample_type & PERF_SAMPLE_PHYS_ADDR && op_data3.dc_phy_addr_valid) { |
| data->phys_addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCPHYSAD)]; |
| data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; |
| } |
| } |
| |
| static int perf_ibs_get_offset_max(struct perf_ibs *perf_ibs, u64 sample_type, |
| int check_rip) |
| { |
| if (sample_type & PERF_SAMPLE_RAW || |
| (perf_ibs == &perf_ibs_op && |
| (sample_type & PERF_SAMPLE_DATA_SRC || |
| sample_type & PERF_SAMPLE_WEIGHT_TYPE || |
| sample_type & PERF_SAMPLE_ADDR || |
| sample_type & PERF_SAMPLE_PHYS_ADDR))) |
| return perf_ibs->offset_max; |
| else if (check_rip) |
| return 3; |
| return 1; |
| } |
| |
| static int perf_ibs_handle_irq(struct perf_ibs *perf_ibs, struct pt_regs *iregs) |
| { |
| struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); |
| struct perf_event *event = pcpu->event; |
| struct hw_perf_event *hwc; |
| struct perf_sample_data data; |
| struct perf_raw_record raw; |
| struct pt_regs regs; |
| struct perf_ibs_data ibs_data; |
| int offset, size, check_rip, offset_max, throttle = 0; |
| unsigned int msr; |
| u64 *buf, *config, period, new_config = 0; |
| |
| if (!test_bit(IBS_STARTED, pcpu->state)) { |
| fail: |
| /* |
| * Catch spurious interrupts after stopping IBS: After |
| * disabling IBS there could be still incoming NMIs |
| * with samples that even have the valid bit cleared. |
| * Mark all this NMIs as handled. |
| */ |
| if (test_and_clear_bit(IBS_STOPPED, pcpu->state)) |
| return 1; |
| |
| return 0; |
| } |
| |
| if (WARN_ON_ONCE(!event)) |
| goto fail; |
| |
| hwc = &event->hw; |
| msr = hwc->config_base; |
| buf = ibs_data.regs; |
| rdmsrl(msr, *buf); |
| if (!(*buf++ & perf_ibs->valid_mask)) |
| goto fail; |
| |
| config = &ibs_data.regs[0]; |
| perf_ibs_event_update(perf_ibs, event, config); |
| perf_sample_data_init(&data, 0, hwc->last_period); |
| if (!perf_ibs_set_period(perf_ibs, hwc, &period)) |
| goto out; /* no sw counter overflow */ |
| |
| ibs_data.caps = ibs_caps; |
| size = 1; |
| offset = 1; |
| check_rip = (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_RIPINVALIDCHK)); |
| |
| offset_max = perf_ibs_get_offset_max(perf_ibs, event->attr.sample_type, check_rip); |
| |
| do { |
| rdmsrl(msr + offset, *buf++); |
| size++; |
| offset = find_next_bit(perf_ibs->offset_mask, |
| perf_ibs->offset_max, |
| offset + 1); |
| } while (offset < offset_max); |
| /* |
| * Read IbsBrTarget, IbsOpData4, and IbsExtdCtl separately |
| * depending on their availability. |
| * Can't add to offset_max as they are staggered |
| */ |
| if (event->attr.sample_type & PERF_SAMPLE_RAW) { |
| if (perf_ibs == &perf_ibs_op) { |
| if (ibs_caps & IBS_CAPS_BRNTRGT) { |
| rdmsrl(MSR_AMD64_IBSBRTARGET, *buf++); |
| size++; |
| } |
| if (ibs_caps & IBS_CAPS_OPDATA4) { |
| rdmsrl(MSR_AMD64_IBSOPDATA4, *buf++); |
| size++; |
| } |
| } |
| if (perf_ibs == &perf_ibs_fetch && (ibs_caps & IBS_CAPS_FETCHCTLEXTD)) { |
| rdmsrl(MSR_AMD64_ICIBSEXTDCTL, *buf++); |
| size++; |
| } |
| } |
| ibs_data.size = sizeof(u64) * size; |
| |
| regs = *iregs; |
| if (check_rip && (ibs_data.regs[2] & IBS_RIP_INVALID)) { |
| regs.flags &= ~PERF_EFLAGS_EXACT; |
| } else { |
| /* Workaround for erratum #1197 */ |
| if (perf_ibs->fetch_ignore_if_zero_rip && !(ibs_data.regs[1])) |
| goto out; |
| |
| set_linear_ip(®s, ibs_data.regs[1]); |
| regs.flags |= PERF_EFLAGS_EXACT; |
| } |
| |
| if (event->attr.sample_type & PERF_SAMPLE_RAW) { |
| raw = (struct perf_raw_record){ |
| .frag = { |
| .size = sizeof(u32) + ibs_data.size, |
| .data = ibs_data.data, |
| }, |
| }; |
| data.raw = &raw; |
| data.sample_flags |= PERF_SAMPLE_RAW; |
| } |
| |
| if (perf_ibs == &perf_ibs_op) |
| perf_ibs_parse_ld_st_data(event->attr.sample_type, &ibs_data, &data); |
| |
| /* |
| * rip recorded by IbsOpRip will not be consistent with rsp and rbp |
| * recorded as part of interrupt regs. Thus we need to use rip from |
| * interrupt regs while unwinding call stack. |
| */ |
| if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { |
| data.callchain = perf_callchain(event, iregs); |
| data.sample_flags |= PERF_SAMPLE_CALLCHAIN; |
| } |
| |
| throttle = perf_event_overflow(event, &data, ®s); |
| out: |
| if (throttle) { |
| perf_ibs_stop(event, 0); |
| } else { |
| if (perf_ibs == &perf_ibs_op) { |
| if (ibs_caps & IBS_CAPS_OPCNTEXT) { |
| new_config = period & IBS_OP_MAX_CNT_EXT_MASK; |
| period &= ~IBS_OP_MAX_CNT_EXT_MASK; |
| } |
| if ((ibs_caps & IBS_CAPS_RDWROPCNT) && (*config & IBS_OP_CNT_CTL)) |
| new_config |= *config & IBS_OP_CUR_CNT_RAND; |
| } |
| new_config |= period >> 4; |
| |
| perf_ibs_enable_event(perf_ibs, hwc, new_config); |
| } |
| |
| perf_event_update_userpage(event); |
| |
| return 1; |
| } |
| |
| static int |
| perf_ibs_nmi_handler(unsigned int cmd, struct pt_regs *regs) |
| { |
| u64 stamp = sched_clock(); |
| int handled = 0; |
| |
| handled += perf_ibs_handle_irq(&perf_ibs_fetch, regs); |
| handled += perf_ibs_handle_irq(&perf_ibs_op, regs); |
| |
| if (handled) |
| inc_irq_stat(apic_perf_irqs); |
| |
| perf_sample_event_took(sched_clock() - stamp); |
| |
| return handled; |
| } |
| NOKPROBE_SYMBOL(perf_ibs_nmi_handler); |
| |
| static __init int perf_ibs_pmu_init(struct perf_ibs *perf_ibs, char *name) |
| { |
| struct cpu_perf_ibs __percpu *pcpu; |
| int ret; |
| |
| pcpu = alloc_percpu(struct cpu_perf_ibs); |
| if (!pcpu) |
| return -ENOMEM; |
| |
| perf_ibs->pcpu = pcpu; |
| |
| ret = perf_pmu_register(&perf_ibs->pmu, name, -1); |
| if (ret) { |
| perf_ibs->pcpu = NULL; |
| free_percpu(pcpu); |
| } |
| |
| return ret; |
| } |
| |
| static __init int perf_ibs_fetch_init(void) |
| { |
| /* |
| * Some chips fail to reset the fetch count when it is written; instead |
| * they need a 0-1 transition of IbsFetchEn. |
| */ |
| if (boot_cpu_data.x86 >= 0x16 && boot_cpu_data.x86 <= 0x18) |
| perf_ibs_fetch.fetch_count_reset_broken = 1; |
| |
| if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model < 0x10) |
| perf_ibs_fetch.fetch_ignore_if_zero_rip = 1; |
| |
| if (ibs_caps & IBS_CAPS_ZEN4) |
| perf_ibs_fetch.config_mask |= IBS_FETCH_L3MISSONLY; |
| |
| perf_ibs_fetch.pmu.attr_groups = fetch_attr_groups; |
| perf_ibs_fetch.pmu.attr_update = fetch_attr_update; |
| |
| return perf_ibs_pmu_init(&perf_ibs_fetch, "ibs_fetch"); |
| } |
| |
| static __init int perf_ibs_op_init(void) |
| { |
| if (ibs_caps & IBS_CAPS_OPCNT) |
| perf_ibs_op.config_mask |= IBS_OP_CNT_CTL; |
| |
| if (ibs_caps & IBS_CAPS_OPCNTEXT) { |
| perf_ibs_op.max_period |= IBS_OP_MAX_CNT_EXT_MASK; |
| perf_ibs_op.config_mask |= IBS_OP_MAX_CNT_EXT_MASK; |
| perf_ibs_op.cnt_mask |= IBS_OP_MAX_CNT_EXT_MASK; |
| } |
| |
| if (ibs_caps & IBS_CAPS_ZEN4) |
| perf_ibs_op.config_mask |= IBS_OP_L3MISSONLY; |
| |
| perf_ibs_op.pmu.attr_groups = empty_attr_groups; |
| perf_ibs_op.pmu.attr_update = op_attr_update; |
| |
| return perf_ibs_pmu_init(&perf_ibs_op, "ibs_op"); |
| } |
| |
| static __init int perf_event_ibs_init(void) |
| { |
| int ret; |
| |
| ret = perf_ibs_fetch_init(); |
| if (ret) |
| return ret; |
| |
| ret = perf_ibs_op_init(); |
| if (ret) |
| goto err_op; |
| |
| ret = register_nmi_handler(NMI_LOCAL, perf_ibs_nmi_handler, 0, "perf_ibs"); |
| if (ret) |
| goto err_nmi; |
| |
| pr_info("perf: AMD IBS detected (0x%08x)\n", ibs_caps); |
| return 0; |
| |
| err_nmi: |
| perf_pmu_unregister(&perf_ibs_op.pmu); |
| free_percpu(perf_ibs_op.pcpu); |
| perf_ibs_op.pcpu = NULL; |
| err_op: |
| perf_pmu_unregister(&perf_ibs_fetch.pmu); |
| free_percpu(perf_ibs_fetch.pcpu); |
| perf_ibs_fetch.pcpu = NULL; |
| |
| return ret; |
| } |
| |
| #else /* defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) */ |
| |
| static __init int perf_event_ibs_init(void) |
| { |
| return 0; |
| } |
| |
| #endif |
| |
| /* IBS - apic initialization, for perf and oprofile */ |
| |
| static __init u32 __get_ibs_caps(void) |
| { |
| u32 caps; |
| unsigned int max_level; |
| |
| if (!boot_cpu_has(X86_FEATURE_IBS)) |
| return 0; |
| |
| /* check IBS cpuid feature flags */ |
| max_level = cpuid_eax(0x80000000); |
| if (max_level < IBS_CPUID_FEATURES) |
| return IBS_CAPS_DEFAULT; |
| |
| caps = cpuid_eax(IBS_CPUID_FEATURES); |
| if (!(caps & IBS_CAPS_AVAIL)) |
| /* cpuid flags not valid */ |
| return IBS_CAPS_DEFAULT; |
| |
| return caps; |
| } |
| |
| u32 get_ibs_caps(void) |
| { |
| return ibs_caps; |
| } |
| |
| EXPORT_SYMBOL(get_ibs_caps); |
| |
| static inline int get_eilvt(int offset) |
| { |
| return !setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 1); |
| } |
| |
| static inline int put_eilvt(int offset) |
| { |
| return !setup_APIC_eilvt(offset, 0, 0, 1); |
| } |
| |
| /* |
| * Check and reserve APIC extended interrupt LVT offset for IBS if available. |
| */ |
| static inline int ibs_eilvt_valid(void) |
| { |
| int offset; |
| u64 val; |
| int valid = 0; |
| |
| preempt_disable(); |
| |
| rdmsrl(MSR_AMD64_IBSCTL, val); |
| offset = val & IBSCTL_LVT_OFFSET_MASK; |
| |
| if (!(val & IBSCTL_LVT_OFFSET_VALID)) { |
| pr_err(FW_BUG "cpu %d, invalid IBS interrupt offset %d (MSR%08X=0x%016llx)\n", |
| smp_processor_id(), offset, MSR_AMD64_IBSCTL, val); |
| goto out; |
| } |
| |
| if (!get_eilvt(offset)) { |
| pr_err(FW_BUG "cpu %d, IBS interrupt offset %d not available (MSR%08X=0x%016llx)\n", |
| smp_processor_id(), offset, MSR_AMD64_IBSCTL, val); |
| goto out; |
| } |
| |
| valid = 1; |
| out: |
| preempt_enable(); |
| |
| return valid; |
| } |
| |
| static int setup_ibs_ctl(int ibs_eilvt_off) |
| { |
| struct pci_dev *cpu_cfg; |
| int nodes; |
| u32 value = 0; |
| |
| nodes = 0; |
| cpu_cfg = NULL; |
| do { |
| cpu_cfg = pci_get_device(PCI_VENDOR_ID_AMD, |
| PCI_DEVICE_ID_AMD_10H_NB_MISC, |
| cpu_cfg); |
| if (!cpu_cfg) |
| break; |
| ++nodes; |
| pci_write_config_dword(cpu_cfg, IBSCTL, ibs_eilvt_off |
| | IBSCTL_LVT_OFFSET_VALID); |
| pci_read_config_dword(cpu_cfg, IBSCTL, &value); |
| if (value != (ibs_eilvt_off | IBSCTL_LVT_OFFSET_VALID)) { |
| pci_dev_put(cpu_cfg); |
| pr_debug("Failed to setup IBS LVT offset, IBSCTL = 0x%08x\n", |
| value); |
| return -EINVAL; |
| } |
| } while (1); |
| |
| if (!nodes) { |
| pr_debug("No CPU node configured for IBS\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This runs only on the current cpu. We try to find an LVT offset and |
| * setup the local APIC. For this we must disable preemption. On |
| * success we initialize all nodes with this offset. This updates then |
| * the offset in the IBS_CTL per-node msr. The per-core APIC setup of |
| * the IBS interrupt vector is handled by perf_ibs_cpu_notifier that |
| * is using the new offset. |
| */ |
| static void force_ibs_eilvt_setup(void) |
| { |
| int offset; |
| int ret; |
| |
| preempt_disable(); |
| /* find the next free available EILVT entry, skip offset 0 */ |
| for (offset = 1; offset < APIC_EILVT_NR_MAX; offset++) { |
| if (get_eilvt(offset)) |
| break; |
| } |
| preempt_enable(); |
| |
| if (offset == APIC_EILVT_NR_MAX) { |
| pr_debug("No EILVT entry available\n"); |
| return; |
| } |
| |
| ret = setup_ibs_ctl(offset); |
| if (ret) |
| goto out; |
| |
| if (!ibs_eilvt_valid()) |
| goto out; |
| |
| pr_info("LVT offset %d assigned\n", offset); |
| |
| return; |
| out: |
| preempt_disable(); |
| put_eilvt(offset); |
| preempt_enable(); |
| return; |
| } |
| |
| static void ibs_eilvt_setup(void) |
| { |
| /* |
| * Force LVT offset assignment for family 10h: The offsets are |
| * not assigned by the BIOS for this family, so the OS is |
| * responsible for doing it. If the OS assignment fails, fall |
| * back to BIOS settings and try to setup this. |
| */ |
| if (boot_cpu_data.x86 == 0x10) |
| force_ibs_eilvt_setup(); |
| } |
| |
| static inline int get_ibs_lvt_offset(void) |
| { |
| u64 val; |
| |
| rdmsrl(MSR_AMD64_IBSCTL, val); |
| if (!(val & IBSCTL_LVT_OFFSET_VALID)) |
| return -EINVAL; |
| |
| return val & IBSCTL_LVT_OFFSET_MASK; |
| } |
| |
| static void setup_APIC_ibs(void) |
| { |
| int offset; |
| |
| offset = get_ibs_lvt_offset(); |
| if (offset < 0) |
| goto failed; |
| |
| if (!setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 0)) |
| return; |
| failed: |
| pr_warn("perf: IBS APIC setup failed on cpu #%d\n", |
| smp_processor_id()); |
| } |
| |
| static void clear_APIC_ibs(void) |
| { |
| int offset; |
| |
| offset = get_ibs_lvt_offset(); |
| if (offset >= 0) |
| setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_FIX, 1); |
| } |
| |
| static int x86_pmu_amd_ibs_starting_cpu(unsigned int cpu) |
| { |
| setup_APIC_ibs(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| |
| static int perf_ibs_suspend(void) |
| { |
| clear_APIC_ibs(); |
| return 0; |
| } |
| |
| static void perf_ibs_resume(void) |
| { |
| ibs_eilvt_setup(); |
| setup_APIC_ibs(); |
| } |
| |
| static struct syscore_ops perf_ibs_syscore_ops = { |
| .resume = perf_ibs_resume, |
| .suspend = perf_ibs_suspend, |
| }; |
| |
| static void perf_ibs_pm_init(void) |
| { |
| register_syscore_ops(&perf_ibs_syscore_ops); |
| } |
| |
| #else |
| |
| static inline void perf_ibs_pm_init(void) { } |
| |
| #endif |
| |
| static int x86_pmu_amd_ibs_dying_cpu(unsigned int cpu) |
| { |
| clear_APIC_ibs(); |
| return 0; |
| } |
| |
| static __init int amd_ibs_init(void) |
| { |
| u32 caps; |
| |
| caps = __get_ibs_caps(); |
| if (!caps) |
| return -ENODEV; /* ibs not supported by the cpu */ |
| |
| ibs_eilvt_setup(); |
| |
| if (!ibs_eilvt_valid()) |
| return -EINVAL; |
| |
| perf_ibs_pm_init(); |
| |
| ibs_caps = caps; |
| /* make ibs_caps visible to other cpus: */ |
| smp_mb(); |
| /* |
| * x86_pmu_amd_ibs_starting_cpu will be called from core on |
| * all online cpus. |
| */ |
| cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_IBS_STARTING, |
| "perf/x86/amd/ibs:starting", |
| x86_pmu_amd_ibs_starting_cpu, |
| x86_pmu_amd_ibs_dying_cpu); |
| |
| return perf_event_ibs_init(); |
| } |
| |
| /* Since we need the pci subsystem to init ibs we can't do this earlier: */ |
| device_initcall(amd_ibs_init); |