| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2013 Red Hat |
| * Author: Rob Clark <robdclark@gmail.com> |
| * |
| * Copyright (c) 2014 The Linux Foundation. All rights reserved. |
| */ |
| |
| #include <linux/ascii85.h> |
| #include <linux/interconnect.h> |
| #include <linux/qcom_scm.h> |
| #include <linux/kernel.h> |
| #include <linux/of_address.h> |
| #include <linux/pm_opp.h> |
| #include <linux/slab.h> |
| #include <linux/soc/qcom/mdt_loader.h> |
| #include <linux/nvmem-consumer.h> |
| #include <soc/qcom/ocmem.h> |
| #include "adreno_gpu.h" |
| #include "a6xx_gpu.h" |
| #include "msm_gem.h" |
| #include "msm_mmu.h" |
| |
| static u64 address_space_size = 0; |
| MODULE_PARM_DESC(address_space_size, "Override for size of processes private GPU address space"); |
| module_param(address_space_size, ullong, 0600); |
| |
| static bool zap_available = true; |
| |
| static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname, |
| u32 pasid) |
| { |
| struct device *dev = &gpu->pdev->dev; |
| const struct firmware *fw; |
| const char *signed_fwname = NULL; |
| struct device_node *np, *mem_np; |
| struct resource r; |
| phys_addr_t mem_phys; |
| ssize_t mem_size; |
| void *mem_region = NULL; |
| int ret; |
| |
| if (!IS_ENABLED(CONFIG_ARCH_QCOM)) { |
| zap_available = false; |
| return -EINVAL; |
| } |
| |
| np = of_get_child_by_name(dev->of_node, "zap-shader"); |
| if (!np) { |
| zap_available = false; |
| return -ENODEV; |
| } |
| |
| mem_np = of_parse_phandle(np, "memory-region", 0); |
| of_node_put(np); |
| if (!mem_np) { |
| zap_available = false; |
| return -EINVAL; |
| } |
| |
| ret = of_address_to_resource(mem_np, 0, &r); |
| of_node_put(mem_np); |
| if (ret) |
| return ret; |
| |
| mem_phys = r.start; |
| |
| /* |
| * Check for a firmware-name property. This is the new scheme |
| * to handle firmware that may be signed with device specific |
| * keys, allowing us to have a different zap fw path for different |
| * devices. |
| * |
| * If the firmware-name property is found, we bypass the |
| * adreno_request_fw() mechanism, because we don't need to handle |
| * the /lib/firmware/qcom/... vs /lib/firmware/... case. |
| * |
| * If the firmware-name property is not found, for backwards |
| * compatibility we fall back to the fwname from the gpulist |
| * table. |
| */ |
| of_property_read_string_index(np, "firmware-name", 0, &signed_fwname); |
| if (signed_fwname) { |
| fwname = signed_fwname; |
| ret = request_firmware_direct(&fw, fwname, gpu->dev->dev); |
| if (ret) |
| fw = ERR_PTR(ret); |
| } else if (fwname) { |
| /* Request the MDT file from the default location: */ |
| fw = adreno_request_fw(to_adreno_gpu(gpu), fwname); |
| } else { |
| /* |
| * For new targets, we require the firmware-name property, |
| * if a zap-shader is required, rather than falling back |
| * to a firmware name specified in gpulist. |
| * |
| * Because the firmware is signed with a (potentially) |
| * device specific key, having the name come from gpulist |
| * was a bad idea, and is only provided for backwards |
| * compatibility for older targets. |
| */ |
| return -ENODEV; |
| } |
| |
| if (IS_ERR(fw)) { |
| DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname); |
| return PTR_ERR(fw); |
| } |
| |
| /* Figure out how much memory we need */ |
| mem_size = qcom_mdt_get_size(fw); |
| if (mem_size < 0) { |
| ret = mem_size; |
| goto out; |
| } |
| |
| if (mem_size > resource_size(&r)) { |
| DRM_DEV_ERROR(dev, |
| "memory region is too small to load the MDT\n"); |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| /* Allocate memory for the firmware image */ |
| mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC); |
| if (!mem_region) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Load the rest of the MDT |
| * |
| * Note that we could be dealing with two different paths, since |
| * with upstream linux-firmware it would be in a qcom/ subdir.. |
| * adreno_request_fw() handles this, but qcom_mdt_load() does |
| * not. But since we've already gotten through adreno_request_fw() |
| * we know which of the two cases it is: |
| */ |
| if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) { |
| ret = qcom_mdt_load(dev, fw, fwname, pasid, |
| mem_region, mem_phys, mem_size, NULL); |
| } else { |
| char *newname; |
| |
| newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); |
| |
| ret = qcom_mdt_load(dev, fw, newname, pasid, |
| mem_region, mem_phys, mem_size, NULL); |
| kfree(newname); |
| } |
| if (ret) |
| goto out; |
| |
| /* Send the image to the secure world */ |
| ret = qcom_scm_pas_auth_and_reset(pasid); |
| |
| /* |
| * If the scm call returns -EOPNOTSUPP we assume that this target |
| * doesn't need/support the zap shader so quietly fail |
| */ |
| if (ret == -EOPNOTSUPP) |
| zap_available = false; |
| else if (ret) |
| DRM_DEV_ERROR(dev, "Unable to authorize the image\n"); |
| |
| out: |
| if (mem_region) |
| memunmap(mem_region); |
| |
| release_firmware(fw); |
| |
| return ret; |
| } |
| |
| int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| struct platform_device *pdev = gpu->pdev; |
| |
| /* Short cut if we determine the zap shader isn't available/needed */ |
| if (!zap_available) |
| return -ENODEV; |
| |
| /* We need SCM to be able to load the firmware */ |
| if (!qcom_scm_is_available()) { |
| DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n"); |
| return -EPROBE_DEFER; |
| } |
| |
| return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid); |
| } |
| |
| void adreno_set_llc_attributes(struct iommu_domain *iommu) |
| { |
| iommu_set_pgtable_quirks(iommu, IO_PGTABLE_QUIRK_ARM_OUTER_WBWA); |
| } |
| |
| struct msm_gem_address_space * |
| adreno_iommu_create_address_space(struct msm_gpu *gpu, |
| struct platform_device *pdev) |
| { |
| struct iommu_domain *iommu; |
| struct msm_mmu *mmu; |
| struct msm_gem_address_space *aspace; |
| u64 start, size; |
| |
| iommu = iommu_domain_alloc(&platform_bus_type); |
| if (!iommu) |
| return NULL; |
| |
| mmu = msm_iommu_new(&pdev->dev, iommu); |
| if (IS_ERR(mmu)) { |
| iommu_domain_free(iommu); |
| return ERR_CAST(mmu); |
| } |
| |
| /* |
| * Use the aperture start or SZ_16M, whichever is greater. This will |
| * ensure that we align with the allocated pagetable range while still |
| * allowing room in the lower 32 bits for GMEM and whatnot |
| */ |
| start = max_t(u64, SZ_16M, iommu->geometry.aperture_start); |
| size = iommu->geometry.aperture_end - start + 1; |
| |
| aspace = msm_gem_address_space_create(mmu, "gpu", |
| start & GENMASK_ULL(48, 0), size); |
| |
| if (IS_ERR(aspace) && !IS_ERR(mmu)) |
| mmu->funcs->destroy(mmu); |
| |
| return aspace; |
| } |
| |
| u64 adreno_private_address_space_size(struct msm_gpu *gpu) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| |
| if (address_space_size) |
| return address_space_size; |
| |
| if (adreno_gpu->info->address_space_size) |
| return adreno_gpu->info->address_space_size; |
| |
| return SZ_4G; |
| } |
| |
| int adreno_get_param(struct msm_gpu *gpu, struct msm_file_private *ctx, |
| uint32_t param, uint64_t *value, uint32_t *len) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| |
| /* No pointer params yet */ |
| if (*len != 0) |
| return -EINVAL; |
| |
| switch (param) { |
| case MSM_PARAM_GPU_ID: |
| *value = adreno_gpu->info->revn; |
| return 0; |
| case MSM_PARAM_GMEM_SIZE: |
| *value = adreno_gpu->gmem; |
| return 0; |
| case MSM_PARAM_GMEM_BASE: |
| *value = !adreno_is_a650_family(adreno_gpu) ? 0x100000 : 0; |
| return 0; |
| case MSM_PARAM_CHIP_ID: |
| *value = (uint64_t)adreno_gpu->rev.patchid | |
| ((uint64_t)adreno_gpu->rev.minor << 8) | |
| ((uint64_t)adreno_gpu->rev.major << 16) | |
| ((uint64_t)adreno_gpu->rev.core << 24); |
| if (!adreno_gpu->info->revn) |
| *value |= ((uint64_t) adreno_gpu->speedbin) << 32; |
| return 0; |
| case MSM_PARAM_MAX_FREQ: |
| *value = adreno_gpu->base.fast_rate; |
| return 0; |
| case MSM_PARAM_TIMESTAMP: |
| if (adreno_gpu->funcs->get_timestamp) { |
| int ret; |
| |
| pm_runtime_get_sync(&gpu->pdev->dev); |
| ret = adreno_gpu->funcs->get_timestamp(gpu, value); |
| pm_runtime_put_autosuspend(&gpu->pdev->dev); |
| |
| return ret; |
| } |
| return -EINVAL; |
| case MSM_PARAM_PRIORITIES: |
| *value = gpu->nr_rings * NR_SCHED_PRIORITIES; |
| return 0; |
| case MSM_PARAM_PP_PGTABLE: |
| *value = 0; |
| return 0; |
| case MSM_PARAM_FAULTS: |
| if (ctx->aspace) |
| *value = gpu->global_faults + ctx->aspace->faults; |
| else |
| *value = gpu->global_faults; |
| return 0; |
| case MSM_PARAM_SUSPENDS: |
| *value = gpu->suspend_count; |
| return 0; |
| case MSM_PARAM_VA_START: |
| if (ctx->aspace == gpu->aspace) |
| return -EINVAL; |
| *value = ctx->aspace->va_start; |
| return 0; |
| case MSM_PARAM_VA_SIZE: |
| if (ctx->aspace == gpu->aspace) |
| return -EINVAL; |
| *value = ctx->aspace->va_size; |
| return 0; |
| default: |
| DBG("%s: invalid param: %u", gpu->name, param); |
| return -EINVAL; |
| } |
| } |
| |
| int adreno_set_param(struct msm_gpu *gpu, struct msm_file_private *ctx, |
| uint32_t param, uint64_t value, uint32_t len) |
| { |
| switch (param) { |
| case MSM_PARAM_COMM: |
| case MSM_PARAM_CMDLINE: |
| /* kstrdup_quotable_cmdline() limits to PAGE_SIZE, so |
| * that should be a reasonable upper bound |
| */ |
| if (len > PAGE_SIZE) |
| return -EINVAL; |
| break; |
| default: |
| if (len != 0) |
| return -EINVAL; |
| } |
| |
| switch (param) { |
| case MSM_PARAM_COMM: |
| case MSM_PARAM_CMDLINE: { |
| char *str, **paramp; |
| |
| str = kmalloc(len + 1, GFP_KERNEL); |
| if (!str) |
| return -ENOMEM; |
| |
| if (copy_from_user(str, u64_to_user_ptr(value), len)) { |
| kfree(str); |
| return -EFAULT; |
| } |
| |
| /* Ensure string is null terminated: */ |
| str[len] = '\0'; |
| |
| if (param == MSM_PARAM_COMM) { |
| paramp = &ctx->comm; |
| } else { |
| paramp = &ctx->cmdline; |
| } |
| |
| kfree(*paramp); |
| *paramp = str; |
| |
| return 0; |
| } |
| case MSM_PARAM_SYSPROF: |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return msm_file_private_set_sysprof(ctx, gpu, value); |
| default: |
| DBG("%s: invalid param: %u", gpu->name, param); |
| return -EINVAL; |
| } |
| } |
| |
| const struct firmware * |
| adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname) |
| { |
| struct drm_device *drm = adreno_gpu->base.dev; |
| const struct firmware *fw = NULL; |
| char *newname; |
| int ret; |
| |
| newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname); |
| if (!newname) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Try first to load from qcom/$fwfile using a direct load (to avoid |
| * a potential timeout waiting for usermode helper) |
| */ |
| if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || |
| (adreno_gpu->fwloc == FW_LOCATION_NEW)) { |
| |
| ret = request_firmware_direct(&fw, newname, drm->dev); |
| if (!ret) { |
| DRM_DEV_INFO(drm->dev, "loaded %s from new location\n", |
| newname); |
| adreno_gpu->fwloc = FW_LOCATION_NEW; |
| goto out; |
| } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { |
| DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", |
| newname, ret); |
| fw = ERR_PTR(ret); |
| goto out; |
| } |
| } |
| |
| /* |
| * Then try the legacy location without qcom/ prefix |
| */ |
| if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || |
| (adreno_gpu->fwloc == FW_LOCATION_LEGACY)) { |
| |
| ret = request_firmware_direct(&fw, fwname, drm->dev); |
| if (!ret) { |
| DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n", |
| newname); |
| adreno_gpu->fwloc = FW_LOCATION_LEGACY; |
| goto out; |
| } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { |
| DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", |
| fwname, ret); |
| fw = ERR_PTR(ret); |
| goto out; |
| } |
| } |
| |
| /* |
| * Finally fall back to request_firmware() for cases where the |
| * usermode helper is needed (I think mainly android) |
| */ |
| if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) || |
| (adreno_gpu->fwloc == FW_LOCATION_HELPER)) { |
| |
| ret = request_firmware(&fw, newname, drm->dev); |
| if (!ret) { |
| DRM_DEV_INFO(drm->dev, "loaded %s with helper\n", |
| newname); |
| adreno_gpu->fwloc = FW_LOCATION_HELPER; |
| goto out; |
| } else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) { |
| DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n", |
| newname, ret); |
| fw = ERR_PTR(ret); |
| goto out; |
| } |
| } |
| |
| DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname); |
| fw = ERR_PTR(-ENOENT); |
| out: |
| kfree(newname); |
| return fw; |
| } |
| |
| int adreno_load_fw(struct adreno_gpu *adreno_gpu) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) { |
| const struct firmware *fw; |
| |
| if (!adreno_gpu->info->fw[i]) |
| continue; |
| |
| /* Skip if the firmware has already been loaded */ |
| if (adreno_gpu->fw[i]) |
| continue; |
| |
| fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]); |
| if (IS_ERR(fw)) |
| return PTR_ERR(fw); |
| |
| adreno_gpu->fw[i] = fw; |
| } |
| |
| return 0; |
| } |
| |
| struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu, |
| const struct firmware *fw, u64 *iova) |
| { |
| struct drm_gem_object *bo; |
| void *ptr; |
| |
| ptr = msm_gem_kernel_new(gpu->dev, fw->size - 4, |
| MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova); |
| |
| if (IS_ERR(ptr)) |
| return ERR_CAST(ptr); |
| |
| memcpy(ptr, &fw->data[4], fw->size - 4); |
| |
| msm_gem_put_vaddr(bo); |
| |
| return bo; |
| } |
| |
| int adreno_hw_init(struct msm_gpu *gpu) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| int ret, i; |
| |
| VERB("%s", gpu->name); |
| |
| ret = adreno_load_fw(adreno_gpu); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < gpu->nr_rings; i++) { |
| struct msm_ringbuffer *ring = gpu->rb[i]; |
| |
| if (!ring) |
| continue; |
| |
| ring->cur = ring->start; |
| ring->next = ring->start; |
| ring->memptrs->rptr = 0; |
| |
| /* Detect and clean up an impossible fence, ie. if GPU managed |
| * to scribble something invalid, we don't want that to confuse |
| * us into mistakingly believing that submits have completed. |
| */ |
| if (fence_before(ring->fctx->last_fence, ring->memptrs->fence)) { |
| ring->memptrs->fence = ring->fctx->last_fence; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Use this helper to read rptr, since a430 doesn't update rptr in memory */ |
| static uint32_t get_rptr(struct adreno_gpu *adreno_gpu, |
| struct msm_ringbuffer *ring) |
| { |
| struct msm_gpu *gpu = &adreno_gpu->base; |
| |
| return gpu->funcs->get_rptr(gpu, ring); |
| } |
| |
| struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu) |
| { |
| return gpu->rb[0]; |
| } |
| |
| void adreno_recover(struct msm_gpu *gpu) |
| { |
| struct drm_device *dev = gpu->dev; |
| int ret; |
| |
| // XXX pm-runtime?? we *need* the device to be off after this |
| // so maybe continuing to call ->pm_suspend/resume() is better? |
| |
| gpu->funcs->pm_suspend(gpu); |
| gpu->funcs->pm_resume(gpu); |
| |
| ret = msm_gpu_hw_init(gpu); |
| if (ret) { |
| DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret); |
| /* hmm, oh well? */ |
| } |
| } |
| |
| void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg) |
| { |
| uint32_t wptr; |
| |
| /* Copy the shadow to the actual register */ |
| ring->cur = ring->next; |
| |
| /* |
| * Mask wptr value that we calculate to fit in the HW range. This is |
| * to account for the possibility that the last command fit exactly into |
| * the ringbuffer and rb->next hasn't wrapped to zero yet |
| */ |
| wptr = get_wptr(ring); |
| |
| /* ensure writes to ringbuffer have hit system memory: */ |
| mb(); |
| |
| gpu_write(gpu, reg, wptr); |
| } |
| |
| bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| uint32_t wptr = get_wptr(ring); |
| |
| /* wait for CP to drain ringbuffer: */ |
| if (!spin_until(get_rptr(adreno_gpu, ring) == wptr)) |
| return true; |
| |
| /* TODO maybe we need to reset GPU here to recover from hang? */ |
| DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n", |
| gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr); |
| |
| return false; |
| } |
| |
| int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| int i, count = 0; |
| |
| WARN_ON(!mutex_is_locked(&gpu->lock)); |
| |
| kref_init(&state->ref); |
| |
| ktime_get_real_ts64(&state->time); |
| |
| for (i = 0; i < gpu->nr_rings; i++) { |
| int size = 0, j; |
| |
| state->ring[i].fence = gpu->rb[i]->memptrs->fence; |
| state->ring[i].iova = gpu->rb[i]->iova; |
| state->ring[i].seqno = gpu->rb[i]->fctx->last_fence; |
| state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]); |
| state->ring[i].wptr = get_wptr(gpu->rb[i]); |
| |
| /* Copy at least 'wptr' dwords of the data */ |
| size = state->ring[i].wptr; |
| |
| /* After wptr find the last non zero dword to save space */ |
| for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++) |
| if (gpu->rb[i]->start[j]) |
| size = j + 1; |
| |
| if (size) { |
| state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL); |
| if (state->ring[i].data) { |
| memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2); |
| state->ring[i].data_size = size << 2; |
| } |
| } |
| } |
| |
| /* Some targets prefer to collect their own registers */ |
| if (!adreno_gpu->registers) |
| return 0; |
| |
| /* Count the number of registers */ |
| for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) |
| count += adreno_gpu->registers[i + 1] - |
| adreno_gpu->registers[i] + 1; |
| |
| state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL); |
| if (state->registers) { |
| int pos = 0; |
| |
| for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { |
| u32 start = adreno_gpu->registers[i]; |
| u32 end = adreno_gpu->registers[i + 1]; |
| u32 addr; |
| |
| for (addr = start; addr <= end; addr++) { |
| state->registers[pos++] = addr; |
| state->registers[pos++] = gpu_read(gpu, addr); |
| } |
| } |
| |
| state->nr_registers = count; |
| } |
| |
| return 0; |
| } |
| |
| void adreno_gpu_state_destroy(struct msm_gpu_state *state) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(state->ring); i++) |
| kvfree(state->ring[i].data); |
| |
| for (i = 0; state->bos && i < state->nr_bos; i++) |
| kvfree(state->bos[i].data); |
| |
| kfree(state->bos); |
| kfree(state->comm); |
| kfree(state->cmd); |
| kfree(state->registers); |
| } |
| |
| static void adreno_gpu_state_kref_destroy(struct kref *kref) |
| { |
| struct msm_gpu_state *state = container_of(kref, |
| struct msm_gpu_state, ref); |
| |
| adreno_gpu_state_destroy(state); |
| kfree(state); |
| } |
| |
| int adreno_gpu_state_put(struct msm_gpu_state *state) |
| { |
| if (IS_ERR_OR_NULL(state)) |
| return 1; |
| |
| return kref_put(&state->ref, adreno_gpu_state_kref_destroy); |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) |
| |
| static char *adreno_gpu_ascii85_encode(u32 *src, size_t len) |
| { |
| void *buf; |
| size_t buf_itr = 0, buffer_size; |
| char out[ASCII85_BUFSZ]; |
| long l; |
| int i; |
| |
| if (!src || !len) |
| return NULL; |
| |
| l = ascii85_encode_len(len); |
| |
| /* |
| * Ascii85 outputs either a 5 byte string or a 1 byte string. So we |
| * account for the worst case of 5 bytes per dword plus the 1 for '\0' |
| */ |
| buffer_size = (l * 5) + 1; |
| |
| buf = kvmalloc(buffer_size, GFP_KERNEL); |
| if (!buf) |
| return NULL; |
| |
| for (i = 0; i < l; i++) |
| buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s", |
| ascii85_encode(src[i], out)); |
| |
| return buf; |
| } |
| |
| /* len is expected to be in bytes |
| * |
| * WARNING: *ptr should be allocated with kvmalloc or friends. It can be free'd |
| * with kvfree() and replaced with a newly kvmalloc'd buffer on the first call |
| * when the unencoded raw data is encoded |
| */ |
| void adreno_show_object(struct drm_printer *p, void **ptr, int len, |
| bool *encoded) |
| { |
| if (!*ptr || !len) |
| return; |
| |
| if (!*encoded) { |
| long datalen, i; |
| u32 *buf = *ptr; |
| |
| /* |
| * Only dump the non-zero part of the buffer - rarely will |
| * any data completely fill the entire allocated size of |
| * the buffer. |
| */ |
| for (datalen = 0, i = 0; i < len >> 2; i++) |
| if (buf[i]) |
| datalen = ((i + 1) << 2); |
| |
| /* |
| * If we reach here, then the originally captured binary buffer |
| * will be replaced with the ascii85 encoded string |
| */ |
| *ptr = adreno_gpu_ascii85_encode(buf, datalen); |
| |
| kvfree(buf); |
| |
| *encoded = true; |
| } |
| |
| if (!*ptr) |
| return; |
| |
| drm_puts(p, " data: !!ascii85 |\n"); |
| drm_puts(p, " "); |
| |
| drm_puts(p, *ptr); |
| |
| drm_puts(p, "\n"); |
| } |
| |
| void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state, |
| struct drm_printer *p) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| int i; |
| |
| if (IS_ERR_OR_NULL(state)) |
| return; |
| |
| drm_printf(p, "revision: %d (%d.%d.%d.%d)\n", |
| adreno_gpu->info->revn, adreno_gpu->rev.core, |
| adreno_gpu->rev.major, adreno_gpu->rev.minor, |
| adreno_gpu->rev.patchid); |
| /* |
| * If this is state collected due to iova fault, so fault related info |
| * |
| * TTBR0 would not be zero, so this is a good way to distinguish |
| */ |
| if (state->fault_info.ttbr0) { |
| const struct msm_gpu_fault_info *info = &state->fault_info; |
| |
| drm_puts(p, "fault-info:\n"); |
| drm_printf(p, " - ttbr0=%.16llx\n", info->ttbr0); |
| drm_printf(p, " - iova=%.16lx\n", info->iova); |
| drm_printf(p, " - dir=%s\n", info->flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ"); |
| drm_printf(p, " - type=%s\n", info->type); |
| drm_printf(p, " - source=%s\n", info->block); |
| } |
| |
| drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status); |
| |
| drm_puts(p, "ringbuffer:\n"); |
| |
| for (i = 0; i < gpu->nr_rings; i++) { |
| drm_printf(p, " - id: %d\n", i); |
| drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova); |
| drm_printf(p, " last-fence: %u\n", state->ring[i].seqno); |
| drm_printf(p, " retired-fence: %u\n", state->ring[i].fence); |
| drm_printf(p, " rptr: %u\n", state->ring[i].rptr); |
| drm_printf(p, " wptr: %u\n", state->ring[i].wptr); |
| drm_printf(p, " size: %u\n", MSM_GPU_RINGBUFFER_SZ); |
| |
| adreno_show_object(p, &state->ring[i].data, |
| state->ring[i].data_size, &state->ring[i].encoded); |
| } |
| |
| if (state->bos) { |
| drm_puts(p, "bos:\n"); |
| |
| for (i = 0; i < state->nr_bos; i++) { |
| drm_printf(p, " - iova: 0x%016llx\n", |
| state->bos[i].iova); |
| drm_printf(p, " size: %zd\n", state->bos[i].size); |
| drm_printf(p, " name: %-32s\n", state->bos[i].name); |
| |
| adreno_show_object(p, &state->bos[i].data, |
| state->bos[i].size, &state->bos[i].encoded); |
| } |
| } |
| |
| if (state->nr_registers) { |
| drm_puts(p, "registers:\n"); |
| |
| for (i = 0; i < state->nr_registers; i++) { |
| drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", |
| state->registers[i * 2] << 2, |
| state->registers[(i * 2) + 1]); |
| } |
| } |
| } |
| #endif |
| |
| /* Dump common gpu status and scratch registers on any hang, to make |
| * the hangcheck logs more useful. The scratch registers seem always |
| * safe to read when GPU has hung (unlike some other regs, depending |
| * on how the GPU hung), and they are useful to match up to cmdstream |
| * dumps when debugging hangs: |
| */ |
| void adreno_dump_info(struct msm_gpu *gpu) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| int i; |
| |
| printk("revision: %d (%d.%d.%d.%d)\n", |
| adreno_gpu->info->revn, adreno_gpu->rev.core, |
| adreno_gpu->rev.major, adreno_gpu->rev.minor, |
| adreno_gpu->rev.patchid); |
| |
| for (i = 0; i < gpu->nr_rings; i++) { |
| struct msm_ringbuffer *ring = gpu->rb[i]; |
| |
| printk("rb %d: fence: %d/%d\n", i, |
| ring->memptrs->fence, |
| ring->fctx->last_fence); |
| |
| printk("rptr: %d\n", get_rptr(adreno_gpu, ring)); |
| printk("rb wptr: %d\n", get_wptr(ring)); |
| } |
| } |
| |
| /* would be nice to not have to duplicate the _show() stuff with printk(): */ |
| void adreno_dump(struct msm_gpu *gpu) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); |
| int i; |
| |
| if (!adreno_gpu->registers) |
| return; |
| |
| /* dump these out in a form that can be parsed by demsm: */ |
| printk("IO:region %s 00000000 00020000\n", gpu->name); |
| for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) { |
| uint32_t start = adreno_gpu->registers[i]; |
| uint32_t end = adreno_gpu->registers[i+1]; |
| uint32_t addr; |
| |
| for (addr = start; addr <= end; addr++) { |
| uint32_t val = gpu_read(gpu, addr); |
| printk("IO:R %08x %08x\n", addr<<2, val); |
| } |
| } |
| } |
| |
| static uint32_t ring_freewords(struct msm_ringbuffer *ring) |
| { |
| struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu); |
| uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2; |
| /* Use ring->next to calculate free size */ |
| uint32_t wptr = ring->next - ring->start; |
| uint32_t rptr = get_rptr(adreno_gpu, ring); |
| return (rptr + (size - 1) - wptr) % size; |
| } |
| |
| void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords) |
| { |
| if (spin_until(ring_freewords(ring) >= ndwords)) |
| DRM_DEV_ERROR(ring->gpu->dev->dev, |
| "timeout waiting for space in ringbuffer %d\n", |
| ring->id); |
| } |
| |
| /* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */ |
| static int adreno_get_legacy_pwrlevels(struct device *dev) |
| { |
| struct device_node *child, *node; |
| int ret; |
| |
| node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels"); |
| if (!node) { |
| DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n"); |
| return -ENXIO; |
| } |
| |
| for_each_child_of_node(node, child) { |
| unsigned int val; |
| |
| ret = of_property_read_u32(child, "qcom,gpu-freq", &val); |
| if (ret) |
| continue; |
| |
| /* |
| * Skip the intentionally bogus clock value found at the bottom |
| * of most legacy frequency tables |
| */ |
| if (val != 27000000) |
| dev_pm_opp_add(dev, val, 0); |
| } |
| |
| of_node_put(node); |
| |
| return 0; |
| } |
| |
| static void adreno_get_pwrlevels(struct device *dev, |
| struct msm_gpu *gpu) |
| { |
| unsigned long freq = ULONG_MAX; |
| struct dev_pm_opp *opp; |
| int ret; |
| |
| gpu->fast_rate = 0; |
| |
| /* You down with OPP? */ |
| if (!of_find_property(dev->of_node, "operating-points-v2", NULL)) |
| ret = adreno_get_legacy_pwrlevels(dev); |
| else { |
| ret = devm_pm_opp_of_add_table(dev); |
| if (ret) |
| DRM_DEV_ERROR(dev, "Unable to set the OPP table\n"); |
| } |
| |
| if (!ret) { |
| /* Find the fastest defined rate */ |
| opp = dev_pm_opp_find_freq_floor(dev, &freq); |
| if (!IS_ERR(opp)) { |
| gpu->fast_rate = freq; |
| dev_pm_opp_put(opp); |
| } |
| } |
| |
| if (!gpu->fast_rate) { |
| dev_warn(dev, |
| "Could not find a clock rate. Using a reasonable default\n"); |
| /* Pick a suitably safe clock speed for any target */ |
| gpu->fast_rate = 200000000; |
| } |
| |
| DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate); |
| } |
| |
| int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu, |
| struct adreno_ocmem *adreno_ocmem) |
| { |
| struct ocmem_buf *ocmem_hdl; |
| struct ocmem *ocmem; |
| |
| ocmem = of_get_ocmem(dev); |
| if (IS_ERR(ocmem)) { |
| if (PTR_ERR(ocmem) == -ENODEV) { |
| /* |
| * Return success since either the ocmem property was |
| * not specified in device tree, or ocmem support is |
| * not compiled into the kernel. |
| */ |
| return 0; |
| } |
| |
| return PTR_ERR(ocmem); |
| } |
| |
| ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem); |
| if (IS_ERR(ocmem_hdl)) |
| return PTR_ERR(ocmem_hdl); |
| |
| adreno_ocmem->ocmem = ocmem; |
| adreno_ocmem->base = ocmem_hdl->addr; |
| adreno_ocmem->hdl = ocmem_hdl; |
| adreno_gpu->gmem = ocmem_hdl->len; |
| |
| return 0; |
| } |
| |
| void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem) |
| { |
| if (adreno_ocmem && adreno_ocmem->base) |
| ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS, |
| adreno_ocmem->hdl); |
| } |
| |
| int adreno_read_speedbin(struct device *dev, u32 *speedbin) |
| { |
| return nvmem_cell_read_variable_le_u32(dev, "speed_bin", speedbin); |
| } |
| |
| int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev, |
| struct adreno_gpu *adreno_gpu, |
| const struct adreno_gpu_funcs *funcs, int nr_rings) |
| { |
| struct device *dev = &pdev->dev; |
| struct adreno_platform_config *config = dev->platform_data; |
| struct msm_gpu_config adreno_gpu_config = { 0 }; |
| struct msm_gpu *gpu = &adreno_gpu->base; |
| struct adreno_rev *rev = &config->rev; |
| const char *gpu_name; |
| u32 speedbin; |
| |
| adreno_gpu->funcs = funcs; |
| adreno_gpu->info = adreno_info(config->rev); |
| adreno_gpu->gmem = adreno_gpu->info->gmem; |
| adreno_gpu->revn = adreno_gpu->info->revn; |
| adreno_gpu->rev = *rev; |
| |
| if (adreno_read_speedbin(dev, &speedbin) || !speedbin) |
| speedbin = 0xffff; |
| adreno_gpu->speedbin = (uint16_t) (0xffff & speedbin); |
| |
| gpu_name = adreno_gpu->info->name; |
| if (!gpu_name) { |
| gpu_name = devm_kasprintf(dev, GFP_KERNEL, "%d.%d.%d.%d", |
| rev->core, rev->major, rev->minor, |
| rev->patchid); |
| if (!gpu_name) |
| return -ENOMEM; |
| } |
| |
| adreno_gpu_config.ioname = "kgsl_3d0_reg_memory"; |
| |
| adreno_gpu_config.nr_rings = nr_rings; |
| |
| adreno_get_pwrlevels(dev, gpu); |
| |
| pm_runtime_set_autosuspend_delay(dev, |
| adreno_gpu->info->inactive_period); |
| pm_runtime_use_autosuspend(dev); |
| |
| return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base, |
| gpu_name, &adreno_gpu_config); |
| } |
| |
| void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu) |
| { |
| struct msm_gpu *gpu = &adreno_gpu->base; |
| struct msm_drm_private *priv = gpu->dev->dev_private; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) |
| release_firmware(adreno_gpu->fw[i]); |
| |
| if (pm_runtime_enabled(&priv->gpu_pdev->dev)) |
| pm_runtime_disable(&priv->gpu_pdev->dev); |
| |
| msm_gpu_cleanup(&adreno_gpu->base); |
| } |