| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2018 Stefan Agner <stefan@agner.ch> |
| * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de> |
| * Copyright (C) 2012 Avionic Design GmbH |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| |
| #include <soc/tegra/common.h> |
| |
| #define COMMAND 0x00 |
| #define COMMAND_GO BIT(31) |
| #define COMMAND_CLE BIT(30) |
| #define COMMAND_ALE BIT(29) |
| #define COMMAND_PIO BIT(28) |
| #define COMMAND_TX BIT(27) |
| #define COMMAND_RX BIT(26) |
| #define COMMAND_SEC_CMD BIT(25) |
| #define COMMAND_AFT_DAT BIT(24) |
| #define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20) |
| #define COMMAND_A_VALID BIT(19) |
| #define COMMAND_B_VALID BIT(18) |
| #define COMMAND_RD_STATUS_CHK BIT(17) |
| #define COMMAND_RBSY_CHK BIT(16) |
| #define COMMAND_CE(x) BIT(8 + ((x) & 0x7)) |
| #define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4) |
| #define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0) |
| |
| #define STATUS 0x04 |
| |
| #define ISR 0x08 |
| #define ISR_CORRFAIL_ERR BIT(24) |
| #define ISR_UND BIT(7) |
| #define ISR_OVR BIT(6) |
| #define ISR_CMD_DONE BIT(5) |
| #define ISR_ECC_ERR BIT(4) |
| |
| #define IER 0x0c |
| #define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) |
| #define IER_UND BIT(7) |
| #define IER_OVR BIT(6) |
| #define IER_CMD_DONE BIT(5) |
| #define IER_ECC_ERR BIT(4) |
| #define IER_GIE BIT(0) |
| |
| #define CONFIG 0x10 |
| #define CONFIG_HW_ECC BIT(31) |
| #define CONFIG_ECC_SEL BIT(30) |
| #define CONFIG_ERR_COR BIT(29) |
| #define CONFIG_PIPE_EN BIT(28) |
| #define CONFIG_TVAL_4 (0 << 24) |
| #define CONFIG_TVAL_6 (1 << 24) |
| #define CONFIG_TVAL_8 (2 << 24) |
| #define CONFIG_SKIP_SPARE BIT(23) |
| #define CONFIG_BUS_WIDTH_16 BIT(21) |
| #define CONFIG_COM_BSY BIT(20) |
| #define CONFIG_PS_256 (0 << 16) |
| #define CONFIG_PS_512 (1 << 16) |
| #define CONFIG_PS_1024 (2 << 16) |
| #define CONFIG_PS_2048 (3 << 16) |
| #define CONFIG_PS_4096 (4 << 16) |
| #define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14) |
| #define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14) |
| #define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14) |
| #define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14) |
| #define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff) |
| |
| #define TIMING_1 0x14 |
| #define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) |
| #define TIMING_TWB(x) (((x) & 0xf) << 24) |
| #define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) |
| #define TIMING_TWHR(x) (((x) & 0xf) << 16) |
| #define TIMING_TCS(x) (((x) & 0x3) << 14) |
| #define TIMING_TWH(x) (((x) & 0x3) << 12) |
| #define TIMING_TWP(x) (((x) & 0xf) << 8) |
| #define TIMING_TRH(x) (((x) & 0x3) << 4) |
| #define TIMING_TRP(x) (((x) & 0xf) << 0) |
| |
| #define RESP 0x18 |
| |
| #define TIMING_2 0x1c |
| #define TIMING_TADL(x) ((x) & 0xf) |
| |
| #define CMD_REG1 0x20 |
| #define CMD_REG2 0x24 |
| #define ADDR_REG1 0x28 |
| #define ADDR_REG2 0x2c |
| |
| #define DMA_MST_CTRL 0x30 |
| #define DMA_MST_CTRL_GO BIT(31) |
| #define DMA_MST_CTRL_IN (0 << 30) |
| #define DMA_MST_CTRL_OUT BIT(30) |
| #define DMA_MST_CTRL_PERF_EN BIT(29) |
| #define DMA_MST_CTRL_IE_DONE BIT(28) |
| #define DMA_MST_CTRL_REUSE BIT(27) |
| #define DMA_MST_CTRL_BURST_1 (2 << 24) |
| #define DMA_MST_CTRL_BURST_4 (3 << 24) |
| #define DMA_MST_CTRL_BURST_8 (4 << 24) |
| #define DMA_MST_CTRL_BURST_16 (5 << 24) |
| #define DMA_MST_CTRL_IS_DONE BIT(20) |
| #define DMA_MST_CTRL_EN_A BIT(2) |
| #define DMA_MST_CTRL_EN_B BIT(1) |
| |
| #define DMA_CFG_A 0x34 |
| #define DMA_CFG_B 0x38 |
| |
| #define FIFO_CTRL 0x3c |
| #define FIFO_CTRL_CLR_ALL BIT(3) |
| |
| #define DATA_PTR 0x40 |
| #define TAG_PTR 0x44 |
| #define ECC_PTR 0x48 |
| |
| #define DEC_STATUS 0x4c |
| #define DEC_STATUS_A_ECC_FAIL BIT(1) |
| #define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 |
| #define DEC_STATUS_ERR_COUNT_SHIFT 16 |
| |
| #define HWSTATUS_CMD 0x50 |
| #define HWSTATUS_MASK 0x54 |
| #define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) |
| #define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) |
| #define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) |
| #define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) |
| |
| #define BCH_CONFIG 0xcc |
| #define BCH_ENABLE BIT(0) |
| #define BCH_TVAL_4 (0 << 4) |
| #define BCH_TVAL_8 (1 << 4) |
| #define BCH_TVAL_14 (2 << 4) |
| #define BCH_TVAL_16 (3 << 4) |
| |
| #define DEC_STAT_RESULT 0xd0 |
| #define DEC_STAT_BUF 0xd4 |
| #define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 |
| #define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 |
| #define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 |
| #define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 |
| #define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 |
| #define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 |
| |
| #define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) |
| |
| #define SKIP_SPARE_BYTES 4 |
| #define BITS_PER_STEP_RS 18 |
| #define BITS_PER_STEP_BCH 13 |
| |
| #define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) |
| #define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY |
| #define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \ |
| HWSTATUS_RDSTATUS_VALUE(0) | \ |
| HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ |
| HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) |
| |
| struct tegra_nand_controller { |
| struct nand_controller controller; |
| struct device *dev; |
| void __iomem *regs; |
| int irq; |
| struct clk *clk; |
| struct completion command_complete; |
| struct completion dma_complete; |
| bool last_read_error; |
| int cur_cs; |
| struct nand_chip *chip; |
| }; |
| |
| struct tegra_nand_chip { |
| struct nand_chip chip; |
| struct gpio_desc *wp_gpio; |
| struct mtd_oob_region ecc; |
| u32 config; |
| u32 config_ecc; |
| u32 bch_config; |
| int cs[1]; |
| }; |
| |
| static inline struct tegra_nand_controller * |
| to_tegra_ctrl(struct nand_controller *hw_ctrl) |
| { |
| return container_of(hw_ctrl, struct tegra_nand_controller, controller); |
| } |
| |
| static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip) |
| { |
| return container_of(chip, struct tegra_nand_chip, chip); |
| } |
| |
| static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, |
| BITS_PER_BYTE); |
| |
| if (section > 0) |
| return -ERANGE; |
| |
| oobregion->offset = SKIP_SPARE_BYTES; |
| oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); |
| |
| return 0; |
| } |
| |
| static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| return -ERANGE; |
| } |
| |
| static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { |
| .ecc = tegra_nand_ooblayout_rs_ecc, |
| .free = tegra_nand_ooblayout_no_free, |
| }; |
| |
| static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, |
| BITS_PER_BYTE); |
| |
| if (section > 0) |
| return -ERANGE; |
| |
| oobregion->offset = SKIP_SPARE_BYTES; |
| oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { |
| .ecc = tegra_nand_ooblayout_bch_ecc, |
| .free = tegra_nand_ooblayout_no_free, |
| }; |
| |
| static irqreturn_t tegra_nand_irq(int irq, void *data) |
| { |
| struct tegra_nand_controller *ctrl = data; |
| u32 isr, dma; |
| |
| isr = readl_relaxed(ctrl->regs + ISR); |
| dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); |
| dev_dbg(ctrl->dev, "isr %08x\n", isr); |
| |
| if (!isr && !(dma & DMA_MST_CTRL_IS_DONE)) |
| return IRQ_NONE; |
| |
| /* |
| * The bit name is somewhat missleading: This is also set when |
| * HW ECC was successful. The data sheet states: |
| * Correctable OR Un-correctable errors occurred in the DMA transfer... |
| */ |
| if (isr & ISR_CORRFAIL_ERR) |
| ctrl->last_read_error = true; |
| |
| if (isr & ISR_CMD_DONE) |
| complete(&ctrl->command_complete); |
| |
| if (isr & ISR_UND) |
| dev_err(ctrl->dev, "FIFO underrun\n"); |
| |
| if (isr & ISR_OVR) |
| dev_err(ctrl->dev, "FIFO overrun\n"); |
| |
| /* handle DMA interrupts */ |
| if (dma & DMA_MST_CTRL_IS_DONE) { |
| writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); |
| complete(&ctrl->dma_complete); |
| } |
| |
| /* clear interrupts */ |
| writel_relaxed(isr, ctrl->regs + ISR); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const char * const tegra_nand_reg_names[] = { |
| "COMMAND", |
| "STATUS", |
| "ISR", |
| "IER", |
| "CONFIG", |
| "TIMING", |
| NULL, |
| "TIMING2", |
| "CMD_REG1", |
| "CMD_REG2", |
| "ADDR_REG1", |
| "ADDR_REG2", |
| "DMA_MST_CTRL", |
| "DMA_CFG_A", |
| "DMA_CFG_B", |
| "FIFO_CTRL", |
| }; |
| |
| static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) |
| { |
| u32 reg; |
| int i; |
| |
| dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); |
| for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { |
| const char *reg_name = tegra_nand_reg_names[i]; |
| |
| if (!reg_name) |
| continue; |
| |
| reg = readl_relaxed(ctrl->regs + (i * 4)); |
| dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); |
| } |
| } |
| |
| static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl) |
| { |
| u32 isr, dma; |
| |
| disable_irq(ctrl->irq); |
| |
| /* Abort current command/DMA operation */ |
| writel_relaxed(0, ctrl->regs + DMA_MST_CTRL); |
| writel_relaxed(0, ctrl->regs + COMMAND); |
| |
| /* clear interrupts */ |
| isr = readl_relaxed(ctrl->regs + ISR); |
| writel_relaxed(isr, ctrl->regs + ISR); |
| dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); |
| writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); |
| |
| reinit_completion(&ctrl->command_complete); |
| reinit_completion(&ctrl->dma_complete); |
| |
| enable_irq(ctrl->irq); |
| } |
| |
| static int tegra_nand_cmd(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| const struct nand_op_instr *instr; |
| const struct nand_op_instr *instr_data_in = NULL; |
| struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); |
| unsigned int op_id, size = 0, offset = 0; |
| bool first_cmd = true; |
| u32 reg, cmd = 0; |
| int ret; |
| |
| for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
| unsigned int naddrs, i; |
| const u8 *addrs; |
| u32 addr1 = 0, addr2 = 0; |
| |
| instr = &subop->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| if (first_cmd) { |
| cmd |= COMMAND_CLE; |
| writel_relaxed(instr->ctx.cmd.opcode, |
| ctrl->regs + CMD_REG1); |
| } else { |
| cmd |= COMMAND_SEC_CMD; |
| writel_relaxed(instr->ctx.cmd.opcode, |
| ctrl->regs + CMD_REG2); |
| } |
| first_cmd = false; |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| offset = nand_subop_get_addr_start_off(subop, op_id); |
| naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| addrs = &instr->ctx.addr.addrs[offset]; |
| |
| cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs); |
| for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
| addr1 |= *addrs++ << (BITS_PER_BYTE * i); |
| naddrs -= i; |
| for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
| addr2 |= *addrs++ << (BITS_PER_BYTE * i); |
| |
| writel_relaxed(addr1, ctrl->regs + ADDR_REG1); |
| writel_relaxed(addr2, ctrl->regs + ADDR_REG2); |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| size = nand_subop_get_data_len(subop, op_id); |
| offset = nand_subop_get_data_start_off(subop, op_id); |
| |
| cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | |
| COMMAND_RX | COMMAND_A_VALID; |
| |
| instr_data_in = instr; |
| break; |
| |
| case NAND_OP_DATA_OUT_INSTR: |
| size = nand_subop_get_data_len(subop, op_id); |
| offset = nand_subop_get_data_start_off(subop, op_id); |
| |
| cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | |
| COMMAND_TX | COMMAND_A_VALID; |
| memcpy(®, instr->ctx.data.buf.out + offset, size); |
| |
| writel_relaxed(reg, ctrl->regs + RESP); |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| cmd |= COMMAND_RBSY_CHK; |
| break; |
| } |
| } |
| |
| cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs); |
| writel_relaxed(cmd, ctrl->regs + COMMAND); |
| ret = wait_for_completion_timeout(&ctrl->command_complete, |
| msecs_to_jiffies(500)); |
| if (!ret) { |
| dev_err(ctrl->dev, "COMMAND timeout\n"); |
| tegra_nand_dump_reg(ctrl); |
| tegra_nand_controller_abort(ctrl); |
| return -ETIMEDOUT; |
| } |
| |
| if (instr_data_in) { |
| reg = readl_relaxed(ctrl->regs + RESP); |
| memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size); |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN(tegra_nand_cmd, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
| NAND_OP_PARSER_PATTERN(tegra_nand_cmd, |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), |
| NAND_OP_PARSER_PATTERN(tegra_nand_cmd, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), |
| ); |
| |
| static void tegra_nand_select_target(struct nand_chip *chip, |
| unsigned int die_nr) |
| { |
| struct tegra_nand_chip *nand = to_tegra_chip(chip); |
| struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); |
| |
| ctrl->cur_cs = nand->cs[die_nr]; |
| } |
| |
| static int tegra_nand_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| if (!check_only) |
| tegra_nand_select_target(chip, op->cs); |
| |
| return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, |
| check_only); |
| } |
| |
| static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, |
| struct nand_chip *chip, bool enable) |
| { |
| struct tegra_nand_chip *nand = to_tegra_chip(chip); |
| |
| if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable) |
| writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG); |
| else |
| writel_relaxed(0, ctrl->regs + BCH_CONFIG); |
| |
| if (enable) |
| writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG); |
| else |
| writel_relaxed(nand->config, ctrl->regs + CONFIG); |
| } |
| |
| static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip, |
| void *buf, void *oob_buf, int oob_len, int page, |
| bool read) |
| { |
| struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); |
| enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; |
| dma_addr_t dma_addr = 0, dma_addr_oob = 0; |
| u32 addr1, cmd, dma_ctrl; |
| int ret; |
| |
| tegra_nand_select_target(chip, chip->cur_cs); |
| |
| if (read) { |
| writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1); |
| writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2); |
| } else { |
| writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1); |
| writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2); |
| } |
| cmd = COMMAND_CLE | COMMAND_SEC_CMD; |
| |
| /* Lower 16-bits are column, by default 0 */ |
| addr1 = page << 16; |
| |
| if (!buf) |
| addr1 |= mtd->writesize; |
| writel_relaxed(addr1, ctrl->regs + ADDR_REG1); |
| |
| if (chip->options & NAND_ROW_ADDR_3) { |
| writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2); |
| cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5); |
| } else { |
| cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4); |
| } |
| |
| if (buf) { |
| dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir); |
| ret = dma_mapping_error(ctrl->dev, dma_addr); |
| if (ret) { |
| dev_err(ctrl->dev, "dma mapping error\n"); |
| return -EINVAL; |
| } |
| |
| writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); |
| writel_relaxed(dma_addr, ctrl->regs + DATA_PTR); |
| } |
| |
| if (oob_buf) { |
| dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize, |
| dir); |
| ret = dma_mapping_error(ctrl->dev, dma_addr_oob); |
| if (ret) { |
| dev_err(ctrl->dev, "dma mapping error\n"); |
| ret = -EINVAL; |
| goto err_unmap_dma_page; |
| } |
| |
| writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B); |
| writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR); |
| } |
| |
| dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN | |
| DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE | |
| DMA_MST_CTRL_BURST_16; |
| |
| if (buf) |
| dma_ctrl |= DMA_MST_CTRL_EN_A; |
| if (oob_buf) |
| dma_ctrl |= DMA_MST_CTRL_EN_B; |
| |
| if (read) |
| dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE; |
| else |
| dma_ctrl |= DMA_MST_CTRL_OUT; |
| |
| writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL); |
| |
| cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) | |
| COMMAND_CE(ctrl->cur_cs); |
| |
| if (buf) |
| cmd |= COMMAND_A_VALID; |
| if (oob_buf) |
| cmd |= COMMAND_B_VALID; |
| |
| if (read) |
| cmd |= COMMAND_RX; |
| else |
| cmd |= COMMAND_TX | COMMAND_AFT_DAT; |
| |
| writel_relaxed(cmd, ctrl->regs + COMMAND); |
| |
| ret = wait_for_completion_timeout(&ctrl->command_complete, |
| msecs_to_jiffies(500)); |
| if (!ret) { |
| dev_err(ctrl->dev, "COMMAND timeout\n"); |
| tegra_nand_dump_reg(ctrl); |
| tegra_nand_controller_abort(ctrl); |
| ret = -ETIMEDOUT; |
| goto err_unmap_dma; |
| } |
| |
| ret = wait_for_completion_timeout(&ctrl->dma_complete, |
| msecs_to_jiffies(500)); |
| if (!ret) { |
| dev_err(ctrl->dev, "DMA timeout\n"); |
| tegra_nand_dump_reg(ctrl); |
| tegra_nand_controller_abort(ctrl); |
| ret = -ETIMEDOUT; |
| goto err_unmap_dma; |
| } |
| ret = 0; |
| |
| err_unmap_dma: |
| if (oob_buf) |
| dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir); |
| err_unmap_dma_page: |
| if (buf) |
| dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir); |
| |
| return ret; |
| } |
| |
| static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| void *oob_buf = oob_required ? chip->oob_poi : NULL; |
| |
| return tegra_nand_page_xfer(mtd, chip, buf, oob_buf, |
| mtd->oobsize, page, true); |
| } |
| |
| static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| void *oob_buf = oob_required ? chip->oob_poi : NULL; |
| |
| return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, |
| mtd->oobsize, page, false); |
| } |
| |
| static int tegra_nand_read_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, |
| mtd->oobsize, page, true); |
| } |
| |
| static int tegra_nand_write_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, |
| mtd->oobsize, page, false); |
| } |
| |
| static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); |
| struct tegra_nand_chip *nand = to_tegra_chip(chip); |
| void *oob_buf = oob_required ? chip->oob_poi : NULL; |
| u32 dec_stat, max_corr_cnt; |
| unsigned long fail_sec_flag; |
| int ret; |
| |
| tegra_nand_hw_ecc(ctrl, chip, true); |
| ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true); |
| tegra_nand_hw_ecc(ctrl, chip, false); |
| if (ret) |
| return ret; |
| |
| /* No correctable or un-correctable errors, page must have 0 bitflips */ |
| if (!ctrl->last_read_error) |
| return 0; |
| |
| /* |
| * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF |
| * which contains information for all ECC selections. |
| * |
| * Note that since we do not use Command Queues DEC_RESULT does not |
| * state the number of pages we can read from the DEC_STAT_BUF. But |
| * since CORRFAIL_ERR did occur during page read we do have a valid |
| * result in DEC_STAT_BUF. |
| */ |
| ctrl->last_read_error = false; |
| dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF); |
| |
| fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >> |
| DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT; |
| |
| max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> |
| DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; |
| |
| if (fail_sec_flag) { |
| int bit, max_bitflips = 0; |
| |
| /* |
| * Since we do not support subpage writes, a complete page |
| * is either written or not. We can take a shortcut here by |
| * checking wheather any of the sector has been successful |
| * read. If at least one sectors has been read successfully, |
| * the page must have been a written previously. It cannot |
| * be an erased page. |
| * |
| * E.g. controller might return fail_sec_flag with 0x4, which |
| * would mean only the third sector failed to correct. The |
| * page must have been written and the third sector is really |
| * not correctable anymore. |
| */ |
| if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) { |
| mtd->ecc_stats.failed += hweight8(fail_sec_flag); |
| return max_corr_cnt; |
| } |
| |
| /* |
| * All sectors failed to correct, but the ECC isn't smart |
| * enough to figure out if a page is really just erased. |
| * Read OOB data and check whether data/OOB is completely |
| * erased or if error correction just failed for all sub- |
| * pages. |
| */ |
| ret = tegra_nand_read_oob(chip, page); |
| if (ret < 0) |
| return ret; |
| |
| for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) { |
| u8 *data = buf + (chip->ecc.size * bit); |
| u8 *oob = chip->oob_poi + nand->ecc.offset + |
| (chip->ecc.bytes * bit); |
| |
| ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, |
| oob, chip->ecc.bytes, |
| NULL, 0, |
| chip->ecc.strength); |
| if (ret < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += ret; |
| max_bitflips = max(ret, max_bitflips); |
| } |
| } |
| |
| return max_t(unsigned int, max_corr_cnt, max_bitflips); |
| } else { |
| int corr_sec_flag; |
| |
| corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> |
| DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; |
| |
| /* |
| * The value returned in the register is the maximum of |
| * bitflips encountered in any of the ECC regions. As there is |
| * no way to get the number of bitflips in a specific regions |
| * we are not able to deliver correct stats but instead |
| * overestimate the number of corrected bitflips by assuming |
| * that all regions where errors have been corrected |
| * encountered the maximum number of bitflips. |
| */ |
| mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); |
| |
| return max_corr_cnt; |
| } |
| } |
| |
| static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); |
| void *oob_buf = oob_required ? chip->oob_poi : NULL; |
| int ret; |
| |
| tegra_nand_hw_ecc(ctrl, chip, true); |
| ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, |
| 0, page, false); |
| tegra_nand_hw_ecc(ctrl, chip, false); |
| |
| return ret; |
| } |
| |
| static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, |
| const struct nand_sdr_timings *timings) |
| { |
| /* |
| * The period (and all other timings in this function) is in ps, |
| * so need to take care here to avoid integer overflows. |
| */ |
| unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; |
| unsigned int period = DIV_ROUND_UP(1000000, rate); |
| u32 val, reg = 0; |
| |
| val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, |
| timings->tRC_min), period); |
| reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3)); |
| |
| val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), |
| max(timings->tALS_min, timings->tALH_min)), |
| period); |
| reg |= TIMING_TCS(OFFSET(val, 2)); |
| |
| val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, |
| period); |
| reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1)); |
| |
| reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1)); |
| reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1)); |
| reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1)); |
| reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1)); |
| reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1)); |
| |
| writel_relaxed(reg, ctrl->regs + TIMING_1); |
| |
| val = DIV_ROUND_UP(timings->tADL_min, period); |
| reg = TIMING_TADL(OFFSET(val, 3)); |
| |
| writel_relaxed(reg, ctrl->regs + TIMING_2); |
| } |
| |
| static int tegra_nand_setup_interface(struct nand_chip *chip, int csline, |
| const struct nand_interface_config *conf) |
| { |
| struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); |
| const struct nand_sdr_timings *timings; |
| |
| timings = nand_get_sdr_timings(conf); |
| if (IS_ERR(timings)) |
| return PTR_ERR(timings); |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| tegra_nand_setup_timing(ctrl, timings); |
| |
| return 0; |
| } |
| |
| static const int rs_strength_bootable[] = { 4 }; |
| static const int rs_strength[] = { 4, 6, 8 }; |
| static const int bch_strength_bootable[] = { 8, 16 }; |
| static const int bch_strength[] = { 4, 8, 14, 16 }; |
| |
| static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength, |
| int strength_len, int bits_per_step, |
| int oobsize) |
| { |
| struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip)); |
| const struct nand_ecc_props *requirements = |
| nanddev_get_ecc_requirements(base); |
| bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH; |
| int i; |
| |
| /* |
| * Loop through available strengths. Backwards in case we try to |
| * maximize the BCH strength. |
| */ |
| for (i = 0; i < strength_len; i++) { |
| int strength_sel, bytes_per_step, bytes_per_page; |
| |
| if (maximize) { |
| strength_sel = strength[strength_len - i - 1]; |
| } else { |
| strength_sel = strength[i]; |
| |
| if (strength_sel < requirements->strength) |
| continue; |
| } |
| |
| bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel, |
| BITS_PER_BYTE); |
| bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4); |
| |
| /* Check whether strength fits OOB */ |
| if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES)) |
| return strength_sel; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize) |
| { |
| const int *strength; |
| int strength_len, bits_per_step; |
| |
| switch (chip->ecc.algo) { |
| case NAND_ECC_ALGO_RS: |
| bits_per_step = BITS_PER_STEP_RS; |
| if (chip->options & NAND_IS_BOOT_MEDIUM) { |
| strength = rs_strength_bootable; |
| strength_len = ARRAY_SIZE(rs_strength_bootable); |
| } else { |
| strength = rs_strength; |
| strength_len = ARRAY_SIZE(rs_strength); |
| } |
| break; |
| case NAND_ECC_ALGO_BCH: |
| bits_per_step = BITS_PER_STEP_BCH; |
| if (chip->options & NAND_IS_BOOT_MEDIUM) { |
| strength = bch_strength_bootable; |
| strength_len = ARRAY_SIZE(bch_strength_bootable); |
| } else { |
| strength = bch_strength; |
| strength_len = ARRAY_SIZE(bch_strength); |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return tegra_nand_get_strength(chip, strength, strength_len, |
| bits_per_step, oobsize); |
| } |
| |
| static int tegra_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); |
| const struct nand_ecc_props *requirements = |
| nanddev_get_ecc_requirements(&chip->base); |
| struct tegra_nand_chip *nand = to_tegra_chip(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int bits_per_step; |
| int ret; |
| |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->ecc.size = 512; |
| chip->ecc.steps = mtd->writesize / chip->ecc.size; |
| if (requirements->step_size != 512) { |
| dev_err(ctrl->dev, "Unsupported step size %d\n", |
| requirements->step_size); |
| return -EINVAL; |
| } |
| |
| chip->ecc.read_page = tegra_nand_read_page_hwecc; |
| chip->ecc.write_page = tegra_nand_write_page_hwecc; |
| chip->ecc.read_page_raw = tegra_nand_read_page_raw; |
| chip->ecc.write_page_raw = tegra_nand_write_page_raw; |
| chip->ecc.read_oob = tegra_nand_read_oob; |
| chip->ecc.write_oob = tegra_nand_write_oob; |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| nand->config |= CONFIG_BUS_WIDTH_16; |
| |
| if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) { |
| if (mtd->writesize < 2048) |
| chip->ecc.algo = NAND_ECC_ALGO_RS; |
| else |
| chip->ecc.algo = NAND_ECC_ALGO_BCH; |
| } |
| |
| if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) { |
| dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n"); |
| return -EINVAL; |
| } |
| |
| if (!chip->ecc.strength) { |
| ret = tegra_nand_select_strength(chip, mtd->oobsize); |
| if (ret < 0) { |
| dev_err(ctrl->dev, |
| "No valid strength found, minimum %d\n", |
| requirements->strength); |
| return ret; |
| } |
| |
| chip->ecc.strength = ret; |
| } |
| |
| nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE | |
| CONFIG_SKIP_SPARE_SIZE_4; |
| |
| switch (chip->ecc.algo) { |
| case NAND_ECC_ALGO_RS: |
| bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; |
| mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); |
| nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL | |
| CONFIG_ERR_COR; |
| switch (chip->ecc.strength) { |
| case 4: |
| nand->config_ecc |= CONFIG_TVAL_4; |
| break; |
| case 6: |
| nand->config_ecc |= CONFIG_TVAL_6; |
| break; |
| case 8: |
| nand->config_ecc |= CONFIG_TVAL_8; |
| break; |
| default: |
| dev_err(ctrl->dev, "ECC strength %d not supported\n", |
| chip->ecc.strength); |
| return -EINVAL; |
| } |
| break; |
| case NAND_ECC_ALGO_BCH: |
| bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; |
| mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); |
| nand->bch_config = BCH_ENABLE; |
| switch (chip->ecc.strength) { |
| case 4: |
| nand->bch_config |= BCH_TVAL_4; |
| break; |
| case 8: |
| nand->bch_config |= BCH_TVAL_8; |
| break; |
| case 14: |
| nand->bch_config |= BCH_TVAL_14; |
| break; |
| case 16: |
| nand->bch_config |= BCH_TVAL_16; |
| break; |
| default: |
| dev_err(ctrl->dev, "ECC strength %d not supported\n", |
| chip->ecc.strength); |
| return -EINVAL; |
| } |
| break; |
| default: |
| dev_err(ctrl->dev, "ECC algorithm not supported\n"); |
| return -EINVAL; |
| } |
| |
| dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n", |
| chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS", |
| chip->ecc.strength); |
| |
| chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE); |
| |
| switch (mtd->writesize) { |
| case 256: |
| nand->config |= CONFIG_PS_256; |
| break; |
| case 512: |
| nand->config |= CONFIG_PS_512; |
| break; |
| case 1024: |
| nand->config |= CONFIG_PS_1024; |
| break; |
| case 2048: |
| nand->config |= CONFIG_PS_2048; |
| break; |
| case 4096: |
| nand->config |= CONFIG_PS_4096; |
| break; |
| default: |
| dev_err(ctrl->dev, "Unsupported writesize %d\n", |
| mtd->writesize); |
| return -ENODEV; |
| } |
| |
| /* Store complete configuration for HW ECC in config_ecc */ |
| nand->config_ecc |= nand->config; |
| |
| /* Non-HW ECC read/writes complete OOB */ |
| nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1); |
| writel_relaxed(nand->config, ctrl->regs + CONFIG); |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops tegra_nand_controller_ops = { |
| .attach_chip = &tegra_nand_attach_chip, |
| .exec_op = tegra_nand_exec_op, |
| .setup_interface = tegra_nand_setup_interface, |
| }; |
| |
| static int tegra_nand_chips_init(struct device *dev, |
| struct tegra_nand_controller *ctrl) |
| { |
| struct device_node *np = dev->of_node; |
| struct device_node *np_nand; |
| int nsels, nchips = of_get_child_count(np); |
| struct tegra_nand_chip *nand; |
| struct mtd_info *mtd; |
| struct nand_chip *chip; |
| int ret; |
| u32 cs; |
| |
| if (nchips != 1) { |
| dev_err(dev, "Currently only one NAND chip supported\n"); |
| return -EINVAL; |
| } |
| |
| np_nand = of_get_next_child(np, NULL); |
| |
| nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32)); |
| if (nsels != 1) { |
| dev_err(dev, "Missing/invalid reg property\n"); |
| return -EINVAL; |
| } |
| |
| /* Retrieve CS id, currently only single die NAND supported */ |
| ret = of_property_read_u32(np_nand, "reg", &cs); |
| if (ret) { |
| dev_err(dev, "could not retrieve reg property: %d\n", ret); |
| return ret; |
| } |
| |
| nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); |
| if (!nand) |
| return -ENOMEM; |
| |
| nand->cs[0] = cs; |
| |
| nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); |
| |
| if (IS_ERR(nand->wp_gpio)) { |
| ret = PTR_ERR(nand->wp_gpio); |
| dev_err(dev, "Failed to request WP GPIO: %d\n", ret); |
| return ret; |
| } |
| |
| chip = &nand->chip; |
| chip->controller = &ctrl->controller; |
| |
| mtd = nand_to_mtd(chip); |
| |
| mtd->dev.parent = dev; |
| mtd->owner = THIS_MODULE; |
| |
| nand_set_flash_node(chip, np_nand); |
| |
| if (!mtd->name) |
| mtd->name = "tegra_nand"; |
| |
| chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA; |
| |
| ret = nand_scan(chip, 1); |
| if (ret) |
| return ret; |
| |
| mtd_ooblayout_ecc(mtd, 0, &nand->ecc); |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(dev, "Failed to register mtd device: %d\n", ret); |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| ctrl->chip = chip; |
| |
| return 0; |
| } |
| |
| static int tegra_nand_probe(struct platform_device *pdev) |
| { |
| struct reset_control *rst; |
| struct tegra_nand_controller *ctrl; |
| int err = 0; |
| |
| ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); |
| if (!ctrl) |
| return -ENOMEM; |
| |
| ctrl->dev = &pdev->dev; |
| platform_set_drvdata(pdev, ctrl); |
| nand_controller_init(&ctrl->controller); |
| ctrl->controller.ops = &tegra_nand_controller_ops; |
| |
| ctrl->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(ctrl->regs)) |
| return PTR_ERR(ctrl->regs); |
| |
| rst = devm_reset_control_get(&pdev->dev, "nand"); |
| if (IS_ERR(rst)) |
| return PTR_ERR(rst); |
| |
| ctrl->clk = devm_clk_get(&pdev->dev, "nand"); |
| if (IS_ERR(ctrl->clk)) |
| return PTR_ERR(ctrl->clk); |
| |
| err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); |
| if (err) |
| return err; |
| |
| /* |
| * This driver doesn't support active power management yet, |
| * so we will simply keep device resumed. |
| */ |
| pm_runtime_enable(&pdev->dev); |
| err = pm_runtime_resume_and_get(&pdev->dev); |
| if (err) |
| goto err_dis_pm; |
| |
| err = reset_control_reset(rst); |
| if (err) { |
| dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); |
| goto err_put_pm; |
| } |
| |
| writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD); |
| writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK); |
| writel_relaxed(INT_MASK, ctrl->regs + IER); |
| |
| init_completion(&ctrl->command_complete); |
| init_completion(&ctrl->dma_complete); |
| |
| ctrl->irq = platform_get_irq(pdev, 0); |
| err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0, |
| dev_name(&pdev->dev), ctrl); |
| if (err) { |
| dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err); |
| goto err_put_pm; |
| } |
| |
| writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL); |
| |
| err = tegra_nand_chips_init(ctrl->dev, ctrl); |
| if (err) |
| goto err_put_pm; |
| |
| return 0; |
| |
| err_put_pm: |
| pm_runtime_put_sync_suspend(ctrl->dev); |
| pm_runtime_force_suspend(ctrl->dev); |
| err_dis_pm: |
| pm_runtime_disable(&pdev->dev); |
| return err; |
| } |
| |
| static int tegra_nand_remove(struct platform_device *pdev) |
| { |
| struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); |
| struct nand_chip *chip = ctrl->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| WARN_ON(mtd_device_unregister(mtd)); |
| |
| nand_cleanup(chip); |
| |
| pm_runtime_put_sync_suspend(ctrl->dev); |
| pm_runtime_force_suspend(ctrl->dev); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused tegra_nand_runtime_resume(struct device *dev) |
| { |
| struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); |
| int err; |
| |
| err = clk_prepare_enable(ctrl->clk); |
| if (err) { |
| dev_err(dev, "Failed to enable clock: %d\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int __maybe_unused tegra_nand_runtime_suspend(struct device *dev) |
| { |
| struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(ctrl->clk); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops tegra_nand_pm = { |
| SET_RUNTIME_PM_OPS(tegra_nand_runtime_suspend, tegra_nand_runtime_resume, |
| NULL) |
| }; |
| |
| static const struct of_device_id tegra_nand_of_match[] = { |
| { .compatible = "nvidia,tegra20-nand" }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, tegra_nand_of_match); |
| |
| static struct platform_driver tegra_nand_driver = { |
| .driver = { |
| .name = "tegra-nand", |
| .of_match_table = tegra_nand_of_match, |
| .pm = &tegra_nand_pm, |
| }, |
| .probe = tegra_nand_probe, |
| .remove = tegra_nand_remove, |
| }; |
| module_platform_driver(tegra_nand_driver); |
| |
| MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); |
| MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>"); |
| MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>"); |
| MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>"); |
| MODULE_LICENSE("GPL v2"); |