blob: adc4e87a71d25e57785d530ca1b4bff3f0d379ed [file] [log] [blame]
/*
* Open file cache.
*
* (c) 2015 - Jeff Layton <jeff.layton@primarydata.com>
*/
#include <linux/hash.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/list_lru.h>
#include <linux/fsnotify_backend.h>
#include <linux/fsnotify.h>
#include <linux/seq_file.h>
#include <linux/rhashtable.h>
#include "vfs.h"
#include "nfsd.h"
#include "nfsfh.h"
#include "netns.h"
#include "filecache.h"
#include "trace.h"
#define NFSD_LAUNDRETTE_DELAY (2 * HZ)
#define NFSD_FILE_CACHE_UP (0)
/* We only care about NFSD_MAY_READ/WRITE for this cache */
#define NFSD_FILE_MAY_MASK (NFSD_MAY_READ|NFSD_MAY_WRITE)
static DEFINE_PER_CPU(unsigned long, nfsd_file_cache_hits);
static DEFINE_PER_CPU(unsigned long, nfsd_file_acquisitions);
static DEFINE_PER_CPU(unsigned long, nfsd_file_releases);
static DEFINE_PER_CPU(unsigned long, nfsd_file_total_age);
static DEFINE_PER_CPU(unsigned long, nfsd_file_pages_flushed);
static DEFINE_PER_CPU(unsigned long, nfsd_file_evictions);
struct nfsd_fcache_disposal {
struct work_struct work;
spinlock_t lock;
struct list_head freeme;
};
static struct workqueue_struct *nfsd_filecache_wq __read_mostly;
static struct kmem_cache *nfsd_file_slab;
static struct kmem_cache *nfsd_file_mark_slab;
static struct list_lru nfsd_file_lru;
static unsigned long nfsd_file_flags;
static struct fsnotify_group *nfsd_file_fsnotify_group;
static struct delayed_work nfsd_filecache_laundrette;
static struct rhashtable nfsd_file_rhash_tbl
____cacheline_aligned_in_smp;
enum nfsd_file_lookup_type {
NFSD_FILE_KEY_INODE,
NFSD_FILE_KEY_FULL,
};
struct nfsd_file_lookup_key {
struct inode *inode;
struct net *net;
const struct cred *cred;
unsigned char need;
enum nfsd_file_lookup_type type;
};
/*
* The returned hash value is based solely on the address of an in-code
* inode, a pointer to a slab-allocated object. The entropy in such a
* pointer is concentrated in its middle bits.
*/
static u32 nfsd_file_inode_hash(const struct inode *inode, u32 seed)
{
unsigned long ptr = (unsigned long)inode;
u32 k;
k = ptr >> L1_CACHE_SHIFT;
k &= 0x00ffffff;
return jhash2(&k, 1, seed);
}
/**
* nfsd_file_key_hashfn - Compute the hash value of a lookup key
* @data: key on which to compute the hash value
* @len: rhash table's key_len parameter (unused)
* @seed: rhash table's random seed of the day
*
* Return value:
* Computed 32-bit hash value
*/
static u32 nfsd_file_key_hashfn(const void *data, u32 len, u32 seed)
{
const struct nfsd_file_lookup_key *key = data;
return nfsd_file_inode_hash(key->inode, seed);
}
/**
* nfsd_file_obj_hashfn - Compute the hash value of an nfsd_file
* @data: object on which to compute the hash value
* @len: rhash table's key_len parameter (unused)
* @seed: rhash table's random seed of the day
*
* Return value:
* Computed 32-bit hash value
*/
static u32 nfsd_file_obj_hashfn(const void *data, u32 len, u32 seed)
{
const struct nfsd_file *nf = data;
return nfsd_file_inode_hash(nf->nf_inode, seed);
}
static bool
nfsd_match_cred(const struct cred *c1, const struct cred *c2)
{
int i;
if (!uid_eq(c1->fsuid, c2->fsuid))
return false;
if (!gid_eq(c1->fsgid, c2->fsgid))
return false;
if (c1->group_info == NULL || c2->group_info == NULL)
return c1->group_info == c2->group_info;
if (c1->group_info->ngroups != c2->group_info->ngroups)
return false;
for (i = 0; i < c1->group_info->ngroups; i++) {
if (!gid_eq(c1->group_info->gid[i], c2->group_info->gid[i]))
return false;
}
return true;
}
/**
* nfsd_file_obj_cmpfn - Match a cache item against search criteria
* @arg: search criteria
* @ptr: cache item to check
*
* Return values:
* %0 - Item matches search criteria
* %1 - Item does not match search criteria
*/
static int nfsd_file_obj_cmpfn(struct rhashtable_compare_arg *arg,
const void *ptr)
{
const struct nfsd_file_lookup_key *key = arg->key;
const struct nfsd_file *nf = ptr;
switch (key->type) {
case NFSD_FILE_KEY_INODE:
if (nf->nf_inode != key->inode)
return 1;
break;
case NFSD_FILE_KEY_FULL:
if (nf->nf_inode != key->inode)
return 1;
if (nf->nf_may != key->need)
return 1;
if (nf->nf_net != key->net)
return 1;
if (!nfsd_match_cred(nf->nf_cred, key->cred))
return 1;
if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags) == 0)
return 1;
break;
}
return 0;
}
static const struct rhashtable_params nfsd_file_rhash_params = {
.key_len = sizeof_field(struct nfsd_file, nf_inode),
.key_offset = offsetof(struct nfsd_file, nf_inode),
.head_offset = offsetof(struct nfsd_file, nf_rhash),
.hashfn = nfsd_file_key_hashfn,
.obj_hashfn = nfsd_file_obj_hashfn,
.obj_cmpfn = nfsd_file_obj_cmpfn,
/* Reduce resizing churn on light workloads */
.min_size = 512, /* buckets */
.automatic_shrinking = true,
};
static void
nfsd_file_schedule_laundrette(void)
{
if ((atomic_read(&nfsd_file_rhash_tbl.nelems) == 0) ||
test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 0)
return;
queue_delayed_work(system_wq, &nfsd_filecache_laundrette,
NFSD_LAUNDRETTE_DELAY);
}
static void
nfsd_file_slab_free(struct rcu_head *rcu)
{
struct nfsd_file *nf = container_of(rcu, struct nfsd_file, nf_rcu);
put_cred(nf->nf_cred);
kmem_cache_free(nfsd_file_slab, nf);
}
static void
nfsd_file_mark_free(struct fsnotify_mark *mark)
{
struct nfsd_file_mark *nfm = container_of(mark, struct nfsd_file_mark,
nfm_mark);
kmem_cache_free(nfsd_file_mark_slab, nfm);
}
static struct nfsd_file_mark *
nfsd_file_mark_get(struct nfsd_file_mark *nfm)
{
if (!refcount_inc_not_zero(&nfm->nfm_ref))
return NULL;
return nfm;
}
static void
nfsd_file_mark_put(struct nfsd_file_mark *nfm)
{
if (refcount_dec_and_test(&nfm->nfm_ref)) {
fsnotify_destroy_mark(&nfm->nfm_mark, nfsd_file_fsnotify_group);
fsnotify_put_mark(&nfm->nfm_mark);
}
}
static struct nfsd_file_mark *
nfsd_file_mark_find_or_create(struct nfsd_file *nf, struct inode *inode)
{
int err;
struct fsnotify_mark *mark;
struct nfsd_file_mark *nfm = NULL, *new;
do {
fsnotify_group_lock(nfsd_file_fsnotify_group);
mark = fsnotify_find_mark(&inode->i_fsnotify_marks,
nfsd_file_fsnotify_group);
if (mark) {
nfm = nfsd_file_mark_get(container_of(mark,
struct nfsd_file_mark,
nfm_mark));
fsnotify_group_unlock(nfsd_file_fsnotify_group);
if (nfm) {
fsnotify_put_mark(mark);
break;
}
/* Avoid soft lockup race with nfsd_file_mark_put() */
fsnotify_destroy_mark(mark, nfsd_file_fsnotify_group);
fsnotify_put_mark(mark);
} else {
fsnotify_group_unlock(nfsd_file_fsnotify_group);
}
/* allocate a new nfm */
new = kmem_cache_alloc(nfsd_file_mark_slab, GFP_KERNEL);
if (!new)
return NULL;
fsnotify_init_mark(&new->nfm_mark, nfsd_file_fsnotify_group);
new->nfm_mark.mask = FS_ATTRIB|FS_DELETE_SELF;
refcount_set(&new->nfm_ref, 1);
err = fsnotify_add_inode_mark(&new->nfm_mark, inode, 0);
/*
* If the add was successful, then return the object.
* Otherwise, we need to put the reference we hold on the
* nfm_mark. The fsnotify code will take a reference and put
* it on failure, so we can't just free it directly. It's also
* not safe to call fsnotify_destroy_mark on it as the
* mark->group will be NULL. Thus, we can't let the nfm_ref
* counter drive the destruction at this point.
*/
if (likely(!err))
nfm = new;
else
fsnotify_put_mark(&new->nfm_mark);
} while (unlikely(err == -EEXIST));
return nfm;
}
static struct nfsd_file *
nfsd_file_alloc(struct nfsd_file_lookup_key *key, unsigned int may)
{
struct nfsd_file *nf;
nf = kmem_cache_alloc(nfsd_file_slab, GFP_KERNEL);
if (nf) {
INIT_LIST_HEAD(&nf->nf_lru);
nf->nf_birthtime = ktime_get();
nf->nf_file = NULL;
nf->nf_cred = get_current_cred();
nf->nf_net = key->net;
nf->nf_flags = 0;
__set_bit(NFSD_FILE_HASHED, &nf->nf_flags);
__set_bit(NFSD_FILE_PENDING, &nf->nf_flags);
nf->nf_inode = key->inode;
/* nf_ref is pre-incremented for hash table */
refcount_set(&nf->nf_ref, 2);
nf->nf_may = key->need;
nf->nf_mark = NULL;
}
return nf;
}
static bool
nfsd_file_free(struct nfsd_file *nf)
{
s64 age = ktime_to_ms(ktime_sub(ktime_get(), nf->nf_birthtime));
bool flush = false;
this_cpu_inc(nfsd_file_releases);
this_cpu_add(nfsd_file_total_age, age);
trace_nfsd_file_put_final(nf);
if (nf->nf_mark)
nfsd_file_mark_put(nf->nf_mark);
if (nf->nf_file) {
get_file(nf->nf_file);
filp_close(nf->nf_file, NULL);
fput(nf->nf_file);
flush = true;
}
/*
* If this item is still linked via nf_lru, that's a bug.
* WARN and leak it to preserve system stability.
*/
if (WARN_ON_ONCE(!list_empty(&nf->nf_lru)))
return flush;
call_rcu(&nf->nf_rcu, nfsd_file_slab_free);
return flush;
}
static bool
nfsd_file_check_writeback(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
struct address_space *mapping;
if (!file || !(file->f_mode & FMODE_WRITE))
return false;
mapping = file->f_mapping;
return mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) ||
mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
}
static int
nfsd_file_check_write_error(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
if (!file || !(file->f_mode & FMODE_WRITE))
return 0;
return filemap_check_wb_err(file->f_mapping, READ_ONCE(file->f_wb_err));
}
static void
nfsd_file_flush(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
if (!file || !(file->f_mode & FMODE_WRITE))
return;
this_cpu_add(nfsd_file_pages_flushed, file->f_mapping->nrpages);
if (vfs_fsync(file, 1) != 0)
nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
}
static void nfsd_file_lru_add(struct nfsd_file *nf)
{
set_bit(NFSD_FILE_REFERENCED, &nf->nf_flags);
if (list_lru_add(&nfsd_file_lru, &nf->nf_lru))
trace_nfsd_file_lru_add(nf);
}
static void nfsd_file_lru_remove(struct nfsd_file *nf)
{
if (list_lru_del(&nfsd_file_lru, &nf->nf_lru))
trace_nfsd_file_lru_del(nf);
}
static void
nfsd_file_hash_remove(struct nfsd_file *nf)
{
trace_nfsd_file_unhash(nf);
if (nfsd_file_check_write_error(nf))
nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
rhashtable_remove_fast(&nfsd_file_rhash_tbl, &nf->nf_rhash,
nfsd_file_rhash_params);
}
static bool
nfsd_file_unhash(struct nfsd_file *nf)
{
if (test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
nfsd_file_hash_remove(nf);
return true;
}
return false;
}
static void
nfsd_file_unhash_and_dispose(struct nfsd_file *nf, struct list_head *dispose)
{
trace_nfsd_file_unhash_and_dispose(nf);
if (nfsd_file_unhash(nf)) {
/* caller must call nfsd_file_dispose_list() later */
nfsd_file_lru_remove(nf);
list_add(&nf->nf_lru, dispose);
}
}
static void
nfsd_file_put_noref(struct nfsd_file *nf)
{
trace_nfsd_file_put(nf);
if (refcount_dec_and_test(&nf->nf_ref)) {
WARN_ON(test_bit(NFSD_FILE_HASHED, &nf->nf_flags));
nfsd_file_lru_remove(nf);
nfsd_file_free(nf);
}
}
void
nfsd_file_put(struct nfsd_file *nf)
{
might_sleep();
nfsd_file_lru_add(nf);
if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags) == 0) {
nfsd_file_flush(nf);
nfsd_file_put_noref(nf);
} else if (nf->nf_file) {
nfsd_file_put_noref(nf);
nfsd_file_schedule_laundrette();
} else
nfsd_file_put_noref(nf);
}
/**
* nfsd_file_close - Close an nfsd_file
* @nf: nfsd_file to close
*
* If this is the final reference for @nf, free it immediately.
* This reflects an on-the-wire CLOSE or DELEGRETURN into the
* VFS and exported filesystem.
*/
void nfsd_file_close(struct nfsd_file *nf)
{
nfsd_file_put(nf);
if (refcount_dec_if_one(&nf->nf_ref)) {
nfsd_file_unhash(nf);
nfsd_file_lru_remove(nf);
nfsd_file_free(nf);
}
}
struct nfsd_file *
nfsd_file_get(struct nfsd_file *nf)
{
if (likely(refcount_inc_not_zero(&nf->nf_ref)))
return nf;
return NULL;
}
static void
nfsd_file_dispose_list(struct list_head *dispose)
{
struct nfsd_file *nf;
while(!list_empty(dispose)) {
nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
list_del_init(&nf->nf_lru);
nfsd_file_flush(nf);
nfsd_file_put_noref(nf);
}
}
static void
nfsd_file_dispose_list_sync(struct list_head *dispose)
{
bool flush = false;
struct nfsd_file *nf;
while(!list_empty(dispose)) {
nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
list_del_init(&nf->nf_lru);
nfsd_file_flush(nf);
if (!refcount_dec_and_test(&nf->nf_ref))
continue;
if (nfsd_file_free(nf))
flush = true;
}
if (flush)
flush_delayed_fput();
}
static void
nfsd_file_list_remove_disposal(struct list_head *dst,
struct nfsd_fcache_disposal *l)
{
spin_lock(&l->lock);
list_splice_init(&l->freeme, dst);
spin_unlock(&l->lock);
}
static void
nfsd_file_list_add_disposal(struct list_head *files, struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd_fcache_disposal *l = nn->fcache_disposal;
spin_lock(&l->lock);
list_splice_tail_init(files, &l->freeme);
spin_unlock(&l->lock);
queue_work(nfsd_filecache_wq, &l->work);
}
static void
nfsd_file_list_add_pernet(struct list_head *dst, struct list_head *src,
struct net *net)
{
struct nfsd_file *nf, *tmp;
list_for_each_entry_safe(nf, tmp, src, nf_lru) {
if (nf->nf_net == net)
list_move_tail(&nf->nf_lru, dst);
}
}
static void
nfsd_file_dispose_list_delayed(struct list_head *dispose)
{
LIST_HEAD(list);
struct nfsd_file *nf;
while(!list_empty(dispose)) {
nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
nfsd_file_list_add_pernet(&list, dispose, nf->nf_net);
nfsd_file_list_add_disposal(&list, nf->nf_net);
}
}
/**
* nfsd_file_lru_cb - Examine an entry on the LRU list
* @item: LRU entry to examine
* @lru: controlling LRU
* @lock: LRU list lock (unused)
* @arg: dispose list
*
* Return values:
* %LRU_REMOVED: @item was removed from the LRU
* %LRU_ROTATE: @item is to be moved to the LRU tail
* %LRU_SKIP: @item cannot be evicted
*/
static enum lru_status
nfsd_file_lru_cb(struct list_head *item, struct list_lru_one *lru,
spinlock_t *lock, void *arg)
__releases(lock)
__acquires(lock)
{
struct list_head *head = arg;
struct nfsd_file *nf = list_entry(item, struct nfsd_file, nf_lru);
/*
* Do a lockless refcount check. The hashtable holds one reference, so
* we look to see if anything else has a reference, or if any have
* been put since the shrinker last ran. Those don't get unhashed and
* released.
*
* Note that in the put path, we set the flag and then decrement the
* counter. Here we check the counter and then test and clear the flag.
* That order is deliberate to ensure that we can do this locklessly.
*/
if (refcount_read(&nf->nf_ref) > 1) {
list_lru_isolate(lru, &nf->nf_lru);
trace_nfsd_file_gc_in_use(nf);
return LRU_REMOVED;
}
/*
* Don't throw out files that are still undergoing I/O or
* that have uncleared errors pending.
*/
if (nfsd_file_check_writeback(nf)) {
trace_nfsd_file_gc_writeback(nf);
return LRU_SKIP;
}
if (test_and_clear_bit(NFSD_FILE_REFERENCED, &nf->nf_flags)) {
trace_nfsd_file_gc_referenced(nf);
return LRU_ROTATE;
}
if (!test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
trace_nfsd_file_gc_hashed(nf);
return LRU_SKIP;
}
list_lru_isolate_move(lru, &nf->nf_lru, head);
this_cpu_inc(nfsd_file_evictions);
trace_nfsd_file_gc_disposed(nf);
return LRU_REMOVED;
}
/*
* Unhash items on @dispose immediately, then queue them on the
* disposal workqueue to finish releasing them in the background.
*
* cel: Note that between the time list_lru_shrink_walk runs and
* now, these items are in the hash table but marked unhashed.
* Why release these outside of lru_cb ? There's no lock ordering
* problem since lru_cb currently takes no lock.
*/
static void nfsd_file_gc_dispose_list(struct list_head *dispose)
{
struct nfsd_file *nf;
list_for_each_entry(nf, dispose, nf_lru)
nfsd_file_hash_remove(nf);
nfsd_file_dispose_list_delayed(dispose);
}
static void
nfsd_file_gc(void)
{
LIST_HEAD(dispose);
unsigned long ret;
ret = list_lru_walk(&nfsd_file_lru, nfsd_file_lru_cb,
&dispose, list_lru_count(&nfsd_file_lru));
trace_nfsd_file_gc_removed(ret, list_lru_count(&nfsd_file_lru));
nfsd_file_gc_dispose_list(&dispose);
}
static void
nfsd_file_gc_worker(struct work_struct *work)
{
nfsd_file_gc();
nfsd_file_schedule_laundrette();
}
static unsigned long
nfsd_file_lru_count(struct shrinker *s, struct shrink_control *sc)
{
return list_lru_count(&nfsd_file_lru);
}
static unsigned long
nfsd_file_lru_scan(struct shrinker *s, struct shrink_control *sc)
{
LIST_HEAD(dispose);
unsigned long ret;
ret = list_lru_shrink_walk(&nfsd_file_lru, sc,
nfsd_file_lru_cb, &dispose);
trace_nfsd_file_shrinker_removed(ret, list_lru_count(&nfsd_file_lru));
nfsd_file_gc_dispose_list(&dispose);
return ret;
}
static struct shrinker nfsd_file_shrinker = {
.scan_objects = nfsd_file_lru_scan,
.count_objects = nfsd_file_lru_count,
.seeks = 1,
};
/*
* Find all cache items across all net namespaces that match @inode and
* move them to @dispose. The lookup is atomic wrt nfsd_file_acquire().
*/
static unsigned int
__nfsd_file_close_inode(struct inode *inode, struct list_head *dispose)
{
struct nfsd_file_lookup_key key = {
.type = NFSD_FILE_KEY_INODE,
.inode = inode,
};
unsigned int count = 0;
struct nfsd_file *nf;
rcu_read_lock();
do {
nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
nfsd_file_rhash_params);
if (!nf)
break;
nfsd_file_unhash_and_dispose(nf, dispose);
count++;
} while (1);
rcu_read_unlock();
return count;
}
/**
* nfsd_file_close_inode_sync - attempt to forcibly close a nfsd_file
* @inode: inode of the file to attempt to remove
*
* Unhash and put, then flush and fput all cache items associated with @inode.
*/
void
nfsd_file_close_inode_sync(struct inode *inode)
{
LIST_HEAD(dispose);
unsigned int count;
count = __nfsd_file_close_inode(inode, &dispose);
trace_nfsd_file_close_inode_sync(inode, count);
nfsd_file_dispose_list_sync(&dispose);
}
/**
* nfsd_file_close_inode - attempt a delayed close of a nfsd_file
* @inode: inode of the file to attempt to remove
*
* Unhash and put all cache item associated with @inode.
*/
static void
nfsd_file_close_inode(struct inode *inode)
{
LIST_HEAD(dispose);
unsigned int count;
count = __nfsd_file_close_inode(inode, &dispose);
trace_nfsd_file_close_inode(inode, count);
nfsd_file_dispose_list_delayed(&dispose);
}
/**
* nfsd_file_delayed_close - close unused nfsd_files
* @work: dummy
*
* Walk the LRU list and close any entries that have not been used since
* the last scan.
*/
static void
nfsd_file_delayed_close(struct work_struct *work)
{
LIST_HEAD(head);
struct nfsd_fcache_disposal *l = container_of(work,
struct nfsd_fcache_disposal, work);
nfsd_file_list_remove_disposal(&head, l);
nfsd_file_dispose_list(&head);
}
static int
nfsd_file_lease_notifier_call(struct notifier_block *nb, unsigned long arg,
void *data)
{
struct file_lock *fl = data;
/* Only close files for F_SETLEASE leases */
if (fl->fl_flags & FL_LEASE)
nfsd_file_close_inode_sync(file_inode(fl->fl_file));
return 0;
}
static struct notifier_block nfsd_file_lease_notifier = {
.notifier_call = nfsd_file_lease_notifier_call,
};
static int
nfsd_file_fsnotify_handle_event(struct fsnotify_mark *mark, u32 mask,
struct inode *inode, struct inode *dir,
const struct qstr *name, u32 cookie)
{
if (WARN_ON_ONCE(!inode))
return 0;
trace_nfsd_file_fsnotify_handle_event(inode, mask);
/* Should be no marks on non-regular files */
if (!S_ISREG(inode->i_mode)) {
WARN_ON_ONCE(1);
return 0;
}
/* don't close files if this was not the last link */
if (mask & FS_ATTRIB) {
if (inode->i_nlink)
return 0;
}
nfsd_file_close_inode(inode);
return 0;
}
static const struct fsnotify_ops nfsd_file_fsnotify_ops = {
.handle_inode_event = nfsd_file_fsnotify_handle_event,
.free_mark = nfsd_file_mark_free,
};
int
nfsd_file_cache_init(void)
{
int ret;
lockdep_assert_held(&nfsd_mutex);
if (test_and_set_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
return 0;
ret = rhashtable_init(&nfsd_file_rhash_tbl, &nfsd_file_rhash_params);
if (ret)
return ret;
ret = -ENOMEM;
nfsd_filecache_wq = alloc_workqueue("nfsd_filecache", 0, 0);
if (!nfsd_filecache_wq)
goto out;
nfsd_file_slab = kmem_cache_create("nfsd_file",
sizeof(struct nfsd_file), 0, 0, NULL);
if (!nfsd_file_slab) {
pr_err("nfsd: unable to create nfsd_file_slab\n");
goto out_err;
}
nfsd_file_mark_slab = kmem_cache_create("nfsd_file_mark",
sizeof(struct nfsd_file_mark), 0, 0, NULL);
if (!nfsd_file_mark_slab) {
pr_err("nfsd: unable to create nfsd_file_mark_slab\n");
goto out_err;
}
ret = list_lru_init(&nfsd_file_lru);
if (ret) {
pr_err("nfsd: failed to init nfsd_file_lru: %d\n", ret);
goto out_err;
}
ret = register_shrinker(&nfsd_file_shrinker, "nfsd-filecache");
if (ret) {
pr_err("nfsd: failed to register nfsd_file_shrinker: %d\n", ret);
goto out_lru;
}
ret = lease_register_notifier(&nfsd_file_lease_notifier);
if (ret) {
pr_err("nfsd: unable to register lease notifier: %d\n", ret);
goto out_shrinker;
}
nfsd_file_fsnotify_group = fsnotify_alloc_group(&nfsd_file_fsnotify_ops,
FSNOTIFY_GROUP_NOFS);
if (IS_ERR(nfsd_file_fsnotify_group)) {
pr_err("nfsd: unable to create fsnotify group: %ld\n",
PTR_ERR(nfsd_file_fsnotify_group));
ret = PTR_ERR(nfsd_file_fsnotify_group);
nfsd_file_fsnotify_group = NULL;
goto out_notifier;
}
INIT_DELAYED_WORK(&nfsd_filecache_laundrette, nfsd_file_gc_worker);
out:
return ret;
out_notifier:
lease_unregister_notifier(&nfsd_file_lease_notifier);
out_shrinker:
unregister_shrinker(&nfsd_file_shrinker);
out_lru:
list_lru_destroy(&nfsd_file_lru);
out_err:
kmem_cache_destroy(nfsd_file_slab);
nfsd_file_slab = NULL;
kmem_cache_destroy(nfsd_file_mark_slab);
nfsd_file_mark_slab = NULL;
destroy_workqueue(nfsd_filecache_wq);
nfsd_filecache_wq = NULL;
rhashtable_destroy(&nfsd_file_rhash_tbl);
goto out;
}
static void
__nfsd_file_cache_purge(struct net *net)
{
struct rhashtable_iter iter;
struct nfsd_file *nf;
LIST_HEAD(dispose);
rhashtable_walk_enter(&nfsd_file_rhash_tbl, &iter);
do {
rhashtable_walk_start(&iter);
nf = rhashtable_walk_next(&iter);
while (!IS_ERR_OR_NULL(nf)) {
if (!net || nf->nf_net == net)
nfsd_file_unhash_and_dispose(nf, &dispose);
nf = rhashtable_walk_next(&iter);
}
rhashtable_walk_stop(&iter);
} while (nf == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&iter);
nfsd_file_dispose_list(&dispose);
}
static struct nfsd_fcache_disposal *
nfsd_alloc_fcache_disposal(void)
{
struct nfsd_fcache_disposal *l;
l = kmalloc(sizeof(*l), GFP_KERNEL);
if (!l)
return NULL;
INIT_WORK(&l->work, nfsd_file_delayed_close);
spin_lock_init(&l->lock);
INIT_LIST_HEAD(&l->freeme);
return l;
}
static void
nfsd_free_fcache_disposal(struct nfsd_fcache_disposal *l)
{
cancel_work_sync(&l->work);
nfsd_file_dispose_list(&l->freeme);
kfree(l);
}
static void
nfsd_free_fcache_disposal_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd_fcache_disposal *l = nn->fcache_disposal;
nfsd_free_fcache_disposal(l);
}
int
nfsd_file_cache_start_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
nn->fcache_disposal = nfsd_alloc_fcache_disposal();
return nn->fcache_disposal ? 0 : -ENOMEM;
}
/**
* nfsd_file_cache_purge - Remove all cache items associated with @net
* @net: target net namespace
*
*/
void
nfsd_file_cache_purge(struct net *net)
{
lockdep_assert_held(&nfsd_mutex);
if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
__nfsd_file_cache_purge(net);
}
void
nfsd_file_cache_shutdown_net(struct net *net)
{
nfsd_file_cache_purge(net);
nfsd_free_fcache_disposal_net(net);
}
void
nfsd_file_cache_shutdown(void)
{
int i;
lockdep_assert_held(&nfsd_mutex);
if (test_and_clear_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 0)
return;
lease_unregister_notifier(&nfsd_file_lease_notifier);
unregister_shrinker(&nfsd_file_shrinker);
/*
* make sure all callers of nfsd_file_lru_cb are done before
* calling nfsd_file_cache_purge
*/
cancel_delayed_work_sync(&nfsd_filecache_laundrette);
__nfsd_file_cache_purge(NULL);
list_lru_destroy(&nfsd_file_lru);
rcu_barrier();
fsnotify_put_group(nfsd_file_fsnotify_group);
nfsd_file_fsnotify_group = NULL;
kmem_cache_destroy(nfsd_file_slab);
nfsd_file_slab = NULL;
fsnotify_wait_marks_destroyed();
kmem_cache_destroy(nfsd_file_mark_slab);
nfsd_file_mark_slab = NULL;
destroy_workqueue(nfsd_filecache_wq);
nfsd_filecache_wq = NULL;
rhashtable_destroy(&nfsd_file_rhash_tbl);
for_each_possible_cpu(i) {
per_cpu(nfsd_file_cache_hits, i) = 0;
per_cpu(nfsd_file_acquisitions, i) = 0;
per_cpu(nfsd_file_releases, i) = 0;
per_cpu(nfsd_file_total_age, i) = 0;
per_cpu(nfsd_file_pages_flushed, i) = 0;
per_cpu(nfsd_file_evictions, i) = 0;
}
}
/**
* nfsd_file_is_cached - are there any cached open files for this inode?
* @inode: inode to check
*
* The lookup matches inodes in all net namespaces and is atomic wrt
* nfsd_file_acquire().
*
* Return values:
* %true: filecache contains at least one file matching this inode
* %false: filecache contains no files matching this inode
*/
bool
nfsd_file_is_cached(struct inode *inode)
{
struct nfsd_file_lookup_key key = {
.type = NFSD_FILE_KEY_INODE,
.inode = inode,
};
bool ret = false;
if (rhashtable_lookup_fast(&nfsd_file_rhash_tbl, &key,
nfsd_file_rhash_params) != NULL)
ret = true;
trace_nfsd_file_is_cached(inode, (int)ret);
return ret;
}
static __be32
nfsd_file_do_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf, bool open)
{
struct nfsd_file_lookup_key key = {
.type = NFSD_FILE_KEY_FULL,
.need = may_flags & NFSD_FILE_MAY_MASK,
.net = SVC_NET(rqstp),
};
bool open_retry = true;
struct nfsd_file *nf;
__be32 status;
int ret;
status = fh_verify(rqstp, fhp, S_IFREG,
may_flags|NFSD_MAY_OWNER_OVERRIDE);
if (status != nfs_ok)
return status;
key.inode = d_inode(fhp->fh_dentry);
key.cred = get_current_cred();
retry:
rcu_read_lock();
nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
nfsd_file_rhash_params);
if (nf)
nf = nfsd_file_get(nf);
rcu_read_unlock();
if (nf)
goto wait_for_construction;
nf = nfsd_file_alloc(&key, may_flags);
if (!nf) {
status = nfserr_jukebox;
goto out_status;
}
ret = rhashtable_lookup_insert_key(&nfsd_file_rhash_tbl,
&key, &nf->nf_rhash,
nfsd_file_rhash_params);
if (likely(ret == 0))
goto open_file;
nfsd_file_slab_free(&nf->nf_rcu);
if (ret == -EEXIST)
goto retry;
trace_nfsd_file_insert_err(rqstp, key.inode, may_flags, ret);
status = nfserr_jukebox;
goto out_status;
wait_for_construction:
wait_on_bit(&nf->nf_flags, NFSD_FILE_PENDING, TASK_UNINTERRUPTIBLE);
/* Did construction of this file fail? */
if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
trace_nfsd_file_cons_err(rqstp, key.inode, may_flags, nf);
if (!open_retry) {
status = nfserr_jukebox;
goto out;
}
open_retry = false;
nfsd_file_put_noref(nf);
goto retry;
}
nfsd_file_lru_remove(nf);
this_cpu_inc(nfsd_file_cache_hits);
status = nfserrno(nfsd_open_break_lease(file_inode(nf->nf_file), may_flags));
out:
if (status == nfs_ok) {
if (open)
this_cpu_inc(nfsd_file_acquisitions);
*pnf = nf;
} else {
nfsd_file_put(nf);
nf = NULL;
}
out_status:
put_cred(key.cred);
if (open)
trace_nfsd_file_acquire(rqstp, key.inode, may_flags, nf, status);
return status;
open_file:
trace_nfsd_file_alloc(nf);
nf->nf_mark = nfsd_file_mark_find_or_create(nf, key.inode);
if (nf->nf_mark) {
if (open) {
status = nfsd_open_verified(rqstp, fhp, may_flags,
&nf->nf_file);
trace_nfsd_file_open(nf, status);
} else
status = nfs_ok;
} else
status = nfserr_jukebox;
/*
* If construction failed, or we raced with a call to unlink()
* then unhash.
*/
if (status != nfs_ok || key.inode->i_nlink == 0)
if (nfsd_file_unhash(nf))
nfsd_file_put_noref(nf);
clear_bit_unlock(NFSD_FILE_PENDING, &nf->nf_flags);
smp_mb__after_atomic();
wake_up_bit(&nf->nf_flags, NFSD_FILE_PENDING);
goto out;
}
/**
* nfsd_file_acquire - Get a struct nfsd_file with an open file
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file to be opened
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
* network byte order is returned.
*/
__be32
nfsd_file_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, fhp, may_flags, pnf, true);
}
/**
* nfsd_file_create - Get a struct nfsd_file, do not open
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file just created
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
* network byte order is returned.
*/
__be32
nfsd_file_create(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, fhp, may_flags, pnf, false);
}
/*
* Note that fields may be added, removed or reordered in the future. Programs
* scraping this file for info should test the labels to ensure they're
* getting the correct field.
*/
int nfsd_file_cache_stats_show(struct seq_file *m, void *v)
{
unsigned long releases = 0, pages_flushed = 0, evictions = 0;
unsigned long hits = 0, acquisitions = 0;
unsigned int i, count = 0, buckets = 0;
unsigned long lru = 0, total_age = 0;
/* Serialize with server shutdown */
mutex_lock(&nfsd_mutex);
if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1) {
struct bucket_table *tbl;
struct rhashtable *ht;
lru = list_lru_count(&nfsd_file_lru);
rcu_read_lock();
ht = &nfsd_file_rhash_tbl;
count = atomic_read(&ht->nelems);
tbl = rht_dereference_rcu(ht->tbl, ht);
buckets = tbl->size;
rcu_read_unlock();
}
mutex_unlock(&nfsd_mutex);
for_each_possible_cpu(i) {
hits += per_cpu(nfsd_file_cache_hits, i);
acquisitions += per_cpu(nfsd_file_acquisitions, i);
releases += per_cpu(nfsd_file_releases, i);
total_age += per_cpu(nfsd_file_total_age, i);
evictions += per_cpu(nfsd_file_evictions, i);
pages_flushed += per_cpu(nfsd_file_pages_flushed, i);
}
seq_printf(m, "total entries: %u\n", count);
seq_printf(m, "hash buckets: %u\n", buckets);
seq_printf(m, "lru entries: %lu\n", lru);
seq_printf(m, "cache hits: %lu\n", hits);
seq_printf(m, "acquisitions: %lu\n", acquisitions);
seq_printf(m, "releases: %lu\n", releases);
seq_printf(m, "evictions: %lu\n", evictions);
if (releases)
seq_printf(m, "mean age (ms): %ld\n", total_age / releases);
else
seq_printf(m, "mean age (ms): -\n");
seq_printf(m, "pages flushed: %lu\n", pages_flushed);
return 0;
}