blob: e58e9a7f7b627fa9f5160efa7fbb860cd8fd26ce [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_TYPES_H
#define _BCACHEFS_BTREE_TYPES_H
#include <linux/list.h>
#include <linux/rhashtable.h>
#include "btree_key_cache_types.h"
#include "buckets_types.h"
#include "darray.h"
#include "errcode.h"
#include "journal_types.h"
#include "replicas_types.h"
#include "six.h"
struct open_bucket;
struct btree_update;
struct btree_trans;
#define MAX_BSETS 3U
struct btree_nr_keys {
/*
* Amount of live metadata (i.e. size of node after a compaction) in
* units of u64s
*/
u16 live_u64s;
u16 bset_u64s[MAX_BSETS];
/* live keys only: */
u16 packed_keys;
u16 unpacked_keys;
};
struct bset_tree {
/*
* We construct a binary tree in an array as if the array
* started at 1, so that things line up on the same cachelines
* better: see comments in bset.c at cacheline_to_bkey() for
* details
*/
/* size of the binary tree and prev array */
u16 size;
/* function of size - precalculated for to_inorder() */
u16 extra;
u16 data_offset;
u16 aux_data_offset;
u16 end_offset;
};
struct btree_write {
struct journal_entry_pin journal;
};
struct btree_alloc {
struct open_buckets ob;
__BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX);
};
struct btree_bkey_cached_common {
struct six_lock lock;
u8 level;
u8 btree_id;
bool cached;
};
struct btree {
struct btree_bkey_cached_common c;
struct rhash_head hash;
u64 hash_val;
unsigned long flags;
u16 written;
u8 nsets;
u8 nr_key_bits;
u16 version_ondisk;
struct bkey_format format;
struct btree_node *data;
void *aux_data;
/*
* Sets of sorted keys - the real btree node - plus a binary search tree
*
* set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
* to the memory we have allocated for this btree node. Additionally,
* set[0]->data points to the entire btree node as it exists on disk.
*/
struct bset_tree set[MAX_BSETS];
struct btree_nr_keys nr;
u16 sib_u64s[2];
u16 whiteout_u64s;
u8 byte_order;
u8 unpack_fn_len;
struct btree_write writes[2];
/* Key/pointer for this btree node */
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
/*
* XXX: add a delete sequence number, so when bch2_btree_node_relock()
* fails because the lock sequence number has changed - i.e. the
* contents were modified - we can still relock the node if it's still
* the one we want, without redoing the traversal
*/
/*
* For asynchronous splits/interior node updates:
* When we do a split, we allocate new child nodes and update the parent
* node to point to them: we update the parent in memory immediately,
* but then we must wait until the children have been written out before
* the update to the parent can be written - this is a list of the
* btree_updates that are blocking this node from being
* written:
*/
struct list_head write_blocked;
/*
* Also for asynchronous splits/interior node updates:
* If a btree node isn't reachable yet, we don't want to kick off
* another write - because that write also won't yet be reachable and
* marking it as completed before it's reachable would be incorrect:
*/
unsigned long will_make_reachable;
struct open_buckets ob;
/* lru list */
struct list_head list;
};
struct btree_cache {
struct rhashtable table;
bool table_init_done;
/*
* We never free a struct btree, except on shutdown - we just put it on
* the btree_cache_freed list and reuse it later. This simplifies the
* code, and it doesn't cost us much memory as the memory usage is
* dominated by buffers that hold the actual btree node data and those
* can be freed - and the number of struct btrees allocated is
* effectively bounded.
*
* btree_cache_freeable effectively is a small cache - we use it because
* high order page allocations can be rather expensive, and it's quite
* common to delete and allocate btree nodes in quick succession. It
* should never grow past ~2-3 nodes in practice.
*/
struct mutex lock;
struct list_head live;
struct list_head freeable;
struct list_head freed_pcpu;
struct list_head freed_nonpcpu;
/* Number of elements in live + freeable lists */
unsigned used;
unsigned reserve;
atomic_t dirty;
struct shrinker *shrink;
/*
* If we need to allocate memory for a new btree node and that
* allocation fails, we can cannibalize another node in the btree cache
* to satisfy the allocation - lock to guarantee only one thread does
* this at a time:
*/
struct task_struct *alloc_lock;
struct closure_waitlist alloc_wait;
};
struct btree_node_iter {
struct btree_node_iter_set {
u16 k, end;
} data[MAX_BSETS];
};
/*
* Iterate over all possible positions, synthesizing deleted keys for holes:
*/
static const __maybe_unused u16 BTREE_ITER_SLOTS = 1 << 0;
/*
* Indicates that intent locks should be taken on leaf nodes, because we expect
* to be doing updates:
*/
static const __maybe_unused u16 BTREE_ITER_INTENT = 1 << 1;
/*
* Causes the btree iterator code to prefetch additional btree nodes from disk:
*/
static const __maybe_unused u16 BTREE_ITER_PREFETCH = 1 << 2;
/*
* Used in bch2_btree_iter_traverse(), to indicate whether we're searching for
* @pos or the first key strictly greater than @pos
*/
static const __maybe_unused u16 BTREE_ITER_IS_EXTENTS = 1 << 3;
static const __maybe_unused u16 BTREE_ITER_NOT_EXTENTS = 1 << 4;
static const __maybe_unused u16 BTREE_ITER_CACHED = 1 << 5;
static const __maybe_unused u16 BTREE_ITER_WITH_KEY_CACHE = 1 << 6;
static const __maybe_unused u16 BTREE_ITER_WITH_UPDATES = 1 << 7;
static const __maybe_unused u16 BTREE_ITER_WITH_JOURNAL = 1 << 8;
static const __maybe_unused u16 __BTREE_ITER_ALL_SNAPSHOTS = 1 << 9;
static const __maybe_unused u16 BTREE_ITER_ALL_SNAPSHOTS = 1 << 10;
static const __maybe_unused u16 BTREE_ITER_FILTER_SNAPSHOTS = 1 << 11;
static const __maybe_unused u16 BTREE_ITER_NOPRESERVE = 1 << 12;
static const __maybe_unused u16 BTREE_ITER_CACHED_NOFILL = 1 << 13;
static const __maybe_unused u16 BTREE_ITER_KEY_CACHE_FILL = 1 << 14;
#define __BTREE_ITER_FLAGS_END 15
enum btree_path_uptodate {
BTREE_ITER_UPTODATE = 0,
BTREE_ITER_NEED_RELOCK = 1,
BTREE_ITER_NEED_TRAVERSE = 2,
};
#if defined(CONFIG_BCACHEFS_LOCK_TIME_STATS) || defined(CONFIG_BCACHEFS_DEBUG)
#define TRACK_PATH_ALLOCATED
#endif
typedef u16 btree_path_idx_t;
struct btree_path {
btree_path_idx_t sorted_idx;
u8 ref;
u8 intent_ref;
/* btree_iter_copy starts here: */
struct bpos pos;
enum btree_id btree_id:5;
bool cached:1;
bool preserve:1;
enum btree_path_uptodate uptodate:2;
/*
* When true, failing to relock this path will cause the transaction to
* restart:
*/
bool should_be_locked:1;
unsigned level:3,
locks_want:3;
u8 nodes_locked;
struct btree_path_level {
struct btree *b;
struct btree_node_iter iter;
u32 lock_seq;
#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS
u64 lock_taken_time;
#endif
} l[BTREE_MAX_DEPTH];
#ifdef TRACK_PATH_ALLOCATED
unsigned long ip_allocated;
#endif
};
static inline struct btree_path_level *path_l(struct btree_path *path)
{
return path->l + path->level;
}
static inline unsigned long btree_path_ip_allocated(struct btree_path *path)
{
#ifdef TRACK_PATH_ALLOCATED
return path->ip_allocated;
#else
return _THIS_IP_;
#endif
}
/*
* @pos - iterator's current position
* @level - current btree depth
* @locks_want - btree level below which we start taking intent locks
* @nodes_locked - bitmask indicating which nodes in @nodes are locked
* @nodes_intent_locked - bitmask indicating which locks are intent locks
*/
struct btree_iter {
struct btree_trans *trans;
btree_path_idx_t path;
btree_path_idx_t update_path;
btree_path_idx_t key_cache_path;
enum btree_id btree_id:8;
u8 min_depth;
/* btree_iter_copy starts here: */
u16 flags;
/* When we're filtering by snapshot, the snapshot ID we're looking for: */
unsigned snapshot;
struct bpos pos;
/*
* Current unpacked key - so that bch2_btree_iter_next()/
* bch2_btree_iter_next_slot() can correctly advance pos.
*/
struct bkey k;
/* BTREE_ITER_WITH_JOURNAL: */
size_t journal_idx;
#ifdef TRACK_PATH_ALLOCATED
unsigned long ip_allocated;
#endif
};
#define BKEY_CACHED_ACCESSED 0
#define BKEY_CACHED_DIRTY 1
struct bkey_cached {
struct btree_bkey_cached_common c;
unsigned long flags;
u16 u64s;
bool valid;
u32 btree_trans_barrier_seq;
struct bkey_cached_key key;
struct rhash_head hash;
struct list_head list;
struct journal_entry_pin journal;
u64 seq;
struct bkey_i *k;
};
static inline struct bpos btree_node_pos(struct btree_bkey_cached_common *b)
{
return !b->cached
? container_of(b, struct btree, c)->key.k.p
: container_of(b, struct bkey_cached, c)->key.pos;
}
struct btree_insert_entry {
unsigned flags;
u8 bkey_type;
enum btree_id btree_id:8;
u8 level:4;
bool cached:1;
bool insert_trigger_run:1;
bool overwrite_trigger_run:1;
bool key_cache_already_flushed:1;
/*
* @old_k may be a key from the journal; @old_btree_u64s always refers
* to the size of the key being overwritten in the btree:
*/
u8 old_btree_u64s;
btree_path_idx_t path;
struct bkey_i *k;
/* key being overwritten: */
struct bkey old_k;
const struct bch_val *old_v;
unsigned long ip_allocated;
};
#define BTREE_ITER_INITIAL 64
#define BTREE_ITER_MAX (1U << 10)
struct btree_trans_commit_hook;
typedef int (btree_trans_commit_hook_fn)(struct btree_trans *, struct btree_trans_commit_hook *);
struct btree_trans_commit_hook {
btree_trans_commit_hook_fn *fn;
struct btree_trans_commit_hook *next;
};
#define BTREE_TRANS_MEM_MAX (1U << 16)
#define BTREE_TRANS_MAX_LOCK_HOLD_TIME_NS 10000
struct btree_trans_paths {
unsigned long nr_paths;
struct btree_path paths[];
};
struct btree_trans {
struct bch_fs *c;
unsigned long *paths_allocated;
struct btree_path *paths;
btree_path_idx_t *sorted;
struct btree_insert_entry *updates;
void *mem;
unsigned mem_top;
unsigned mem_bytes;
btree_path_idx_t nr_sorted;
btree_path_idx_t nr_paths;
btree_path_idx_t nr_paths_max;
u8 fn_idx;
u8 nr_updates;
u8 lock_must_abort;
bool lock_may_not_fail:1;
bool srcu_held:1;
bool used_mempool:1;
bool in_traverse_all:1;
bool paths_sorted:1;
bool memory_allocation_failure:1;
bool journal_transaction_names:1;
bool journal_replay_not_finished:1;
bool notrace_relock_fail:1;
bool write_locked:1;
enum bch_errcode restarted:16;
u32 restart_count;
u64 last_begin_time;
unsigned long last_begin_ip;
unsigned long last_restarted_ip;
unsigned long srcu_lock_time;
const char *fn;
struct btree_bkey_cached_common *locking;
struct six_lock_waiter locking_wait;
int srcu_idx;
/* update path: */
u16 journal_entries_u64s;
u16 journal_entries_size;
struct jset_entry *journal_entries;
struct btree_trans_commit_hook *hooks;
struct journal_entry_pin *journal_pin;
struct journal_res journal_res;
u64 *journal_seq;
struct disk_reservation *disk_res;
struct bch_fs_usage_base fs_usage_delta;
unsigned journal_u64s;
unsigned extra_disk_res; /* XXX kill */
struct replicas_delta_list *fs_usage_deltas;
/* Entries before this are zeroed out on every bch2_trans_get() call */
struct list_head list;
struct closure ref;
unsigned long _paths_allocated[BITS_TO_LONGS(BTREE_ITER_INITIAL)];
struct btree_trans_paths trans_paths;
struct btree_path _paths[BTREE_ITER_INITIAL];
btree_path_idx_t _sorted[BTREE_ITER_INITIAL + 4];
struct btree_insert_entry _updates[BTREE_ITER_INITIAL];
};
static inline struct btree_path *btree_iter_path(struct btree_trans *trans, struct btree_iter *iter)
{
return trans->paths + iter->path;
}
static inline struct btree_path *btree_iter_key_cache_path(struct btree_trans *trans, struct btree_iter *iter)
{
return iter->key_cache_path
? trans->paths + iter->key_cache_path
: NULL;
}
#define BCH_BTREE_WRITE_TYPES() \
x(initial, 0) \
x(init_next_bset, 1) \
x(cache_reclaim, 2) \
x(journal_reclaim, 3) \
x(interior, 4)
enum btree_write_type {
#define x(t, n) BTREE_WRITE_##t,
BCH_BTREE_WRITE_TYPES()
#undef x
BTREE_WRITE_TYPE_NR,
};
#define BTREE_WRITE_TYPE_MASK (roundup_pow_of_two(BTREE_WRITE_TYPE_NR) - 1)
#define BTREE_WRITE_TYPE_BITS ilog2(roundup_pow_of_two(BTREE_WRITE_TYPE_NR))
#define BTREE_FLAGS() \
x(read_in_flight) \
x(read_error) \
x(dirty) \
x(need_write) \
x(write_blocked) \
x(will_make_reachable) \
x(noevict) \
x(write_idx) \
x(accessed) \
x(write_in_flight) \
x(write_in_flight_inner) \
x(just_written) \
x(dying) \
x(fake) \
x(need_rewrite) \
x(never_write)
enum btree_flags {
/* First bits for btree node write type */
BTREE_NODE_FLAGS_START = BTREE_WRITE_TYPE_BITS - 1,
#define x(flag) BTREE_NODE_##flag,
BTREE_FLAGS()
#undef x
};
#define x(flag) \
static inline bool btree_node_ ## flag(struct btree *b) \
{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \
\
static inline void set_btree_node_ ## flag(struct btree *b) \
{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \
\
static inline void clear_btree_node_ ## flag(struct btree *b) \
{ clear_bit(BTREE_NODE_ ## flag, &b->flags); }
BTREE_FLAGS()
#undef x
static inline struct btree_write *btree_current_write(struct btree *b)
{
return b->writes + btree_node_write_idx(b);
}
static inline struct btree_write *btree_prev_write(struct btree *b)
{
return b->writes + (btree_node_write_idx(b) ^ 1);
}
static inline struct bset_tree *bset_tree_last(struct btree *b)
{
EBUG_ON(!b->nsets);
return b->set + b->nsets - 1;
}
static inline void *
__btree_node_offset_to_ptr(const struct btree *b, u16 offset)
{
return (void *) ((u64 *) b->data + 1 + offset);
}
static inline u16
__btree_node_ptr_to_offset(const struct btree *b, const void *p)
{
u16 ret = (u64 *) p - 1 - (u64 *) b->data;
EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
return ret;
}
static inline struct bset *bset(const struct btree *b,
const struct bset_tree *t)
{
return __btree_node_offset_to_ptr(b, t->data_offset);
}
static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
{
t->end_offset =
__btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
}
static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
const struct bset *i)
{
t->data_offset = __btree_node_ptr_to_offset(b, i);
set_btree_bset_end(b, t);
}
static inline struct bset *btree_bset_first(struct btree *b)
{
return bset(b, b->set);
}
static inline struct bset *btree_bset_last(struct btree *b)
{
return bset(b, bset_tree_last(b));
}
static inline u16
__btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
{
return __btree_node_ptr_to_offset(b, k);
}
static inline struct bkey_packed *
__btree_node_offset_to_key(const struct btree *b, u16 k)
{
return __btree_node_offset_to_ptr(b, k);
}
static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
{
return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
}
#define btree_bkey_first(_b, _t) \
({ \
EBUG_ON(bset(_b, _t)->start != \
__btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
\
bset(_b, _t)->start; \
})
#define btree_bkey_last(_b, _t) \
({ \
EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \
vstruct_last(bset(_b, _t))); \
\
__btree_node_offset_to_key(_b, (_t)->end_offset); \
})
static inline unsigned bset_u64s(struct bset_tree *t)
{
return t->end_offset - t->data_offset -
sizeof(struct bset) / sizeof(u64);
}
static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t)
{
return bset_u64s(t) - b->nr.bset_u64s[t - b->set];
}
static inline unsigned bset_byte_offset(struct btree *b, void *i)
{
return i - (void *) b->data;
}
enum btree_node_type {
BKEY_TYPE_btree,
#define x(kwd, val, ...) BKEY_TYPE_##kwd = val + 1,
BCH_BTREE_IDS()
#undef x
BKEY_TYPE_NR
};
/* Type of a key in btree @id at level @level: */
static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
{
return level ? BKEY_TYPE_btree : (unsigned) id + 1;
}
/* Type of keys @b contains: */
static inline enum btree_node_type btree_node_type(struct btree *b)
{
return __btree_node_type(b->c.level, b->c.btree_id);
}
const char *bch2_btree_node_type_str(enum btree_node_type);
#define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS \
(BIT_ULL(BKEY_TYPE_extents)| \
BIT_ULL(BKEY_TYPE_alloc)| \
BIT_ULL(BKEY_TYPE_inodes)| \
BIT_ULL(BKEY_TYPE_stripes)| \
BIT_ULL(BKEY_TYPE_reflink)| \
BIT_ULL(BKEY_TYPE_btree))
#define BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS \
(BIT_ULL(BKEY_TYPE_alloc)| \
BIT_ULL(BKEY_TYPE_inodes)| \
BIT_ULL(BKEY_TYPE_stripes)| \
BIT_ULL(BKEY_TYPE_snapshots))
#define BTREE_NODE_TYPE_HAS_TRIGGERS \
(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS| \
BTREE_NODE_TYPE_HAS_ATOMIC_TRIGGERS)
static inline bool btree_node_type_needs_gc(enum btree_node_type type)
{
return BTREE_NODE_TYPE_HAS_TRIGGERS & BIT_ULL(type);
}
static inline bool btree_node_type_is_extents(enum btree_node_type type)
{
const unsigned mask = 0
#define x(name, nr, flags, ...) |((!!((flags) & BTREE_ID_EXTENTS)) << (nr + 1))
BCH_BTREE_IDS()
#undef x
;
return (1U << type) & mask;
}
static inline bool btree_id_is_extents(enum btree_id btree)
{
return btree_node_type_is_extents(__btree_node_type(0, btree));
}
static inline bool btree_type_has_snapshots(enum btree_id id)
{
const unsigned mask = 0
#define x(name, nr, flags, ...) |((!!((flags) & BTREE_ID_SNAPSHOTS)) << nr)
BCH_BTREE_IDS()
#undef x
;
return (1U << id) & mask;
}
static inline bool btree_type_has_snapshot_field(enum btree_id id)
{
const unsigned mask = 0
#define x(name, nr, flags, ...) |((!!((flags) & (BTREE_ID_SNAPSHOT_FIELD|BTREE_ID_SNAPSHOTS))) << nr)
BCH_BTREE_IDS()
#undef x
;
return (1U << id) & mask;
}
static inline bool btree_type_has_ptrs(enum btree_id id)
{
const unsigned mask = 0
#define x(name, nr, flags, ...) |((!!((flags) & BTREE_ID_DATA)) << nr)
BCH_BTREE_IDS()
#undef x
;
return (1U << id) & mask;
}
struct btree_root {
struct btree *b;
/* On disk root - see async splits: */
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
u8 level;
u8 alive;
s8 error;
};
enum btree_gc_coalesce_fail_reason {
BTREE_GC_COALESCE_FAIL_RESERVE_GET,
BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
};
enum btree_node_sibling {
btree_prev_sib,
btree_next_sib,
};
#endif /* _BCACHEFS_BTREE_TYPES_H */