| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/mm/page_alloc.c |
| * |
| * Manages the free list, the system allocates free pages here. |
| * Note that kmalloc() lives in slab.c |
| * |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * Swap reorganised 29.12.95, Stephen Tweedie |
| * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
| * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 |
| * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
| * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 |
| * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 |
| * (lots of bits borrowed from Ingo Molnar & Andrew Morton) |
| */ |
| |
| #include <linux/stddef.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/interrupt.h> |
| #include <linux/jiffies.h> |
| #include <linux/compiler.h> |
| #include <linux/kernel.h> |
| #include <linux/kasan.h> |
| #include <linux/kmsan.h> |
| #include <linux/module.h> |
| #include <linux/suspend.h> |
| #include <linux/ratelimit.h> |
| #include <linux/oom.h> |
| #include <linux/topology.h> |
| #include <linux/sysctl.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/pagevec.h> |
| #include <linux/memory_hotplug.h> |
| #include <linux/nodemask.h> |
| #include <linux/vmstat.h> |
| #include <linux/fault-inject.h> |
| #include <linux/compaction.h> |
| #include <trace/events/kmem.h> |
| #include <trace/events/oom.h> |
| #include <linux/prefetch.h> |
| #include <linux/mm_inline.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/migrate.h> |
| #include <linux/sched/mm.h> |
| #include <linux/page_owner.h> |
| #include <linux/page_table_check.h> |
| #include <linux/memcontrol.h> |
| #include <linux/ftrace.h> |
| #include <linux/lockdep.h> |
| #include <linux/psi.h> |
| #include <linux/khugepaged.h> |
| #include <linux/delayacct.h> |
| #include <linux/cacheinfo.h> |
| #include <linux/pgalloc_tag.h> |
| #include <asm/div64.h> |
| #include "internal.h" |
| #include "shuffle.h" |
| #include "page_reporting.h" |
| |
| /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ |
| typedef int __bitwise fpi_t; |
| |
| /* No special request */ |
| #define FPI_NONE ((__force fpi_t)0) |
| |
| /* |
| * Skip free page reporting notification for the (possibly merged) page. |
| * This does not hinder free page reporting from grabbing the page, |
| * reporting it and marking it "reported" - it only skips notifying |
| * the free page reporting infrastructure about a newly freed page. For |
| * example, used when temporarily pulling a page from a freelist and |
| * putting it back unmodified. |
| */ |
| #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) |
| |
| /* |
| * Place the (possibly merged) page to the tail of the freelist. Will ignore |
| * page shuffling (relevant code - e.g., memory onlining - is expected to |
| * shuffle the whole zone). |
| * |
| * Note: No code should rely on this flag for correctness - it's purely |
| * to allow for optimizations when handing back either fresh pages |
| * (memory onlining) or untouched pages (page isolation, free page |
| * reporting). |
| */ |
| #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) |
| |
| /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
| static DEFINE_MUTEX(pcp_batch_high_lock); |
| #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) |
| |
| #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) |
| /* |
| * On SMP, spin_trylock is sufficient protection. |
| * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. |
| */ |
| #define pcp_trylock_prepare(flags) do { } while (0) |
| #define pcp_trylock_finish(flag) do { } while (0) |
| #else |
| |
| /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ |
| #define pcp_trylock_prepare(flags) local_irq_save(flags) |
| #define pcp_trylock_finish(flags) local_irq_restore(flags) |
| #endif |
| |
| /* |
| * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid |
| * a migration causing the wrong PCP to be locked and remote memory being |
| * potentially allocated, pin the task to the CPU for the lookup+lock. |
| * preempt_disable is used on !RT because it is faster than migrate_disable. |
| * migrate_disable is used on RT because otherwise RT spinlock usage is |
| * interfered with and a high priority task cannot preempt the allocator. |
| */ |
| #ifndef CONFIG_PREEMPT_RT |
| #define pcpu_task_pin() preempt_disable() |
| #define pcpu_task_unpin() preempt_enable() |
| #else |
| #define pcpu_task_pin() migrate_disable() |
| #define pcpu_task_unpin() migrate_enable() |
| #endif |
| |
| /* |
| * Generic helper to lookup and a per-cpu variable with an embedded spinlock. |
| * Return value should be used with equivalent unlock helper. |
| */ |
| #define pcpu_spin_lock(type, member, ptr) \ |
| ({ \ |
| type *_ret; \ |
| pcpu_task_pin(); \ |
| _ret = this_cpu_ptr(ptr); \ |
| spin_lock(&_ret->member); \ |
| _ret; \ |
| }) |
| |
| #define pcpu_spin_trylock(type, member, ptr) \ |
| ({ \ |
| type *_ret; \ |
| pcpu_task_pin(); \ |
| _ret = this_cpu_ptr(ptr); \ |
| if (!spin_trylock(&_ret->member)) { \ |
| pcpu_task_unpin(); \ |
| _ret = NULL; \ |
| } \ |
| _ret; \ |
| }) |
| |
| #define pcpu_spin_unlock(member, ptr) \ |
| ({ \ |
| spin_unlock(&ptr->member); \ |
| pcpu_task_unpin(); \ |
| }) |
| |
| /* struct per_cpu_pages specific helpers. */ |
| #define pcp_spin_lock(ptr) \ |
| pcpu_spin_lock(struct per_cpu_pages, lock, ptr) |
| |
| #define pcp_spin_trylock(ptr) \ |
| pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) |
| |
| #define pcp_spin_unlock(ptr) \ |
| pcpu_spin_unlock(lock, ptr) |
| |
| #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
| DEFINE_PER_CPU(int, numa_node); |
| EXPORT_PER_CPU_SYMBOL(numa_node); |
| #endif |
| |
| DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); |
| |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| /* |
| * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. |
| * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. |
| * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() |
| * defined in <linux/topology.h>. |
| */ |
| DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ |
| EXPORT_PER_CPU_SYMBOL(_numa_mem_); |
| #endif |
| |
| static DEFINE_MUTEX(pcpu_drain_mutex); |
| |
| #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY |
| volatile unsigned long latent_entropy __latent_entropy; |
| EXPORT_SYMBOL(latent_entropy); |
| #endif |
| |
| /* |
| * Array of node states. |
| */ |
| nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
| [N_POSSIBLE] = NODE_MASK_ALL, |
| [N_ONLINE] = { { [0] = 1UL } }, |
| #ifndef CONFIG_NUMA |
| [N_NORMAL_MEMORY] = { { [0] = 1UL } }, |
| #ifdef CONFIG_HIGHMEM |
| [N_HIGH_MEMORY] = { { [0] = 1UL } }, |
| #endif |
| [N_MEMORY] = { { [0] = 1UL } }, |
| [N_CPU] = { { [0] = 1UL } }, |
| #endif /* NUMA */ |
| }; |
| EXPORT_SYMBOL(node_states); |
| |
| gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
| |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
| unsigned int pageblock_order __read_mostly; |
| #endif |
| |
| static void __free_pages_ok(struct page *page, unsigned int order, |
| fpi_t fpi_flags); |
| |
| /* |
| * results with 256, 32 in the lowmem_reserve sysctl: |
| * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) |
| * 1G machine -> (16M dma, 784M normal, 224M high) |
| * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA |
| * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL |
| * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
| * |
| * TBD: should special case ZONE_DMA32 machines here - in those we normally |
| * don't need any ZONE_NORMAL reservation |
| */ |
| static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { |
| #ifdef CONFIG_ZONE_DMA |
| [ZONE_DMA] = 256, |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| [ZONE_DMA32] = 256, |
| #endif |
| [ZONE_NORMAL] = 32, |
| #ifdef CONFIG_HIGHMEM |
| [ZONE_HIGHMEM] = 0, |
| #endif |
| [ZONE_MOVABLE] = 0, |
| }; |
| |
| char * const zone_names[MAX_NR_ZONES] = { |
| #ifdef CONFIG_ZONE_DMA |
| "DMA", |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| "DMA32", |
| #endif |
| "Normal", |
| #ifdef CONFIG_HIGHMEM |
| "HighMem", |
| #endif |
| "Movable", |
| #ifdef CONFIG_ZONE_DEVICE |
| "Device", |
| #endif |
| }; |
| |
| const char * const migratetype_names[MIGRATE_TYPES] = { |
| "Unmovable", |
| "Movable", |
| "Reclaimable", |
| "HighAtomic", |
| #ifdef CONFIG_CMA |
| "CMA", |
| #endif |
| #ifdef CONFIG_MEMORY_ISOLATION |
| "Isolate", |
| #endif |
| }; |
| |
| int min_free_kbytes = 1024; |
| int user_min_free_kbytes = -1; |
| static int watermark_boost_factor __read_mostly = 15000; |
| static int watermark_scale_factor = 10; |
| |
| /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ |
| int movable_zone; |
| EXPORT_SYMBOL(movable_zone); |
| |
| #if MAX_NUMNODES > 1 |
| unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; |
| unsigned int nr_online_nodes __read_mostly = 1; |
| EXPORT_SYMBOL(nr_node_ids); |
| EXPORT_SYMBOL(nr_online_nodes); |
| #endif |
| |
| static bool page_contains_unaccepted(struct page *page, unsigned int order); |
| static void accept_page(struct page *page, unsigned int order); |
| static bool try_to_accept_memory(struct zone *zone, unsigned int order); |
| static inline bool has_unaccepted_memory(void); |
| static bool __free_unaccepted(struct page *page); |
| |
| int page_group_by_mobility_disabled __read_mostly; |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /* |
| * During boot we initialize deferred pages on-demand, as needed, but once |
| * page_alloc_init_late() has finished, the deferred pages are all initialized, |
| * and we can permanently disable that path. |
| */ |
| DEFINE_STATIC_KEY_TRUE(deferred_pages); |
| |
| static inline bool deferred_pages_enabled(void) |
| { |
| return static_branch_unlikely(&deferred_pages); |
| } |
| |
| /* |
| * deferred_grow_zone() is __init, but it is called from |
| * get_page_from_freelist() during early boot until deferred_pages permanently |
| * disables this call. This is why we have refdata wrapper to avoid warning, |
| * and to ensure that the function body gets unloaded. |
| */ |
| static bool __ref |
| _deferred_grow_zone(struct zone *zone, unsigned int order) |
| { |
| return deferred_grow_zone(zone, order); |
| } |
| #else |
| static inline bool deferred_pages_enabled(void) |
| { |
| return false; |
| } |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
| static inline unsigned long *get_pageblock_bitmap(const struct page *page, |
| unsigned long pfn) |
| { |
| #ifdef CONFIG_SPARSEMEM |
| return section_to_usemap(__pfn_to_section(pfn)); |
| #else |
| return page_zone(page)->pageblock_flags; |
| #endif /* CONFIG_SPARSEMEM */ |
| } |
| |
| static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) |
| { |
| #ifdef CONFIG_SPARSEMEM |
| pfn &= (PAGES_PER_SECTION-1); |
| #else |
| pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); |
| #endif /* CONFIG_SPARSEMEM */ |
| return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
| } |
| |
| /** |
| * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages |
| * @page: The page within the block of interest |
| * @pfn: The target page frame number |
| * @mask: mask of bits that the caller is interested in |
| * |
| * Return: pageblock_bits flags |
| */ |
| unsigned long get_pfnblock_flags_mask(const struct page *page, |
| unsigned long pfn, unsigned long mask) |
| { |
| unsigned long *bitmap; |
| unsigned long bitidx, word_bitidx; |
| unsigned long word; |
| |
| bitmap = get_pageblock_bitmap(page, pfn); |
| bitidx = pfn_to_bitidx(page, pfn); |
| word_bitidx = bitidx / BITS_PER_LONG; |
| bitidx &= (BITS_PER_LONG-1); |
| /* |
| * This races, without locks, with set_pfnblock_flags_mask(). Ensure |
| * a consistent read of the memory array, so that results, even though |
| * racy, are not corrupted. |
| */ |
| word = READ_ONCE(bitmap[word_bitidx]); |
| return (word >> bitidx) & mask; |
| } |
| |
| static __always_inline int get_pfnblock_migratetype(const struct page *page, |
| unsigned long pfn) |
| { |
| return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); |
| } |
| |
| /** |
| * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages |
| * @page: The page within the block of interest |
| * @flags: The flags to set |
| * @pfn: The target page frame number |
| * @mask: mask of bits that the caller is interested in |
| */ |
| void set_pfnblock_flags_mask(struct page *page, unsigned long flags, |
| unsigned long pfn, |
| unsigned long mask) |
| { |
| unsigned long *bitmap; |
| unsigned long bitidx, word_bitidx; |
| unsigned long word; |
| |
| BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); |
| BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); |
| |
| bitmap = get_pageblock_bitmap(page, pfn); |
| bitidx = pfn_to_bitidx(page, pfn); |
| word_bitidx = bitidx / BITS_PER_LONG; |
| bitidx &= (BITS_PER_LONG-1); |
| |
| VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); |
| |
| mask <<= bitidx; |
| flags <<= bitidx; |
| |
| word = READ_ONCE(bitmap[word_bitidx]); |
| do { |
| } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); |
| } |
| |
| void set_pageblock_migratetype(struct page *page, int migratetype) |
| { |
| if (unlikely(page_group_by_mobility_disabled && |
| migratetype < MIGRATE_PCPTYPES)) |
| migratetype = MIGRATE_UNMOVABLE; |
| |
| set_pfnblock_flags_mask(page, (unsigned long)migratetype, |
| page_to_pfn(page), MIGRATETYPE_MASK); |
| } |
| |
| #ifdef CONFIG_DEBUG_VM |
| static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
| { |
| int ret; |
| unsigned seq; |
| unsigned long pfn = page_to_pfn(page); |
| unsigned long sp, start_pfn; |
| |
| do { |
| seq = zone_span_seqbegin(zone); |
| start_pfn = zone->zone_start_pfn; |
| sp = zone->spanned_pages; |
| ret = !zone_spans_pfn(zone, pfn); |
| } while (zone_span_seqretry(zone, seq)); |
| |
| if (ret) |
| pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
| pfn, zone_to_nid(zone), zone->name, |
| start_pfn, start_pfn + sp); |
| |
| return ret; |
| } |
| |
| /* |
| * Temporary debugging check for pages not lying within a given zone. |
| */ |
| static bool __maybe_unused bad_range(struct zone *zone, struct page *page) |
| { |
| if (page_outside_zone_boundaries(zone, page)) |
| return true; |
| if (zone != page_zone(page)) |
| return true; |
| |
| return false; |
| } |
| #else |
| static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) |
| { |
| return false; |
| } |
| #endif |
| |
| static void bad_page(struct page *page, const char *reason) |
| { |
| static unsigned long resume; |
| static unsigned long nr_shown; |
| static unsigned long nr_unshown; |
| |
| /* |
| * Allow a burst of 60 reports, then keep quiet for that minute; |
| * or allow a steady drip of one report per second. |
| */ |
| if (nr_shown == 60) { |
| if (time_before(jiffies, resume)) { |
| nr_unshown++; |
| goto out; |
| } |
| if (nr_unshown) { |
| pr_alert( |
| "BUG: Bad page state: %lu messages suppressed\n", |
| nr_unshown); |
| nr_unshown = 0; |
| } |
| nr_shown = 0; |
| } |
| if (nr_shown++ == 0) |
| resume = jiffies + 60 * HZ; |
| |
| pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", |
| current->comm, page_to_pfn(page)); |
| dump_page(page, reason); |
| |
| print_modules(); |
| dump_stack(); |
| out: |
| /* Leave bad fields for debug, except PageBuddy could make trouble */ |
| page_mapcount_reset(page); /* remove PageBuddy */ |
| add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| } |
| |
| static inline unsigned int order_to_pindex(int migratetype, int order) |
| { |
| bool __maybe_unused movable; |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (order > PAGE_ALLOC_COSTLY_ORDER) { |
| VM_BUG_ON(order != HPAGE_PMD_ORDER); |
| |
| movable = migratetype == MIGRATE_MOVABLE; |
| |
| return NR_LOWORDER_PCP_LISTS + movable; |
| } |
| #else |
| VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); |
| #endif |
| |
| return (MIGRATE_PCPTYPES * order) + migratetype; |
| } |
| |
| static inline int pindex_to_order(unsigned int pindex) |
| { |
| int order = pindex / MIGRATE_PCPTYPES; |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (pindex >= NR_LOWORDER_PCP_LISTS) |
| order = HPAGE_PMD_ORDER; |
| #else |
| VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); |
| #endif |
| |
| return order; |
| } |
| |
| static inline bool pcp_allowed_order(unsigned int order) |
| { |
| if (order <= PAGE_ALLOC_COSTLY_ORDER) |
| return true; |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| if (order == HPAGE_PMD_ORDER) |
| return true; |
| #endif |
| return false; |
| } |
| |
| /* |
| * Higher-order pages are called "compound pages". They are structured thusly: |
| * |
| * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
| * |
| * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
| * in bit 0 of page->compound_head. The rest of bits is pointer to head page. |
| * |
| * The first tail page's ->compound_order holds the order of allocation. |
| * This usage means that zero-order pages may not be compound. |
| */ |
| |
| void prep_compound_page(struct page *page, unsigned int order) |
| { |
| int i; |
| int nr_pages = 1 << order; |
| |
| __SetPageHead(page); |
| for (i = 1; i < nr_pages; i++) |
| prep_compound_tail(page, i); |
| |
| prep_compound_head(page, order); |
| } |
| |
| static inline void set_buddy_order(struct page *page, unsigned int order) |
| { |
| set_page_private(page, order); |
| __SetPageBuddy(page); |
| } |
| |
| #ifdef CONFIG_COMPACTION |
| static inline struct capture_control *task_capc(struct zone *zone) |
| { |
| struct capture_control *capc = current->capture_control; |
| |
| return unlikely(capc) && |
| !(current->flags & PF_KTHREAD) && |
| !capc->page && |
| capc->cc->zone == zone ? capc : NULL; |
| } |
| |
| static inline bool |
| compaction_capture(struct capture_control *capc, struct page *page, |
| int order, int migratetype) |
| { |
| if (!capc || order != capc->cc->order) |
| return false; |
| |
| /* Do not accidentally pollute CMA or isolated regions*/ |
| if (is_migrate_cma(migratetype) || |
| is_migrate_isolate(migratetype)) |
| return false; |
| |
| /* |
| * Do not let lower order allocations pollute a movable pageblock |
| * unless compaction is also requesting movable pages. |
| * This might let an unmovable request use a reclaimable pageblock |
| * and vice-versa but no more than normal fallback logic which can |
| * have trouble finding a high-order free page. |
| */ |
| if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && |
| capc->cc->migratetype != MIGRATE_MOVABLE) |
| return false; |
| |
| capc->page = page; |
| return true; |
| } |
| |
| #else |
| static inline struct capture_control *task_capc(struct zone *zone) |
| { |
| return NULL; |
| } |
| |
| static inline bool |
| compaction_capture(struct capture_control *capc, struct page *page, |
| int order, int migratetype) |
| { |
| return false; |
| } |
| #endif /* CONFIG_COMPACTION */ |
| |
| static inline void account_freepages(struct zone *zone, int nr_pages, |
| int migratetype) |
| { |
| if (is_migrate_isolate(migratetype)) |
| return; |
| |
| __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); |
| |
| if (is_migrate_cma(migratetype)) |
| __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); |
| } |
| |
| /* Used for pages not on another list */ |
| static inline void __add_to_free_list(struct page *page, struct zone *zone, |
| unsigned int order, int migratetype, |
| bool tail) |
| { |
| struct free_area *area = &zone->free_area[order]; |
| |
| VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, |
| "page type is %lu, passed migratetype is %d (nr=%d)\n", |
| get_pageblock_migratetype(page), migratetype, 1 << order); |
| |
| if (tail) |
| list_add_tail(&page->buddy_list, &area->free_list[migratetype]); |
| else |
| list_add(&page->buddy_list, &area->free_list[migratetype]); |
| area->nr_free++; |
| } |
| |
| /* |
| * Used for pages which are on another list. Move the pages to the tail |
| * of the list - so the moved pages won't immediately be considered for |
| * allocation again (e.g., optimization for memory onlining). |
| */ |
| static inline void move_to_free_list(struct page *page, struct zone *zone, |
| unsigned int order, int old_mt, int new_mt) |
| { |
| struct free_area *area = &zone->free_area[order]; |
| |
| /* Free page moving can fail, so it happens before the type update */ |
| VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, |
| "page type is %lu, passed migratetype is %d (nr=%d)\n", |
| get_pageblock_migratetype(page), old_mt, 1 << order); |
| |
| list_move_tail(&page->buddy_list, &area->free_list[new_mt]); |
| |
| account_freepages(zone, -(1 << order), old_mt); |
| account_freepages(zone, 1 << order, new_mt); |
| } |
| |
| static inline void __del_page_from_free_list(struct page *page, struct zone *zone, |
| unsigned int order, int migratetype) |
| { |
| VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, |
| "page type is %lu, passed migratetype is %d (nr=%d)\n", |
| get_pageblock_migratetype(page), migratetype, 1 << order); |
| |
| /* clear reported state and update reported page count */ |
| if (page_reported(page)) |
| __ClearPageReported(page); |
| |
| list_del(&page->buddy_list); |
| __ClearPageBuddy(page); |
| set_page_private(page, 0); |
| zone->free_area[order].nr_free--; |
| } |
| |
| static inline void del_page_from_free_list(struct page *page, struct zone *zone, |
| unsigned int order, int migratetype) |
| { |
| __del_page_from_free_list(page, zone, order, migratetype); |
| account_freepages(zone, -(1 << order), migratetype); |
| } |
| |
| static inline struct page *get_page_from_free_area(struct free_area *area, |
| int migratetype) |
| { |
| return list_first_entry_or_null(&area->free_list[migratetype], |
| struct page, buddy_list); |
| } |
| |
| /* |
| * If this is not the largest possible page, check if the buddy |
| * of the next-highest order is free. If it is, it's possible |
| * that pages are being freed that will coalesce soon. In case, |
| * that is happening, add the free page to the tail of the list |
| * so it's less likely to be used soon and more likely to be merged |
| * as a higher order page |
| */ |
| static inline bool |
| buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, |
| struct page *page, unsigned int order) |
| { |
| unsigned long higher_page_pfn; |
| struct page *higher_page; |
| |
| if (order >= MAX_PAGE_ORDER - 1) |
| return false; |
| |
| higher_page_pfn = buddy_pfn & pfn; |
| higher_page = page + (higher_page_pfn - pfn); |
| |
| return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, |
| NULL) != NULL; |
| } |
| |
| /* |
| * Freeing function for a buddy system allocator. |
| * |
| * The concept of a buddy system is to maintain direct-mapped table |
| * (containing bit values) for memory blocks of various "orders". |
| * The bottom level table contains the map for the smallest allocatable |
| * units of memory (here, pages), and each level above it describes |
| * pairs of units from the levels below, hence, "buddies". |
| * At a high level, all that happens here is marking the table entry |
| * at the bottom level available, and propagating the changes upward |
| * as necessary, plus some accounting needed to play nicely with other |
| * parts of the VM system. |
| * At each level, we keep a list of pages, which are heads of continuous |
| * free pages of length of (1 << order) and marked with PageBuddy. |
| * Page's order is recorded in page_private(page) field. |
| * So when we are allocating or freeing one, we can derive the state of the |
| * other. That is, if we allocate a small block, and both were |
| * free, the remainder of the region must be split into blocks. |
| * If a block is freed, and its buddy is also free, then this |
| * triggers coalescing into a block of larger size. |
| * |
| * -- nyc |
| */ |
| |
| static inline void __free_one_page(struct page *page, |
| unsigned long pfn, |
| struct zone *zone, unsigned int order, |
| int migratetype, fpi_t fpi_flags) |
| { |
| struct capture_control *capc = task_capc(zone); |
| unsigned long buddy_pfn = 0; |
| unsigned long combined_pfn; |
| struct page *buddy; |
| bool to_tail; |
| |
| VM_BUG_ON(!zone_is_initialized(zone)); |
| VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
| |
| VM_BUG_ON(migratetype == -1); |
| VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); |
| VM_BUG_ON_PAGE(bad_range(zone, page), page); |
| |
| account_freepages(zone, 1 << order, migratetype); |
| |
| while (order < MAX_PAGE_ORDER) { |
| int buddy_mt = migratetype; |
| |
| if (compaction_capture(capc, page, order, migratetype)) { |
| account_freepages(zone, -(1 << order), migratetype); |
| return; |
| } |
| |
| buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); |
| if (!buddy) |
| goto done_merging; |
| |
| if (unlikely(order >= pageblock_order)) { |
| /* |
| * We want to prevent merge between freepages on pageblock |
| * without fallbacks and normal pageblock. Without this, |
| * pageblock isolation could cause incorrect freepage or CMA |
| * accounting or HIGHATOMIC accounting. |
| */ |
| buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); |
| |
| if (migratetype != buddy_mt && |
| (!migratetype_is_mergeable(migratetype) || |
| !migratetype_is_mergeable(buddy_mt))) |
| goto done_merging; |
| } |
| |
| /* |
| * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, |
| * merge with it and move up one order. |
| */ |
| if (page_is_guard(buddy)) |
| clear_page_guard(zone, buddy, order); |
| else |
| __del_page_from_free_list(buddy, zone, order, buddy_mt); |
| |
| if (unlikely(buddy_mt != migratetype)) { |
| /* |
| * Match buddy type. This ensures that an |
| * expand() down the line puts the sub-blocks |
| * on the right freelists. |
| */ |
| set_pageblock_migratetype(buddy, migratetype); |
| } |
| |
| combined_pfn = buddy_pfn & pfn; |
| page = page + (combined_pfn - pfn); |
| pfn = combined_pfn; |
| order++; |
| } |
| |
| done_merging: |
| set_buddy_order(page, order); |
| |
| if (fpi_flags & FPI_TO_TAIL) |
| to_tail = true; |
| else if (is_shuffle_order(order)) |
| to_tail = shuffle_pick_tail(); |
| else |
| to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); |
| |
| __add_to_free_list(page, zone, order, migratetype, to_tail); |
| |
| /* Notify page reporting subsystem of freed page */ |
| if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) |
| page_reporting_notify_free(order); |
| } |
| |
| /* |
| * A bad page could be due to a number of fields. Instead of multiple branches, |
| * try and check multiple fields with one check. The caller must do a detailed |
| * check if necessary. |
| */ |
| static inline bool page_expected_state(struct page *page, |
| unsigned long check_flags) |
| { |
| if (unlikely(atomic_read(&page->_mapcount) != -1)) |
| return false; |
| |
| if (unlikely((unsigned long)page->mapping | |
| page_ref_count(page) | |
| #ifdef CONFIG_MEMCG |
| page->memcg_data | |
| #endif |
| #ifdef CONFIG_PAGE_POOL |
| ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | |
| #endif |
| (page->flags & check_flags))) |
| return false; |
| |
| return true; |
| } |
| |
| static const char *page_bad_reason(struct page *page, unsigned long flags) |
| { |
| const char *bad_reason = NULL; |
| |
| if (unlikely(atomic_read(&page->_mapcount) != -1)) |
| bad_reason = "nonzero mapcount"; |
| if (unlikely(page->mapping != NULL)) |
| bad_reason = "non-NULL mapping"; |
| if (unlikely(page_ref_count(page) != 0)) |
| bad_reason = "nonzero _refcount"; |
| if (unlikely(page->flags & flags)) { |
| if (flags == PAGE_FLAGS_CHECK_AT_PREP) |
| bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; |
| else |
| bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; |
| } |
| #ifdef CONFIG_MEMCG |
| if (unlikely(page->memcg_data)) |
| bad_reason = "page still charged to cgroup"; |
| #endif |
| #ifdef CONFIG_PAGE_POOL |
| if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) |
| bad_reason = "page_pool leak"; |
| #endif |
| return bad_reason; |
| } |
| |
| static void free_page_is_bad_report(struct page *page) |
| { |
| bad_page(page, |
| page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); |
| } |
| |
| static inline bool free_page_is_bad(struct page *page) |
| { |
| if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) |
| return false; |
| |
| /* Something has gone sideways, find it */ |
| free_page_is_bad_report(page); |
| return true; |
| } |
| |
| static inline bool is_check_pages_enabled(void) |
| { |
| return static_branch_unlikely(&check_pages_enabled); |
| } |
| |
| static int free_tail_page_prepare(struct page *head_page, struct page *page) |
| { |
| struct folio *folio = (struct folio *)head_page; |
| int ret = 1; |
| |
| /* |
| * We rely page->lru.next never has bit 0 set, unless the page |
| * is PageTail(). Let's make sure that's true even for poisoned ->lru. |
| */ |
| BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); |
| |
| if (!is_check_pages_enabled()) { |
| ret = 0; |
| goto out; |
| } |
| switch (page - head_page) { |
| case 1: |
| /* the first tail page: these may be in place of ->mapping */ |
| if (unlikely(folio_entire_mapcount(folio))) { |
| bad_page(page, "nonzero entire_mapcount"); |
| goto out; |
| } |
| if (unlikely(folio_large_mapcount(folio))) { |
| bad_page(page, "nonzero large_mapcount"); |
| goto out; |
| } |
| if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { |
| bad_page(page, "nonzero nr_pages_mapped"); |
| goto out; |
| } |
| if (unlikely(atomic_read(&folio->_pincount))) { |
| bad_page(page, "nonzero pincount"); |
| goto out; |
| } |
| break; |
| case 2: |
| /* the second tail page: deferred_list overlaps ->mapping */ |
| if (unlikely(!list_empty(&folio->_deferred_list))) { |
| bad_page(page, "on deferred list"); |
| goto out; |
| } |
| break; |
| default: |
| if (page->mapping != TAIL_MAPPING) { |
| bad_page(page, "corrupted mapping in tail page"); |
| goto out; |
| } |
| break; |
| } |
| if (unlikely(!PageTail(page))) { |
| bad_page(page, "PageTail not set"); |
| goto out; |
| } |
| if (unlikely(compound_head(page) != head_page)) { |
| bad_page(page, "compound_head not consistent"); |
| goto out; |
| } |
| ret = 0; |
| out: |
| page->mapping = NULL; |
| clear_compound_head(page); |
| return ret; |
| } |
| |
| /* |
| * Skip KASAN memory poisoning when either: |
| * |
| * 1. For generic KASAN: deferred memory initialization has not yet completed. |
| * Tag-based KASAN modes skip pages freed via deferred memory initialization |
| * using page tags instead (see below). |
| * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating |
| * that error detection is disabled for accesses via the page address. |
| * |
| * Pages will have match-all tags in the following circumstances: |
| * |
| * 1. Pages are being initialized for the first time, including during deferred |
| * memory init; see the call to page_kasan_tag_reset in __init_single_page. |
| * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the |
| * exception of pages unpoisoned by kasan_unpoison_vmalloc. |
| * 3. The allocation was excluded from being checked due to sampling, |
| * see the call to kasan_unpoison_pages. |
| * |
| * Poisoning pages during deferred memory init will greatly lengthen the |
| * process and cause problem in large memory systems as the deferred pages |
| * initialization is done with interrupt disabled. |
| * |
| * Assuming that there will be no reference to those newly initialized |
| * pages before they are ever allocated, this should have no effect on |
| * KASAN memory tracking as the poison will be properly inserted at page |
| * allocation time. The only corner case is when pages are allocated by |
| * on-demand allocation and then freed again before the deferred pages |
| * initialization is done, but this is not likely to happen. |
| */ |
| static inline bool should_skip_kasan_poison(struct page *page) |
| { |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| return deferred_pages_enabled(); |
| |
| return page_kasan_tag(page) == KASAN_TAG_KERNEL; |
| } |
| |
| static void kernel_init_pages(struct page *page, int numpages) |
| { |
| int i; |
| |
| /* s390's use of memset() could override KASAN redzones. */ |
| kasan_disable_current(); |
| for (i = 0; i < numpages; i++) |
| clear_highpage_kasan_tagged(page + i); |
| kasan_enable_current(); |
| } |
| |
| __always_inline bool free_pages_prepare(struct page *page, |
| unsigned int order) |
| { |
| int bad = 0; |
| bool skip_kasan_poison = should_skip_kasan_poison(page); |
| bool init = want_init_on_free(); |
| bool compound = PageCompound(page); |
| |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| |
| trace_mm_page_free(page, order); |
| kmsan_free_page(page, order); |
| |
| if (memcg_kmem_online() && PageMemcgKmem(page)) |
| __memcg_kmem_uncharge_page(page, order); |
| |
| if (unlikely(PageHWPoison(page)) && !order) { |
| /* Do not let hwpoison pages hit pcplists/buddy */ |
| reset_page_owner(page, order); |
| page_table_check_free(page, order); |
| pgalloc_tag_sub(page, 1 << order); |
| return false; |
| } |
| |
| VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); |
| |
| /* |
| * Check tail pages before head page information is cleared to |
| * avoid checking PageCompound for order-0 pages. |
| */ |
| if (unlikely(order)) { |
| int i; |
| |
| if (compound) |
| page[1].flags &= ~PAGE_FLAGS_SECOND; |
| for (i = 1; i < (1 << order); i++) { |
| if (compound) |
| bad += free_tail_page_prepare(page, page + i); |
| if (is_check_pages_enabled()) { |
| if (free_page_is_bad(page + i)) { |
| bad++; |
| continue; |
| } |
| } |
| (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| } |
| } |
| if (PageMappingFlags(page)) |
| page->mapping = NULL; |
| if (is_check_pages_enabled()) { |
| if (free_page_is_bad(page)) |
| bad++; |
| if (bad) |
| return false; |
| } |
| |
| page_cpupid_reset_last(page); |
| page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| reset_page_owner(page, order); |
| page_table_check_free(page, order); |
| pgalloc_tag_sub(page, 1 << order); |
| |
| if (!PageHighMem(page)) { |
| debug_check_no_locks_freed(page_address(page), |
| PAGE_SIZE << order); |
| debug_check_no_obj_freed(page_address(page), |
| PAGE_SIZE << order); |
| } |
| |
| kernel_poison_pages(page, 1 << order); |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * KASAN poisoning and memory initialization code must be |
| * kept together to avoid discrepancies in behavior. |
| * |
| * With hardware tag-based KASAN, memory tags must be set before the |
| * page becomes unavailable via debug_pagealloc or arch_free_page. |
| */ |
| if (!skip_kasan_poison) { |
| kasan_poison_pages(page, order, init); |
| |
| /* Memory is already initialized if KASAN did it internally. */ |
| if (kasan_has_integrated_init()) |
| init = false; |
| } |
| if (init) |
| kernel_init_pages(page, 1 << order); |
| |
| /* |
| * arch_free_page() can make the page's contents inaccessible. s390 |
| * does this. So nothing which can access the page's contents should |
| * happen after this. |
| */ |
| arch_free_page(page, order); |
| |
| debug_pagealloc_unmap_pages(page, 1 << order); |
| |
| return true; |
| } |
| |
| /* |
| * Frees a number of pages from the PCP lists |
| * Assumes all pages on list are in same zone. |
| * count is the number of pages to free. |
| */ |
| static void free_pcppages_bulk(struct zone *zone, int count, |
| struct per_cpu_pages *pcp, |
| int pindex) |
| { |
| unsigned long flags; |
| unsigned int order; |
| struct page *page; |
| |
| /* |
| * Ensure proper count is passed which otherwise would stuck in the |
| * below while (list_empty(list)) loop. |
| */ |
| count = min(pcp->count, count); |
| |
| /* Ensure requested pindex is drained first. */ |
| pindex = pindex - 1; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| while (count > 0) { |
| struct list_head *list; |
| int nr_pages; |
| |
| /* Remove pages from lists in a round-robin fashion. */ |
| do { |
| if (++pindex > NR_PCP_LISTS - 1) |
| pindex = 0; |
| list = &pcp->lists[pindex]; |
| } while (list_empty(list)); |
| |
| order = pindex_to_order(pindex); |
| nr_pages = 1 << order; |
| do { |
| unsigned long pfn; |
| int mt; |
| |
| page = list_last_entry(list, struct page, pcp_list); |
| pfn = page_to_pfn(page); |
| mt = get_pfnblock_migratetype(page, pfn); |
| |
| /* must delete to avoid corrupting pcp list */ |
| list_del(&page->pcp_list); |
| count -= nr_pages; |
| pcp->count -= nr_pages; |
| |
| __free_one_page(page, pfn, zone, order, mt, FPI_NONE); |
| trace_mm_page_pcpu_drain(page, order, mt); |
| } while (count > 0 && !list_empty(list)); |
| } |
| |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| static void free_one_page(struct zone *zone, struct page *page, |
| unsigned long pfn, unsigned int order, |
| fpi_t fpi_flags) |
| { |
| unsigned long flags; |
| int migratetype; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| migratetype = get_pfnblock_migratetype(page, pfn); |
| __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| static void __free_pages_ok(struct page *page, unsigned int order, |
| fpi_t fpi_flags) |
| { |
| unsigned long pfn = page_to_pfn(page); |
| struct zone *zone = page_zone(page); |
| |
| if (!free_pages_prepare(page, order)) |
| return; |
| |
| free_one_page(zone, page, pfn, order, fpi_flags); |
| |
| __count_vm_events(PGFREE, 1 << order); |
| } |
| |
| void __free_pages_core(struct page *page, unsigned int order) |
| { |
| unsigned int nr_pages = 1 << order; |
| struct page *p = page; |
| unsigned int loop; |
| |
| /* |
| * When initializing the memmap, __init_single_page() sets the refcount |
| * of all pages to 1 ("allocated"/"not free"). We have to set the |
| * refcount of all involved pages to 0. |
| */ |
| prefetchw(p); |
| for (loop = 0; loop < (nr_pages - 1); loop++, p++) { |
| prefetchw(p + 1); |
| __ClearPageReserved(p); |
| set_page_count(p, 0); |
| } |
| __ClearPageReserved(p); |
| set_page_count(p, 0); |
| |
| atomic_long_add(nr_pages, &page_zone(page)->managed_pages); |
| |
| if (page_contains_unaccepted(page, order)) { |
| if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) |
| return; |
| |
| accept_page(page, order); |
| } |
| |
| /* |
| * Bypass PCP and place fresh pages right to the tail, primarily |
| * relevant for memory onlining. |
| */ |
| __free_pages_ok(page, order, FPI_TO_TAIL); |
| } |
| |
| /* |
| * Check that the whole (or subset of) a pageblock given by the interval of |
| * [start_pfn, end_pfn) is valid and within the same zone, before scanning it |
| * with the migration of free compaction scanner. |
| * |
| * Return struct page pointer of start_pfn, or NULL if checks were not passed. |
| * |
| * It's possible on some configurations to have a setup like node0 node1 node0 |
| * i.e. it's possible that all pages within a zones range of pages do not |
| * belong to a single zone. We assume that a border between node0 and node1 |
| * can occur within a single pageblock, but not a node0 node1 node0 |
| * interleaving within a single pageblock. It is therefore sufficient to check |
| * the first and last page of a pageblock and avoid checking each individual |
| * page in a pageblock. |
| * |
| * Note: the function may return non-NULL struct page even for a page block |
| * which contains a memory hole (i.e. there is no physical memory for a subset |
| * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which |
| * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole |
| * even though the start pfn is online and valid. This should be safe most of |
| * the time because struct pages are still initialized via init_unavailable_range() |
| * and pfn walkers shouldn't touch any physical memory range for which they do |
| * not recognize any specific metadata in struct pages. |
| */ |
| struct page *__pageblock_pfn_to_page(unsigned long start_pfn, |
| unsigned long end_pfn, struct zone *zone) |
| { |
| struct page *start_page; |
| struct page *end_page; |
| |
| /* end_pfn is one past the range we are checking */ |
| end_pfn--; |
| |
| if (!pfn_valid(end_pfn)) |
| return NULL; |
| |
| start_page = pfn_to_online_page(start_pfn); |
| if (!start_page) |
| return NULL; |
| |
| if (page_zone(start_page) != zone) |
| return NULL; |
| |
| end_page = pfn_to_page(end_pfn); |
| |
| /* This gives a shorter code than deriving page_zone(end_page) */ |
| if (page_zone_id(start_page) != page_zone_id(end_page)) |
| return NULL; |
| |
| return start_page; |
| } |
| |
| /* |
| * The order of subdivision here is critical for the IO subsystem. |
| * Please do not alter this order without good reasons and regression |
| * testing. Specifically, as large blocks of memory are subdivided, |
| * the order in which smaller blocks are delivered depends on the order |
| * they're subdivided in this function. This is the primary factor |
| * influencing the order in which pages are delivered to the IO |
| * subsystem according to empirical testing, and this is also justified |
| * by considering the behavior of a buddy system containing a single |
| * large block of memory acted on by a series of small allocations. |
| * This behavior is a critical factor in sglist merging's success. |
| * |
| * -- nyc |
| */ |
| static inline void expand(struct zone *zone, struct page *page, |
| int low, int high, int migratetype) |
| { |
| unsigned long size = 1 << high; |
| unsigned long nr_added = 0; |
| |
| while (high > low) { |
| high--; |
| size >>= 1; |
| VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
| |
| /* |
| * Mark as guard pages (or page), that will allow to |
| * merge back to allocator when buddy will be freed. |
| * Corresponding page table entries will not be touched, |
| * pages will stay not present in virtual address space |
| */ |
| if (set_page_guard(zone, &page[size], high)) |
| continue; |
| |
| __add_to_free_list(&page[size], zone, high, migratetype, false); |
| set_buddy_order(&page[size], high); |
| nr_added += size; |
| } |
| account_freepages(zone, nr_added, migratetype); |
| } |
| |
| static void check_new_page_bad(struct page *page) |
| { |
| if (unlikely(page->flags & __PG_HWPOISON)) { |
| /* Don't complain about hwpoisoned pages */ |
| page_mapcount_reset(page); /* remove PageBuddy */ |
| return; |
| } |
| |
| bad_page(page, |
| page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); |
| } |
| |
| /* |
| * This page is about to be returned from the page allocator |
| */ |
| static bool check_new_page(struct page *page) |
| { |
| if (likely(page_expected_state(page, |
| PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) |
| return false; |
| |
| check_new_page_bad(page); |
| return true; |
| } |
| |
| static inline bool check_new_pages(struct page *page, unsigned int order) |
| { |
| if (is_check_pages_enabled()) { |
| for (int i = 0; i < (1 << order); i++) { |
| struct page *p = page + i; |
| |
| if (check_new_page(p)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static inline bool should_skip_kasan_unpoison(gfp_t flags) |
| { |
| /* Don't skip if a software KASAN mode is enabled. */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC) || |
| IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| return false; |
| |
| /* Skip, if hardware tag-based KASAN is not enabled. */ |
| if (!kasan_hw_tags_enabled()) |
| return true; |
| |
| /* |
| * With hardware tag-based KASAN enabled, skip if this has been |
| * requested via __GFP_SKIP_KASAN. |
| */ |
| return flags & __GFP_SKIP_KASAN; |
| } |
| |
| static inline bool should_skip_init(gfp_t flags) |
| { |
| /* Don't skip, if hardware tag-based KASAN is not enabled. */ |
| if (!kasan_hw_tags_enabled()) |
| return false; |
| |
| /* For hardware tag-based KASAN, skip if requested. */ |
| return (flags & __GFP_SKIP_ZERO); |
| } |
| |
| inline void post_alloc_hook(struct page *page, unsigned int order, |
| gfp_t gfp_flags) |
| { |
| bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && |
| !should_skip_init(gfp_flags); |
| bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); |
| int i; |
| |
| set_page_private(page, 0); |
| set_page_refcounted(page); |
| |
| arch_alloc_page(page, order); |
| debug_pagealloc_map_pages(page, 1 << order); |
| |
| /* |
| * Page unpoisoning must happen before memory initialization. |
| * Otherwise, the poison pattern will be overwritten for __GFP_ZERO |
| * allocations and the page unpoisoning code will complain. |
| */ |
| kernel_unpoison_pages(page, 1 << order); |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * KASAN unpoisoning and memory initializion code must be |
| * kept together to avoid discrepancies in behavior. |
| */ |
| |
| /* |
| * If memory tags should be zeroed |
| * (which happens only when memory should be initialized as well). |
| */ |
| if (zero_tags) { |
| /* Initialize both memory and memory tags. */ |
| for (i = 0; i != 1 << order; ++i) |
| tag_clear_highpage(page + i); |
| |
| /* Take note that memory was initialized by the loop above. */ |
| init = false; |
| } |
| if (!should_skip_kasan_unpoison(gfp_flags) && |
| kasan_unpoison_pages(page, order, init)) { |
| /* Take note that memory was initialized by KASAN. */ |
| if (kasan_has_integrated_init()) |
| init = false; |
| } else { |
| /* |
| * If memory tags have not been set by KASAN, reset the page |
| * tags to ensure page_address() dereferencing does not fault. |
| */ |
| for (i = 0; i != 1 << order; ++i) |
| page_kasan_tag_reset(page + i); |
| } |
| /* If memory is still not initialized, initialize it now. */ |
| if (init) |
| kernel_init_pages(page, 1 << order); |
| |
| set_page_owner(page, order, gfp_flags); |
| page_table_check_alloc(page, order); |
| pgalloc_tag_add(page, current, 1 << order); |
| } |
| |
| static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
| unsigned int alloc_flags) |
| { |
| post_alloc_hook(page, order, gfp_flags); |
| |
| if (order && (gfp_flags & __GFP_COMP)) |
| prep_compound_page(page, order); |
| |
| /* |
| * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
| * allocate the page. The expectation is that the caller is taking |
| * steps that will free more memory. The caller should avoid the page |
| * being used for !PFMEMALLOC purposes. |
| */ |
| if (alloc_flags & ALLOC_NO_WATERMARKS) |
| set_page_pfmemalloc(page); |
| else |
| clear_page_pfmemalloc(page); |
| } |
| |
| /* |
| * Go through the free lists for the given migratetype and remove |
| * the smallest available page from the freelists |
| */ |
| static __always_inline |
| struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
| int migratetype) |
| { |
| unsigned int current_order; |
| struct free_area *area; |
| struct page *page; |
| |
| /* Find a page of the appropriate size in the preferred list */ |
| for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { |
| area = &(zone->free_area[current_order]); |
| page = get_page_from_free_area(area, migratetype); |
| if (!page) |
| continue; |
| del_page_from_free_list(page, zone, current_order, migratetype); |
| expand(zone, page, order, current_order, migratetype); |
| trace_mm_page_alloc_zone_locked(page, order, migratetype, |
| pcp_allowed_order(order) && |
| migratetype < MIGRATE_PCPTYPES); |
| return page; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* |
| * This array describes the order lists are fallen back to when |
| * the free lists for the desirable migrate type are depleted |
| * |
| * The other migratetypes do not have fallbacks. |
| */ |
| static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { |
| [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, |
| [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, |
| [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, |
| }; |
| |
| #ifdef CONFIG_CMA |
| static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
| unsigned int order) |
| { |
| return __rmqueue_smallest(zone, order, MIGRATE_CMA); |
| } |
| #else |
| static inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
| unsigned int order) { return NULL; } |
| #endif |
| |
| /* |
| * Change the type of a block and move all its free pages to that |
| * type's freelist. |
| */ |
| static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, |
| int old_mt, int new_mt) |
| { |
| struct page *page; |
| unsigned long pfn, end_pfn; |
| unsigned int order; |
| int pages_moved = 0; |
| |
| VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); |
| end_pfn = pageblock_end_pfn(start_pfn); |
| |
| for (pfn = start_pfn; pfn < end_pfn;) { |
| page = pfn_to_page(pfn); |
| if (!PageBuddy(page)) { |
| pfn++; |
| continue; |
| } |
| |
| /* Make sure we are not inadvertently changing nodes */ |
| VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); |
| VM_BUG_ON_PAGE(page_zone(page) != zone, page); |
| |
| order = buddy_order(page); |
| |
| move_to_free_list(page, zone, order, old_mt, new_mt); |
| |
| pfn += 1 << order; |
| pages_moved += 1 << order; |
| } |
| |
| set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); |
| |
| return pages_moved; |
| } |
| |
| static bool prep_move_freepages_block(struct zone *zone, struct page *page, |
| unsigned long *start_pfn, |
| int *num_free, int *num_movable) |
| { |
| unsigned long pfn, start, end; |
| |
| pfn = page_to_pfn(page); |
| start = pageblock_start_pfn(pfn); |
| end = pageblock_end_pfn(pfn); |
| |
| /* |
| * The caller only has the lock for @zone, don't touch ranges |
| * that straddle into other zones. While we could move part of |
| * the range that's inside the zone, this call is usually |
| * accompanied by other operations such as migratetype updates |
| * which also should be locked. |
| */ |
| if (!zone_spans_pfn(zone, start)) |
| return false; |
| if (!zone_spans_pfn(zone, end - 1)) |
| return false; |
| |
| *start_pfn = start; |
| |
| if (num_free) { |
| *num_free = 0; |
| *num_movable = 0; |
| for (pfn = start; pfn < end;) { |
| page = pfn_to_page(pfn); |
| if (PageBuddy(page)) { |
| int nr = 1 << buddy_order(page); |
| |
| *num_free += nr; |
| pfn += nr; |
| continue; |
| } |
| /* |
| * We assume that pages that could be isolated for |
| * migration are movable. But we don't actually try |
| * isolating, as that would be expensive. |
| */ |
| if (PageLRU(page) || __PageMovable(page)) |
| (*num_movable)++; |
| pfn++; |
| } |
| } |
| |
| return true; |
| } |
| |
| static int move_freepages_block(struct zone *zone, struct page *page, |
| int old_mt, int new_mt) |
| { |
| unsigned long start_pfn; |
| |
| if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) |
| return -1; |
| |
| return __move_freepages_block(zone, start_pfn, old_mt, new_mt); |
| } |
| |
| #ifdef CONFIG_MEMORY_ISOLATION |
| /* Look for a buddy that straddles start_pfn */ |
| static unsigned long find_large_buddy(unsigned long start_pfn) |
| { |
| int order = 0; |
| struct page *page; |
| unsigned long pfn = start_pfn; |
| |
| while (!PageBuddy(page = pfn_to_page(pfn))) { |
| /* Nothing found */ |
| if (++order > MAX_PAGE_ORDER) |
| return start_pfn; |
| pfn &= ~0UL << order; |
| } |
| |
| /* |
| * Found a preceding buddy, but does it straddle? |
| */ |
| if (pfn + (1 << buddy_order(page)) > start_pfn) |
| return pfn; |
| |
| /* Nothing found */ |
| return start_pfn; |
| } |
| |
| /* Split a multi-block free page into its individual pageblocks */ |
| static void split_large_buddy(struct zone *zone, struct page *page, |
| unsigned long pfn, int order) |
| { |
| unsigned long end_pfn = pfn + (1 << order); |
| |
| VM_WARN_ON_ONCE(order <= pageblock_order); |
| VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1)); |
| |
| /* Caller removed page from freelist, buddy info cleared! */ |
| VM_WARN_ON_ONCE(PageBuddy(page)); |
| |
| while (pfn != end_pfn) { |
| int mt = get_pfnblock_migratetype(page, pfn); |
| |
| __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE); |
| pfn += pageblock_nr_pages; |
| page = pfn_to_page(pfn); |
| } |
| } |
| |
| /** |
| * move_freepages_block_isolate - move free pages in block for page isolation |
| * @zone: the zone |
| * @page: the pageblock page |
| * @migratetype: migratetype to set on the pageblock |
| * |
| * This is similar to move_freepages_block(), but handles the special |
| * case encountered in page isolation, where the block of interest |
| * might be part of a larger buddy spanning multiple pageblocks. |
| * |
| * Unlike the regular page allocator path, which moves pages while |
| * stealing buddies off the freelist, page isolation is interested in |
| * arbitrary pfn ranges that may have overlapping buddies on both ends. |
| * |
| * This function handles that. Straddling buddies are split into |
| * individual pageblocks. Only the block of interest is moved. |
| * |
| * Returns %true if pages could be moved, %false otherwise. |
| */ |
| bool move_freepages_block_isolate(struct zone *zone, struct page *page, |
| int migratetype) |
| { |
| unsigned long start_pfn, pfn; |
| |
| if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) |
| return false; |
| |
| /* No splits needed if buddies can't span multiple blocks */ |
| if (pageblock_order == MAX_PAGE_ORDER) |
| goto move; |
| |
| /* We're a tail block in a larger buddy */ |
| pfn = find_large_buddy(start_pfn); |
| if (pfn != start_pfn) { |
| struct page *buddy = pfn_to_page(pfn); |
| int order = buddy_order(buddy); |
| |
| del_page_from_free_list(buddy, zone, order, |
| get_pfnblock_migratetype(buddy, pfn)); |
| set_pageblock_migratetype(page, migratetype); |
| split_large_buddy(zone, buddy, pfn, order); |
| return true; |
| } |
| |
| /* We're the starting block of a larger buddy */ |
| if (PageBuddy(page) && buddy_order(page) > pageblock_order) { |
| int order = buddy_order(page); |
| |
| del_page_from_free_list(page, zone, order, |
| get_pfnblock_migratetype(page, pfn)); |
| set_pageblock_migratetype(page, migratetype); |
| split_large_buddy(zone, page, pfn, order); |
| return true; |
| } |
| move: |
| __move_freepages_block(zone, start_pfn, |
| get_pfnblock_migratetype(page, start_pfn), |
| migratetype); |
| return true; |
| } |
| #endif /* CONFIG_MEMORY_ISOLATION */ |
| |
| static void change_pageblock_range(struct page *pageblock_page, |
| int start_order, int migratetype) |
| { |
| int nr_pageblocks = 1 << (start_order - pageblock_order); |
| |
| while (nr_pageblocks--) { |
| set_pageblock_migratetype(pageblock_page, migratetype); |
| pageblock_page += pageblock_nr_pages; |
| } |
| } |
| |
| /* |
| * When we are falling back to another migratetype during allocation, try to |
| * steal extra free pages from the same pageblocks to satisfy further |
| * allocations, instead of polluting multiple pageblocks. |
| * |
| * If we are stealing a relatively large buddy page, it is likely there will |
| * be more free pages in the pageblock, so try to steal them all. For |
| * reclaimable and unmovable allocations, we steal regardless of page size, |
| * as fragmentation caused by those allocations polluting movable pageblocks |
| * is worse than movable allocations stealing from unmovable and reclaimable |
| * pageblocks. |
| */ |
| static bool can_steal_fallback(unsigned int order, int start_mt) |
| { |
| /* |
| * Leaving this order check is intended, although there is |
| * relaxed order check in next check. The reason is that |
| * we can actually steal whole pageblock if this condition met, |
| * but, below check doesn't guarantee it and that is just heuristic |
| * so could be changed anytime. |
| */ |
| if (order >= pageblock_order) |
| return true; |
| |
| if (order >= pageblock_order / 2 || |
| start_mt == MIGRATE_RECLAIMABLE || |
| start_mt == MIGRATE_UNMOVABLE || |
| page_group_by_mobility_disabled) |
| return true; |
| |
| return false; |
| } |
| |
| static inline bool boost_watermark(struct zone *zone) |
| { |
| unsigned long max_boost; |
| |
| if (!watermark_boost_factor) |
| return false; |
| /* |
| * Don't bother in zones that are unlikely to produce results. |
| * On small machines, including kdump capture kernels running |
| * in a small area, boosting the watermark can cause an out of |
| * memory situation immediately. |
| */ |
| if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) |
| return false; |
| |
| max_boost = mult_frac(zone->_watermark[WMARK_HIGH], |
| watermark_boost_factor, 10000); |
| |
| /* |
| * high watermark may be uninitialised if fragmentation occurs |
| * very early in boot so do not boost. We do not fall |
| * through and boost by pageblock_nr_pages as failing |
| * allocations that early means that reclaim is not going |
| * to help and it may even be impossible to reclaim the |
| * boosted watermark resulting in a hang. |
| */ |
| if (!max_boost) |
| return false; |
| |
| max_boost = max(pageblock_nr_pages, max_boost); |
| |
| zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, |
| max_boost); |
| |
| return true; |
| } |
| |
| /* |
| * This function implements actual steal behaviour. If order is large enough, we |
| * can claim the whole pageblock for the requested migratetype. If not, we check |
| * the pageblock for constituent pages; if at least half of the pages are free |
| * or compatible, we can still claim the whole block, so pages freed in the |
| * future will be put on the correct free list. Otherwise, we isolate exactly |
| * the order we need from the fallback block and leave its migratetype alone. |
| */ |
| static struct page * |
| steal_suitable_fallback(struct zone *zone, struct page *page, |
| int current_order, int order, int start_type, |
| unsigned int alloc_flags, bool whole_block) |
| { |
| int free_pages, movable_pages, alike_pages; |
| unsigned long start_pfn; |
| int block_type; |
| |
| block_type = get_pageblock_migratetype(page); |
| |
| /* |
| * This can happen due to races and we want to prevent broken |
| * highatomic accounting. |
| */ |
| if (is_migrate_highatomic(block_type)) |
| goto single_page; |
| |
| /* Take ownership for orders >= pageblock_order */ |
| if (current_order >= pageblock_order) { |
| del_page_from_free_list(page, zone, current_order, block_type); |
| change_pageblock_range(page, current_order, start_type); |
| expand(zone, page, order, current_order, start_type); |
| return page; |
| } |
| |
| /* |
| * Boost watermarks to increase reclaim pressure to reduce the |
| * likelihood of future fallbacks. Wake kswapd now as the node |
| * may be balanced overall and kswapd will not wake naturally. |
| */ |
| if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) |
| set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
| |
| /* We are not allowed to try stealing from the whole block */ |
| if (!whole_block) |
| goto single_page; |
| |
| /* moving whole block can fail due to zone boundary conditions */ |
| if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, |
| &movable_pages)) |
| goto single_page; |
| |
| /* |
| * Determine how many pages are compatible with our allocation. |
| * For movable allocation, it's the number of movable pages which |
| * we just obtained. For other types it's a bit more tricky. |
| */ |
| if (start_type == MIGRATE_MOVABLE) { |
| alike_pages = movable_pages; |
| } else { |
| /* |
| * If we are falling back a RECLAIMABLE or UNMOVABLE allocation |
| * to MOVABLE pageblock, consider all non-movable pages as |
| * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or |
| * vice versa, be conservative since we can't distinguish the |
| * exact migratetype of non-movable pages. |
| */ |
| if (block_type == MIGRATE_MOVABLE) |
| alike_pages = pageblock_nr_pages |
| - (free_pages + movable_pages); |
| else |
| alike_pages = 0; |
| } |
| /* |
| * If a sufficient number of pages in the block are either free or of |
| * compatible migratability as our allocation, claim the whole block. |
| */ |
| if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || |
| page_group_by_mobility_disabled) { |
| __move_freepages_block(zone, start_pfn, block_type, start_type); |
| return __rmqueue_smallest(zone, order, start_type); |
| } |
| |
| single_page: |
| del_page_from_free_list(page, zone, current_order, block_type); |
| expand(zone, page, order, current_order, block_type); |
| return page; |
| } |
| |
| /* |
| * Check whether there is a suitable fallback freepage with requested order. |
| * If only_stealable is true, this function returns fallback_mt only if |
| * we can steal other freepages all together. This would help to reduce |
| * fragmentation due to mixed migratetype pages in one pageblock. |
| */ |
| int find_suitable_fallback(struct free_area *area, unsigned int order, |
| int migratetype, bool only_stealable, bool *can_steal) |
| { |
| int i; |
| int fallback_mt; |
| |
| if (area->nr_free == 0) |
| return -1; |
| |
| *can_steal = false; |
| for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { |
| fallback_mt = fallbacks[migratetype][i]; |
| if (free_area_empty(area, fallback_mt)) |
| continue; |
| |
| if (can_steal_fallback(order, migratetype)) |
| *can_steal = true; |
| |
| if (!only_stealable) |
| return fallback_mt; |
| |
| if (*can_steal) |
| return fallback_mt; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * Reserve the pageblock(s) surrounding an allocation request for |
| * exclusive use of high-order atomic allocations if there are no |
| * empty page blocks that contain a page with a suitable order |
| */ |
| static void reserve_highatomic_pageblock(struct page *page, int order, |
| struct zone *zone) |
| { |
| int mt; |
| unsigned long max_managed, flags; |
| |
| /* |
| * The number reserved as: minimum is 1 pageblock, maximum is |
| * roughly 1% of a zone. But if 1% of a zone falls below a |
| * pageblock size, then don't reserve any pageblocks. |
| * Check is race-prone but harmless. |
| */ |
| if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) |
| return; |
| max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); |
| if (zone->nr_reserved_highatomic >= max_managed) |
| return; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| /* Recheck the nr_reserved_highatomic limit under the lock */ |
| if (zone->nr_reserved_highatomic >= max_managed) |
| goto out_unlock; |
| |
| /* Yoink! */ |
| mt = get_pageblock_migratetype(page); |
| /* Only reserve normal pageblocks (i.e., they can merge with others) */ |
| if (!migratetype_is_mergeable(mt)) |
| goto out_unlock; |
| |
| if (order < pageblock_order) { |
| if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) |
| goto out_unlock; |
| zone->nr_reserved_highatomic += pageblock_nr_pages; |
| } else { |
| change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); |
| zone->nr_reserved_highatomic += 1 << order; |
| } |
| |
| out_unlock: |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| /* |
| * Used when an allocation is about to fail under memory pressure. This |
| * potentially hurts the reliability of high-order allocations when under |
| * intense memory pressure but failed atomic allocations should be easier |
| * to recover from than an OOM. |
| * |
| * If @force is true, try to unreserve pageblocks even though highatomic |
| * pageblock is exhausted. |
| */ |
| static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, |
| bool force) |
| { |
| struct zonelist *zonelist = ac->zonelist; |
| unsigned long flags; |
| struct zoneref *z; |
| struct zone *zone; |
| struct page *page; |
| int order; |
| int ret; |
| |
| for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, |
| ac->nodemask) { |
| /* |
| * Preserve at least one pageblock unless memory pressure |
| * is really high. |
| */ |
| if (!force && zone->nr_reserved_highatomic <= |
| pageblock_nr_pages) |
| continue; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| struct free_area *area = &(zone->free_area[order]); |
| int mt; |
| |
| page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); |
| if (!page) |
| continue; |
| |
| mt = get_pageblock_migratetype(page); |
| /* |
| * In page freeing path, migratetype change is racy so |
| * we can counter several free pages in a pageblock |
| * in this loop although we changed the pageblock type |
| * from highatomic to ac->migratetype. So we should |
| * adjust the count once. |
| */ |
| if (is_migrate_highatomic(mt)) { |
| unsigned long size; |
| /* |
| * It should never happen but changes to |
| * locking could inadvertently allow a per-cpu |
| * drain to add pages to MIGRATE_HIGHATOMIC |
| * while unreserving so be safe and watch for |
| * underflows. |
| */ |
| size = max(pageblock_nr_pages, 1UL << order); |
| size = min(size, zone->nr_reserved_highatomic); |
| zone->nr_reserved_highatomic -= size; |
| } |
| |
| /* |
| * Convert to ac->migratetype and avoid the normal |
| * pageblock stealing heuristics. Minimally, the caller |
| * is doing the work and needs the pages. More |
| * importantly, if the block was always converted to |
| * MIGRATE_UNMOVABLE or another type then the number |
| * of pageblocks that cannot be completely freed |
| * may increase. |
| */ |
| if (order < pageblock_order) |
| ret = move_freepages_block(zone, page, mt, |
| ac->migratetype); |
| else { |
| move_to_free_list(page, zone, order, mt, |
| ac->migratetype); |
| change_pageblock_range(page, order, |
| ac->migratetype); |
| ret = 1; |
| } |
| /* |
| * Reserving the block(s) already succeeded, |
| * so this should not fail on zone boundaries. |
| */ |
| WARN_ON_ONCE(ret == -1); |
| if (ret > 0) { |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return ret; |
| } |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Try finding a free buddy page on the fallback list and put it on the free |
| * list of requested migratetype, possibly along with other pages from the same |
| * block, depending on fragmentation avoidance heuristics. Returns true if |
| * fallback was found so that __rmqueue_smallest() can grab it. |
| * |
| * The use of signed ints for order and current_order is a deliberate |
| * deviation from the rest of this file, to make the for loop |
| * condition simpler. |
| */ |
| static __always_inline struct page * |
| __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, |
| unsigned int alloc_flags) |
| { |
| struct free_area *area; |
| int current_order; |
| int min_order = order; |
| struct page *page; |
| int fallback_mt; |
| bool can_steal; |
| |
| /* |
| * Do not steal pages from freelists belonging to other pageblocks |
| * i.e. orders < pageblock_order. If there are no local zones free, |
| * the zonelists will be reiterated without ALLOC_NOFRAGMENT. |
| */ |
| if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) |
| min_order = pageblock_order; |
| |
| /* |
| * Find the largest available free page in the other list. This roughly |
| * approximates finding the pageblock with the most free pages, which |
| * would be too costly to do exactly. |
| */ |
| for (current_order = MAX_PAGE_ORDER; current_order >= min_order; |
| --current_order) { |
| area = &(zone->free_area[current_order]); |
| fallback_mt = find_suitable_fallback(area, current_order, |
| start_migratetype, false, &can_steal); |
| if (fallback_mt == -1) |
| continue; |
| |
| /* |
| * We cannot steal all free pages from the pageblock and the |
| * requested migratetype is movable. In that case it's better to |
| * steal and split the smallest available page instead of the |
| * largest available page, because even if the next movable |
| * allocation falls back into a different pageblock than this |
| * one, it won't cause permanent fragmentation. |
| */ |
| if (!can_steal && start_migratetype == MIGRATE_MOVABLE |
| && current_order > order) |
| goto find_smallest; |
| |
| goto do_steal; |
| } |
| |
| return NULL; |
| |
| find_smallest: |
| for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { |
| area = &(zone->free_area[current_order]); |
| fallback_mt = find_suitable_fallback(area, current_order, |
| start_migratetype, false, &can_steal); |
| if (fallback_mt != -1) |
| break; |
| } |
| |
| /* |
| * This should not happen - we already found a suitable fallback |
| * when looking for the largest page. |
| */ |
| VM_BUG_ON(current_order > MAX_PAGE_ORDER); |
| |
| do_steal: |
| page = get_page_from_free_area(area, fallback_mt); |
| |
| /* take off list, maybe claim block, expand remainder */ |
| page = steal_suitable_fallback(zone, page, current_order, order, |
| start_migratetype, alloc_flags, can_steal); |
| |
| trace_mm_page_alloc_extfrag(page, order, current_order, |
| start_migratetype, fallback_mt); |
| |
| return page; |
| } |
| |
| /* |
| * Do the hard work of removing an element from the buddy allocator. |
| * Call me with the zone->lock already held. |
| */ |
| static __always_inline struct page * |
| __rmqueue(struct zone *zone, unsigned int order, int migratetype, |
| unsigned int alloc_flags) |
| { |
| struct page *page; |
| |
| if (IS_ENABLED(CONFIG_CMA)) { |
| /* |
| * Balance movable allocations between regular and CMA areas by |
| * allocating from CMA when over half of the zone's free memory |
| * is in the CMA area. |
| */ |
| if (alloc_flags & ALLOC_CMA && |
| zone_page_state(zone, NR_FREE_CMA_PAGES) > |
| zone_page_state(zone, NR_FREE_PAGES) / 2) { |
| page = __rmqueue_cma_fallback(zone, order); |
| if (page) |
| return page; |
| } |
| } |
| |
| page = __rmqueue_smallest(zone, order, migratetype); |
| if (unlikely(!page)) { |
| if (alloc_flags & ALLOC_CMA) |
| page = __rmqueue_cma_fallback(zone, order); |
| |
| if (!page) |
| page = __rmqueue_fallback(zone, order, migratetype, |
| alloc_flags); |
| } |
| return page; |
| } |
| |
| /* |
| * Obtain a specified number of elements from the buddy allocator, all under |
| * a single hold of the lock, for efficiency. Add them to the supplied list. |
| * Returns the number of new pages which were placed at *list. |
| */ |
| static int rmqueue_bulk(struct zone *zone, unsigned int order, |
| unsigned long count, struct list_head *list, |
| int migratetype, unsigned int alloc_flags) |
| { |
| unsigned long flags; |
| int i; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| for (i = 0; i < count; ++i) { |
| struct page *page = __rmqueue(zone, order, migratetype, |
| alloc_flags); |
| if (unlikely(page == NULL)) |
| break; |
| |
| /* |
| * Split buddy pages returned by expand() are received here in |
| * physical page order. The page is added to the tail of |
| * caller's list. From the callers perspective, the linked list |
| * is ordered by page number under some conditions. This is |
| * useful for IO devices that can forward direction from the |
| * head, thus also in the physical page order. This is useful |
| * for IO devices that can merge IO requests if the physical |
| * pages are ordered properly. |
| */ |
| list_add_tail(&page->pcp_list, list); |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| return i; |
| } |
| |
| /* |
| * Called from the vmstat counter updater to decay the PCP high. |
| * Return whether there are addition works to do. |
| */ |
| int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) |
| { |
| int high_min, to_drain, batch; |
| int todo = 0; |
| |
| high_min = READ_ONCE(pcp->high_min); |
| batch = READ_ONCE(pcp->batch); |
| /* |
| * Decrease pcp->high periodically to try to free possible |
| * idle PCP pages. And, avoid to free too many pages to |
| * control latency. This caps pcp->high decrement too. |
| */ |
| if (pcp->high > high_min) { |
| pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), |
| pcp->high - (pcp->high >> 3), high_min); |
| if (pcp->high > high_min) |
| todo++; |
| } |
| |
| to_drain = pcp->count - pcp->high; |
| if (to_drain > 0) { |
| spin_lock(&pcp->lock); |
| free_pcppages_bulk(zone, to_drain, pcp, 0); |
| spin_unlock(&pcp->lock); |
| todo++; |
| } |
| |
| return todo; |
| } |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Called from the vmstat counter updater to drain pagesets of this |
| * currently executing processor on remote nodes after they have |
| * expired. |
| */ |
| void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
| { |
| int to_drain, batch; |
| |
| batch = READ_ONCE(pcp->batch); |
| to_drain = min(pcp->count, batch); |
| if (to_drain > 0) { |
| spin_lock(&pcp->lock); |
| free_pcppages_bulk(zone, to_drain, pcp, 0); |
| spin_unlock(&pcp->lock); |
| } |
| } |
| #endif |
| |
| /* |
| * Drain pcplists of the indicated processor and zone. |
| */ |
| static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
| { |
| struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| int count = READ_ONCE(pcp->count); |
| |
| while (count) { |
| int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); |
| count -= to_drain; |
| |
| spin_lock(&pcp->lock); |
| free_pcppages_bulk(zone, to_drain, pcp, 0); |
| spin_unlock(&pcp->lock); |
| } |
| } |
| |
| /* |
| * Drain pcplists of all zones on the indicated processor. |
| */ |
| static void drain_pages(unsigned int cpu) |
| { |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) { |
| drain_pages_zone(cpu, zone); |
| } |
| } |
| |
| /* |
| * Spill all of this CPU's per-cpu pages back into the buddy allocator. |
| */ |
| void drain_local_pages(struct zone *zone) |
| { |
| int cpu = smp_processor_id(); |
| |
| if (zone) |
| drain_pages_zone(cpu, zone); |
| else |
| drain_pages(cpu); |
| } |
| |
| /* |
| * The implementation of drain_all_pages(), exposing an extra parameter to |
| * drain on all cpus. |
| * |
| * drain_all_pages() is optimized to only execute on cpus where pcplists are |
| * not empty. The check for non-emptiness can however race with a free to |
| * pcplist that has not yet increased the pcp->count from 0 to 1. Callers |
| * that need the guarantee that every CPU has drained can disable the |
| * optimizing racy check. |
| */ |
| static void __drain_all_pages(struct zone *zone, bool force_all_cpus) |
| { |
| int cpu; |
| |
| /* |
| * Allocate in the BSS so we won't require allocation in |
| * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y |
| */ |
| static cpumask_t cpus_with_pcps; |
| |
| /* |
| * Do not drain if one is already in progress unless it's specific to |
| * a zone. Such callers are primarily CMA and memory hotplug and need |
| * the drain to be complete when the call returns. |
| */ |
| if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { |
| if (!zone) |
| return; |
| mutex_lock(&pcpu_drain_mutex); |
| } |
| |
| /* |
| * We don't care about racing with CPU hotplug event |
| * as offline notification will cause the notified |
| * cpu to drain that CPU pcps and on_each_cpu_mask |
| * disables preemption as part of its processing |
| */ |
| for_each_online_cpu(cpu) { |
| struct per_cpu_pages *pcp; |
| struct zone *z; |
| bool has_pcps = false; |
| |
| if (force_all_cpus) { |
| /* |
| * The pcp.count check is racy, some callers need a |
| * guarantee that no cpu is missed. |
| */ |
| has_pcps = true; |
| } else if (zone) { |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| if (pcp->count) |
| has_pcps = true; |
| } else { |
| for_each_populated_zone(z) { |
| pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); |
| if (pcp->count) { |
| has_pcps = true; |
| break; |
| } |
| } |
| } |
| |
| if (has_pcps) |
| cpumask_set_cpu(cpu, &cpus_with_pcps); |
| else |
| cpumask_clear_cpu(cpu, &cpus_with_pcps); |
| } |
| |
| for_each_cpu(cpu, &cpus_with_pcps) { |
| if (zone) |
| drain_pages_zone(cpu, zone); |
| else |
| drain_pages(cpu); |
| } |
| |
| mutex_unlock(&pcpu_drain_mutex); |
| } |
| |
| /* |
| * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
| * |
| * When zone parameter is non-NULL, spill just the single zone's pages. |
| */ |
| void drain_all_pages(struct zone *zone) |
| { |
| __drain_all_pages(zone, false); |
| } |
| |
| static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) |
| { |
| int min_nr_free, max_nr_free; |
| |
| /* Free as much as possible if batch freeing high-order pages. */ |
| if (unlikely(free_high)) |
| return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); |
| |
| /* Check for PCP disabled or boot pageset */ |
| if (unlikely(high < batch)) |
| return 1; |
| |
| /* Leave at least pcp->batch pages on the list */ |
| min_nr_free = batch; |
| max_nr_free = high - batch; |
| |
| /* |
| * Increase the batch number to the number of the consecutive |
| * freed pages to reduce zone lock contention. |
| */ |
| batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); |
| |
| return batch; |
| } |
| |
| static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, |
| int batch, bool free_high) |
| { |
| int high, high_min, high_max; |
| |
| high_min = READ_ONCE(pcp->high_min); |
| high_max = READ_ONCE(pcp->high_max); |
| high = pcp->high = clamp(pcp->high, high_min, high_max); |
| |
| if (unlikely(!high)) |
| return 0; |
| |
| if (unlikely(free_high)) { |
| pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), |
| high_min); |
| return 0; |
| } |
| |
| /* |
| * If reclaim is active, limit the number of pages that can be |
| * stored on pcp lists |
| */ |
| if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { |
| int free_count = max_t(int, pcp->free_count, batch); |
| |
| pcp->high = max(high - free_count, high_min); |
| return min(batch << 2, pcp->high); |
| } |
| |
| if (high_min == high_max) |
| return high; |
| |
| if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { |
| int free_count = max_t(int, pcp->free_count, batch); |
| |
| pcp->high = max(high - free_count, high_min); |
| high = max(pcp->count, high_min); |
| } else if (pcp->count >= high) { |
| int need_high = pcp->free_count + batch; |
| |
| /* pcp->high should be large enough to hold batch freed pages */ |
| if (pcp->high < need_high) |
| pcp->high = clamp(need_high, high_min, high_max); |
| } |
| |
| return high; |
| } |
| |
| static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, |
| struct page *page, int migratetype, |
| unsigned int order) |
| { |
| int high, batch; |
| int pindex; |
| bool free_high = false; |
| |
| /* |
| * On freeing, reduce the number of pages that are batch allocated. |
| * See nr_pcp_alloc() where alloc_factor is increased for subsequent |
| * allocations. |
| */ |
| pcp->alloc_factor >>= 1; |
| __count_vm_events(PGFREE, 1 << order); |
| pindex = order_to_pindex(migratetype, order); |
| list_add(&page->pcp_list, &pcp->lists[pindex]); |
| pcp->count += 1 << order; |
| |
| batch = READ_ONCE(pcp->batch); |
| /* |
| * As high-order pages other than THP's stored on PCP can contribute |
| * to fragmentation, limit the number stored when PCP is heavily |
| * freeing without allocation. The remainder after bulk freeing |
| * stops will be drained from vmstat refresh context. |
| */ |
| if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { |
| free_high = (pcp->free_count >= batch && |
| (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && |
| (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || |
| pcp->count >= READ_ONCE(batch))); |
| pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; |
| } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { |
| pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; |
| } |
| if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) |
| pcp->free_count += (1 << order); |
| high = nr_pcp_high(pcp, zone, batch, free_high); |
| if (pcp->count >= high) { |
| free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), |
| pcp, pindex); |
| if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && |
| zone_watermark_ok(zone, 0, high_wmark_pages(zone), |
| ZONE_MOVABLE, 0)) |
| clear_bit(ZONE_BELOW_HIGH, &zone->flags); |
| } |
| } |
| |
| /* |
| * Free a pcp page |
| */ |
| void free_unref_page(struct page *page, unsigned int order) |
| { |
| unsigned long __maybe_unused UP_flags; |
| struct per_cpu_pages *pcp; |
| struct zone *zone; |
| unsigned long pfn = page_to_pfn(page); |
| int migratetype; |
| |
| if (!pcp_allowed_order(order)) { |
| __free_pages_ok(page, order, FPI_NONE); |
| return; |
| } |
| |
| if (!free_pages_prepare(page, order)) |
| return; |
| |
| /* |
| * We only track unmovable, reclaimable and movable on pcp lists. |
| * Place ISOLATE pages on the isolated list because they are being |
| * offlined but treat HIGHATOMIC and CMA as movable pages so we can |
| * get those areas back if necessary. Otherwise, we may have to free |
| * excessively into the page allocator |
| */ |
| migratetype = get_pfnblock_migratetype(page, pfn); |
| if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { |
| if (unlikely(is_migrate_isolate(migratetype))) { |
| free_one_page(page_zone(page), page, pfn, order, FPI_NONE); |
| return; |
| } |
| migratetype = MIGRATE_MOVABLE; |
| } |
| |
| zone = page_zone(page); |
| pcp_trylock_prepare(UP_flags); |
| pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| if (pcp) { |
| free_unref_page_commit(zone, pcp, page, migratetype, order); |
| pcp_spin_unlock(pcp); |
| } else { |
| free_one_page(zone, page, pfn, order, FPI_NONE); |
| } |
| pcp_trylock_finish(UP_flags); |
| } |
| |
| /* |
| * Free a batch of folios |
| */ |
| void free_unref_folios(struct folio_batch *folios) |
| { |
| unsigned long __maybe_unused UP_flags; |
| struct per_cpu_pages *pcp = NULL; |
| struct zone *locked_zone = NULL; |
| int i, j; |
| |
| /* Prepare folios for freeing */ |
| for (i = 0, j = 0; i < folios->nr; i++) { |
| struct folio *folio = folios->folios[i]; |
| unsigned long pfn = folio_pfn(folio); |
| unsigned int order = folio_order(folio); |
| |
| if (order > 0 && folio_test_large_rmappable(folio)) |
| folio_undo_large_rmappable(folio); |
| if (!free_pages_prepare(&folio->page, order)) |
| continue; |
| /* |
| * Free orders not handled on the PCP directly to the |
| * allocator. |
| */ |
| if (!pcp_allowed_order(order)) { |
| free_one_page(folio_zone(folio), &folio->page, |
| pfn, order, FPI_NONE); |
| continue; |
| } |
| folio->private = (void *)(unsigned long)order; |
| if (j != i) |
| folios->folios[j] = folio; |
| j++; |
| } |
| folios->nr = j; |
| |
| for (i = 0; i < folios->nr; i++) { |
| struct folio *folio = folios->folios[i]; |
| struct zone *zone = folio_zone(folio); |
| unsigned long pfn = folio_pfn(folio); |
| unsigned int order = (unsigned long)folio->private; |
| int migratetype; |
| |
| folio->private = NULL; |
| migratetype = get_pfnblock_migratetype(&folio->page, pfn); |
| |
| /* Different zone requires a different pcp lock */ |
| if (zone != locked_zone || |
| is_migrate_isolate(migratetype)) { |
| if (pcp) { |
| pcp_spin_unlock(pcp); |
| pcp_trylock_finish(UP_flags); |
| locked_zone = NULL; |
| pcp = NULL; |
| } |
| |
| /* |
| * Free isolated pages directly to the |
| * allocator, see comment in free_unref_page. |
| */ |
| if (is_migrate_isolate(migratetype)) { |
| free_one_page(zone, &folio->page, pfn, |
| order, FPI_NONE); |
| continue; |
| } |
| |
| /* |
| * trylock is necessary as folios may be getting freed |
| * from IRQ or SoftIRQ context after an IO completion. |
| */ |
| pcp_trylock_prepare(UP_flags); |
| pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| if (unlikely(!pcp)) { |
| pcp_trylock_finish(UP_flags); |
| free_one_page(zone, &folio->page, pfn, |
| order, FPI_NONE); |
| continue; |
| } |
| locked_zone = zone; |
| } |
| |
| /* |
| * Non-isolated types over MIGRATE_PCPTYPES get added |
| * to the MIGRATE_MOVABLE pcp list. |
| */ |
| if (unlikely(migratetype >= MIGRATE_PCPTYPES)) |
| migratetype = MIGRATE_MOVABLE; |
| |
| trace_mm_page_free_batched(&folio->page); |
| free_unref_page_commit(zone, pcp, &folio->page, migratetype, |
| order); |
| } |
| |
| if (pcp) { |
| pcp_spin_unlock(pcp); |
| pcp_trylock_finish(UP_flags); |
| } |
| folio_batch_reinit(folios); |
| } |
| |
| /* |
| * split_page takes a non-compound higher-order page, and splits it into |
| * n (1<<order) sub-pages: page[0..n] |
| * Each sub-page must be freed individually. |
| * |
| * Note: this is probably too low level an operation for use in drivers. |
| * Please consult with lkml before using this in your driver. |
| */ |
| void split_page(struct page *page, unsigned int order) |
| { |
| int i; |
| |
| VM_BUG_ON_PAGE(PageCompound(page), page); |
| VM_BUG_ON_PAGE(!page_count(page), page); |
| |
| for (i = 1; i < (1 << order); i++) |
| set_page_refcounted(page + i); |
| split_page_owner(page, order, 0); |
| pgalloc_tag_split(page, 1 << order); |
| split_page_memcg(page, order, 0); |
| } |
| EXPORT_SYMBOL_GPL(split_page); |
| |
| int __isolate_free_page(struct page *page, unsigned int order) |
| { |
| struct zone *zone = page_zone(page); |
| int mt = get_pageblock_migratetype(page); |
| |
| if (!is_migrate_isolate(mt)) { |
| unsigned long watermark; |
| /* |
| * Obey watermarks as if the page was being allocated. We can |
| * emulate a high-order watermark check with a raised order-0 |
| * watermark, because we already know our high-order page |
| * exists. |
| */ |
| watermark = zone->_watermark[WMARK_MIN] + (1UL << order); |
| if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) |
| return 0; |
| } |
| |
| del_page_from_free_list(page, zone, order, mt); |
| |
| /* |
| * Set the pageblock if the isolated page is at least half of a |
| * pageblock |
| */ |
| if (order >= pageblock_order - 1) { |
| struct page *endpage = page + (1 << order) - 1; |
| for (; page < endpage; page += pageblock_nr_pages) { |
| int mt = get_pageblock_migratetype(page); |
| /* |
| * Only change normal pageblocks (i.e., they can merge |
| * with others) |
| */ |
| if (migratetype_is_mergeable(mt)) |
| move_freepages_block(zone, page, mt, |
| MIGRATE_MOVABLE); |
| } |
| } |
| |
| return 1UL << order; |
| } |
| |
| /** |
| * __putback_isolated_page - Return a now-isolated page back where we got it |
| * @page: Page that was isolated |
| * @order: Order of the isolated page |
| * @mt: The page's pageblock's migratetype |
| * |
| * This function is meant to return a page pulled from the free lists via |
| * __isolate_free_page back to the free lists they were pulled from. |
| */ |
| void __putback_isolated_page(struct page *page, unsigned int order, int mt) |
| { |
| struct zone *zone = page_zone(page); |
| |
| /* zone lock should be held when this function is called */ |
| lockdep_assert_held(&zone->lock); |
| |
| /* Return isolated page to tail of freelist. */ |
| __free_one_page(page, page_to_pfn(page), zone, order, mt, |
| FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); |
| } |
| |
| /* |
| * Update NUMA hit/miss statistics |
| */ |
| static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, |
| long nr_account) |
| { |
| #ifdef CONFIG_NUMA |
| enum numa_stat_item local_stat = NUMA_LOCAL; |
| |
| /* skip numa counters update if numa stats is disabled */ |
| if (!static_branch_likely(&vm_numa_stat_key)) |
| return; |
| |
| if (zone_to_nid(z) != numa_node_id()) |
| local_stat = NUMA_OTHER; |
| |
| if (zone_to_nid(z) == zone_to_nid(preferred_zone)) |
| __count_numa_events(z, NUMA_HIT, nr_account); |
| else { |
| __count_numa_events(z, NUMA_MISS, nr_account); |
| __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); |
| } |
| __count_numa_events(z, local_stat, nr_account); |
| #endif |
| } |
| |
| static __always_inline |
| struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, |
| unsigned int order, unsigned int alloc_flags, |
| int migratetype) |
| { |
| struct page *page; |
| unsigned long flags; |
| |
| do { |
| page = NULL; |
| spin_lock_irqsave(&zone->lock, flags); |
| if (alloc_flags & ALLOC_HIGHATOMIC) |
| page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); |
| if (!page) { |
| page = __rmqueue(zone, order, migratetype, alloc_flags); |
| |
| /* |
| * If the allocation fails, allow OOM handling access |
| * to HIGHATOMIC reserves as failing now is worse than |
| * failing a high-order atomic allocation in the |
| * future. |
| */ |
| if (!page && (alloc_flags & ALLOC_OOM)) |
| page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); |
| |
| if (!page) { |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return NULL; |
| } |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } while (check_new_pages(page, order)); |
| |
| __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
| zone_statistics(preferred_zone, zone, 1); |
| |
| return page; |
| } |
| |
| static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) |
| { |
| int high, base_batch, batch, max_nr_alloc; |
| int high_max, high_min; |
| |
| base_batch = READ_ONCE(pcp->batch); |
| high_min = READ_ONCE(pcp->high_min); |
| high_max = READ_ONCE(pcp->high_max); |
| high = pcp->high = clamp(pcp->high, high_min, high_max); |
| |
| /* Check for PCP disabled or boot pageset */ |
| if (unlikely(high < base_batch)) |
| return 1; |
| |
| if (order) |
| batch = base_batch; |
| else |
| batch = (base_batch << pcp->alloc_factor); |
| |
| /* |
| * If we had larger pcp->high, we could avoid to allocate from |
| * zone. |
| */ |
| if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) |
| high = pcp->high = min(high + batch, high_max); |
| |
| if (!order) { |
| max_nr_alloc = max(high - pcp->count - base_batch, base_batch); |
| /* |
| * Double the number of pages allocated each time there is |
| * subsequent allocation of order-0 pages without any freeing. |
| */ |
| if (batch <= max_nr_alloc && |
| pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) |
| pcp->alloc_factor++; |
| batch = min(batch, max_nr_alloc); |
| } |
| |
| /* |
| * Scale batch relative to order if batch implies free pages |
| * can be stored on the PCP. Batch can be 1 for small zones or |
| * for boot pagesets which should never store free pages as |
| * the pages may belong to arbitrary zones. |
| */ |
| if (batch > 1) |
| batch = max(batch >> order, 2); |
| |
| return batch; |
| } |
| |
| /* Remove page from the per-cpu list, caller must protect the list */ |
| static inline |
| struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, |
| int migratetype, |
| unsigned int alloc_flags, |
| struct per_cpu_pages *pcp, |
| struct list_head *list) |
| { |
| struct page *page; |
| |
| do { |
| if (list_empty(list)) { |
| int batch = nr_pcp_alloc(pcp, zone, order); |
| int alloced; |
| |
| alloced = rmqueue_bulk(zone, order, |
| batch, list, |
| migratetype, alloc_flags); |
| |
| pcp->count += alloced << order; |
| if (unlikely(list_empty(list))) |
| return NULL; |
| } |
| |
| page = list_first_entry(list, struct page, pcp_list); |
| list_del(&page->pcp_list); |
| pcp->count -= 1 << order; |
| } while (check_new_pages(page, order)); |
| |
| return page; |
| } |
| |
| /* Lock and remove page from the per-cpu list */ |
| static struct page *rmqueue_pcplist(struct zone *preferred_zone, |
| struct zone *zone, unsigned int order, |
| int migratetype, unsigned int alloc_flags) |
| { |
| struct per_cpu_pages *pcp; |
| struct list_head *list; |
| struct page *page; |
| unsigned long __maybe_unused UP_flags; |
| |
| /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ |
| pcp_trylock_prepare(UP_flags); |
| pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| if (!pcp) { |
| pcp_trylock_finish(UP_flags); |
| return NULL; |
| } |
| |
| /* |
| * On allocation, reduce the number of pages that are batch freed. |
| * See nr_pcp_free() where free_factor is increased for subsequent |
| * frees. |
| */ |
| pcp->free_count >>= 1; |
| list = &pcp->lists[order_to_pindex(migratetype, order)]; |
| page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); |
| pcp_spin_unlock(pcp); |
| pcp_trylock_finish(UP_flags); |
| if (page) { |
| __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
| zone_statistics(preferred_zone, zone, 1); |
| } |
| return page; |
| } |
| |
| /* |
| * Allocate a page from the given zone. |
| * Use pcplists for THP or "cheap" high-order allocations. |
| */ |
| |
| /* |
| * Do not instrument rmqueue() with KMSAN. This function may call |
| * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). |
| * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it |
| * may call rmqueue() again, which will result in a deadlock. |
| */ |
| __no_sanitize_memory |
| static inline |
| struct page *rmqueue(struct zone *preferred_zone, |
| struct zone *zone, unsigned int order, |
| gfp_t gfp_flags, unsigned int alloc_flags, |
| int migratetype) |
| { |
| struct page *page; |
| |
| /* |
| * We most definitely don't want callers attempting to |
| * allocate greater than order-1 page units with __GFP_NOFAIL. |
| */ |
| WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); |
| |
| if (likely(pcp_allowed_order(order))) { |
| page = rmqueue_pcplist(preferred_zone, zone, order, |
| migratetype, alloc_flags); |
| if (likely(page)) |
| goto out; |
| } |
| |
| page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, |
| migratetype); |
| |
| out: |
| /* Separate test+clear to avoid unnecessary atomics */ |
| if ((alloc_flags & ALLOC_KSWAPD) && |
| unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { |
| clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
| wakeup_kswapd(zone, 0, 0, zone_idx(zone)); |
| } |
| |
| VM_BUG_ON_PAGE(page && bad_range(zone, page), page); |
| return page; |
| } |
| |
| noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
| { |
| return __should_fail_alloc_page(gfp_mask, order); |
| } |
| ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); |
| |
| static inline long __zone_watermark_unusable_free(struct zone *z, |
| unsigned int order, unsigned int alloc_flags) |
| { |
| long unusable_free = (1 << order) - 1; |
| |
| /* |
| * If the caller does not have rights to reserves below the min |
| * watermark then subtract the high-atomic reserves. This will |
| * over-estimate the size of the atomic reserve but it avoids a search. |
| */ |
| if (likely(!(alloc_flags & ALLOC_RESERVES))) |
| unusable_free += z->nr_reserved_highatomic; |
| |
| #ifdef CONFIG_CMA |
| /* If allocation can't use CMA areas don't use free CMA pages */ |
| if (!(alloc_flags & ALLOC_CMA)) |
| unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); |
| #endif |
| #ifdef CONFIG_UNACCEPTED_MEMORY |
| unusable_free += zone_page_state(z, NR_UNACCEPTED); |
| #endif |
| |
| return unusable_free; |
| } |
| |
| /* |
| * Return true if free base pages are above 'mark'. For high-order checks it |
| * will return true of the order-0 watermark is reached and there is at least |
| * one free page of a suitable size. Checking now avoids taking the zone lock |
| * to check in the allocation paths if no pages are free. |
| */ |
| bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| int highest_zoneidx, unsigned int alloc_flags, |
| long free_pages) |
| { |
| long min = mark; |
| int o; |
| |
| /* free_pages may go negative - that's OK */ |
| free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); |
| |
| if (unlikely(alloc_flags & ALLOC_RESERVES)) { |
| /* |
| * __GFP_HIGH allows access to 50% of the min reserve as well |
| * as OOM. |
| */ |
| if (alloc_flags & ALLOC_MIN_RESERVE) { |
| min -= min / 2; |
| |
| /* |
| * Non-blocking allocations (e.g. GFP_ATOMIC) can |
| * access more reserves than just __GFP_HIGH. Other |
| * non-blocking allocations requests such as GFP_NOWAIT |
| * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get |
| * access to the min reserve. |
| */ |
| if (alloc_flags & ALLOC_NON_BLOCK) |
| min -= min / 4; |
| } |
| |
| /* |
| * OOM victims can try even harder than the normal reserve |
| * users on the grounds that it's definitely going to be in |
| * the exit path shortly and free memory. Any allocation it |
| * makes during the free path will be small and short-lived. |
| */ |
| if (alloc_flags & ALLOC_OOM) |
| min -= min / 2; |
| } |
| |
| /* |
| * Check watermarks for an order-0 allocation request. If these |
| * are not met, then a high-order request also cannot go ahead |
| * even if a suitable page happened to be free. |
| */ |
| if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) |
| return false; |
| |
| /* If this is an order-0 request then the watermark is fine */ |
| if (!order) |
| return true; |
| |
| /* For a high-order request, check at least one suitable page is free */ |
| for (o = order; o < NR_PAGE_ORDERS; o++) { |
| struct free_area *area = &z->free_area[o]; |
| int mt; |
| |
| if (!area->nr_free) |
| continue; |
| |
| for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
| if (!free_area_empty(area, mt)) |
| return true; |
| } |
| |
| #ifdef CONFIG_CMA |
| if ((alloc_flags & ALLOC_CMA) && |
| !free_area_empty(area, MIGRATE_CMA)) { |
| return true; |
| } |
| #endif |
| if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && |
| !free_area_empty(area, MIGRATE_HIGHATOMIC)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| int highest_zoneidx, unsigned int alloc_flags) |
| { |
| return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
| zone_page_state(z, NR_FREE_PAGES)); |
| } |
| |
| static inline bool zone_watermark_fast(struct zone *z, unsigned int order, |
| unsigned long mark, int highest_zoneidx, |
| unsigned int alloc_flags, gfp_t gfp_mask) |
| { |
| long free_pages; |
| |
| free_pages = zone_page_state(z, NR_FREE_PAGES); |
| |
| /* |
| * Fast check for order-0 only. If this fails then the reserves |
| * need to be calculated. |
| */ |
| if (!order) { |
| long usable_free; |
| long reserved; |
| |
| usable_free = free_pages; |
| reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); |
| |
| /* reserved may over estimate high-atomic reserves. */ |
| usable_free -= min(usable_free, reserved); |
| if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) |
| return true; |
| } |
| |
| if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
| free_pages)) |
| return true; |
| |
| /* |
| * Ignore watermark boosting for __GFP_HIGH order-0 allocations |
| * when checking the min watermark. The min watermark is the |
| * point where boosting is ignored so that kswapd is woken up |
| * when below the low watermark. |
| */ |
| if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost |
| && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { |
| mark = z->_watermark[WMARK_MIN]; |
| return __zone_watermark_ok(z, order, mark, highest_zoneidx, |
| alloc_flags, free_pages); |
| } |
| |
| return false; |
| } |
| |
| bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
| unsigned long mark, int highest_zoneidx) |
| { |
| long free_pages = zone_page_state(z, NR_FREE_PAGES); |
| |
| if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) |
| free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); |
| |
| return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, |
| free_pages); |
| } |
| |
| #ifdef CONFIG_NUMA |
| int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; |
| |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
| { |
| return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= |
| node_reclaim_distance; |
| } |
| #else /* CONFIG_NUMA */ |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
| { |
| return true; |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| /* |
| * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid |
| * fragmentation is subtle. If the preferred zone was HIGHMEM then |
| * premature use of a lower zone may cause lowmem pressure problems that |
| * are worse than fragmentation. If the next zone is ZONE_DMA then it is |
| * probably too small. It only makes sense to spread allocations to avoid |
| * fragmentation between the Normal and DMA32 zones. |
| */ |
| static inline unsigned int |
| alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) |
| { |
| unsigned int alloc_flags; |
| |
| /* |
| * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD |
| * to save a branch. |
| */ |
| alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); |
| |
| #ifdef CONFIG_ZONE_DMA32 |
| if (!zone) |
| return alloc_flags; |
| |
| if (zone_idx(zone) != ZONE_NORMAL) |
| return alloc_flags; |
| |
| /* |
| * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and |
| * the pointer is within zone->zone_pgdat->node_zones[]. Also assume |
| * on UMA that if Normal is populated then so is DMA32. |
| */ |
| BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); |
| if (nr_online_nodes > 1 && !populated_zone(--zone)) |
| return alloc_flags; |
| |
| alloc_flags |= ALLOC_NOFRAGMENT; |
| #endif /* CONFIG_ZONE_DMA32 */ |
| return alloc_flags; |
| } |
| |
| /* Must be called after current_gfp_context() which can change gfp_mask */ |
| static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, |
| unsigned int alloc_flags) |
| { |
| #ifdef CONFIG_CMA |
| if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
| alloc_flags |= ALLOC_CMA; |
| #endif |
| return alloc_flags; |
| } |
| |
| /* |
| * get_page_from_freelist goes through the zonelist trying to allocate |
| * a page. |
| */ |
| static struct page * |
| get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
| const struct alloc_context *ac) |
| { |
| struct zoneref *z; |
| struct zone *zone; |
| struct pglist_data *last_pgdat = NULL; |
| bool last_pgdat_dirty_ok = false; |
| bool no_fallback; |
| |
| retry: |
| /* |
| * Scan zonelist, looking for a zone with enough free. |
| * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. |
| */ |
| no_fallback = alloc_flags & ALLOC_NOFRAGMENT; |
| z = ac->preferred_zoneref; |
| for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, |
| ac->nodemask) { |
| struct page *page; |
| unsigned long mark; |
| |
| if (cpusets_enabled() && |
| (alloc_flags & ALLOC_CPUSET) && |
| !__cpuset_zone_allowed(zone, gfp_mask)) |
| continue; |
| /* |
| * When allocating a page cache page for writing, we |
| * want to get it from a node that is within its dirty |
| * limit, such that no single node holds more than its |
| * proportional share of globally allowed dirty pages. |
| * The dirty limits take into account the node's |
| * lowmem reserves and high watermark so that kswapd |
| * should be able to balance it without having to |
| * write pages from its LRU list. |
| * |
| * XXX: For now, allow allocations to potentially |
| * exceed the per-node dirty limit in the slowpath |
| * (spread_dirty_pages unset) before going into reclaim, |
| * which is important when on a NUMA setup the allowed |
| * nodes are together not big enough to reach the |
| * global limit. The proper fix for these situations |
| * will require awareness of nodes in the |
| * dirty-throttling and the flusher threads. |
| */ |
| if (ac->spread_dirty_pages) { |
| if (last_pgdat != zone->zone_pgdat) { |
| last_pgdat = zone->zone_pgdat; |
| last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); |
| } |
| |
| if (!last_pgdat_dirty_ok) |
| continue; |
| } |
| |
| if (no_fallback && nr_online_nodes > 1 && |
| zone != ac->preferred_zoneref->zone) { |
| int local_nid; |
| |
| /* |
| * If moving to a remote node, retry but allow |
| * fragmenting fallbacks. Locality is more important |
| * than fragmentation avoidance. |
| */ |
| local_nid = zone_to_nid(ac->preferred_zoneref->zone); |
| if (zone_to_nid(zone) != local_nid) { |
| alloc_flags &= ~ALLOC_NOFRAGMENT; |
| goto retry; |
| } |
| } |
| |
| /* |
| * Detect whether the number of free pages is below high |
| * watermark. If so, we will decrease pcp->high and free |
| * PCP pages in free path to reduce the possibility of |
| * premature page reclaiming. Detection is done here to |
| * avoid to do that in hotter free path. |
| */ |
| if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) |
| goto check_alloc_wmark; |
| |
| mark = high_wmark_pages(zone); |
| if (zone_watermark_fast(zone, order, mark, |
| ac->highest_zoneidx, alloc_flags, |
| gfp_mask)) |
| goto try_this_zone; |
| else |
| set_bit(ZONE_BELOW_HIGH, &zone->flags); |
| |
| check_alloc_wmark: |
| mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); |
| if (!zone_watermark_fast(zone, order, mark, |
| ac->highest_zoneidx, alloc_flags, |
| gfp_mask)) { |
| int ret; |
| |
| if (has_unaccepted_memory()) { |
| if (try_to_accept_memory(zone, order)) |
| goto try_this_zone; |
| } |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /* |
| * Watermark failed for this zone, but see if we can |
| * grow this zone if it contains deferred pages. |
| */ |
| if (deferred_pages_enabled()) { |
| if (_deferred_grow_zone(zone, order)) |
| goto try_this_zone; |
| } |
| #endif |
| /* Checked here to keep the fast path fast */ |
| BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
| if (alloc_flags & ALLOC_NO_WATERMARKS) |
| goto try_this_zone; |
| |
| if (!node_reclaim_enabled() || |
| !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) |
| continue; |
| |
| ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); |
| switch (ret) { |
| case NODE_RECLAIM_NOSCAN: |
| /* did not scan */ |
| continue; |
| case NODE_RECLAIM_FULL: |
| /* scanned but unreclaimable */ |
| continue; |
| default: |
| /* did we reclaim enough */ |
| if (zone_watermark_ok(zone, order, mark, |
| ac->highest_zoneidx, alloc_flags)) |
| goto try_this_zone; |
| |
| continue; |
| } |
| } |
| |
| try_this_zone: |
| page = rmqueue(ac->preferred_zoneref->zone, zone, order, |
| gfp_mask, alloc_flags, ac->migratetype); |
| if (page) { |
| prep_new_page(page, order, gfp_mask, alloc_flags); |
| |
| /* |
| * If this is a high-order atomic allocation then check |
| * if the pageblock should be reserved for the future |
| */ |
| if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) |
| reserve_highatomic_pageblock(page, order, zone); |
| |
| return page; |
| } else { |
| if (has_unaccepted_memory()) { |
| if (try_to_accept_memory(zone, order)) |
| goto try_this_zone; |
| } |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /* Try again if zone has deferred pages */ |
| if (deferred_pages_enabled()) { |
| if (_deferred_grow_zone(zone, order)) |
| goto try_this_zone; |
| } |
| #endif |
| } |
| } |
| |
| /* |
| * It's possible on a UMA machine to get through all zones that are |
| * fragmented. If avoiding fragmentation, reset and try again. |
| */ |
| if (no_fallback) { |
| alloc_flags &= ~ALLOC_NOFRAGMENT; |
| goto retry; |
| } |
| |
| return NULL; |
| } |
| |
| static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) |
| { |
| unsigned int filter = SHOW_MEM_FILTER_NODES; |
| |
| /* |
| * This documents exceptions given to allocations in certain |
| * contexts that are allowed to allocate outside current's set |
| * of allowed nodes. |
| */ |
| if (!(gfp_mask & __GFP_NOMEMALLOC)) |
| if (tsk_is_oom_victim(current) || |
| (current->flags & (PF_MEMALLOC | PF_EXITING))) |
| filter &= ~SHOW_MEM_FILTER_NODES; |
| if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| filter &= ~SHOW_MEM_FILTER_NODES; |
| |
| __show_mem(filter, nodemask, gfp_zone(gfp_mask)); |
| } |
| |
| void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); |
| |
| if ((gfp_mask & __GFP_NOWARN) || |
| !__ratelimit(&nopage_rs) || |
| ((gfp_mask & __GFP_DMA) && !has_managed_dma())) |
| return; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", |
| current->comm, &vaf, gfp_mask, &gfp_mask, |
| nodemask_pr_args(nodemask)); |
| va_end(args); |
| |
| cpuset_print_current_mems_allowed(); |
| pr_cont("\n"); |
| dump_stack(); |
| warn_alloc_show_mem(gfp_mask, nodemask); |
| } |
| |
| static inline struct page * |
| __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, |
| const struct alloc_context *ac) |
| { |
| struct page *page; |
| |
| page = get_page_from_freelist(gfp_mask, order, |
| alloc_flags|ALLOC_CPUSET, ac); |
| /* |
| * fallback to ignore cpuset restriction if our nodes |
| * are depleted |
| */ |
| if (!page) |
| page = get_page_from_freelist(gfp_mask, order, |
| alloc_flags, ac); |
| |
| return page; |
| } |
| |
| static inline struct page * |
| __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, |
| const struct alloc_context *ac, unsigned long *did_some_progress) |
| { |
| struct oom_control oc = { |
| .zonelist = ac->zonelist, |
| .nodemask = ac->nodemask, |
| .memcg = NULL, |
| .gfp_mask = gfp_mask, |
| .order = order, |
| }; |
| struct page *page; |
| |
| *did_some_progress = 0; |
| |
| /* |
| * Acquire the oom lock. If that fails, somebody else is |
| * making progress for us. |
| */ |
| if (!mutex_trylock(&oom_lock)) { |
| *did_some_progress = 1; |
| schedule_timeout_uninterruptible(1); |
| return NULL; |
| } |
| |
| /* |
| * Go through the zonelist yet one more time, keep very high watermark |
| * here, this is only to catch a parallel oom killing, we must fail if |
| * we're still under heavy pressure. But make sure that this reclaim |
| * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY |
| * allocation which will never fail due to oom_lock already held. |
| */ |
| page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & |
| ~__GFP_DIRECT_RECLAIM, order, |
| ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); |
| if (page) |
| goto out; |
| |
| /* Coredumps can quickly deplete all memory reserves */ |
| if (current->flags & PF_DUMPCORE) |
| goto out; |
| /* The OOM killer will not help higher order allocs */ |
| if (order > PAGE_ALLOC_COSTLY_ORDER) |
| goto out; |
| /* |
| * We have already exhausted all our reclaim opportunities without any |
| * success so it is time to admit defeat. We will skip the OOM killer |
| * because it is very likely that the caller has a more reasonable |
| * fallback than shooting a random task. |
| * |
| * The OOM killer may not free memory on a specific node. |
| */ |
| if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) |
| goto out; |
| /* The OOM killer does not needlessly kill tasks for lowmem */ |
| if (ac->highest_zoneidx < ZONE_NORMAL) |
| goto out; |
| if (pm_suspended_storage()) |
| goto out; |
| /* |
| * XXX: GFP_NOFS allocations should rather fail than rely on |
| * other request to make a forward progress. |
| * We are in an unfortunate situation where out_of_memory cannot |
| * do much for this context but let's try it to at least get |
| * access to memory reserved if the current task is killed (see |
| * out_of_memory). Once filesystems are ready to handle allocation |
| * failures more gracefully we should just bail out here. |
| */ |
| |
| /* Exhausted what can be done so it's blame time */ |
| if (out_of_memory(&oc) || |
| WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { |
| *did_some_progress = 1; |
| |
| /* |
| * Help non-failing allocations by giving them access to memory |
| * reserves |
| */ |
| if (gfp_mask & __GFP_NOFAIL) |
| page = __alloc_pages_cpuset_fallback(gfp_mask, order, |
| ALLOC_NO_WATERMARKS, ac); |
| } |
| out: |
| mutex_unlock(&oom_lock); |
| return page; |
| } |
| |
| /* |
| * Maximum number of compaction retries with a progress before OOM |
| * killer is consider as the only way to move forward. |
| */ |
| #define MAX_COMPACT_RETRIES 16 |
| |
| #ifdef CONFIG_COMPACTION |
| /* Try memory compaction for high-order allocations before reclaim */ |
| static struct page * |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, const struct alloc_context *ac, |
| enum compact_priority prio, enum compact_result *compact_result) |
| { |
| struct page *page = NULL; |
| unsigned long pflags; |
| unsigned int noreclaim_flag; |
| |
| if (!order) |
| return NULL; |
| |
| psi_memstall_enter(&pflags); |
| delayacct_compact_start(); |
| noreclaim_flag = memalloc_noreclaim_save(); |
| |
| *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
| prio, &page); |
| |
| memalloc_noreclaim_restore(noreclaim_flag); |
| psi_memstall_leave(&pflags); |
| delayacct_compact_end(); |
| |
| if (*compact_result == COMPACT_SKIPPED) |
| return NULL; |
| /* |
| * At least in one zone compaction wasn't deferred or skipped, so let's |
| * count a compaction stall |
| */ |
| count_vm_event(COMPACTSTALL); |
| |
| /* Prep a captured page if available */ |
| if (page) |
| prep_new_page(page, order, gfp_mask, alloc_flags); |
| |
| /* Try get a page from the freelist if available */ |
| if (!page) |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| |
| if (page) { |
| struct zone *zone = page_zone(page); |
| |
| zone->compact_blockskip_flush = false; |
| compaction_defer_reset(zone, order, true); |
| count_vm_event(COMPACTSUCCESS); |
| return page; |
| } |
| |
| /* |
| * It's bad if compaction run occurs and fails. The most likely reason |
| * is that pages exist, but not enough to satisfy watermarks. |
| */ |
| count_vm_event(COMPACTFAIL); |
| |
| cond_resched(); |
| |
| return NULL; |
| } |
| |
| static inline bool |
| should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, |
| enum compact_result compact_result, |
| enum compact_priority *compact_priority, |
| int *compaction_retries) |
| { |
| int max_retries = MAX_COMPACT_RETRIES; |
| int min_priority; |
| bool ret = false; |
| int retries = *compaction_retries; |
| enum compact_priority priority = *compact_priority; |
| |
| if (!order) |
| return false; |
| |
| if (fatal_signal_pending(current)) |
| return false; |
| |
| /* |
| * Compaction was skipped due to a lack of free order-0 |
| * migration targets. Continue if reclaim can help. |
| */ |
| if (compact_result == COMPACT_SKIPPED) { |
| ret = compaction_zonelist_suitable(ac, order, alloc_flags); |
| goto out; |
| } |
| |
| /* |
| * Compaction managed to coalesce some page blocks, but the |
| * allocation failed presumably due to a race. Retry some. |
| */ |
| if (compact_result == COMPACT_SUCCESS) { |
| /* |
| * !costly requests are much more important than |
| * __GFP_RETRY_MAYFAIL costly ones because they are de |
| * facto nofail and invoke OOM killer to move on while |
| * costly can fail and users are ready to cope with |
| * that. 1/4 retries is rather arbitrary but we would |
| * need much more detailed feedback from compaction to |
| * make a better decision. |
| */ |
| if (order > PAGE_ALLOC_COSTLY_ORDER) |
| max_retries /= 4; |
| |
| if (++(*compaction_retries) <= max_retries) { |
| ret = true; |
| goto out; |
| } |
| } |
| |
| /* |
| * Compaction failed. Retry with increasing priority. |
| */ |
| min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? |
| MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; |
| |
| if (*compact_priority > min_priority) { |
| (*compact_priority)--; |
| *compaction_retries = 0; |
| ret = true; |
| } |
| out: |
| trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); |
| return ret; |
| } |
| #else |
| static inline struct page * |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, const struct alloc_context *ac, |
| enum compact_priority prio, enum compact_result *compact_result) |
| { |
| *compact_result = COMPACT_SKIPPED; |
| return NULL; |
| } |
| |
| static inline bool |
| should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, |
| enum compact_result compact_result, |
| enum compact_priority *compact_priority, |
| int *compaction_retries) |
| { |
| struct zone *zone; |
| struct zoneref *z; |
| |
| if (!order || order > PAGE_ALLOC_COSTLY_ORDER) |
| return false; |
| |
| /* |
| * There are setups with compaction disabled which would prefer to loop |
| * inside the allocator rather than hit the oom killer prematurely. |
| * Let's give them a good hope and keep retrying while the order-0 |
| * watermarks are OK. |
| */ |
| for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask) { |
| if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), |
| ac->highest_zoneidx, alloc_flags)) |
| return true; |
| } |
| return false; |
| } |
| #endif /* CONFIG_COMPACTION */ |
| |
| #ifdef CONFIG_LOCKDEP |
| static struct lockdep_map __fs_reclaim_map = |
| STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); |
| |
| static bool __need_reclaim(gfp_t gfp_mask) |
| { |
| /* no reclaim without waiting on it */ |
| if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| return false; |
| |
| /* this guy won't enter reclaim */ |
| if (current->flags & PF_MEMALLOC) |
| return false; |
| |
| if (gfp_mask & __GFP_NOLOCKDEP) |
| return false; |
| |
| return true; |
| } |
| |
| void __fs_reclaim_acquire(unsigned long ip) |
| { |
| lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); |
| } |
| |
| void __fs_reclaim_release(unsigned long ip) |
| { |
| lock_release(&__fs_reclaim_map, ip); |
| } |
| |
| void fs_reclaim_acquire(gfp_t gfp_mask) |
| { |
| gfp_mask = current_gfp_context(gfp_mask); |
| |
| if (__need_reclaim(gfp_mask)) { |
| if (gfp_mask & __GFP_FS) |
| __fs_reclaim_acquire(_RET_IP_); |
| |
| #ifdef CONFIG_MMU_NOTIFIER |
| lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); |
| lock_map_release(&__mmu_notifier_invalidate_range_start_map); |
| #endif |
| |
| } |
| } |
| EXPORT_SYMBOL_GPL(fs_reclaim_acquire); |
| |
| void fs_reclaim_release(gfp_t gfp_mask) |
| { |
| gfp_mask = current_gfp_context(gfp_mask); |
| |
| if (__need_reclaim(gfp_mask)) { |
| if (gfp_mask & __GFP_FS) |
| __fs_reclaim_release(_RET_IP_); |
| } |
| } |
| EXPORT_SYMBOL_GPL(fs_reclaim_release); |
| #endif |
| |
| /* |
| * Zonelists may change due to hotplug during allocation. Detect when zonelists |
| * have been rebuilt so allocation retries. Reader side does not lock and |
| * retries the allocation if zonelist changes. Writer side is protected by the |
| * embedded spin_lock. |
| */ |
| static DEFINE_SEQLOCK(zonelist_update_seq); |
| |
| static unsigned int zonelist_iter_begin(void) |
| { |
| if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) |
| return read_seqbegin(&zonelist_update_seq); |
| |
| return 0; |
| } |
| |
| static unsigned int check_retry_zonelist(unsigned int seq) |
| { |
| if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) |
| return read_seqretry(&zonelist_update_seq, seq); |
| |
| return seq; |
| } |
| |
| /* Perform direct synchronous page reclaim */ |
| static unsigned long |
| __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
| const struct alloc_context *ac) |
| { |
| unsigned int noreclaim_flag; |
| unsigned long progress; |
| |
| cond_resched(); |
| |
| /* We now go into synchronous reclaim */ |
| cpuset_memory_pressure_bump(); |
| fs_reclaim_acquire(gfp_mask); |
| noreclaim_flag = memalloc_noreclaim_save(); |
| |
| progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
| ac->nodemask); |
| |
| memalloc_noreclaim_restore(noreclaim_flag); |
| fs_reclaim_release(gfp_mask); |
| |
| cond_resched(); |
| |
| return progress; |
| } |
| |
| /* The really slow allocator path where we enter direct reclaim */ |
| static inline struct page * |
| __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, |
| unsigned int alloc_flags, const struct alloc_context *ac, |
| unsigned long *did_some_progress) |
| { |
| struct page *page = NULL; |
| unsigned long pflags; |
| bool drained = false; |
| |
| psi_memstall_enter(&pflags); |
| *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
| if (unlikely(!(*did_some_progress))) |
| goto out; |
| |
| retry: |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| |
| /* |
| * If an allocation failed after direct reclaim, it could be because |
| * pages are pinned on the per-cpu lists or in high alloc reserves. |
| * Shrink them and try again |
| */ |
| if (!page && !drained) { |
| unreserve_highatomic_pageblock(ac, false); |
| drain_all_pages(NULL); |
| drained = true; |
| goto retry; |
| } |
| out: |
| psi_memstall_leave(&pflags); |
| |
| return page; |
| } |
| |
| static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, |
| const struct alloc_context *ac) |
| { |
| struct zoneref *z; |
| struct zone *zone; |
| pg_data_t *last_pgdat = NULL; |
| enum zone_type highest_zoneidx = ac->highest_zoneidx; |
| |
| for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, |
| ac->nodemask) { |
| if (!managed_zone(zone)) |
| continue; |
| if (last_pgdat != zone->zone_pgdat) { |
| wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); |
| last_pgdat = zone->zone_pgdat; |
| } |
| } |
| } |
| |
| static inline unsigned int |
| gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) |
| { |
| unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
| |
| /* |
| * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE |
| * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD |
| * to save two branches. |
| */ |
| BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); |
| BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); |
| |
| /* |
| * The caller may dip into page reserves a bit more if the caller |
| * cannot run direct reclaim, or if the caller has realtime scheduling |
| * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will |
| * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). |
| */ |
| alloc_flags |= (__force int) |
| (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); |
| |
| if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { |
| /* |
| * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
| * if it can't schedule. |
| */ |
| if (!(gfp_mask & __GFP_NOMEMALLOC)) { |
| alloc_flags |= ALLOC_NON_BLOCK; |
| |
| if (order > 0) |
| alloc_flags |= ALLOC_HIGHATOMIC; |
| } |
| |
| /* |
| * Ignore cpuset mems for non-blocking __GFP_HIGH (probably |
| * GFP_ATOMIC) rather than fail, see the comment for |
| * cpuset_node_allowed(). |
| */ |
| if (alloc_flags & ALLOC_MIN_RESERVE) |
| alloc_flags &= ~ALLOC_CPUSET; |
| } else if (unlikely(rt_task(current)) && in_task()) |
| alloc_flags |= ALLOC_MIN_RESERVE; |
| |
| alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); |
| |
| return alloc_flags; |
| } |
| |
| static bool oom_reserves_allowed(struct task_struct *tsk) |
| { |
| if (!tsk_is_oom_victim(tsk)) |
| return false; |
| |
| /* |
| * !MMU doesn't have oom reaper so give access to memory reserves |
| * only to the thread with TIF_MEMDIE set |
| */ |
| if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Distinguish requests which really need access to full memory |
| * reserves from oom victims which can live with a portion of it |
| */ |
| static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) |
| { |
| if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) |
| return 0; |
| if (gfp_mask & __GFP_MEMALLOC) |
| return ALLOC_NO_WATERMARKS; |
| if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
| return ALLOC_NO_WATERMARKS; |
| if (!in_interrupt()) { |
| if (current->flags & PF_MEMALLOC) |
| return ALLOC_NO_WATERMARKS; |
| else if (oom_reserves_allowed(current)) |
| return ALLOC_OOM; |
| } |
| |
| return 0; |
| } |
| |
| bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
| { |
| return !!__gfp_pfmemalloc_flags(gfp_mask); |
| } |
| |
| /* |
| * Checks whether it makes sense to retry the reclaim to make a forward progress |
| * for the given allocation request. |
| * |
| * We give up when we either have tried MAX_RECLAIM_RETRIES in a row |
| * without success, or when we couldn't even meet the watermark if we |
| * reclaimed all remaining pages on the LRU lists. |
| * |
| * Returns true if a retry is viable or false to enter the oom path. |
| */ |
| static inline bool |
| should_reclaim_retry(gfp_t gfp_mask, unsigned order, |
| struct alloc_context *ac, int alloc_flags, |
| bool did_some_progress, int *no_progress_loops) |
| { |
| struct zone *zone; |
| struct zoneref *z; |
| bool ret = false; |
| |
| /* |
| * Costly allocations might have made a progress but this doesn't mean |
| * their order will become available due to high fragmentation so |
| * always increment the no progress counter for them |
| */ |
| if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) |
| *no_progress_loops = 0; |
| else |
| (*no_progress_loops)++; |
| |
| if (*no_progress_loops > MAX_RECLAIM_RETRIES) |
| goto out; |
| |
| |
| /* |
| * Keep reclaiming pages while there is a chance this will lead |
| * somewhere. If none of the target zones can satisfy our allocation |
| * request even if all reclaimable pages are considered then we are |
| * screwed and have to go OOM. |
| */ |
| for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask) { |
| unsigned long available; |
| unsigned long reclaimable; |
| unsigned long min_wmark = min_wmark_pages(zone); |
| bool wmark; |
| |
| available = reclaimable = zone_reclaimable_pages(zone); |
| available += zone_page_state_snapshot(zone, NR_FREE_PAGES); |
| |
| /* |
| * Would the allocation succeed if we reclaimed all |
| * reclaimable pages? |
| */ |
| wmark = __zone_watermark_ok(zone, order, min_wmark, |
| ac->highest_zoneidx, alloc_flags, available); |
| trace_reclaim_retry_zone(z, order, reclaimable, |
| available, min_wmark, *no_progress_loops, wmark); |
| if (wmark) { |
| ret = true; |
| break; |
| } |
| } |
| |
| /* |
| * Memory allocation/reclaim might be called from a WQ context and the |
| * current implementation of the WQ concurrency control doesn't |
| * recognize that a particular WQ is congested if the worker thread is |
| * looping without ever sleeping. Therefore we have to do a short sleep |
| * here rather than calling cond_resched(). |
| */ |
| if (current->flags & PF_WQ_WORKER) |
| schedule_timeout_uninterruptible(1); |
| else |
| cond_resched(); |
| out: |
| /* Before OOM, exhaust highatomic_reserve */ |
| if (!ret) |
| return unreserve_highatomic_pageblock(ac, true); |
| |
| return ret; |
| } |
| |
| static inline bool |
| check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) |
| { |
| /* |
| * It's possible that cpuset's mems_allowed and the nodemask from |
| * mempolicy don't intersect. This should be normally dealt with by |
| * policy_nodemask(), but it's possible to race with cpuset update in |
| * such a way the check therein was true, and then it became false |
| * before we got our cpuset_mems_cookie here. |
| * This assumes that for all allocations, ac->nodemask can come only |
| * from MPOL_BIND mempolicy (whose documented semantics is to be ignored |
| * when it does not intersect with the cpuset restrictions) or the |
| * caller can deal with a violated nodemask. |
| */ |
| if (cpusets_enabled() && ac->nodemask && |
| !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { |
| ac->nodemask = NULL; |
| return true; |
| } |
| |
| /* |
| * When updating a task's mems_allowed or mempolicy nodemask, it is |
| * possible to race with parallel threads in such a way that our |
| * allocation can fail while the mask is being updated. If we are about |
| * to fail, check if the cpuset changed during allocation and if so, |
| * retry. |
| */ |
| if (read_mems_allowed_retry(cpuset_mems_cookie)) |
| return true; |
| |
| return false; |
| } |
| |
| static inline struct page * |
| __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, |
| struct alloc_context *ac) |
| { |
| bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
| bool can_compact = gfp_compaction_allowed(gfp_mask); |
| const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; |
| struct page *page = NULL; |
| unsigned int alloc_flags; |
| unsigned long did_some_progress; |
| enum compact_priority compact_priority; |
| enum compact_result compact_result; |
| int compaction_retries; |
| int no_progress_loops; |
| unsigned int cpuset_mems_cookie; |
| unsigned int zonelist_iter_cookie; |
| int reserve_flags; |
| |
| restart: |
| compaction_retries = 0; |
| no_progress_loops = 0; |
| compact_priority = DEF_COMPACT_PRIORITY; |
| cpuset_mems_cookie = read_mems_allowed_begin(); |
| zonelist_iter_cookie = zonelist_iter_begin(); |
| |
| /* |
| * The fast path uses conservative alloc_flags to succeed only until |
| * kswapd needs to be woken up, and to avoid the cost of setting up |
| * alloc_flags precisely. So we do that now. |
| */ |
| alloc_flags = gfp_to_alloc_flags(gfp_mask, order); |
| |
| /* |
| * We need to recalculate the starting point for the zonelist iterator |
| * because we might have used different nodemask in the fast path, or |
| * there was a cpuset modification and we are retrying - otherwise we |
| * could end up iterating over non-eligible zones endlessly. |
| */ |
| ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask); |
| if (!ac->preferred_zoneref->zone) |
| goto nopage; |
| |
| /* |
| * Check for insane configurations where the cpuset doesn't contain |
| * any suitable zone to satisfy the request - e.g. non-movable |
| * GFP_HIGHUSER allocations from MOVABLE nodes only. |
| */ |
| if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { |
| struct zoneref *z = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, |
| &cpuset_current_mems_allowed); |
| if (!z->zone) |
| goto nopage; |
| } |
| |
| if (alloc_flags & ALLOC_KSWAPD) |
| wake_all_kswapds(order, gfp_mask, ac); |
| |
| /* |
| * The adjusted alloc_flags might result in immediate success, so try |
| * that first |
| */ |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| if (page) |
| goto got_pg; |
| |
| /* |
| * For costly allocations, try direct compaction first, as it's likely |
| * that we have enough base pages and don't need to reclaim. For non- |
| * movable high-order allocations, do that as well, as compaction will |
| * try prevent permanent fragmentation by migrating from blocks of the |
| * same migratetype. |
| * Don't try this for allocations that are allowed to ignore |
| * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. |
| */ |
| if (can_direct_reclaim && can_compact && |
| (costly_order || |
| (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) |
| && !gfp_pfmemalloc_allowed(gfp_mask)) { |
| page = __alloc_pages_direct_compact(gfp_mask, order, |
| alloc_flags, ac, |
| INIT_COMPACT_PRIORITY, |
| &compact_result); |
| if (page) |
| goto got_pg; |
| |
| /* |
| * Checks for costly allocations with __GFP_NORETRY, which |
| * includes some THP page fault allocations |
| */ |
| if (costly_order && (gfp_mask & __GFP_NORETRY)) { |
| /* |
| * If allocating entire pageblock(s) and compaction |
| * failed because all zones are below low watermarks |
| * or is prohibited because it recently failed at this |
| * order, fail immediately unless the allocator has |
| * requested compaction and reclaim retry. |
| * |
| * Reclaim is |
| * - potentially very expensive because zones are far |
| * below their low watermarks or this is part of very |
| * bursty high order allocations, |
| * - not guaranteed to help because isolate_freepages() |
| * may not iterate over freed pages as part of its |
| * linear scan, and |
| * - unlikely to make entire pageblocks free on its |
| * own. |
| */ |
| if (compact_result == COMPACT_SKIPPED || |
| compact_result == COMPACT_DEFERRED) |
| goto nopage; |
| |
| /* |
| * Looks like reclaim/compaction is worth trying, but |
| * sync compaction could be very expensive, so keep |
| * using async compaction. |
| */ |
| compact_priority = INIT_COMPACT_PRIORITY; |
| } |
| } |
| |
| retry: |
| /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ |
| if (alloc_flags & ALLOC_KSWAPD) |
| wake_all_kswapds(order, gfp_mask, ac); |
| |
| reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); |
| if (reserve_flags) |
| alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | |
| (alloc_flags & ALLOC_KSWAPD); |
| |
| /* |
| * Reset the nodemask and zonelist iterators if memory policies can be |
| * ignored. These allocations are high priority and system rather than |
| * user oriented. |
| */ |
| if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { |
| ac->nodemask = NULL; |
| ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask); |
| } |
| |
| /* Attempt with potentially adjusted zonelist and alloc_flags */ |
| page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| if (page) |
| goto got_pg; |
| |
| /* Caller is not willing to reclaim, we can't balance anything */ |
| if (!can_direct_reclaim) |
| goto nopage; |
| |
| /* Avoid recursion of direct reclaim */ |
| if (current->flags & PF_MEMALLOC) |
| goto nopage; |
| |
| /* Try direct reclaim and then allocating */ |
| page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, |
| &did_some_progress); |
| if (page) |
| goto got_pg; |
| |
| /* Try direct compaction and then allocating */ |
| page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
| compact_priority, &compact_result); |
| if (page) |
| goto got_pg; |
| |
| /* Do not loop if specifically requested */ |
| if (gfp_mask & __GFP_NORETRY) |
| goto nopage; |
| |
| /* |
| * Do not retry costly high order allocations unless they are |
| * __GFP_RETRY_MAYFAIL and we can compact |
| */ |
| if (costly_order && (!can_compact || |
| !(gfp_mask & __GFP_RETRY_MAYFAIL))) |
| goto nopage; |
| |
| if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, |
| did_some_progress > 0, &no_progress_loops)) |
| goto retry; |
| |
| /* |
| * It doesn't make any sense to retry for the compaction if the order-0 |
| * reclaim is not able to make any progress because the current |
| * implementation of the compaction depends on the sufficient amount |
| * of free memory (see __compaction_suitable) |
| */ |
| if (did_some_progress > 0 && can_compact && |
| should_compact_retry(ac, order, alloc_flags, |
| compact_result, &compact_priority, |
| &compaction_retries)) |
| goto retry; |
| |
| |
| /* |
| * Deal with possible cpuset update races or zonelist updates to avoid |
| * a unnecessary OOM kill. |
| */ |
| if (check_retry_cpuset(cpuset_mems_cookie, ac) || |
| check_retry_zonelist(zonelist_iter_cookie)) |
| goto restart; |
| |
| /* Reclaim has failed us, start killing things */ |
| page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); |
| if (page) |
| goto got_pg; |
| |
| /* Avoid allocations with no watermarks from looping endlessly */ |
| if (tsk_is_oom_victim(current) && |
| (alloc_flags & ALLOC_OOM || |
| (gfp_mask & __GFP_NOMEMALLOC))) |
| goto nopage; |
| |
| /* Retry as long as the OOM killer is making progress */ |
| if (did_some_progress) { |
| no_progress_loops = 0; |
| goto retry; |
| } |
| |
| nopage: |
| /* |
| * Deal with possible cpuset update races or zonelist updates to avoid |
| * a unnecessary OOM kill. |
| */ |
| if (check_retry_cpuset(cpuset_mems_cookie, ac) || |
| check_retry_zonelist(zonelist_iter_cookie)) |
| goto restart; |
| |
| /* |
| * Make sure that __GFP_NOFAIL request doesn't leak out and make sure |
| * we always retry |
| */ |
| if (gfp_mask & __GFP_NOFAIL) { |
| /* |
| * All existing users of the __GFP_NOFAIL are blockable, so warn |
| * of any new users that actually require GFP_NOWAIT |
| */ |
| if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) |
| goto fail; |
| |
| /* |
| * PF_MEMALLOC request from this context is rather bizarre |
| * because we cannot reclaim anything and only can loop waiting |
| * for somebody to do a work for us |
| */ |
| WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); |
| |
| /* |
| * non failing costly orders are a hard requirement which we |
| * are not prepared for much so let's warn about these users |
| * so that we can identify them and convert them to something |
| * else. |
| */ |
| WARN_ON_ONCE_GFP(costly_order, gfp_mask); |
| |
| /* |
| * Help non-failing allocations by giving some access to memory |
| * reserves normally used for high priority non-blocking |
| * allocations but do not use ALLOC_NO_WATERMARKS because this |
| * could deplete whole memory reserves which would just make |
| * the situation worse. |
| */ |
| page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); |
| if (page) |
| goto got_pg; |
| |
| cond_resched(); |
| goto retry; |
| } |
| fail: |
| warn_alloc(gfp_mask, ac->nodemask, |
| "page allocation failure: order:%u", order); |
| got_pg: |
| return page; |
| } |
| |
| static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, |
| int preferred_nid, nodemask_t *nodemask, |
| struct alloc_context *ac, gfp_t *alloc_gfp, |
| unsigned int *alloc_flags) |
| { |
| ac->highest_zoneidx = gfp_zone(gfp_mask); |
| ac->zonelist = node_zonelist(preferred_nid, gfp_mask); |
| ac->nodemask = nodemask; |
| ac->migratetype = gfp_migratetype(gfp_mask); |
| |
| if (cpusets_enabled()) { |
| *alloc_gfp |= __GFP_HARDWALL; |
| /* |
| * When we are in the interrupt context, it is irrelevant |
| * to the current task context. It means that any node ok. |
| */ |
| if (in_task() && !ac->nodemask) |
| ac->nodemask = &cpuset_current_mems_allowed; |
| else |
| *alloc_flags |= ALLOC_CPUSET; |
| } |
| |
| might_alloc(gfp_mask); |
| |
| if (should_fail_alloc_page(gfp_mask, order)) |
| return false; |
| |
| *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); |
| |
| /* Dirty zone balancing only done in the fast path */ |
| ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); |
| |
| /* |
| * The preferred zone is used for statistics but crucially it is |
| * also used as the starting point for the zonelist iterator. It |
| * may get reset for allocations that ignore memory policies. |
| */ |
| ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| ac->highest_zoneidx, ac->nodemask); |
| |
| return true; |
| } |
| |
| /* |
| * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array |
| * @gfp: GFP flags for the allocation |
| * @preferred_nid: The preferred NUMA node ID to allocate from |
| * @nodemask: Set of nodes to allocate from, may be NULL |
| * @nr_pages: The number of pages desired on the list or array |
| * @page_list: Optional list to store the allocated pages |
| * @page_array: Optional array to store the pages |
| * |
| * This is a batched version of the page allocator that attempts to |
| * allocate nr_pages quickly. Pages are added to page_list if page_list |
| * is not NULL, otherwise it is assumed that the page_array is valid. |
| * |
| * For lists, nr_pages is the number of pages that should be allocated. |
| * |
| * For arrays, only NULL elements are populated with pages and nr_pages |
| * is the maximum number of pages that will be stored in the array. |
| * |
| * Returns the number of pages on the list or array. |
| */ |
| unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, |
| nodemask_t *nodemask, int nr_pages, |
| struct list_head *page_list, |
| struct page **page_array) |
| { |
| struct page *page; |
| unsigned long __maybe_unused UP_flags; |
| struct zone *zone; |
| struct zoneref *z; |
| struct per_cpu_pages *pcp; |
| struct list_head *pcp_list; |
| struct alloc_context ac; |
| gfp_t alloc_gfp; |
| unsigned int alloc_flags = ALLOC_WMARK_LOW; |
| int nr_populated = 0, nr_account = 0; |
| |
| /* |
| * Skip populated array elements to determine if any pages need |
| * to be allocated before disabling IRQs. |
| */ |
| while (page_array && nr_populated < nr_pages && page_array[nr_populated]) |
| nr_populated++; |
| |
| /* No pages requested? */ |
| if (unlikely(nr_pages <= 0)) |
| goto out; |
| |
| /* Already populated array? */ |
| if (unlikely(page_array && nr_pages - nr_populated == 0)) |
| goto out; |
| |
| /* Bulk allocator does not support memcg accounting. */ |
| if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) |
| goto failed; |
| |
| /* Use the single page allocator for one page. */ |
| if (nr_pages - nr_populated == 1) |
| goto failed; |
| |
| #ifdef CONFIG_PAGE_OWNER |
| /* |
| * PAGE_OWNER may recurse into the allocator to allocate space to |
| * save the stack with pagesets.lock held. Releasing/reacquiring |
| * removes much of the performance benefit of bulk allocation so |
| * force the caller to allocate one page at a time as it'll have |
| * similar performance to added complexity to the bulk allocator. |
| */ |
| if (static_branch_unlikely(&page_owner_inited)) |
| goto failed; |
| #endif |
| |
| /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ |
| gfp &= gfp_allowed_mask; |
| alloc_gfp = gfp; |
| if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) |
| goto out; |
| gfp = alloc_gfp; |
| |
| /* Find an allowed local zone that meets the low watermark. */ |
| for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { |
| unsigned long mark; |
| |
| if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && |
| !__cpuset_zone_allowed(zone, gfp)) { |
| continue; |
| } |
| |
| if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && |
| zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { |
| goto failed; |
| } |
| |
| mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; |
| if (zone_watermark_fast(zone, 0, mark, |
| zonelist_zone_idx(ac.preferred_zoneref), |
| alloc_flags, gfp)) { |
| break; |
| } |
| } |
| |
| /* |
| * If there are no allowed local zones that meets the watermarks then |
| * try to allocate a single page and reclaim if necessary. |
| */ |
| if (unlikely(!zone)) |
| goto failed; |
| |
| /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ |
| pcp_trylock_prepare(UP_flags); |
| pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| if (!pcp) |
| goto failed_irq; |
| |
| /* Attempt the batch allocation */ |
| pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; |
| while (nr_populated < nr_pages) { |
| |
| /* Skip existing pages */ |
| if (page_array && page_array[nr_populated]) { |
| nr_populated++; |
| continue; |
| } |
| |
| page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, |
| pcp, pcp_list); |
| if (unlikely(!page)) { |
| /* Try and allocate at least one page */ |
| if (!nr_account) { |
| pcp_spin_unlock(pcp); |
| goto failed_irq; |
| } |
| break; |
| } |
| nr_account++; |
| |
| prep_new_page(page, 0, gfp, 0); |
| if (page_list) |
| list_add(&page->lru, page_list); |
| else |
| page_array[nr_populated] = page; |
| nr_populated++; |
| } |
| |
| pcp_spin_unlock(pcp); |
| pcp_trylock_finish(UP_flags); |
| |
| __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); |
| zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); |
| |
| out: |
| return nr_populated; |
| |
| failed_irq: |
| pcp_trylock_finish(UP_flags); |
| |
| failed: |
| page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); |
| if (page) { |
| if (page_list) |
| list_add(&page->lru, page_list); |
| else |
| page_array[nr_populated] = page; |
| nr_populated++; |
| } |
| |
| goto out; |
| } |
| EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); |
| |
| /* |
| * This is the 'heart' of the zoned buddy allocator. |
| */ |
| struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, |
| int preferred_nid, nodemask_t *nodemask) |
| { |
| struct page *page; |
| unsigned int alloc_flags = ALLOC_WMARK_LOW; |
| gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ |
| struct alloc_context ac = { }; |
| |
| /* |
| * There are several places where we assume that the order value is sane |
| * so bail out early if the request is out of bound. |
| */ |
| if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) |
| return NULL; |
| |
| gfp &= gfp_allowed_mask; |
| /* |
| * Apply scoped allocation constraints. This is mainly about GFP_NOFS |
| * resp. GFP_NOIO which has to be inherited for all allocation requests |
| * from a particular context which has been marked by |
| * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures |
| * movable zones are not used during allocation. |
| */ |
| gfp = current_gfp_context(gfp); |
| alloc_gfp = gfp; |
| if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, |
| &alloc_gfp, &alloc_flags)) |
| return NULL; |
| |
| /* |
| * Forbid the first pass from falling back to types that fragment |
| * memory until all local zones are considered. |
| */ |
| alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); |
| |
| /* First allocation attempt */ |
| page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); |
| if (likely(page)) |
| goto out; |
| |
| alloc_gfp = gfp; |
| ac.spread_dirty_pages = false; |
| |
| /* |
| * Restore the original nodemask if it was potentially replaced with |
| * &cpuset_current_mems_allowed to optimize the fast-path attempt. |
| */ |
| ac.nodemask = nodemask; |
| |
| page = __alloc_pages_slowpath(alloc_gfp, order, &ac); |
| |
| out: |
| if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && |
| unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { |
| __free_pages(page, order); |
| page = NULL; |
| } |
| |
| trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); |
| kmsan_alloc_page(page, order, alloc_gfp); |
| |
| return page; |
| } |
| EXPORT_SYMBOL(__alloc_pages_noprof); |
| |
| struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, |
| nodemask_t *nodemask) |
| { |
| struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, |
| preferred_nid, nodemask); |
| return page_rmappable_folio(page); |
| } |
| EXPORT_SYMBOL(__folio_alloc_noprof); |
| |
| /* |
| * Common helper functions. Never use with __GFP_HIGHMEM because the returned |
| * address cannot represent highmem pages. Use alloc_pages and then kmap if |
| * you need to access high mem. |
| */ |
| unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) |
| { |
| struct page *page; |
| |
| page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); |
| if (!page) |
| return 0; |
| return (unsigned long) page_address(page); |
| } |
| EXPORT_SYMBOL(get_free_pages_noprof); |
| |
| unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) |
| { |
| return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); |
| } |
| EXPORT_SYMBOL(get_zeroed_page_noprof); |
| |
| /** |
| * __free_pages - Free pages allocated with alloc_pages(). |
| * @page: The page pointer returned from alloc_pages(). |
| * @order: The order of the allocation. |
| * |
| * This function can free multi-page allocations that are not compound |
| * pages. It does not check that the @order passed in matches that of |
| * the allocation, so it is easy to leak memory. Freeing more memory |
| * than was allocated will probably emit a warning. |
| * |
| * If the last reference to this page is speculative, it will be released |
| * by put_page() which only frees the first page of a non-compound |
| * allocation. To prevent the remaining pages from being leaked, we free |
| * the subsequent pages here. If you want to use the page's reference |
| * count to decide when to free the allocation, you should allocate a |
| * compound page, and use put_page() instead of __free_pages(). |
| * |
| * Context: May be called in interrupt context or while holding a normal |
| * spinlock, but not in NMI context or while holding a raw spinlock. |
| */ |
| void __free_pages(struct page *page, unsigned int order) |
| { |
| /* get PageHead before we drop reference */ |
| int head = PageHead(page); |
| struct alloc_tag *tag = pgalloc_tag_get(page); |
| |
| if (put_page_testzero(page)) |
| free_unref_page(page, order); |
| else if (!head) { |
| pgalloc_tag_sub_pages(tag, (1 << order) - 1); |
| while (order-- > 0) |
| free_unref_page(page + (1 << order), order); |
| } |
| } |
| EXPORT_SYMBOL(__free_pages); |
| |
| void free_pages(unsigned long addr, unsigned int order) |
| { |
| if (addr != 0) { |
| VM_BUG_ON(!virt_addr_valid((void *)addr)); |
| __free_pages(virt_to_page((void *)addr), order); |
| } |
| } |
| |
| EXPORT_SYMBOL(free_pages); |
| |
| /* |
| * Page Fragment: |
| * An arbitrary-length arbitrary-offset area of memory which resides |
| * within a 0 or higher order page. Multiple fragments within that page |
| * are individually refcounted, in the page's reference counter. |
| * |
| * The page_frag functions below provide a simple allocation framework for |
| * page fragments. This is used by the network stack and network device |
| * drivers to provide a backing region of memory for use as either an |
| * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. |
| */ |
| static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, |
| gfp_t gfp_mask) |
| { |
| struct page *page = NULL; |
| gfp_t gfp = gfp_mask; |
| |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) |
| gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | |
| __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; |
| page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, |
| PAGE_FRAG_CACHE_MAX_ORDER); |
| nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; |
| #endif |
| if (unlikely(!page)) |
| page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); |
| |
| nc->va = page ? page_address(page) : NULL; |
| |
| return page; |
| } |
| |
| void page_frag_cache_drain(struct page_frag_cache *nc) |
| { |
| if (!nc->va) |
| return; |
| |
| __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); |
| nc->va = NULL; |
| } |
| EXPORT_SYMBOL(page_frag_cache_drain); |
| |
| void __page_frag_cache_drain(struct page *page, unsigned int count) |
| { |
| VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); |
| |
| if (page_ref_sub_and_test(page, count)) |
| free_unref_page(page, compound_order(page)); |
| } |
| EXPORT_SYMBOL(__page_frag_cache_drain); |
| |
| void *__page_frag_alloc_align(struct page_frag_cache *nc, |
| unsigned int fragsz, gfp_t gfp_mask, |
| unsigned int align_mask) |
| { |
| unsigned int size = PAGE_SIZE; |
| struct page *page; |
| int offset; |
| |
| if (unlikely(!nc->va)) { |
| refill: |
| page = __page_frag_cache_refill(nc, gfp_mask); |
| if (!page) |
| return NULL; |
| |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) |
| /* if size can vary use size else just use PAGE_SIZE */ |
| size = nc->size; |
| #endif |
| /* Even if we own the page, we do not use atomic_set(). |
| * This would break get_page_unless_zero() users. |
| */ |
| page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); |
| |
| /* reset page count bias and offset to start of new frag */ |
| nc->pfmemalloc = page_is_pfmemalloc(page); |
| nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; |
| nc->offset = size; |
| } |
| |
| offset = nc->offset - fragsz; |
| if (unlikely(offset < 0)) { |
| page = virt_to_page(nc->va); |
| |
| if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) |
| goto refill; |
| |
| if (unlikely(nc->pfmemalloc)) { |
| free_unref_page(page, compound_order(page)); |
| goto refill; |
| } |
| |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) |
| /* if size can vary use size else just use PAGE_SIZE */ |
| size = nc->size; |
| #endif |
| /* OK, page count is 0, we can safely set it */ |
| set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); |
| |
| /* reset page count bias and offset to start of new frag */ |
| nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; |
| offset = size - fragsz; |
| if (unlikely(offset < 0)) { |
| /* |
| * The caller is trying to allocate a fragment |
| * with fragsz > PAGE_SIZE but the cache isn't big |
| * enough to satisfy the request, this may |
| * happen in low memory conditions. |
| * We don't release the cache page because |
| * it could make memory pressure worse |
| * so we simply return NULL here. |
| */ |
| return NULL; |
| } |
| } |
| |
| nc->pagecnt_bias--; |
| offset &= align_mask; |
| nc->offset = offset; |
| |
| return nc->va + offset; |
| } |
| EXPORT_SYMBOL(__page_frag_alloc_align); |
| |
| /* |
| * Frees a page fragment allocated out of either a compound or order 0 page. |
| */ |
| void page_frag_free(void *addr) |
| { |
| struct page *page = virt_to_head_page(addr); |
| |
| if (unlikely(put_page_testzero(page))) |
| free_unref_page(page, compound_order(page)); |
| } |
| EXPORT_SYMBOL(page_frag_free); |
| |
| static void *make_alloc_exact(unsigned long addr, unsigned int order, |
| size_t size) |
| { |
| if (addr) { |
| unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); |
| struct page *page = virt_to_page((void *)addr); |
| struct page *last = page + nr; |
| |
| split_page_owner(page, order, 0); |
| pgalloc_tag_split(page, 1 << order); |
| split_page_memcg(page, order, 0); |
| while (page < --last) |
| set_page_refcounted(last); |
| |
| last = page + (1UL << order); |
| for (page += nr; page < last; page++) |
| __free_pages_ok(page, 0, FPI_TO_TAIL); |
| } |
| return (void *)addr; |
| } |
| |
| /** |
| * alloc_pages_exact - allocate an exact number physically-contiguous pages. |
| * @size: the number of bytes to allocate |
| * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
| * |
| * This function is similar to alloc_pages(), except that it allocates the |
| * minimum number of pages to satisfy the request. alloc_pages() can only |
| * allocate memory in power-of-two pages. |
| * |
| * This function is also limited by MAX_PAGE_ORDER. |
| * |
| * Memory allocated by this function must be released by free_pages_exact(). |
| * |
| * Return: pointer to the allocated area or %NULL in case of error. |
| */ |
| void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) |
| { |
| unsigned int order = get_order(size); |
| unsigned long addr; |
| |
| if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
| gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); |
| |
| addr = get_free_pages_noprof(gfp_mask, order); |
| return make_alloc_exact(addr, order, size); |
| } |
| EXPORT_SYMBOL(alloc_pages_exact_noprof); |
| |
| /** |
| * alloc_pages_exact_nid - allocate an exact number of physically-contiguous |
| * pages on a node. |
| * @nid: the preferred node ID where memory should be allocated |
| * @size: the number of bytes to allocate |
| * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
| * |
| * Like alloc_pages_exact(), but try to allocate on node nid first before falling |
| * back. |
| * |
| * Return: pointer to the allocated area or %NULL in case of error. |
| */ |
| void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) |
| { |
| unsigned int order = get_order(size); |
| struct page *p; |
| |
| if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
| gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); |
| |
| p = alloc_pages_node_noprof(nid, gfp_mask, order); |
| if (!p) |
| return NULL; |
| return make_alloc_exact((unsigned long)page_address(p), order, size); |
| } |
| |
| /** |
| * free_pages_exact - release memory allocated via alloc_pages_exact() |
| * @virt: the value returned by alloc_pages_exact. |
| * @size: size of allocation, same value as passed to alloc_pages_exact(). |
| * |
| * Release the memory allocated by a previous call to alloc_pages_exact. |
| */ |
| void free_pages_exact(void *virt, size_t size) |
| { |
| unsigned long addr = (unsigned long)virt; |
| unsigned long end = addr + PAGE_ALIGN(size); |
| |
| while (addr < end) { |
| free_page(addr); |
| addr += PAGE_SIZE; |
| } |
| } |
| EXPORT_SYMBOL(free_pages_exact); |
| |
| /** |
| * nr_free_zone_pages - count number of pages beyond high watermark |
| * @offset: The zone index of the highest zone |
| * |
| * nr_free_zone_pages() counts the number of pages which are beyond the |
| * high watermark within all zones at or below a given zone index. For each |
| * zone, the number of pages is calculated as: |
| * |
| * nr_free_zone_pages = managed_pages - high_pages |
| * |
| * Return: number of pages beyond high watermark. |
| */ |
| static unsigned long nr_free_zone_pages(int offset) |
| { |
| struct zoneref *z; |
| struct zone *zone; |
| |
| /* Just pick one node, since fallback list is circular */ |
| unsigned long sum = 0; |
| |
| struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
| |
| for_each_zone_zonelist(zone, z, zonelist, offset) { |
| unsigned long size = zone_managed_pages(zone); |
| unsigned long high = high_wmark_pages(zone); |
| if (size > high) |
| sum += size - high; |
| } |
| |
| return sum; |
| } |
| |
| /** |
| * nr_free_buffer_pages - count number of pages beyond high watermark |
| * |
| * nr_free_buffer_pages() counts the number of pages which are beyond the high |
| * watermark within ZONE_DMA and ZONE_NORMAL. |
| * |
| * Return: number of pages beyond high watermark within ZONE_DMA and |
| * ZONE_NORMAL. |
| */ |
| unsigned long nr_free_buffer_pages(void) |
| { |
| return nr_free_zone_pages(gfp_zone(GFP_USER)); |
| } |
| EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
| |
| static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
| { |
| zoneref->zone = zone; |
| zoneref->zone_idx = zone_idx(zone); |
| } |
| |
| /* |
| * Builds allocation fallback zone lists. |
| * |
| * Add all populated zones of a node to the zonelist. |
| */ |
| static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) |
| { |
| struct zone *zone; |
| enum zone_type zone_type = MAX_NR_ZONES; |
| int nr_zones = 0; |
| |
| do { |
| zone_type--; |
| zone = pgdat->node_zones + zone_type; |
| if (populated_zone(zone)) { |
| zoneref_set_zone(zone, &zonerefs[nr_zones++]); |
| check_highest_zone(zone_type); |
| } |
| } while (zone_type); |
| |
| return nr_zones; |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| static int __parse_numa_zonelist_order(char *s) |
| { |
| /* |
| * We used to support different zonelists modes but they turned |
| * out to be just not useful. Let's keep the warning in place |
| * if somebody still use the cmd line parameter so that we do |
| * not fail it silently |
| */ |
| if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { |
| pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static char numa_zonelist_order[] = "Node"; |
| #define NUMA_ZONELIST_ORDER_LEN 16 |
| /* |
| * sysctl handler for numa_zonelist_order |
| */ |
| static int numa_zonelist_order_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| if (write) |
| return __parse_numa_zonelist_order(buffer); |
| return proc_dostring(table, write, buffer, length, ppos); |
| } |
| |
| static int node_load[MAX_NUMNODES]; |
| |
| /** |
| * find_next_best_node - find the next node that should appear in a given node's fallback list |
| * @node: node whose fallback list we're appending |
| * @used_node_mask: nodemask_t of already used nodes |
| * |
| * We use a number of factors to determine which is the next node that should |
| * appear on a given node's fallback list. The node should not have appeared |
| * already in @node's fallback list, and it should be the next closest node |
| * according to the distance array (which contains arbitrary distance values |
| * from each node to each node in the system), and should also prefer nodes |
| * with no CPUs, since presumably they'll have very little allocation pressure |
| * on them otherwise. |
| * |
| * Return: node id of the found node or %NUMA_NO_NODE if no node is found. |
| */ |
| int find_next_best_node(int node, nodemask_t *used_node_mask) |
| { |
| int n, val; |
| int min_val = INT_MAX; |
| int best_node = NUMA_NO_NODE; |
| |
| /* |
| * Use the local node if we haven't already, but for memoryless local |
| * node, we should skip it and fall back to other nodes. |
| */ |
| if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { |
| node_set(node, *used_node_mask); |
| return node; |
| } |
| |
| for_each_node_state(n, N_MEMORY) { |
| |
| /* Don't want a node to appear more than once */ |
| if (node_isset(n, *used_node_mask)) |
| continue; |
| |
| /* Use the distance array to find the distance */ |
| val = node_distance(node, n); |
| |
| /* Penalize nodes under us ("prefer the next node") */ |
| val += (n < node); |
| |
| /* Give preference to headless and unused nodes */ |
| if (!cpumask_empty(cpumask_of_node(n))) |
| val += PENALTY_FOR_NODE_WITH_CPUS; |
| |
| /* Slight preference for less loaded node */ |
| val *= MAX_NUMNODES; |
| val += node_load[n]; |
| |
| if (val < min_val) { |
| min_val = val; |
| best_node = n; |
| } |
| } |
| |
| if (best_node >= 0) |
| node_set(best_node, *used_node_mask); |
| |
| return best_node; |
| } |
| |
| |
| /* |
| * Build zonelists ordered by node and zones within node. |
| * This results in maximum locality--normal zone overflows into local |
| * DMA zone, if any--but risks exhausting DMA zone. |
| */ |
| static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, |
| unsigned nr_nodes) |
| { |
| struct zoneref *zonerefs; |
| int i; |
| |
| zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
| |
| for (i = 0; i < nr_nodes; i++) { |
| int nr_zones; |
| |
| pg_data_t *node = NODE_DATA(node_order[i]); |
| |
| nr_zones = build_zonerefs_node(node, zonerefs); |
| zonerefs += nr_zones; |
| } |
| zonerefs->zone = NULL; |
| zonerefs->zone_idx = 0; |
| } |
| |
| /* |
| * Build gfp_thisnode zonelists |
| */ |
| static void build_thisnode_zonelists(pg_data_t *pgdat) |
| { |
| struct zoneref *zonerefs; |
| int nr_zones; |
| |
| zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; |
| nr_zones = build_zonerefs_node(pgdat, zonerefs); |
| zonerefs += nr_zones; |
| zonerefs->zone = NULL; |
| zonerefs->zone_idx = 0; |
| } |
| |
| /* |
| * Build zonelists ordered by zone and nodes within zones. |
| * This results in conserving DMA zone[s] until all Normal memory is |
| * exhausted, but results in overflowing to remote node while memory |
| * may still exist in local DMA zone. |
| */ |
| |
| static void build_zonelists(pg_data_t *pgdat) |
| { |
| static int node_order[MAX_NUMNODES]; |
| int node, nr_nodes = 0; |
| nodemask_t used_mask = NODE_MASK_NONE; |
| int local_node, prev_node; |
| |
| /* NUMA-aware ordering of nodes */ |
| local_node = pgdat->node_id; |
| prev_node = local_node; |
| |
| memset(node_order, 0, sizeof(node_order)); |
| while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
| /* |
| * We don't want to pressure a particular node. |
| * So adding penalty to the first node in same |
| * distance group to make it round-robin. |
| */ |
| if (node_distance(local_node, node) != |
| node_distance(local_node, prev_node)) |
| node_load[node] += 1; |
| |
| node_order[nr_nodes++] = node; |
| prev_node = node; |
| } |
| |
| build_zonelists_in_node_order(pgdat, node_order, nr_nodes); |
| build_thisnode_zonelists(pgdat); |
| pr_info("Fallback order for Node %d: ", local_node); |
| for (node = 0; node < nr_nodes; node++) |
| pr_cont("%d ", node_order[node]); |
| pr_cont("\n"); |
| } |
| |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| /* |
| * Return node id of node used for "local" allocations. |
| * I.e., first node id of first zone in arg node's generic zonelist. |
| * Used for initializing percpu 'numa_mem', which is used primarily |
| * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. |
| */ |
| int local_memory_node(int node) |
| { |
| struct zoneref *z; |
| |
| z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
| gfp_zone(GFP_KERNEL), |
| NULL); |
| return zone_to_nid(z->zone); |
| } |
| #endif |
| |
| static void setup_min_unmapped_ratio(void); |
| static void setup_min_slab_ratio(void); |
| #else /* CONFIG_NUMA */ |
| |
| static void build_zonelists(pg_data_t *pgdat) |
| { |
| struct zoneref *zonerefs; |
| int nr_zones; |
| |
| zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
| nr_zones = build_zonerefs_node(pgdat, zonerefs); |
| zonerefs += nr_zones; |
| |
| zonerefs->zone = NULL; |
| zonerefs->zone_idx = 0; |
| } |
| |
| #endif /* CONFIG_NUMA */ |
| |
| /* |
| * Boot pageset table. One per cpu which is going to be used for all |
| * zones and all nodes. The parameters will be set in such a way |
| * that an item put on a list will immediately be handed over to |
| * the buddy list. This is safe since pageset manipulation is done |
| * with interrupts disabled. |
| * |
| * The boot_pagesets must be kept even after bootup is complete for |
| * unused processors and/or zones. They do play a role for bootstrapping |
| * hotplugged processors. |
| * |
| * zoneinfo_show() and maybe other functions do |
| * not check if the processor is online before following the pageset pointer. |
| * Other parts of the kernel may not check if the zone is available. |
| */ |
| static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); |
| /* These effectively disable the pcplists in the boot pageset completely */ |
| #define BOOT_PAGESET_HIGH 0 |
| #define BOOT_PAGESET_BATCH 1 |
| static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); |
| static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); |
| |
| static void __build_all_zonelists(void *data) |
| { |
| int nid; |
| int __maybe_unused cpu; |
| pg_data_t *self = data; |
| unsigned long flags; |
| |
| /* |
| * The zonelist_update_seq must be acquired with irqsave because the |
| * reader can be invoked from IRQ with GFP_ATOMIC. |
| */ |
| write_seqlock_irqsave(&zonelist_update_seq, flags); |
| /* |
| * Also disable synchronous printk() to prevent any printk() from |
| * trying to hold port->lock, for |
| * tty_insert_flip_string_and_push_buffer() on other CPU might be |
| * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. |
| */ |
| printk_deferred_enter(); |
| |
| #ifdef CONFIG_NUMA |
| memset(node_load, 0, sizeof(node_load)); |
| #endif |
| |
| /* |
| * This node is hotadded and no memory is yet present. So just |
| * building zonelists is fine - no need to touch other nodes. |
| */ |
| if (self && !node_online(self->node_id)) { |
| build_zonelists(self); |
| } else { |
| /* |
| * All possible nodes have pgdat preallocated |
| * in free_area_init |
| */ |
| for_each_node(nid) { |
| pg_data_t *pgdat = NODE_DATA(nid); |
| |
| build_zonelists(pgdat); |
| } |
| |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| /* |
| * We now know the "local memory node" for each node-- |
| * i.e., the node of the first zone in the generic zonelist. |
| * Set up numa_mem percpu variable for on-line cpus. During |
| * boot, only the boot cpu should be on-line; we'll init the |
| * secondary cpus' numa_mem as they come on-line. During |
| * node/memory hotplug, we'll fixup all on-line cpus. |
| */ |
| for_each_online_cpu(cpu) |
| set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
| #endif |
| } |
| |
| printk_deferred_exit(); |
| write_sequnlock_irqrestore(&zonelist_update_seq, flags); |
| } |
| |
| static noinline void __init |
| build_all_zonelists_init(void) |
| { |
| int cpu; |
| |
| __build_all_zonelists(NULL); |
| |
| /* |
| * Initialize the boot_pagesets that are going to be used |
| * for bootstrapping processors. The real pagesets for |
| * each zone will be allocated later when the per cpu |
| * allocator is available. |
| * |
| * boot_pagesets are used also for bootstrapping offline |
| * cpus if the system is already booted because the pagesets |
| * are needed to initialize allocators on a specific cpu too. |
| * F.e. the percpu allocator needs the page allocator which |
| * needs the percpu allocator in order to allocate its pagesets |
| * (a chicken-egg dilemma). |
| */ |
| for_each_possible_cpu(cpu) |
| per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); |
| |
| mminit_verify_zonelist(); |
| cpuset_init_current_mems_allowed(); |
| } |
| |
| /* |
| * unless system_state == SYSTEM_BOOTING. |
| * |
| * __ref due to call of __init annotated helper build_all_zonelists_init |
| * [protected by SYSTEM_BOOTING]. |
| */ |
| void __ref build_all_zonelists(pg_data_t *pgdat) |
| { |
| unsigned long vm_total_pages; |
| |
| if (system_state == SYSTEM_BOOTING) { |
| build_all_zonelists_init(); |
| } else { |
| __build_all_zonelists(pgdat); |
| /* cpuset refresh routine should be here */ |
| } |
| /* Get the number of free pages beyond high watermark in all zones. */ |
| vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
| /* |
| * Disable grouping by mobility if the number of pages in the |
| * system is too low to allow the mechanism to work. It would be |
| * more accurate, but expensive to check per-zone. This check is |
| * made on memory-hotadd so a system can start with mobility |
| * disabled and enable it later |
| */ |
| if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
| page_group_by_mobility_disabled = 1; |
| else |
| page_group_by_mobility_disabled = 0; |
| |
| pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", |
| nr_online_nodes, |
| page_group_by_mobility_disabled ? "off" : "on", |
| vm_total_pages); |
| #ifdef CONFIG_NUMA |
| pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
| #endif |
| } |
| |
| static int zone_batchsize(struct zone *zone) |
| { |
| #ifdef CONFIG_MMU |
| int batch; |
| |
| /* |
| * The number of pages to batch allocate is either ~0.1% |
| * of the zone or 1MB, whichever is smaller. The batch |
| * size is striking a balance between allocation latency |
| * and zone lock contention. |
| */ |
| batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); |
| batch /= 4; /* We effectively *= 4 below */ |
| if (batch < 1) |
| batch = 1; |
| |
| /* |
| * Clamp the batch to a 2^n - 1 value. Having a power |
| * of 2 value was found to be more likely to have |
| * suboptimal cache aliasing properties in some cases. |
| * |
| * For example if 2 tasks are alternately allocating |
| * batches of pages, one task can end up with a lot |
| * of pages of one half of the possible page colors |
| * and the other with pages of the other colors. |
| */ |
| batch = rounddown_pow_of_two(batch + batch/2) - 1; |
| |
| return batch; |
| |
| #else |
| /* The deferral and batching of frees should be suppressed under NOMMU |
| * conditions. |
| * |
| * The problem is that NOMMU needs to be able to allocate large chunks |
| * of contiguous memory as there's no hardware page translation to |
| * assemble apparent contiguous memory from discontiguous pages. |
| * |
| * Queueing large contiguous runs of pages for batching, however, |
| * causes the pages to actually be freed in smaller chunks. As there |
| * can be a significant delay between the individual batches being |
| * recycled, this leads to the once large chunks of space being |
| * fragmented and becoming unavailable for high-order allocations. |
| */ |
| return 0; |
| #endif |
| } |
| |
| static int percpu_pagelist_high_fraction; |
| static int zone_highsize(struct zone *zone, int batch, int cpu_online, |
| int high_fraction) |
| { |
| #ifdef CONFIG_MMU |
| int high; |
| int nr_split_cpus; |
| unsigned long total_pages; |
| |
| if (!high_fraction) { |
| /* |
| * By default, the high value of the pcp is based on the zone |
| * low watermark so that if they are full then background |
| * reclaim will not be started prematurely. |
| */ |
| total_pages = low_wmark_pages(zone); |
| } else { |
| /* |
| * If percpu_pagelist_high_fraction is configured, the high |
| * value is based on a fraction of the managed pages in the |
| * zone. |
| */ |
| total_pages = zone_managed_pages(zone) / high_fraction; |
| } |
| |
| /* |
| * Split the high value across all online CPUs local to the zone. Note |
| * that early in boot that CPUs may not be online yet and that during |
| * CPU hotplug that the cpumask is not yet updated when a CPU is being |
| * onlined. For memory nodes that have no CPUs, split the high value |
| * across all online CPUs to mitigate the risk that reclaim is triggered |
| * prematurely due to pages stored on pcp lists. |
| */ |
| nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; |
| if (!nr_split_cpus) |
| nr_split_cpus = num_online_cpus(); |
| high = total_pages / nr_split_cpus; |
| |
| /* |
| * Ensure high is at least batch*4. The multiple is based on the |
| * historical relationship between high and batch. |
| */ |
| high = max(high, batch << 2); |
| |
| return high; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * pcp->high and pcp->batch values are related and generally batch is lower |
| * than high. They are also related to pcp->count such that count is lower |
| * than high, and as soon as it reaches high, the pcplist is flushed. |
| * |
| * However, guaranteeing these relations at all times would require e.g. write |
| * barriers here but also careful usage of read barriers at the read side, and |
| * thus be prone to error and bad for performance. Thus the update only prevents |
| * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max |
| * should ensure they can cope with those fields changing asynchronously, and |
| * fully trust only the pcp->count field on the local CPU with interrupts |
| * disabled. |
| * |
| * mutex_is_locked(&pcp_batch_high_lock) required when calling this function |
| * outside of boot time (or some other assurance that no concurrent updaters |
| * exist). |
| */ |
| static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, |
| unsigned long high_max, unsigned long batch) |
| { |
| WRITE_ONCE(pcp->batch, batch); |
| WRITE_ONCE(pcp->high_min, high_min); |
| WRITE_ONCE(pcp->high_max, high_max); |
| } |
| |
| static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) |
| { |
| int pindex; |
| |
| memset(pcp, 0, sizeof(*pcp)); |
| memset(pzstats, 0, sizeof(*pzstats)); |
| |
| spin_lock_init(&pcp->lock); |
| for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) |
| INIT_LIST_HEAD(&pcp->lists[pindex]); |
| |
| /* |
| * Set batch and high values safe for a boot pageset. A true percpu |
| * pageset's initialization will update them subsequently. Here we don't |
| * need to be as careful as pageset_update() as nobody can access the |
| * pageset yet. |
| */ |
| pcp->high_min = BOOT_PAGESET_HIGH; |
| pcp->high_max = BOOT_PAGESET_HIGH; |
| pcp->batch = BOOT_PAGESET_BATCH; |
| pcp->free_count = 0; |
| } |
| |
| static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, |
| unsigned long high_max, unsigned long batch) |
| { |
| struct per_cpu_pages *pcp; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| pageset_update(pcp, high_min, high_max, batch); |
| } |
| } |
| |
| /* |
| * Calculate and set new high and batch values for all per-cpu pagesets of a |
| * zone based on the zone's size. |
| */ |
| static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) |
| { |
| int new_high_min, new_high_max, new_batch; |
| |
| new_batch = max(1, zone_batchsize(zone)); |
| if (percpu_pagelist_high_fraction) { |
| new_high_min = zone_highsize(zone, new_batch, cpu_online, |
| percpu_pagelist_high_fraction); |
| /* |
| * PCP high is tuned manually, disable auto-tuning via |
| * setting high_min and high_max to the manual value. |
| */ |
| new_high_max = new_high_min; |
| } else { |
| new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); |
| new_high_max = zone_highsize(zone, new_batch, cpu_online, |
| MIN_PERCPU_PAGELIST_HIGH_FRACTION); |
| } |
| |
| if (zone->pageset_high_min == new_high_min && |
| zone->pageset_high_max == new_high_max && |
| zone->pageset_batch == new_batch) |
| return; |
| |
| zone->pageset_high_min = new_high_min; |
| zone->pageset_high_max = new_high_max; |
| zone->pageset_batch = new_batch; |
| |
| __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, |
| new_batch); |
| } |
| |
| void __meminit setup_zone_pageset(struct zone *zone) |
| { |
| int cpu; |
| |
| /* Size may be 0 on !SMP && !NUMA */ |
| if (sizeof(struct per_cpu_zonestat) > 0) |
| zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); |
| |
| zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); |
| for_each_possible_cpu(cpu) { |
| struct per_cpu_pages *pcp; |
| struct per_cpu_zonestat *pzstats; |
| |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| per_cpu_pages_init(pcp, pzstats); |
| } |
| |
| zone_set_pageset_high_and_batch(zone, 0); |
| } |
| |
| /* |
| * The zone indicated has a new number of managed_pages; batch sizes and percpu |
| * page high values need to be recalculated. |
| */ |
| static void zone_pcp_update(struct zone *zone, int cpu_online) |
| { |
| mutex_lock(&pcp_batch_high_lock); |
| zone_set_pageset_high_and_batch(zone, cpu_online); |
| mutex_unlock(&pcp_batch_high_lock); |
| } |
| |
| static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) |
| { |
| struct per_cpu_pages *pcp; |
| struct cpu_cacheinfo *cci; |
| |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| cci = get_cpu_cacheinfo(cpu); |
| /* |
| * If data cache slice of CPU is large enough, "pcp->batch" |
| * pages can be preserved in PCP before draining PCP for |
| * consecutive high-order pages freeing without allocation. |
| * This can reduce zone lock contention without hurting |
| * cache-hot pages sharing. |
| */ |
| spin_lock(&pcp->lock); |
| if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) |
| pcp->flags |= PCPF_FREE_HIGH_BATCH; |
| else |
| pcp->flags &= ~PCPF_FREE_HIGH_BATCH; |
| spin_unlock(&pcp->lock); |
| } |
| |
| void setup_pcp_cacheinfo(unsigned int cpu) |
| { |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) |
| zone_pcp_update_cacheinfo(zone, cpu); |
| } |
| |
| /* |
| * Allocate per cpu pagesets and initialize them. |
| * Before this call only boot pagesets were available. |
| */ |
| void __init setup_per_cpu_pageset(void) |
| { |
| struct pglist_data *pgdat; |
| struct zone *zone; |
| int __maybe_unused cpu; |
| |
| for_each_populated_zone(zone) |
| setup_zone_pageset(zone); |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Unpopulated zones continue using the boot pagesets. |
| * The numa stats for these pagesets need to be reset. |
| * Otherwise, they will end up skewing the stats of |
| * the nodes these zones are associated with. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); |
| memset(pzstats->vm_numa_event, 0, |
| sizeof(pzstats->vm_numa_event)); |
| } |
| #endif |
| |
| for_each_online_pgdat(pgdat) |
| pgdat->per_cpu_nodestats = |
| alloc_percpu(struct per_cpu_nodestat); |
| } |
| |
| __meminit void zone_pcp_init(struct zone *zone) |
| { |
| /* |
| * per cpu subsystem is not up at this point. The following code |
| * relies on the ability of the linker to provide the |
| * offset of a (static) per cpu variable into the per cpu area. |
| */ |
| zone->per_cpu_pageset = &boot_pageset; |
| zone->per_cpu_zonestats = &boot_zonestats; |
| zone->pageset_high_min = BOOT_PAGESET_HIGH; |
| zone->pageset_high_max = BOOT_PAGESET_HIGH; |
| zone->pageset_batch = BOOT_PAGESET_BATCH; |
| |
| if (populated_zone(zone)) |
| pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, |
| zone->present_pages, zone_batchsize(zone)); |
| } |
| |
| void adjust_managed_page_count(struct page *page, long count) |
| { |
| atomic_long_add(count, &page_zone(page)->managed_pages); |
| totalram_pages_add(count); |
| #ifdef CONFIG_HIGHMEM |
| if (PageHighMem(page)) |
| totalhigh_pages_add(count); |
| #endif |
| } |
| EXPORT_SYMBOL(adjust_managed_page_count); |
| |
| unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) |
| { |
| void *pos; |
| unsigned long pages = 0; |
| |
| start = (void *)PAGE_ALIGN((unsigned long)start); |
| end = (void *)((unsigned long)end & PAGE_MASK); |
| for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { |
| struct page *page = virt_to_page(pos); |
| void *direct_map_addr; |
| |
| /* |
| * 'direct_map_addr' might be different from 'pos' |
| * because some architectures' virt_to_page() |
| * work with aliases. Getting the direct map |
| * address ensures that we get a _writeable_ |
| * alias for the memset(). |
| */ |
| direct_map_addr = page_address(page); |
| /* |
| * Perform a kasan-unchecked memset() since this memory |
| * has not been initialized. |
| */ |
| direct_map_addr = kasan_reset_tag(direct_map_addr); |
| if ((unsigned int)poison <= 0xFF) |
| memset(direct_map_addr, poison, PAGE_SIZE); |
| |
| free_reserved_page(page); |
| } |
| |
| if (pages && s) |
| pr_info("Freeing %s memory: %ldK\n", s, K(pages)); |
| |
| return pages; |
| } |
| |
| static int page_alloc_cpu_dead(unsigned int cpu) |
| { |
| struct zone *zone; |
| |
| lru_add_drain_cpu(cpu); |
| mlock_drain_remote(cpu); |
| drain_pages(cpu); |
| |
| /* |
| * Spill the event counters of the dead processor |
| * into the current processors event counters. |
| * This artificially elevates the count of the current |
| * processor. |
| */ |
| vm_events_fold_cpu(cpu); |
| |
| /* |
| * Zero the differential counters of the dead processor |
| * so that the vm statistics are consistent. |
| * |
| * This is only okay since the processor is dead and cannot |
| * race with what we are doing. |
| */ |
| cpu_vm_stats_fold(cpu); |
| |
| for_each_populated_zone(zone) |
| zone_pcp_update(zone, 0); |
| |
| return 0; |
| } |
| |
| static int page_alloc_cpu_online(unsigned int cpu) |
| { |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) |
| zone_pcp_update(zone, 1); |
| return 0; |
| } |
| |
| void __init page_alloc_init_cpuhp(void) |
| { |
| int ret; |
| |
| ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, |
| "mm/page_alloc:pcp", |
| page_alloc_cpu_online, |
| page_alloc_cpu_dead); |
| WARN_ON(ret < 0); |
| } |
| |
| /* |
| * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
| * or min_free_kbytes changes. |
| */ |
| static void calculate_totalreserve_pages(void) |
| { |
| struct pglist_data *pgdat; |
| unsigned long reserve_pages = 0; |
| enum zone_type i, j; |
| |
| for_each_online_pgdat(pgdat) { |
| |
| pgdat->totalreserve_pages = 0; |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| struct zone *zone = pgdat->node_zones + i; |
| long max = 0; |
| unsigned long managed_pages = zone_managed_pages(zone); |
| |
| /* Find valid and maximum lowmem_reserve in the zone */ |
| for (j = i; j < MAX_NR_ZONES; j++) { |
| if (zone->lowmem_reserve[j] > max) |
| max = zone->lowmem_reserve[j]; |
| } |
| |
| /* we treat the high watermark as reserved pages. */ |
| max += high_wmark_pages(zone); |
| |
| if (max > managed_pages) |
| max = managed_pages; |
| |
| pgdat->totalreserve_pages += max; |
| |
| reserve_pages += max; |
| } |
| } |
| totalreserve_pages = reserve_pages; |
| } |
| |
| /* |
| * setup_per_zone_lowmem_reserve - called whenever |
| * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
| * has a correct pages reserved value, so an adequate number of |
| * pages are left in the zone after a successful __alloc_pages(). |
| */ |
| static void setup_per_zone_lowmem_reserve(void) |
| { |
| struct pglist_data *pgdat; |
| enum zone_type i, j; |
| |
| for_each_online_pgdat(pgdat) { |
| for (i = 0; i < MAX_NR_ZONES - 1; i++) { |
| struct zone *zone = &pgdat->node_zones[i]; |
| int ratio = sysctl_lowmem_reserve_ratio[i]; |
| bool clear = !ratio || !zone_managed_pages(zone); |
| unsigned long managed_pages = 0; |
| |
| for (j = i + 1; j < MAX_NR_ZONES; j++) { |
| struct zone *upper_zone = &pgdat->node_zones[j]; |
| bool empty = !zone_managed_pages(upper_zone); |
| |
| managed_pages += zone_managed_pages(upper_zone); |
| |
| if (clear || empty) |
| zone->lowmem_reserve[j] = 0; |
| else |
| zone->lowmem_reserve[j] = managed_pages / ratio; |
| } |
| } |
| } |
| |
| /* update totalreserve_pages */ |
| calculate_totalreserve_pages(); |
| } |
| |
| static void __setup_per_zone_wmarks(void) |
| { |
| unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); |
| unsigned long lowmem_pages = 0; |
| struct zone *zone; |
| unsigned long flags; |
| |
| /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ |
| for_each_zone(zone) { |
| if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) |
| lowmem_pages += zone_managed_pages(zone); |
| } |
| |
| for_each_zone(zone) { |
| u64 tmp; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| tmp = (u64)pages_min * zone_managed_pages(zone); |
| tmp = div64_ul(tmp, lowmem_pages); |
| if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { |
| /* |
| * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
| * need highmem and movable zones pages, so cap pages_min |
| * to a small value here. |
| * |
| * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
| * deltas control async page reclaim, and so should |
| * not be capped for highmem and movable zones. |
| */ |
| unsigned long min_pages; |
| |
| min_pages = zone_managed_pages(zone) / 1024; |
| min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
| zone->_watermark[WMARK_MIN] = min_pages; |
| } else { |
| /* |
| * If it's a lowmem zone, reserve a number of pages |
| * proportionate to the zone's size. |
| */ |
| zone->_watermark[WMARK_MIN] = tmp; |
| } |
| |
| /* |
| * Set the kswapd watermarks distance according to the |
| * scale factor in proportion to available memory, but |
| * ensure a minimum size on small systems. |
| */ |
| tmp = max_t(u64, tmp >> 2, |
| mult_frac(zone_managed_pages(zone), |
| watermark_scale_factor, 10000)); |
| |
| zone->watermark_boost = 0; |
| zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; |
| zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; |
| zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; |
| |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| |
| /* update totalreserve_pages */ |
| calculate_totalreserve_pages(); |
| } |
| |
| /** |
| * setup_per_zone_wmarks - called when min_free_kbytes changes |
| * or when memory is hot-{added|removed} |
| * |
| * Ensures that the watermark[min,low,high] values for each zone are set |
| * correctly with respect to min_free_kbytes. |
| */ |
| void setup_per_zone_wmarks(void) |
| { |
| struct zone *zone; |
| static DEFINE_SPINLOCK(lock); |
| |
| spin_lock(&lock); |
| __setup_per_zone_wmarks(); |
| spin_unlock(&lock); |
| |
| /* |
| * The watermark size have changed so update the pcpu batch |
| * and high limits or the limits may be inappropriate. |
| */ |
| for_each_zone(zone) |
| zone_pcp_update(zone, 0); |
| } |
| |
| /* |
| * Initialise min_free_kbytes. |
| * |
| * For small machines we want it small (128k min). For large machines |
| * we want it large (256MB max). But it is not linear, because network |
| * bandwidth does not increase linearly with machine size. We use |
| * |
| * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
| * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
| * |
| * which yields |
| * |
| * 16MB: 512k |
| * 32MB: 724k |
| * 64MB: 1024k |
| * 128MB: 1448k |
| * 256MB: 2048k |
| * 512MB: 2896k |
| * 1024MB: 4096k |
| * 2048MB: 5792k |
| * 4096MB: 8192k |
| * 8192MB: 11584k |
| * 16384MB: 16384k |
| */ |
| void calculate_min_free_kbytes(void) |
| { |
| unsigned long lowmem_kbytes; |
| int new_min_free_kbytes; |
| |
| lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); |
| new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
| |
| if (new_min_free_kbytes > user_min_free_kbytes) |
| min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); |
| else |
| pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", |
| new_min_free_kbytes, user_min_free_kbytes); |
| |
| } |
| |
| int __meminit init_per_zone_wmark_min(void) |
| { |
| calculate_min_free_kbytes(); |
| setup_per_zone_wmarks(); |
| refresh_zone_stat_thresholds(); |
| setup_per_zone_lowmem_reserve(); |
| |
| #ifdef CONFIG_NUMA |
| setup_min_unmapped_ratio(); |
| setup_min_slab_ratio(); |
| #endif |
| |
| khugepaged_min_free_kbytes_update(); |
| |
| return 0; |
| } |
| postcore_initcall(init_per_zone_wmark_min) |
| |
| /* |
| * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
| * that we can call two helper functions whenever min_free_kbytes |
| * changes. |
| */ |
| static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| if (write) { |
| user_min_free_kbytes = min_free_kbytes; |
| setup_per_zone_wmarks(); |
| } |
| return 0; |
| } |
| |
| static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| if (write) |
| setup_per_zone_wmarks(); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_NUMA |
| static void setup_min_unmapped_ratio(void) |
| { |
| pg_data_t *pgdat; |
| struct zone *zone; |
| |
| for_each_online_pgdat(pgdat) |
| pgdat->min_unmapped_pages = 0; |
| |
| for_each_zone(zone) |
| zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * |
| sysctl_min_unmapped_ratio) / 100; |
| } |
| |
| |
| static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| setup_min_unmapped_ratio(); |
| |
| return 0; |
| } |
| |
| static void setup_min_slab_ratio(void) |
| { |
| pg_data_t *pgdat; |
| struct zone *zone; |
| |
| for_each_online_pgdat(pgdat) |
| pgdat->min_slab_pages = 0; |
| |
| for_each_zone(zone) |
| zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * |
| sysctl_min_slab_ratio) / 100; |
| } |
| |
| static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int rc; |
| |
| rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (rc) |
| return rc; |
| |
| setup_min_slab_ratio(); |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * lowmem_reserve_ratio_sysctl_handler - just a wrapper around |
| * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() |
| * whenever sysctl_lowmem_reserve_ratio changes. |
| * |
| * The reserve ratio obviously has absolutely no relation with the |
| * minimum watermarks. The lowmem reserve ratio can only make sense |
| * if in function of the boot time zone sizes. |
| */ |
| static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, |
| int write, void *buffer, size_t *length, loff_t *ppos) |
| { |
| int i; |
| |
| proc_dointvec_minmax(table, write, buffer, length, ppos); |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) { |
| if (sysctl_lowmem_reserve_ratio[i] < 1) |
| sysctl_lowmem_reserve_ratio[i] = 0; |
| } |
| |
| setup_per_zone_lowmem_reserve(); |
| return 0; |
| } |
| |
| /* |
| * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each |
| * cpu. It is the fraction of total pages in each zone that a hot per cpu |
| * pagelist can have before it gets flushed back to buddy allocator. |
| */ |
| static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, |
| int write, void *buffer, size_t *length, loff_t *ppos) |
| { |
| struct zone *zone; |
| int old_percpu_pagelist_high_fraction; |
| int ret; |
| |
| mutex_lock(&pcp_batch_high_lock); |
| old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; |
| |
| ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (!write || ret < 0) |
| goto out; |
| |
| /* Sanity checking to avoid pcp imbalance */ |
| if (percpu_pagelist_high_fraction && |
| percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { |
| percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* No change? */ |
| if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) |
| goto out; |
| |
| for_each_populated_zone(zone) |
| zone_set_pageset_high_and_batch(zone, 0); |
| out: |
| mutex_unlock(&pcp_batch_high_lock); |
| return ret; |
| } |
| |
| static struct ctl_table page_alloc_sysctl_table[] = { |
| { |
| .procname = "min_free_kbytes", |
| .data = &min_free_kbytes, |
| .maxlen = sizeof(min_free_kbytes), |
| .mode = 0644, |
| .proc_handler = min_free_kbytes_sysctl_handler, |
| .extra1 = SYSCTL_ZERO, |
| }, |
| { |
| .procname = "watermark_boost_factor", |
| .data = &watermark_boost_factor, |
| .maxlen = sizeof(watermark_boost_factor), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = SYSCTL_ZERO, |
| }, |
| { |
| .procname = "watermark_scale_factor", |
| .data = &watermark_scale_factor, |
| .maxlen = sizeof(watermark_scale_factor), |
| .mode = 0644, |
| .proc_handler = watermark_scale_factor_sysctl_handler, |
| .extra1 = SYSCTL_ONE, |
| .extra2 = SYSCTL_THREE_THOUSAND, |
| }, |
| { |
| .procname = "percpu_pagelist_high_fraction", |
| .data = &percpu_pagelist_high_fraction, |
| .maxlen = sizeof(percpu_pagelist_high_fraction), |
| .mode = 0644, |
| .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, |
| .extra1 = SYSCTL_ZERO, |
| }, |
| { |
| .procname = "lowmem_reserve_ratio", |
| .data = &sysctl_lowmem_reserve_ratio, |
| .maxlen = sizeof(sysctl_lowmem_reserve_ratio), |
| .mode = 0644, |
| .proc_handler = lowmem_reserve_ratio_sysctl_handler, |
| }, |
| #ifdef CONFIG_NUMA |
| { |
| .procname = "numa_zonelist_order", |
| .data = &numa_zonelist_order, |
| .maxlen = NUMA_ZONELIST_ORDER_LEN, |
| .mode = 0644, |
| .proc_handler = numa_zonelist_order_handler, |
| }, |
| { |
| .procname = "min_unmapped_ratio", |
| .data = &sysctl_min_unmapped_ratio, |
| .maxlen = sizeof(sysctl_min_unmapped_ratio), |
| .mode = 0644, |
| .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_ONE_HUNDRED, |
| }, |
| { |
| .procname = "min_slab_ratio", |
| .data = &sysctl_min_slab_ratio, |
| .maxlen = sizeof(sysctl_min_slab_ratio), |
| .mode = 0644, |
| .proc_handler = sysctl_min_slab_ratio_sysctl_handler, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_ONE_HUNDRED, |
| }, |
| #endif |
| }; |
| |
| void __init page_alloc_sysctl_init(void) |
| { |
| register_sysctl_init("vm", page_alloc_sysctl_table); |
| } |
| |
| #ifdef CONFIG_CONTIG_ALLOC |
| /* Usage: See admin-guide/dynamic-debug-howto.rst */ |
| static void alloc_contig_dump_pages(struct list_head *page_list) |
| { |
| DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); |
| |
| if (DYNAMIC_DEBUG_BRANCH(descriptor)) { |
| struct page *page; |
| |
| dump_stack(); |
| list_for_each_entry(page, page_list, lru) |
| dump_page(page, "migration failure"); |
| } |
| } |
| |
| /* |
| * [start, end) must belong to a single zone. |
| * @migratetype: using migratetype to filter the type of migration in |
| * trace_mm_alloc_contig_migrate_range_info. |
| */ |
| int __alloc_contig_migrate_range(struct compact_control *cc, |
| unsigned long start, unsigned long end, |
| int migratetype) |
| { |
| /* This function is based on compact_zone() from compaction.c. */ |
| unsigned int nr_reclaimed; |
| unsigned long pfn = start; |
| unsigned int tries = 0; |
| int ret = 0; |
| struct migration_target_control mtc = { |
| .nid = zone_to_nid(cc->zone), |
| .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, |
| .reason = MR_CONTIG_RANGE, |
| }; |
| struct page *page; |
| unsigned long total_mapped = 0; |
| unsigned long total_migrated = 0; |
| unsigned long total_reclaimed = 0; |
| |
| lru_cache_disable(); |
| |
| while (pfn < end || !list_empty(&cc->migratepages)) { |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| if (list_empty(&cc->migratepages)) { |
| cc->nr_migratepages = 0; |
| ret = isolate_migratepages_range(cc, pfn, end); |
| if (ret && ret != -EAGAIN) |
| break; |
| pfn = cc->migrate_pfn; |
| tries = 0; |
| } else if (++tries == 5) { |
| ret = -EBUSY; |
| break; |
| } |
| |
| nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
| &cc->migratepages); |
| cc->nr_migratepages -= nr_reclaimed; |
| |
| if (trace_mm_alloc_contig_migrate_range_info_enabled()) { |
| total_reclaimed += nr_reclaimed; |
| list_for_each_entry(page, &cc->migratepages, lru) { |
| struct folio *folio = page_folio(page); |
| |
| total_mapped += folio_mapped(folio) * |
| folio_nr_pages(folio); |
| } |
| } |
| |
| ret = migrate_pages(&cc->migratepages, alloc_migration_target, |
| NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); |
| |
| if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) |
| total_migrated += cc->nr_migratepages; |
| |
| /* |
| * On -ENOMEM, migrate_pages() bails out right away. It is pointless |
| * to retry again over this error, so do the same here. |
| */ |
| if (ret == -ENOMEM) |
| break; |
| } |
| |
| lru_cache_enable(); |
| if (ret < 0) { |
| if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) |
| alloc_contig_dump_pages(&cc->migratepages); |
| putback_movable_pages(&cc->migratepages); |
| } |
| |
| trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, |
| total_migrated, |
| total_reclaimed, |
| total_mapped); |
| return (ret < 0) ? ret : 0; |
| } |
| |
| /** |
| * alloc_contig_range() -- tries to allocate given range of pages |
| * @start: start PFN to allocate |
| * @end: one-past-the-last PFN to allocate |
| * @migratetype: migratetype of the underlying pageblocks (either |
| * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks |
| * in range must have the same migratetype and it must |
| * be either of the two. |
| * @gfp_mask: GFP mask to use during compaction |
| * |
| * The PFN range does not have to be pageblock aligned. The PFN range must |
| * belong to a single zone. |
| * |
| * The first thing this routine does is attempt to MIGRATE_ISOLATE all |
| * pageblocks in the range. Once isolated, the pageblocks should not |
| * be modified by others. |
| * |
| * Return: zero on success or negative error code. On success all |
| * pages which PFN is in [start, end) are allocated for the caller and |
| * need to be freed with free_contig_range(). |
| */ |
| int alloc_contig_range_noprof(unsigned long start, unsigned long end, |
| unsigned migratetype, gfp_t gfp_mask) |
| { |
| unsigned long outer_start, outer_end; |
| int ret = 0; |
| |
| struct compact_control cc = { |
| .nr_migratepages = 0, |
| .order = -1, |
| .zone = page_zone(pfn_to_page(start)), |
| .mode = MIGRATE_SYNC, |
| .ignore_skip_hint = true, |
| .no_set_skip_hint = true, |
| .gfp_mask = current_gfp_context(gfp_mask), |
| .alloc_contig = true, |
| }; |
| INIT_LIST_HEAD(&cc.migratepages); |
| |
| /* |
| * What we do here is we mark all pageblocks in range as |
| * MIGRATE_ISOLATE. Because pageblock and max order pages may |
| * have different sizes, and due to the way page allocator |
| * work, start_isolate_page_range() has special handlings for this. |
| * |
| * Once the pageblocks are marked as MIGRATE_ISOLATE, we |
| * migrate the pages from an unaligned range (ie. pages that |
| * we are interested in). This will put all the pages in |
| * range back to page allocator as MIGRATE_ISOLATE. |
| * |
| * When this is done, we take the pages in range from page |
| * allocator removing them from the buddy system. This way |
| * page allocator will never consider using them. |
| * |
| * This lets us mark the pageblocks back as |
| * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the |
| * aligned range but not in the unaligned, original range are |
| * put back to page allocator so that buddy can use them. |
| */ |
| |
| ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); |
| if (ret) |
| goto done; |
| |
| drain_all_pages(cc.zone); |
| |
| /* |
| * In case of -EBUSY, we'd like to know which page causes problem. |
| * So, just fall through. test_pages_isolated() has a tracepoint |
| * which will report the busy page. |
| * |
| * It is possible that busy pages could become available before |
| * the call to test_pages_isolated, and the range will actually be |
| * allocated. So, if we fall through be sure to clear ret so that |
| * -EBUSY is not accidentally used or returned to caller. |
| */ |
| ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); |
| if (ret && ret != -EBUSY) |
| goto done; |
| ret = 0; |
| |
| /* |
| * Pages from [start, end) are within a pageblock_nr_pages |
| * aligned blocks that are marked as MIGRATE_ISOLATE. What's |
| * more, all pages in [start, end) are free in page allocator. |
| * What we are going to do is to allocate all pages from |
| * [start, end) (that is remove them from page allocator). |
| * |
| * The only problem is that pages at the beginning and at the |
| * end of interesting range may be not aligned with pages that |
| * page allocator holds, ie. they can be part of higher order |
| * pages. Because of this, we reserve the bigger range and |
| * once this is done free the pages we are not interested in. |
| * |
| * We don't have to hold zone->lock here because the pages are |
| * isolated thus they won't get removed from buddy. |
| */ |
| outer_start = find_large_buddy(start); |
| |
| /* Make sure the range is really isolated. */ |
| if (test_pages_isolated(outer_start, end, 0)) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| /* Grab isolated pages from freelists. */ |
| outer_end = isolate_freepages_range(&cc, outer_start, end); |
| if (!outer_end) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| /* Free head and tail (if any) */ |
| if (start != outer_start) |
| free_contig_range(outer_start, start - outer_start); |
| if (end != outer_end) |
| free_contig_range(end, outer_end - end); |
| |
| done: |
| undo_isolate_page_range(start, end, migratetype); |
| return ret; |
| } |
| EXPORT_SYMBOL(alloc_contig_range_noprof); |
| |
| static int __alloc_contig_pages(unsigned long start_pfn, |
| unsigned long nr_pages, gfp_t gfp_mask) |
| { |
| unsigned long end_pfn = start_pfn + nr_pages; |
| |
| return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, |
| gfp_mask); |
| } |
| |
| static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| unsigned long i, end_pfn = start_pfn + nr_pages; |
| struct page *page; |
| |
| for (i = start_pfn; i < end_pfn; i++) { |
| page = pfn_to_online_page(i); |
| if (!page) |
| return false; |
| |
| if (page_zone(page) != z) |
| return false; |
| |
| if (PageReserved(page)) |
| return false; |
| |
| if (PageHuge(page)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool zone_spans_last_pfn(const struct zone *zone, |
| unsigned long start_pfn, unsigned long nr_pages) |
| { |
| unsigned long last_pfn = start_pfn + nr_pages - 1; |
| |
| return zone_spans_pfn(zone, last_pfn); |
| } |
| |
| /** |
| * alloc_contig_pages() -- tries to find and allocate contiguous range of pages |
| * @nr_pages: Number of contiguous pages to allocate |
| * @gfp_mask: GFP mask to limit search and used during compaction |
| * @nid: Target node |
| * @nodemask: Mask for other possible nodes |
| * |
| * This routine is a wrapper around alloc_contig_range(). It scans over zones |
| * on an applicable zonelist to find a contiguous pfn range which can then be |
| * tried for allocation with alloc_contig_range(). This routine is intended |
| * for allocation requests which can not be fulfilled with the buddy allocator. |
| * |
| * The allocated memory is always aligned to a page boundary. If nr_pages is a |
| * power of two, then allocated range is also guaranteed to be aligned to same |
| * nr_pages (e.g. 1GB request would be aligned to 1GB). |
| * |
| * Allocated pages can be freed with free_contig_range() or by manually calling |
| * __free_page() on each allocated page. |
| * |
| * Return: pointer to contiguous pages on success, or NULL if not successful. |
| */ |
| struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, |
| int nid, nodemask_t *nodemask) |
| { |
| unsigned long ret, pfn, flags; |
| struct zonelist *zonelist; |
| struct zone *zone; |
| struct zoneref *z; |
| |
| zonelist = node_zonelist(nid, gfp_mask); |
| for_each_zone_zonelist_nodemask(zone, z, zonelist, |
| gfp_zone(gfp_mask), nodemask) { |
| spin_lock_irqsave(&zone->lock, flags); |
| |
| pfn = ALIGN(zone->zone_start_pfn, nr_pages); |
| while (zone_spans_last_pfn(zone, pfn, nr_pages)) { |
| if (pfn_range_valid_contig(zone, pfn, nr_pages)) { |
| /* |
| * We release the zone lock here because |
| * alloc_contig_range() will also lock the zone |
| * at some point. If there's an allocation |
| * spinning on this lock, it may win the race |
| * and cause alloc_contig_range() to fail... |
| */ |
| spin_unlock_irqrestore(&zone->lock, flags); |
| ret = __alloc_contig_pages(pfn, nr_pages, |
| gfp_mask); |
| if (!ret) |
| return pfn_to_page(pfn); |
| spin_lock_irqsave(&zone->lock, flags); |
| } |
| pfn += nr_pages; |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| return NULL; |
| } |
| #endif /* CONFIG_CONTIG_ALLOC */ |
| |
| void free_contig_range(unsigned long pfn, unsigned long nr_pages) |
| { |
| unsigned long count = 0; |
| |
| for (; nr_pages--; pfn++) { |
| struct page *page = pfn_to_page(pfn); |
| |
| count += page_count(page) != 1; |
| __free_page(page); |
| } |
| WARN(count != 0, "%lu pages are still in use!\n", count); |
| } |
| EXPORT_SYMBOL(free_contig_range); |
| |
| /* |
| * Effectively disable pcplists for the zone by setting the high limit to 0 |
| * and draining all cpus. A concurrent page freeing on another CPU that's about |
| * to put the page on pcplist will either finish before the drain and the page |
| * will be drained, or observe the new high limit and skip the pcplist. |
| * |
| * Must be paired with a call to zone_pcp_enable(). |
| */ |
| void zone_pcp_disable(struct zone *zone) |
| { |
| mutex_lock(&pcp_batch_high_lock); |
| __zone_set_pageset_high_and_batch(zone, 0, 0, 1); |
| __drain_all_pages(zone, true); |
| } |
| |
| void zone_pcp_enable(struct zone *zone) |
| { |
| __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, |
| zone->pageset_high_max, zone->pageset_batch); |
| mutex_unlock(&pcp_batch_high_lock); |
| } |
| |
| void zone_pcp_reset(struct zone *zone) |
| { |
| int cpu; |
| struct per_cpu_zonestat *pzstats; |
| |
| if (zone->per_cpu_pageset != &boot_pageset) { |
| for_each_online_cpu(cpu) { |
| pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| drain_zonestat(zone, pzstats); |
| } |
| free_percpu(zone->per_cpu_pageset); |
| zone->per_cpu_pageset = &boot_pageset; |
| if (zone->per_cpu_zonestats != &boot_zonestats) { |
| free_percpu(zone->per_cpu_zonestats); |
| zone->per_cpu_zonestats = &boot_zonestats; |
| } |
| } |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTREMOVE |
| /* |
| * All pages in the range must be in a single zone, must not contain holes, |
| * must span full sections, and must be isolated before calling this function. |
| */ |
| void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| unsigned long pfn = start_pfn; |
| struct page *page; |
| struct zone *zone; |
| unsigned int order; |
| unsigned long flags; |
| |
| offline_mem_sections(pfn, end_pfn); |
| zone = page_zone(pfn_to_page(pfn)); |
| spin_lock_irqsave(&zone->lock, flags); |
| while (pfn < end_pfn) { |
| page = pfn_to_page(pfn); |
| /* |
| * The HWPoisoned page may be not in buddy system, and |
| * page_count() is not 0. |
| */ |
| if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { |
| pfn++; |
| continue; |
| } |
| /* |
| * At this point all remaining PageOffline() pages have a |
| * reference count of 0 and can simply be skipped. |
| */ |
| if (PageOffline(page)) { |
| BUG_ON(page_count(page)); |
| BUG_ON(PageBuddy(page)); |
| pfn++; |
| continue; |
| } |
| |
| BUG_ON(page_count(page)); |
| BUG_ON(!PageBuddy(page)); |
| VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); |
| order = buddy_order(page); |
| del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); |
| pfn += (1 << order); |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| #endif |
| |
| /* |
| * This function returns a stable result only if called under zone lock. |
| */ |
| bool is_free_buddy_page(const struct page *page) |
| { |
| unsigned long pfn = page_to_pfn(page); |
| unsigned int order; |
| |
| for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| const struct page *head = page - (pfn & ((1 << order) - 1)); |
| |
| if (PageBuddy(head) && |
| buddy_order_unsafe(head) >= order) |
| break; |
| } |
| |
| return order <= MAX_PAGE_ORDER; |
| } |
| EXPORT_SYMBOL(is_free_buddy_page); |
| |
| #ifdef CONFIG_MEMORY_FAILURE |
| static inline void add_to_free_list(struct page *page, struct zone *zone, |
| unsigned int order, int migratetype, |
| bool tail) |
| { |
| __add_to_free_list(page, zone, order, migratetype, tail); |
| account_freepages(zone, 1 << order, migratetype); |
| } |
| |
| /* |
| * Break down a higher-order page in sub-pages, and keep our target out of |
| * buddy allocator. |
| */ |
| static void break_down_buddy_pages(struct zone *zone, struct page *page, |
| struct page *target, int low, int high, |
| int migratetype) |
| { |
| unsigned long size = 1 << high; |
| struct page *current_buddy; |
| |
| while (high > low) { |
| high--; |
| size >>= 1; |
| |
| if (target >= &page[size]) { |
| current_buddy = page; |
| page = page + size; |
| } else { |
| current_buddy = page + size; |
| } |
| |
| if (set_page_guard(zone, current_buddy, high)) |
| continue; |
| |
| add_to_free_list(current_buddy, zone, high, migratetype, false); |
| set_buddy_order(current_buddy, high); |
| } |
| } |
| |
| /* |
| * Take a page that will be marked as poisoned off the buddy allocator. |
| */ |
| bool take_page_off_buddy(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| unsigned long pfn = page_to_pfn(page); |
| unsigned long flags; |
| unsigned int order; |
| bool ret = false; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| struct page *page_head = page - (pfn & ((1 << order) - 1)); |
| int page_order = buddy_order(page_head); |
| |
| if (PageBuddy(page_head) && page_order >= order) { |
| unsigned long pfn_head = page_to_pfn(page_head); |
| int migratetype = get_pfnblock_migratetype(page_head, |
| pfn_head); |
| |
| del_page_from_free_list(page_head, zone, page_order, |
| migratetype); |
| break_down_buddy_pages(zone, page_head, page, 0, |
| page_order, migratetype); |
| SetPageHWPoisonTakenOff(page); |
| ret = true; |
| break; |
| } |
| if (page_count(page_head) > 0) |
| break; |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return ret; |
| } |
| |
| /* |
| * Cancel takeoff done by take_page_off_buddy(). |
| */ |
| bool put_page_back_buddy(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| unsigned long flags; |
| bool ret = false; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| if (put_page_testzero(page)) { |
| unsigned long pfn = page_to_pfn(page); |
| int migratetype = get_pfnblock_migratetype(page, pfn); |
| |
| ClearPageHWPoisonTakenOff(page); |
| __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); |
| if (TestClearPageHWPoison(page)) { |
| ret = true; |
| } |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| return ret; |
| } |
| #endif |
| |
| #ifdef CONFIG_ZONE_DMA |
| bool has_managed_dma(void) |
| { |
| struct pglist_data *pgdat; |
| |
| for_each_online_pgdat(pgdat) { |
| struct zone *zone = &pgdat->node_zones[ZONE_DMA]; |
| |
| if (managed_zone(zone)) |
| return true; |
| } |
| return false; |
| } |
| #endif /* CONFIG_ZONE_DMA */ |
| |
| #ifdef CONFIG_UNACCEPTED_MEMORY |
| |
| /* Counts number of zones with unaccepted pages. */ |
| static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); |
| |
| static bool lazy_accept = true; |
| |
| static int __init accept_memory_parse(char *p) |
| { |
| if (!strcmp(p, "lazy")) { |
| lazy_accept = true; |
| return 0; |
| } else if (!strcmp(p, "eager")) { |
| lazy_accept = false; |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| } |
| early_param("accept_memory", accept_memory_parse); |
| |
| static bool page_contains_unaccepted(struct page *page, unsigned int order) |
| { |
| phys_addr_t start = page_to_phys(page); |
| phys_addr_t end = start + (PAGE_SIZE << order); |
| |
| return range_contains_unaccepted_memory(start, end); |
| } |
| |
| static void accept_page(struct page *page, unsigned int order) |
| { |
| phys_addr_t start = page_to_phys(page); |
| |
| accept_memory(start, start + (PAGE_SIZE << order)); |
| } |
| |
| static bool try_to_accept_memory_one(struct zone *zone) |
| { |
| unsigned long flags; |
| struct page *page; |
| bool last; |
| |
| if (list_empty(&zone->unaccepted_pages)) |
| return false; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| page = list_first_entry_or_null(&zone->unaccepted_pages, |
| struct page, lru); |
| if (!page) { |
| spin_unlock_irqrestore(&zone->lock, flags); |
| return false; |
| } |
| |
| list_del(&page->lru); |
| last = list_empty(&zone->unaccepted_pages); |
| |
| account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); |
| __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| accept_page(page, MAX_PAGE_ORDER); |
| |
| __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); |
| |
| if (last) |
| static_branch_dec(&zones_with_unaccepted_pages); |
| |
| return true; |
| } |
| |
| static bool try_to_accept_memory(struct zone *zone, unsigned int order) |
| { |
| long to_accept; |
| int ret = false; |
| |
| /* How much to accept to get to high watermark? */ |
| to_accept = high_wmark_pages(zone) - |
| (zone_page_state(zone, NR_FREE_PAGES) - |
| __zone_watermark_unusable_free(zone, order, 0)); |
| |
| /* Accept at least one page */ |
| do { |
| if (!try_to_accept_memory_one(zone)) |
| break; |
| ret = true; |
| to_accept -= MAX_ORDER_NR_PAGES; |
| } while (to_accept > 0); |
| |
| return ret; |
| } |
| |
| static inline bool has_unaccepted_memory(void) |
| { |
| return static_branch_unlikely(&zones_with_unaccepted_pages); |
| } |
| |
| static bool __free_unaccepted(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| unsigned long flags; |
| bool first = false; |
| |
| if (!lazy_accept) |
| return false; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| first = list_empty(&zone->unaccepted_pages); |
| list_add_tail(&page->lru, &zone->unaccepted_pages); |
| account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); |
| __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); |
| spin_unlock_irqrestore(&zone->lock, flags); |
| |
| if (first) |
| static_branch_inc(&zones_with_unaccepted_pages); |
| |
| return true; |
| } |
| |
| #else |
| |
| static bool page_contains_unaccepted(struct page *page, unsigned int order) |
| { |
| return false; |
| } |
| |
| static void accept_page(struct page *page, unsigned int order) |
| { |
| } |
| |
| static bool try_to_accept_memory(struct zone *zone, unsigned int order) |
| { |
| return false; |
| } |
| |
| static inline bool has_unaccepted_memory(void) |
| { |
| return false; |
| } |
| |
| static bool __free_unaccepted(struct page *page) |
| { |
| BUILD_BUG(); |
| return false; |
| } |
| |
| #endif /* CONFIG_UNACCEPTED_MEMORY */ |