|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/kernel/signal.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson | 
|  | * | 
|  | *  2003-06-02  Jim Houston - Concurrent Computer Corp. | 
|  | *		Changes to use preallocated sigqueue structures | 
|  | *		to allow signals to be sent reliably. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/user.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/sched/cputime.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/coredump.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/signalfd.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/task_work.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/uprobes.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/audit.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/signal.h> | 
|  |  | 
|  | #include <asm/param.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/siginfo.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/syscall.h>	/* for syscall_get_* */ | 
|  |  | 
|  | /* | 
|  | * SLAB caches for signal bits. | 
|  | */ | 
|  |  | 
|  | static struct kmem_cache *sigqueue_cachep; | 
|  |  | 
|  | int print_fatal_signals __read_mostly; | 
|  |  | 
|  | static void __user *sig_handler(struct task_struct *t, int sig) | 
|  | { | 
|  | return t->sighand->action[sig - 1].sa.sa_handler; | 
|  | } | 
|  |  | 
|  | static inline bool sig_handler_ignored(void __user *handler, int sig) | 
|  | { | 
|  | /* Is it explicitly or implicitly ignored? */ | 
|  | return handler == SIG_IGN || | 
|  | (handler == SIG_DFL && sig_kernel_ignore(sig)); | 
|  | } | 
|  |  | 
|  | static bool sig_task_ignored(struct task_struct *t, int sig, bool force) | 
|  | { | 
|  | void __user *handler; | 
|  |  | 
|  | handler = sig_handler(t, sig); | 
|  |  | 
|  | /* SIGKILL and SIGSTOP may not be sent to the global init */ | 
|  | if (unlikely(is_global_init(t) && sig_kernel_only(sig))) | 
|  | return true; | 
|  |  | 
|  | if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && | 
|  | handler == SIG_DFL && !(force && sig_kernel_only(sig))) | 
|  | return true; | 
|  |  | 
|  | /* Only allow kernel generated signals to this kthread */ | 
|  | if (unlikely((t->flags & PF_KTHREAD) && | 
|  | (handler == SIG_KTHREAD_KERNEL) && !force)) | 
|  | return true; | 
|  |  | 
|  | return sig_handler_ignored(handler, sig); | 
|  | } | 
|  |  | 
|  | static bool sig_ignored(struct task_struct *t, int sig, bool force) | 
|  | { | 
|  | /* | 
|  | * Blocked signals are never ignored, since the | 
|  | * signal handler may change by the time it is | 
|  | * unblocked. | 
|  | */ | 
|  | if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Tracers may want to know about even ignored signal unless it | 
|  | * is SIGKILL which can't be reported anyway but can be ignored | 
|  | * by SIGNAL_UNKILLABLE task. | 
|  | */ | 
|  | if (t->ptrace && sig != SIGKILL) | 
|  | return false; | 
|  |  | 
|  | return sig_task_ignored(t, sig, force); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-calculate pending state from the set of locally pending | 
|  | * signals, globally pending signals, and blocked signals. | 
|  | */ | 
|  | static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) | 
|  | { | 
|  | unsigned long ready; | 
|  | long i; | 
|  |  | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) | 
|  | ready |= signal->sig[i] &~ blocked->sig[i]; | 
|  | break; | 
|  |  | 
|  | case 4: ready  = signal->sig[3] &~ blocked->sig[3]; | 
|  | ready |= signal->sig[2] &~ blocked->sig[2]; | 
|  | ready |= signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 2: ready  = signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 1: ready  = signal->sig[0] &~ blocked->sig[0]; | 
|  | } | 
|  | return ready !=	0; | 
|  | } | 
|  |  | 
|  | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) | 
|  |  | 
|  | static bool recalc_sigpending_tsk(struct task_struct *t) | 
|  | { | 
|  | if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || | 
|  | PENDING(&t->pending, &t->blocked) || | 
|  | PENDING(&t->signal->shared_pending, &t->blocked) || | 
|  | cgroup_task_frozen(t)) { | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must never clear the flag in another thread, or in current | 
|  | * when it's possible the current syscall is returning -ERESTART*. | 
|  | * So we don't clear it here, and only callers who know they should do. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. | 
|  | * This is superfluous when called on current, the wakeup is a harmless no-op. | 
|  | */ | 
|  | void recalc_sigpending_and_wake(struct task_struct *t) | 
|  | { | 
|  | if (recalc_sigpending_tsk(t)) | 
|  | signal_wake_up(t, 0); | 
|  | } | 
|  |  | 
|  | void recalc_sigpending(void) | 
|  | { | 
|  | if (!recalc_sigpending_tsk(current) && !freezing(current)) | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(recalc_sigpending); | 
|  |  | 
|  | void calculate_sigpending(void) | 
|  | { | 
|  | /* Have any signals or users of TIF_SIGPENDING been delayed | 
|  | * until after fork? | 
|  | */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | set_tsk_thread_flag(current, TIF_SIGPENDING); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /* Given the mask, find the first available signal that should be serviced. */ | 
|  |  | 
|  | #define SYNCHRONOUS_MASK \ | 
|  | (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ | 
|  | sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) | 
|  |  | 
|  | int next_signal(struct sigpending *pending, sigset_t *mask) | 
|  | { | 
|  | unsigned long i, *s, *m, x; | 
|  | int sig = 0; | 
|  |  | 
|  | s = pending->signal.sig; | 
|  | m = mask->sig; | 
|  |  | 
|  | /* | 
|  | * Handle the first word specially: it contains the | 
|  | * synchronous signals that need to be dequeued first. | 
|  | */ | 
|  | x = *s &~ *m; | 
|  | if (x) { | 
|  | if (x & SYNCHRONOUS_MASK) | 
|  | x &= SYNCHRONOUS_MASK; | 
|  | sig = ffz(~x) + 1; | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = 1; i < _NSIG_WORDS; ++i) { | 
|  | x = *++s &~ *++m; | 
|  | if (!x) | 
|  | continue; | 
|  | sig = ffz(~x) + i*_NSIG_BPW + 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | x = s[1] &~ m[1]; | 
|  | if (!x) | 
|  | break; | 
|  | sig = ffz(~x) + _NSIG_BPW + 1; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | /* Nothing to do */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | static inline void print_dropped_signal(int sig) | 
|  | { | 
|  | static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); | 
|  |  | 
|  | if (!print_fatal_signals) | 
|  | return; | 
|  |  | 
|  | if (!__ratelimit(&ratelimit_state)) | 
|  | return; | 
|  |  | 
|  | pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", | 
|  | current->comm, current->pid, sig); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_set_jobctl_pending - set jobctl pending bits | 
|  | * @task: target task | 
|  | * @mask: pending bits to set | 
|  | * | 
|  | * Clear @mask from @task->jobctl.  @mask must be subset of | 
|  | * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | | 
|  | * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is | 
|  | * cleared.  If @task is already being killed or exiting, this function | 
|  | * becomes noop. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | * | 
|  | * RETURNS: | 
|  | * %true if @mask is set, %false if made noop because @task was dying. | 
|  | */ | 
|  | bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) | 
|  | { | 
|  | BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | | 
|  | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); | 
|  | BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); | 
|  |  | 
|  | if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) | 
|  | return false; | 
|  |  | 
|  | if (mask & JOBCTL_STOP_SIGMASK) | 
|  | task->jobctl &= ~JOBCTL_STOP_SIGMASK; | 
|  |  | 
|  | task->jobctl |= mask; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_clear_jobctl_trapping - clear jobctl trapping bit | 
|  | * @task: target task | 
|  | * | 
|  | * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. | 
|  | * Clear it and wake up the ptracer.  Note that we don't need any further | 
|  | * locking.  @task->siglock guarantees that @task->parent points to the | 
|  | * ptracer. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | */ | 
|  | void task_clear_jobctl_trapping(struct task_struct *task) | 
|  | { | 
|  | if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { | 
|  | task->jobctl &= ~JOBCTL_TRAPPING; | 
|  | smp_mb();	/* advised by wake_up_bit() */ | 
|  | wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_clear_jobctl_pending - clear jobctl pending bits | 
|  | * @task: target task | 
|  | * @mask: pending bits to clear | 
|  | * | 
|  | * Clear @mask from @task->jobctl.  @mask must be subset of | 
|  | * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other | 
|  | * STOP bits are cleared together. | 
|  | * | 
|  | * If clearing of @mask leaves no stop or trap pending, this function calls | 
|  | * task_clear_jobctl_trapping(). | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | */ | 
|  | void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) | 
|  | { | 
|  | BUG_ON(mask & ~JOBCTL_PENDING_MASK); | 
|  |  | 
|  | if (mask & JOBCTL_STOP_PENDING) | 
|  | mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; | 
|  |  | 
|  | task->jobctl &= ~mask; | 
|  |  | 
|  | if (!(task->jobctl & JOBCTL_PENDING_MASK)) | 
|  | task_clear_jobctl_trapping(task); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_participate_group_stop - participate in a group stop | 
|  | * @task: task participating in a group stop | 
|  | * | 
|  | * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. | 
|  | * Group stop states are cleared and the group stop count is consumed if | 
|  | * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group | 
|  | * stop, the appropriate `SIGNAL_*` flags are set. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | * | 
|  | * RETURNS: | 
|  | * %true if group stop completion should be notified to the parent, %false | 
|  | * otherwise. | 
|  | */ | 
|  | static bool task_participate_group_stop(struct task_struct *task) | 
|  | { | 
|  | struct signal_struct *sig = task->signal; | 
|  | bool consume = task->jobctl & JOBCTL_STOP_CONSUME; | 
|  |  | 
|  | WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); | 
|  |  | 
|  | task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); | 
|  |  | 
|  | if (!consume) | 
|  | return false; | 
|  |  | 
|  | if (!WARN_ON_ONCE(sig->group_stop_count == 0)) | 
|  | sig->group_stop_count--; | 
|  |  | 
|  | /* | 
|  | * Tell the caller to notify completion iff we are entering into a | 
|  | * fresh group stop.  Read comment in do_signal_stop() for details. | 
|  | */ | 
|  | if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { | 
|  | signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void task_join_group_stop(struct task_struct *task) | 
|  | { | 
|  | unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; | 
|  | struct signal_struct *sig = current->signal; | 
|  |  | 
|  | if (sig->group_stop_count) { | 
|  | sig->group_stop_count++; | 
|  | mask |= JOBCTL_STOP_CONSUME; | 
|  | } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) | 
|  | return; | 
|  |  | 
|  | /* Have the new thread join an on-going signal group stop */ | 
|  | task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate a new signal queue record | 
|  | * - this may be called without locks if and only if t == current, otherwise an | 
|  | *   appropriate lock must be held to stop the target task from exiting | 
|  | */ | 
|  | static struct sigqueue * | 
|  | __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, | 
|  | int override_rlimit, const unsigned int sigqueue_flags) | 
|  | { | 
|  | struct sigqueue *q = NULL; | 
|  | struct ucounts *ucounts = NULL; | 
|  | long sigpending; | 
|  |  | 
|  | /* | 
|  | * Protect access to @t credentials. This can go away when all | 
|  | * callers hold rcu read lock. | 
|  | * | 
|  | * NOTE! A pending signal will hold on to the user refcount, | 
|  | * and we get/put the refcount only when the sigpending count | 
|  | * changes from/to zero. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | ucounts = task_ucounts(t); | 
|  | sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); | 
|  | rcu_read_unlock(); | 
|  | if (!sigpending) | 
|  | return NULL; | 
|  |  | 
|  | if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { | 
|  | q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); | 
|  | } else { | 
|  | print_dropped_signal(sig); | 
|  | } | 
|  |  | 
|  | if (unlikely(q == NULL)) { | 
|  | dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); | 
|  | } else { | 
|  | INIT_LIST_HEAD(&q->list); | 
|  | q->flags = sigqueue_flags; | 
|  | q->ucounts = ucounts; | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static void __sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | if (q->flags & SIGQUEUE_PREALLOC) | 
|  | return; | 
|  | if (q->ucounts) { | 
|  | dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); | 
|  | q->ucounts = NULL; | 
|  | } | 
|  | kmem_cache_free(sigqueue_cachep, q); | 
|  | } | 
|  |  | 
|  | void flush_sigqueue(struct sigpending *queue) | 
|  | { | 
|  | struct sigqueue *q; | 
|  |  | 
|  | sigemptyset(&queue->signal); | 
|  | while (!list_empty(&queue->list)) { | 
|  | q = list_entry(queue->list.next, struct sigqueue , list); | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all pending signals for this kthread. | 
|  | */ | 
|  | void flush_signals(struct task_struct *t) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | clear_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | flush_sigqueue(&t->pending); | 
|  | flush_sigqueue(&t->signal->shared_pending); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(flush_signals); | 
|  |  | 
|  | #ifdef CONFIG_POSIX_TIMERS | 
|  | static void __flush_itimer_signals(struct sigpending *pending) | 
|  | { | 
|  | sigset_t signal, retain; | 
|  | struct sigqueue *q, *n; | 
|  |  | 
|  | signal = pending->signal; | 
|  | sigemptyset(&retain); | 
|  |  | 
|  | list_for_each_entry_safe(q, n, &pending->list, list) { | 
|  | int sig = q->info.si_signo; | 
|  |  | 
|  | if (likely(q->info.si_code != SI_TIMER)) { | 
|  | sigaddset(&retain, sig); | 
|  | } else { | 
|  | sigdelset(&signal, sig); | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | sigorsets(&pending->signal, &signal, &retain); | 
|  | } | 
|  |  | 
|  | void flush_itimer_signals(void) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&tsk->sighand->siglock, flags); | 
|  | __flush_itimer_signals(&tsk->pending); | 
|  | __flush_itimer_signals(&tsk->signal->shared_pending); | 
|  | spin_unlock_irqrestore(&tsk->sighand->siglock, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void ignore_signals(struct task_struct *t) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < _NSIG; ++i) | 
|  | t->sighand->action[i].sa.sa_handler = SIG_IGN; | 
|  |  | 
|  | flush_signals(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all handlers for a task. | 
|  | */ | 
|  |  | 
|  | void | 
|  | flush_signal_handlers(struct task_struct *t, int force_default) | 
|  | { | 
|  | int i; | 
|  | struct k_sigaction *ka = &t->sighand->action[0]; | 
|  | for (i = _NSIG ; i != 0 ; i--) { | 
|  | if (force_default || ka->sa.sa_handler != SIG_IGN) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  | ka->sa.sa_flags = 0; | 
|  | #ifdef __ARCH_HAS_SA_RESTORER | 
|  | ka->sa.sa_restorer = NULL; | 
|  | #endif | 
|  | sigemptyset(&ka->sa.sa_mask); | 
|  | ka++; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool unhandled_signal(struct task_struct *tsk, int sig) | 
|  | { | 
|  | void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; | 
|  | if (is_global_init(tsk)) | 
|  | return true; | 
|  |  | 
|  | if (handler != SIG_IGN && handler != SIG_DFL) | 
|  | return false; | 
|  |  | 
|  | /* if ptraced, let the tracer determine */ | 
|  | return !tsk->ptrace; | 
|  | } | 
|  |  | 
|  | static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, | 
|  | bool *resched_timer) | 
|  | { | 
|  | struct sigqueue *q, *first = NULL; | 
|  |  | 
|  | /* | 
|  | * Collect the siginfo appropriate to this signal.  Check if | 
|  | * there is another siginfo for the same signal. | 
|  | */ | 
|  | list_for_each_entry(q, &list->list, list) { | 
|  | if (q->info.si_signo == sig) { | 
|  | if (first) | 
|  | goto still_pending; | 
|  | first = q; | 
|  | } | 
|  | } | 
|  |  | 
|  | sigdelset(&list->signal, sig); | 
|  |  | 
|  | if (first) { | 
|  | still_pending: | 
|  | list_del_init(&first->list); | 
|  | copy_siginfo(info, &first->info); | 
|  |  | 
|  | *resched_timer = | 
|  | (first->flags & SIGQUEUE_PREALLOC) && | 
|  | (info->si_code == SI_TIMER) && | 
|  | (info->si_sys_private); | 
|  |  | 
|  | __sigqueue_free(first); | 
|  | } else { | 
|  | /* | 
|  | * Ok, it wasn't in the queue.  This must be | 
|  | * a fast-pathed signal or we must have been | 
|  | * out of queue space.  So zero out the info. | 
|  | */ | 
|  | clear_siginfo(info); | 
|  | info->si_signo = sig; | 
|  | info->si_errno = 0; | 
|  | info->si_code = SI_USER; | 
|  | info->si_pid = 0; | 
|  | info->si_uid = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, | 
|  | kernel_siginfo_t *info, bool *resched_timer) | 
|  | { | 
|  | int sig = next_signal(pending, mask); | 
|  |  | 
|  | if (sig) | 
|  | collect_signal(sig, pending, info, resched_timer); | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dequeue a signal and return the element to the caller, which is | 
|  | * expected to free it. | 
|  | * | 
|  | * All callers have to hold the siglock. | 
|  | */ | 
|  | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, | 
|  | kernel_siginfo_t *info, enum pid_type *type) | 
|  | { | 
|  | bool resched_timer = false; | 
|  | int signr; | 
|  |  | 
|  | /* We only dequeue private signals from ourselves, we don't let | 
|  | * signalfd steal them | 
|  | */ | 
|  | *type = PIDTYPE_PID; | 
|  | signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); | 
|  | if (!signr) { | 
|  | *type = PIDTYPE_TGID; | 
|  | signr = __dequeue_signal(&tsk->signal->shared_pending, | 
|  | mask, info, &resched_timer); | 
|  | #ifdef CONFIG_POSIX_TIMERS | 
|  | /* | 
|  | * itimer signal ? | 
|  | * | 
|  | * itimers are process shared and we restart periodic | 
|  | * itimers in the signal delivery path to prevent DoS | 
|  | * attacks in the high resolution timer case. This is | 
|  | * compliant with the old way of self-restarting | 
|  | * itimers, as the SIGALRM is a legacy signal and only | 
|  | * queued once. Changing the restart behaviour to | 
|  | * restart the timer in the signal dequeue path is | 
|  | * reducing the timer noise on heavy loaded !highres | 
|  | * systems too. | 
|  | */ | 
|  | if (unlikely(signr == SIGALRM)) { | 
|  | struct hrtimer *tmr = &tsk->signal->real_timer; | 
|  |  | 
|  | if (!hrtimer_is_queued(tmr) && | 
|  | tsk->signal->it_real_incr != 0) { | 
|  | hrtimer_forward(tmr, tmr->base->get_time(), | 
|  | tsk->signal->it_real_incr); | 
|  | hrtimer_restart(tmr); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | recalc_sigpending(); | 
|  | if (!signr) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(sig_kernel_stop(signr))) { | 
|  | /* | 
|  | * Set a marker that we have dequeued a stop signal.  Our | 
|  | * caller might release the siglock and then the pending | 
|  | * stop signal it is about to process is no longer in the | 
|  | * pending bitmasks, but must still be cleared by a SIGCONT | 
|  | * (and overruled by a SIGKILL).  So those cases clear this | 
|  | * shared flag after we've set it.  Note that this flag may | 
|  | * remain set after the signal we return is ignored or | 
|  | * handled.  That doesn't matter because its only purpose | 
|  | * is to alert stop-signal processing code when another | 
|  | * processor has come along and cleared the flag. | 
|  | */ | 
|  | current->jobctl |= JOBCTL_STOP_DEQUEUED; | 
|  | } | 
|  | #ifdef CONFIG_POSIX_TIMERS | 
|  | if (resched_timer) { | 
|  | /* | 
|  | * Release the siglock to ensure proper locking order | 
|  | * of timer locks outside of siglocks.  Note, we leave | 
|  | * irqs disabled here, since the posix-timers code is | 
|  | * about to disable them again anyway. | 
|  | */ | 
|  | spin_unlock(&tsk->sighand->siglock); | 
|  | posixtimer_rearm(info); | 
|  | spin_lock(&tsk->sighand->siglock); | 
|  |  | 
|  | /* Don't expose the si_sys_private value to userspace */ | 
|  | info->si_sys_private = 0; | 
|  | } | 
|  | #endif | 
|  | return signr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dequeue_signal); | 
|  |  | 
|  | static int dequeue_synchronous_signal(kernel_siginfo_t *info) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct sigpending *pending = &tsk->pending; | 
|  | struct sigqueue *q, *sync = NULL; | 
|  |  | 
|  | /* | 
|  | * Might a synchronous signal be in the queue? | 
|  | */ | 
|  | if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Return the first synchronous signal in the queue. | 
|  | */ | 
|  | list_for_each_entry(q, &pending->list, list) { | 
|  | /* Synchronous signals have a positive si_code */ | 
|  | if ((q->info.si_code > SI_USER) && | 
|  | (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { | 
|  | sync = q; | 
|  | goto next; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | next: | 
|  | /* | 
|  | * Check if there is another siginfo for the same signal. | 
|  | */ | 
|  | list_for_each_entry_continue(q, &pending->list, list) { | 
|  | if (q->info.si_signo == sync->info.si_signo) | 
|  | goto still_pending; | 
|  | } | 
|  |  | 
|  | sigdelset(&pending->signal, sync->info.si_signo); | 
|  | recalc_sigpending(); | 
|  | still_pending: | 
|  | list_del_init(&sync->list); | 
|  | copy_siginfo(info, &sync->info); | 
|  | __sigqueue_free(sync); | 
|  | return info->si_signo; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell a process that it has a new active signal.. | 
|  | * | 
|  | * NOTE! we rely on the previous spin_lock to | 
|  | * lock interrupts for us! We can only be called with | 
|  | * "siglock" held, and the local interrupt must | 
|  | * have been disabled when that got acquired! | 
|  | * | 
|  | * No need to set need_resched since signal event passing | 
|  | * goes through ->blocked | 
|  | */ | 
|  | void signal_wake_up_state(struct task_struct *t, unsigned int state) | 
|  | { | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | /* | 
|  | * TASK_WAKEKILL also means wake it up in the stopped/traced/killable | 
|  | * case. We don't check t->state here because there is a race with it | 
|  | * executing another processor and just now entering stopped state. | 
|  | * By using wake_up_state, we ensure the process will wake up and | 
|  | * handle its death signal. | 
|  | */ | 
|  | if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) | 
|  | kick_process(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove signals in mask from the pending set and queue. | 
|  | * Returns 1 if any signals were found. | 
|  | * | 
|  | * All callers must be holding the siglock. | 
|  | */ | 
|  | static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) | 
|  | { | 
|  | struct sigqueue *q, *n; | 
|  | sigset_t m; | 
|  |  | 
|  | sigandsets(&m, mask, &s->signal); | 
|  | if (sigisemptyset(&m)) | 
|  | return; | 
|  |  | 
|  | sigandnsets(&s->signal, &s->signal, mask); | 
|  | list_for_each_entry_safe(q, n, &s->list, list) { | 
|  | if (sigismember(mask, q->info.si_signo)) { | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int is_si_special(const struct kernel_siginfo *info) | 
|  | { | 
|  | return info <= SEND_SIG_PRIV; | 
|  | } | 
|  |  | 
|  | static inline bool si_fromuser(const struct kernel_siginfo *info) | 
|  | { | 
|  | return info == SEND_SIG_NOINFO || | 
|  | (!is_si_special(info) && SI_FROMUSER(info)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called with RCU read lock from check_kill_permission() | 
|  | */ | 
|  | static bool kill_ok_by_cred(struct task_struct *t) | 
|  | { | 
|  | const struct cred *cred = current_cred(); | 
|  | const struct cred *tcred = __task_cred(t); | 
|  |  | 
|  | return uid_eq(cred->euid, tcred->suid) || | 
|  | uid_eq(cred->euid, tcred->uid) || | 
|  | uid_eq(cred->uid, tcred->suid) || | 
|  | uid_eq(cred->uid, tcred->uid) || | 
|  | ns_capable(tcred->user_ns, CAP_KILL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bad permissions for sending the signal | 
|  | * - the caller must hold the RCU read lock | 
|  | */ | 
|  | static int check_kill_permission(int sig, struct kernel_siginfo *info, | 
|  | struct task_struct *t) | 
|  | { | 
|  | struct pid *sid; | 
|  | int error; | 
|  |  | 
|  | if (!valid_signal(sig)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!si_fromuser(info)) | 
|  | return 0; | 
|  |  | 
|  | error = audit_signal_info(sig, t); /* Let audit system see the signal */ | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (!same_thread_group(current, t) && | 
|  | !kill_ok_by_cred(t)) { | 
|  | switch (sig) { | 
|  | case SIGCONT: | 
|  | sid = task_session(t); | 
|  | /* | 
|  | * We don't return the error if sid == NULL. The | 
|  | * task was unhashed, the caller must notice this. | 
|  | */ | 
|  | if (!sid || sid == task_session(current)) | 
|  | break; | 
|  | fallthrough; | 
|  | default: | 
|  | return -EPERM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return security_task_kill(t, info, sig, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ptrace_trap_notify - schedule trap to notify ptracer | 
|  | * @t: tracee wanting to notify tracer | 
|  | * | 
|  | * This function schedules sticky ptrace trap which is cleared on the next | 
|  | * TRAP_STOP to notify ptracer of an event.  @t must have been seized by | 
|  | * ptracer. | 
|  | * | 
|  | * If @t is running, STOP trap will be taken.  If trapped for STOP and | 
|  | * ptracer is listening for events, tracee is woken up so that it can | 
|  | * re-trap for the new event.  If trapped otherwise, STOP trap will be | 
|  | * eventually taken without returning to userland after the existing traps | 
|  | * are finished by PTRACE_CONT. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | */ | 
|  | static void ptrace_trap_notify(struct task_struct *t) | 
|  | { | 
|  | WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); | 
|  | assert_spin_locked(&t->sighand->siglock); | 
|  |  | 
|  | task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); | 
|  | ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle magic process-wide effects of stop/continue signals. Unlike | 
|  | * the signal actions, these happen immediately at signal-generation | 
|  | * time regardless of blocking, ignoring, or handling.  This does the | 
|  | * actual continuing for SIGCONT, but not the actual stopping for stop | 
|  | * signals. The process stop is done as a signal action for SIG_DFL. | 
|  | * | 
|  | * Returns true if the signal should be actually delivered, otherwise | 
|  | * it should be dropped. | 
|  | */ | 
|  | static bool prepare_signal(int sig, struct task_struct *p, bool force) | 
|  | { | 
|  | struct signal_struct *signal = p->signal; | 
|  | struct task_struct *t; | 
|  | sigset_t flush; | 
|  |  | 
|  | if (signal->flags & SIGNAL_GROUP_EXIT) { | 
|  | if (signal->core_state) | 
|  | return sig == SIGKILL; | 
|  | /* | 
|  | * The process is in the middle of dying, nothing to do. | 
|  | */ | 
|  | } else if (sig_kernel_stop(sig)) { | 
|  | /* | 
|  | * This is a stop signal.  Remove SIGCONT from all queues. | 
|  | */ | 
|  | siginitset(&flush, sigmask(SIGCONT)); | 
|  | flush_sigqueue_mask(&flush, &signal->shared_pending); | 
|  | for_each_thread(p, t) | 
|  | flush_sigqueue_mask(&flush, &t->pending); | 
|  | } else if (sig == SIGCONT) { | 
|  | unsigned int why; | 
|  | /* | 
|  | * Remove all stop signals from all queues, wake all threads. | 
|  | */ | 
|  | siginitset(&flush, SIG_KERNEL_STOP_MASK); | 
|  | flush_sigqueue_mask(&flush, &signal->shared_pending); | 
|  | for_each_thread(p, t) { | 
|  | flush_sigqueue_mask(&flush, &t->pending); | 
|  | task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); | 
|  | if (likely(!(t->ptrace & PT_SEIZED))) | 
|  | wake_up_state(t, __TASK_STOPPED); | 
|  | else | 
|  | ptrace_trap_notify(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notify the parent with CLD_CONTINUED if we were stopped. | 
|  | * | 
|  | * If we were in the middle of a group stop, we pretend it | 
|  | * was already finished, and then continued. Since SIGCHLD | 
|  | * doesn't queue we report only CLD_STOPPED, as if the next | 
|  | * CLD_CONTINUED was dropped. | 
|  | */ | 
|  | why = 0; | 
|  | if (signal->flags & SIGNAL_STOP_STOPPED) | 
|  | why |= SIGNAL_CLD_CONTINUED; | 
|  | else if (signal->group_stop_count) | 
|  | why |= SIGNAL_CLD_STOPPED; | 
|  |  | 
|  | if (why) { | 
|  | /* | 
|  | * The first thread which returns from do_signal_stop() | 
|  | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 
|  | * notify its parent. See get_signal(). | 
|  | */ | 
|  | signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); | 
|  | signal->group_stop_count = 0; | 
|  | signal->group_exit_code = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !sig_ignored(p, sig, force); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test if P wants to take SIG.  After we've checked all threads with this, | 
|  | * it's equivalent to finding no threads not blocking SIG.  Any threads not | 
|  | * blocking SIG were ruled out because they are not running and already | 
|  | * have pending signals.  Such threads will dequeue from the shared queue | 
|  | * as soon as they're available, so putting the signal on the shared queue | 
|  | * will be equivalent to sending it to one such thread. | 
|  | */ | 
|  | static inline bool wants_signal(int sig, struct task_struct *p) | 
|  | { | 
|  | if (sigismember(&p->blocked, sig)) | 
|  | return false; | 
|  |  | 
|  | if (p->flags & PF_EXITING) | 
|  | return false; | 
|  |  | 
|  | if (sig == SIGKILL) | 
|  | return true; | 
|  |  | 
|  | if (task_is_stopped_or_traced(p)) | 
|  | return false; | 
|  |  | 
|  | return task_curr(p) || !task_sigpending(p); | 
|  | } | 
|  |  | 
|  | static void complete_signal(int sig, struct task_struct *p, enum pid_type type) | 
|  | { | 
|  | struct signal_struct *signal = p->signal; | 
|  | struct task_struct *t; | 
|  |  | 
|  | /* | 
|  | * Now find a thread we can wake up to take the signal off the queue. | 
|  | * | 
|  | * If the main thread wants the signal, it gets first crack. | 
|  | * Probably the least surprising to the average bear. | 
|  | */ | 
|  | if (wants_signal(sig, p)) | 
|  | t = p; | 
|  | else if ((type == PIDTYPE_PID) || thread_group_empty(p)) | 
|  | /* | 
|  | * There is just one thread and it does not need to be woken. | 
|  | * It will dequeue unblocked signals before it runs again. | 
|  | */ | 
|  | return; | 
|  | else { | 
|  | /* | 
|  | * Otherwise try to find a suitable thread. | 
|  | */ | 
|  | t = signal->curr_target; | 
|  | while (!wants_signal(sig, t)) { | 
|  | t = next_thread(t); | 
|  | if (t == signal->curr_target) | 
|  | /* | 
|  | * No thread needs to be woken. | 
|  | * Any eligible threads will see | 
|  | * the signal in the queue soon. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | signal->curr_target = t; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Found a killable thread.  If the signal will be fatal, | 
|  | * then start taking the whole group down immediately. | 
|  | */ | 
|  | if (sig_fatal(p, sig) && | 
|  | (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && | 
|  | !sigismember(&t->real_blocked, sig) && | 
|  | (sig == SIGKILL || !p->ptrace)) { | 
|  | /* | 
|  | * This signal will be fatal to the whole group. | 
|  | */ | 
|  | if (!sig_kernel_coredump(sig)) { | 
|  | /* | 
|  | * Start a group exit and wake everybody up. | 
|  | * This way we don't have other threads | 
|  | * running and doing things after a slower | 
|  | * thread has the fatal signal pending. | 
|  | */ | 
|  | signal->flags = SIGNAL_GROUP_EXIT; | 
|  | signal->group_exit_code = sig; | 
|  | signal->group_stop_count = 0; | 
|  | t = p; | 
|  | do { | 
|  | task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | } while_each_thread(p, t); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The signal is already in the shared-pending queue. | 
|  | * Tell the chosen thread to wake up and dequeue it. | 
|  | */ | 
|  | signal_wake_up(t, sig == SIGKILL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline bool legacy_queue(struct sigpending *signals, int sig) | 
|  | { | 
|  | return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); | 
|  | } | 
|  |  | 
|  | static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, | 
|  | enum pid_type type, bool force) | 
|  | { | 
|  | struct sigpending *pending; | 
|  | struct sigqueue *q; | 
|  | int override_rlimit; | 
|  | int ret = 0, result; | 
|  |  | 
|  | assert_spin_locked(&t->sighand->siglock); | 
|  |  | 
|  | result = TRACE_SIGNAL_IGNORED; | 
|  | if (!prepare_signal(sig, t, force)) | 
|  | goto ret; | 
|  |  | 
|  | pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; | 
|  | /* | 
|  | * Short-circuit ignored signals and support queuing | 
|  | * exactly one non-rt signal, so that we can get more | 
|  | * detailed information about the cause of the signal. | 
|  | */ | 
|  | result = TRACE_SIGNAL_ALREADY_PENDING; | 
|  | if (legacy_queue(pending, sig)) | 
|  | goto ret; | 
|  |  | 
|  | result = TRACE_SIGNAL_DELIVERED; | 
|  | /* | 
|  | * Skip useless siginfo allocation for SIGKILL and kernel threads. | 
|  | */ | 
|  | if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) | 
|  | goto out_set; | 
|  |  | 
|  | /* | 
|  | * Real-time signals must be queued if sent by sigqueue, or | 
|  | * some other real-time mechanism.  It is implementation | 
|  | * defined whether kill() does so.  We attempt to do so, on | 
|  | * the principle of least surprise, but since kill is not | 
|  | * allowed to fail with EAGAIN when low on memory we just | 
|  | * make sure at least one signal gets delivered and don't | 
|  | * pass on the info struct. | 
|  | */ | 
|  | if (sig < SIGRTMIN) | 
|  | override_rlimit = (is_si_special(info) || info->si_code >= 0); | 
|  | else | 
|  | override_rlimit = 0; | 
|  |  | 
|  | q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); | 
|  |  | 
|  | if (q) { | 
|  | list_add_tail(&q->list, &pending->list); | 
|  | switch ((unsigned long) info) { | 
|  | case (unsigned long) SEND_SIG_NOINFO: | 
|  | clear_siginfo(&q->info); | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_USER; | 
|  | q->info.si_pid = task_tgid_nr_ns(current, | 
|  | task_active_pid_ns(t)); | 
|  | rcu_read_lock(); | 
|  | q->info.si_uid = | 
|  | from_kuid_munged(task_cred_xxx(t, user_ns), | 
|  | current_uid()); | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | case (unsigned long) SEND_SIG_PRIV: | 
|  | clear_siginfo(&q->info); | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_KERNEL; | 
|  | q->info.si_pid = 0; | 
|  | q->info.si_uid = 0; | 
|  | break; | 
|  | default: | 
|  | copy_siginfo(&q->info, info); | 
|  | break; | 
|  | } | 
|  | } else if (!is_si_special(info) && | 
|  | sig >= SIGRTMIN && info->si_code != SI_USER) { | 
|  | /* | 
|  | * Queue overflow, abort.  We may abort if the | 
|  | * signal was rt and sent by user using something | 
|  | * other than kill(). | 
|  | */ | 
|  | result = TRACE_SIGNAL_OVERFLOW_FAIL; | 
|  | ret = -EAGAIN; | 
|  | goto ret; | 
|  | } else { | 
|  | /* | 
|  | * This is a silent loss of information.  We still | 
|  | * send the signal, but the *info bits are lost. | 
|  | */ | 
|  | result = TRACE_SIGNAL_LOSE_INFO; | 
|  | } | 
|  |  | 
|  | out_set: | 
|  | signalfd_notify(t, sig); | 
|  | sigaddset(&pending->signal, sig); | 
|  |  | 
|  | /* Let multiprocess signals appear after on-going forks */ | 
|  | if (type > PIDTYPE_TGID) { | 
|  | struct multiprocess_signals *delayed; | 
|  | hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { | 
|  | sigset_t *signal = &delayed->signal; | 
|  | /* Can't queue both a stop and a continue signal */ | 
|  | if (sig == SIGCONT) | 
|  | sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); | 
|  | else if (sig_kernel_stop(sig)) | 
|  | sigdelset(signal, SIGCONT); | 
|  | sigaddset(signal, sig); | 
|  | } | 
|  | } | 
|  |  | 
|  | complete_signal(sig, t, type); | 
|  | ret: | 
|  | trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) | 
|  | { | 
|  | bool ret = false; | 
|  | switch (siginfo_layout(info->si_signo, info->si_code)) { | 
|  | case SIL_KILL: | 
|  | case SIL_CHLD: | 
|  | case SIL_RT: | 
|  | ret = true; | 
|  | break; | 
|  | case SIL_TIMER: | 
|  | case SIL_POLL: | 
|  | case SIL_FAULT: | 
|  | case SIL_FAULT_TRAPNO: | 
|  | case SIL_FAULT_MCEERR: | 
|  | case SIL_FAULT_BNDERR: | 
|  | case SIL_FAULT_PKUERR: | 
|  | case SIL_FAULT_PERF_EVENT: | 
|  | case SIL_SYS: | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, | 
|  | enum pid_type type) | 
|  | { | 
|  | /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ | 
|  | bool force = false; | 
|  |  | 
|  | if (info == SEND_SIG_NOINFO) { | 
|  | /* Force if sent from an ancestor pid namespace */ | 
|  | force = !task_pid_nr_ns(current, task_active_pid_ns(t)); | 
|  | } else if (info == SEND_SIG_PRIV) { | 
|  | /* Don't ignore kernel generated signals */ | 
|  | force = true; | 
|  | } else if (has_si_pid_and_uid(info)) { | 
|  | /* SIGKILL and SIGSTOP is special or has ids */ | 
|  | struct user_namespace *t_user_ns; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | t_user_ns = task_cred_xxx(t, user_ns); | 
|  | if (current_user_ns() != t_user_ns) { | 
|  | kuid_t uid = make_kuid(current_user_ns(), info->si_uid); | 
|  | info->si_uid = from_kuid_munged(t_user_ns, uid); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* A kernel generated signal? */ | 
|  | force = (info->si_code == SI_KERNEL); | 
|  |  | 
|  | /* From an ancestor pid namespace? */ | 
|  | if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { | 
|  | info->si_pid = 0; | 
|  | force = true; | 
|  | } | 
|  | } | 
|  | return __send_signal(sig, info, t, type, force); | 
|  | } | 
|  |  | 
|  | static void print_fatal_signal(int signr) | 
|  | { | 
|  | struct pt_regs *regs = signal_pt_regs(); | 
|  | pr_info("potentially unexpected fatal signal %d.\n", signr); | 
|  |  | 
|  | #if defined(__i386__) && !defined(__arch_um__) | 
|  | pr_info("code at %08lx: ", regs->ip); | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned char insn; | 
|  |  | 
|  | if (get_user(insn, (unsigned char *)(regs->ip + i))) | 
|  | break; | 
|  | pr_cont("%02x ", insn); | 
|  | } | 
|  | } | 
|  | pr_cont("\n"); | 
|  | #endif | 
|  | preempt_disable(); | 
|  | show_regs(regs); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static int __init setup_print_fatal_signals(char *str) | 
|  | { | 
|  | get_option (&str, &print_fatal_signals); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("print-fatal-signals=", setup_print_fatal_signals); | 
|  |  | 
|  | int | 
|  | __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) | 
|  | { | 
|  | return send_signal(sig, info, p, PIDTYPE_TGID); | 
|  | } | 
|  |  | 
|  | int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, | 
|  | enum pid_type type) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = -ESRCH; | 
|  |  | 
|  | if (lock_task_sighand(p, &flags)) { | 
|  | ret = send_signal(sig, info, p, type); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | enum sig_handler { | 
|  | HANDLER_CURRENT, /* If reachable use the current handler */ | 
|  | HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ | 
|  | HANDLER_EXIT,	 /* Only visible as the process exit code */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Force a signal that the process can't ignore: if necessary | 
|  | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 
|  | * | 
|  | * Note: If we unblock the signal, we always reset it to SIG_DFL, | 
|  | * since we do not want to have a signal handler that was blocked | 
|  | * be invoked when user space had explicitly blocked it. | 
|  | * | 
|  | * We don't want to have recursive SIGSEGV's etc, for example, | 
|  | * that is why we also clear SIGNAL_UNKILLABLE. | 
|  | */ | 
|  | static int | 
|  | force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, | 
|  | enum sig_handler handler) | 
|  | { | 
|  | unsigned long int flags; | 
|  | int ret, blocked, ignored; | 
|  | struct k_sigaction *action; | 
|  | int sig = info->si_signo; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | action = &t->sighand->action[sig-1]; | 
|  | ignored = action->sa.sa_handler == SIG_IGN; | 
|  | blocked = sigismember(&t->blocked, sig); | 
|  | if (blocked || ignored || (handler != HANDLER_CURRENT)) { | 
|  | action->sa.sa_handler = SIG_DFL; | 
|  | if (handler == HANDLER_EXIT) | 
|  | action->sa.sa_flags |= SA_IMMUTABLE; | 
|  | if (blocked) { | 
|  | sigdelset(&t->blocked, sig); | 
|  | recalc_sigpending_and_wake(t); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect | 
|  | * debugging to leave init killable. But HANDLER_EXIT is always fatal. | 
|  | */ | 
|  | if (action->sa.sa_handler == SIG_DFL && | 
|  | (!t->ptrace || (handler == HANDLER_EXIT))) | 
|  | t->signal->flags &= ~SIGNAL_UNKILLABLE; | 
|  | ret = send_signal(sig, info, t, PIDTYPE_PID); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int force_sig_info(struct kernel_siginfo *info) | 
|  | { | 
|  | return force_sig_info_to_task(info, current, HANDLER_CURRENT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nuke all other threads in the group. | 
|  | */ | 
|  | int zap_other_threads(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t = p; | 
|  | int count = 0; | 
|  |  | 
|  | p->signal->group_stop_count = 0; | 
|  |  | 
|  | while_each_thread(p, t) { | 
|  | task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); | 
|  | count++; | 
|  |  | 
|  | /* Don't bother with already dead threads */ | 
|  | if (t->exit_state) | 
|  | continue; | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, | 
|  | unsigned long *flags) | 
|  | { | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (;;) { | 
|  | sighand = rcu_dereference(tsk->sighand); | 
|  | if (unlikely(sighand == NULL)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * This sighand can be already freed and even reused, but | 
|  | * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which | 
|  | * initializes ->siglock: this slab can't go away, it has | 
|  | * the same object type, ->siglock can't be reinitialized. | 
|  | * | 
|  | * We need to ensure that tsk->sighand is still the same | 
|  | * after we take the lock, we can race with de_thread() or | 
|  | * __exit_signal(). In the latter case the next iteration | 
|  | * must see ->sighand == NULL. | 
|  | */ | 
|  | spin_lock_irqsave(&sighand->siglock, *flags); | 
|  | if (likely(sighand == rcu_access_pointer(tsk->sighand))) | 
|  | break; | 
|  | spin_unlock_irqrestore(&sighand->siglock, *flags); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return sighand; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | void lockdep_assert_task_sighand_held(struct task_struct *task) | 
|  | { | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sighand = rcu_dereference(task->sighand); | 
|  | if (sighand) | 
|  | lockdep_assert_held(&sighand->siglock); | 
|  | else | 
|  | WARN_ON_ONCE(1); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * send signal info to all the members of a group | 
|  | */ | 
|  | int group_send_sig_info(int sig, struct kernel_siginfo *info, | 
|  | struct task_struct *p, enum pid_type type) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = check_kill_permission(sig, info, p); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!ret && sig) | 
|  | ret = do_send_sig_info(sig, info, p, type); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __kill_pgrp_info() sends a signal to a process group: this is what the tty | 
|  | * control characters do (^C, ^Z etc) | 
|  | * - the caller must hold at least a readlock on tasklist_lock | 
|  | */ | 
|  | int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) | 
|  | { | 
|  | struct task_struct *p = NULL; | 
|  | int retval, success; | 
|  |  | 
|  | success = 0; | 
|  | retval = -ESRCH; | 
|  | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
|  | int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); | 
|  | success |= !err; | 
|  | retval = err; | 
|  | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
|  | return success ? 0 : retval; | 
|  | } | 
|  |  | 
|  | int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) | 
|  | { | 
|  | int error = -ESRCH; | 
|  | struct task_struct *p; | 
|  |  | 
|  | for (;;) { | 
|  | rcu_read_lock(); | 
|  | p = pid_task(pid, PIDTYPE_PID); | 
|  | if (p) | 
|  | error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); | 
|  | rcu_read_unlock(); | 
|  | if (likely(!p || error != -ESRCH)) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * The task was unhashed in between, try again.  If it | 
|  | * is dead, pid_task() will return NULL, if we race with | 
|  | * de_thread() it will find the new leader. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) | 
|  | { | 
|  | int error; | 
|  | rcu_read_lock(); | 
|  | error = kill_pid_info(sig, info, find_vpid(pid)); | 
|  | rcu_read_unlock(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline bool kill_as_cred_perm(const struct cred *cred, | 
|  | struct task_struct *target) | 
|  | { | 
|  | const struct cred *pcred = __task_cred(target); | 
|  |  | 
|  | return uid_eq(cred->euid, pcred->suid) || | 
|  | uid_eq(cred->euid, pcred->uid) || | 
|  | uid_eq(cred->uid, pcred->suid) || | 
|  | uid_eq(cred->uid, pcred->uid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The usb asyncio usage of siginfo is wrong.  The glibc support | 
|  | * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. | 
|  | * AKA after the generic fields: | 
|  | *	kernel_pid_t	si_pid; | 
|  | *	kernel_uid32_t	si_uid; | 
|  | *	sigval_t	si_value; | 
|  | * | 
|  | * Unfortunately when usb generates SI_ASYNCIO it assumes the layout | 
|  | * after the generic fields is: | 
|  | *	void __user 	*si_addr; | 
|  | * | 
|  | * This is a practical problem when there is a 64bit big endian kernel | 
|  | * and a 32bit userspace.  As the 32bit address will encoded in the low | 
|  | * 32bits of the pointer.  Those low 32bits will be stored at higher | 
|  | * address than appear in a 32 bit pointer.  So userspace will not | 
|  | * see the address it was expecting for it's completions. | 
|  | * | 
|  | * There is nothing in the encoding that can allow | 
|  | * copy_siginfo_to_user32 to detect this confusion of formats, so | 
|  | * handle this by requiring the caller of kill_pid_usb_asyncio to | 
|  | * notice when this situration takes place and to store the 32bit | 
|  | * pointer in sival_int, instead of sival_addr of the sigval_t addr | 
|  | * parameter. | 
|  | */ | 
|  | int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, | 
|  | struct pid *pid, const struct cred *cred) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  | struct task_struct *p; | 
|  | unsigned long flags; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (!valid_signal(sig)) | 
|  | return ret; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = errno; | 
|  | info.si_code = SI_ASYNCIO; | 
|  | *((sigval_t *)&info.si_pid) = addr; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = pid_task(pid, PIDTYPE_PID); | 
|  | if (!p) { | 
|  | ret = -ESRCH; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (!kill_as_cred_perm(cred, p)) { | 
|  | ret = -EPERM; | 
|  | goto out_unlock; | 
|  | } | 
|  | ret = security_task_kill(p, &info, sig, cred); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (sig) { | 
|  | if (lock_task_sighand(p, &flags)) { | 
|  | ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } else | 
|  | ret = -ESRCH; | 
|  | } | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); | 
|  |  | 
|  | /* | 
|  | * kill_something_info() interprets pid in interesting ways just like kill(2). | 
|  | * | 
|  | * POSIX specifies that kill(-1,sig) is unspecified, but what we have | 
|  | * is probably wrong.  Should make it like BSD or SYSV. | 
|  | */ | 
|  |  | 
|  | static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (pid > 0) | 
|  | return kill_proc_info(sig, info, pid); | 
|  |  | 
|  | /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */ | 
|  | if (pid == INT_MIN) | 
|  | return -ESRCH; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | if (pid != -1) { | 
|  | ret = __kill_pgrp_info(sig, info, | 
|  | pid ? find_vpid(-pid) : task_pgrp(current)); | 
|  | } else { | 
|  | int retval = 0, count = 0; | 
|  | struct task_struct * p; | 
|  |  | 
|  | for_each_process(p) { | 
|  | if (task_pid_vnr(p) > 1 && | 
|  | !same_thread_group(p, current)) { | 
|  | int err = group_send_sig_info(sig, info, p, | 
|  | PIDTYPE_MAX); | 
|  | ++count; | 
|  | if (err != -EPERM) | 
|  | retval = err; | 
|  | } | 
|  | } | 
|  | ret = count ? retval : -ESRCH; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are for backward compatibility with the rest of the kernel source. | 
|  | */ | 
|  |  | 
|  | int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * Make sure legacy kernel users don't send in bad values | 
|  | * (normal paths check this in check_kill_permission). | 
|  | */ | 
|  | if (!valid_signal(sig)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_send_sig_info(sig, info, p, PIDTYPE_PID); | 
|  | } | 
|  | EXPORT_SYMBOL(send_sig_info); | 
|  |  | 
|  | #define __si_special(priv) \ | 
|  | ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) | 
|  |  | 
|  | int | 
|  | send_sig(int sig, struct task_struct *p, int priv) | 
|  | { | 
|  | return send_sig_info(sig, __si_special(priv), p); | 
|  | } | 
|  | EXPORT_SYMBOL(send_sig); | 
|  |  | 
|  | void force_sig(int sig) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_KERNEL; | 
|  | info.si_pid = 0; | 
|  | info.si_uid = 0; | 
|  | force_sig_info(&info); | 
|  | } | 
|  | EXPORT_SYMBOL(force_sig); | 
|  |  | 
|  | void force_fatal_sig(int sig) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_KERNEL; | 
|  | info.si_pid = 0; | 
|  | info.si_uid = 0; | 
|  | force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); | 
|  | } | 
|  |  | 
|  | void force_exit_sig(int sig) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_KERNEL; | 
|  | info.si_pid = 0; | 
|  | info.si_uid = 0; | 
|  | force_sig_info_to_task(&info, current, HANDLER_EXIT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When things go south during signal handling, we | 
|  | * will force a SIGSEGV. And if the signal that caused | 
|  | * the problem was already a SIGSEGV, we'll want to | 
|  | * make sure we don't even try to deliver the signal.. | 
|  | */ | 
|  | void force_sigsegv(int sig) | 
|  | { | 
|  | if (sig == SIGSEGV) | 
|  | force_fatal_sig(SIGSEGV); | 
|  | else | 
|  | force_sig(SIGSEGV); | 
|  | } | 
|  |  | 
|  | int force_sig_fault_to_task(int sig, int code, void __user *addr | 
|  | ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) | 
|  | , struct task_struct *t) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = code; | 
|  | info.si_addr  = addr; | 
|  | #ifdef __ia64__ | 
|  | info.si_imm = imm; | 
|  | info.si_flags = flags; | 
|  | info.si_isr = isr; | 
|  | #endif | 
|  | return force_sig_info_to_task(&info, t, HANDLER_CURRENT); | 
|  | } | 
|  |  | 
|  | int force_sig_fault(int sig, int code, void __user *addr | 
|  | ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) | 
|  | { | 
|  | return force_sig_fault_to_task(sig, code, addr | 
|  | ___ARCH_SI_IA64(imm, flags, isr), current); | 
|  | } | 
|  |  | 
|  | int send_sig_fault(int sig, int code, void __user *addr | 
|  | ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) | 
|  | , struct task_struct *t) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = code; | 
|  | info.si_addr  = addr; | 
|  | #ifdef __ia64__ | 
|  | info.si_imm = imm; | 
|  | info.si_flags = flags; | 
|  | info.si_isr = isr; | 
|  | #endif | 
|  | return send_sig_info(info.si_signo, &info, t); | 
|  | } | 
|  |  | 
|  | int force_sig_mceerr(int code, void __user *addr, short lsb) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGBUS; | 
|  | info.si_errno = 0; | 
|  | info.si_code = code; | 
|  | info.si_addr = addr; | 
|  | info.si_addr_lsb = lsb; | 
|  | return force_sig_info(&info); | 
|  | } | 
|  |  | 
|  | int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGBUS; | 
|  | info.si_errno = 0; | 
|  | info.si_code = code; | 
|  | info.si_addr = addr; | 
|  | info.si_addr_lsb = lsb; | 
|  | return send_sig_info(info.si_signo, &info, t); | 
|  | } | 
|  | EXPORT_SYMBOL(send_sig_mceerr); | 
|  |  | 
|  | int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGSEGV; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = SEGV_BNDERR; | 
|  | info.si_addr  = addr; | 
|  | info.si_lower = lower; | 
|  | info.si_upper = upper; | 
|  | return force_sig_info(&info); | 
|  | } | 
|  |  | 
|  | #ifdef SEGV_PKUERR | 
|  | int force_sig_pkuerr(void __user *addr, u32 pkey) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGSEGV; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = SEGV_PKUERR; | 
|  | info.si_addr  = addr; | 
|  | info.si_pkey  = pkey; | 
|  | return force_sig_info(&info); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int force_sig_perf(void __user *addr, u32 type, u64 sig_data) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo     = SIGTRAP; | 
|  | info.si_errno     = 0; | 
|  | info.si_code      = TRAP_PERF; | 
|  | info.si_addr      = addr; | 
|  | info.si_perf_data = sig_data; | 
|  | info.si_perf_type = type; | 
|  |  | 
|  | return force_sig_info(&info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * force_sig_seccomp - signals the task to allow in-process syscall emulation | 
|  | * @syscall: syscall number to send to userland | 
|  | * @reason: filter-supplied reason code to send to userland (via si_errno) | 
|  | * @force_coredump: true to trigger a coredump | 
|  | * | 
|  | * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. | 
|  | */ | 
|  | int force_sig_seccomp(int syscall, int reason, bool force_coredump) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGSYS; | 
|  | info.si_code = SYS_SECCOMP; | 
|  | info.si_call_addr = (void __user *)KSTK_EIP(current); | 
|  | info.si_errno = reason; | 
|  | info.si_arch = syscall_get_arch(current); | 
|  | info.si_syscall = syscall; | 
|  | return force_sig_info_to_task(&info, current, | 
|  | force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); | 
|  | } | 
|  |  | 
|  | /* For the crazy architectures that include trap information in | 
|  | * the errno field, instead of an actual errno value. | 
|  | */ | 
|  | int force_sig_ptrace_errno_trap(int errno, void __user *addr) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGTRAP; | 
|  | info.si_errno = errno; | 
|  | info.si_code  = TRAP_HWBKPT; | 
|  | info.si_addr  = addr; | 
|  | return force_sig_info(&info); | 
|  | } | 
|  |  | 
|  | /* For the rare architectures that include trap information using | 
|  | * si_trapno. | 
|  | */ | 
|  | int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = code; | 
|  | info.si_addr  = addr; | 
|  | info.si_trapno = trapno; | 
|  | return force_sig_info(&info); | 
|  | } | 
|  |  | 
|  | /* For the rare architectures that include trap information using | 
|  | * si_trapno. | 
|  | */ | 
|  | int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, | 
|  | struct task_struct *t) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = code; | 
|  | info.si_addr  = addr; | 
|  | info.si_trapno = trapno; | 
|  | return send_sig_info(info.si_signo, &info, t); | 
|  | } | 
|  |  | 
|  | int kill_pgrp(struct pid *pid, int sig, int priv) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | ret = __kill_pgrp_info(sig, __si_special(priv), pid); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kill_pgrp); | 
|  |  | 
|  | int kill_pid(struct pid *pid, int sig, int priv) | 
|  | { | 
|  | return kill_pid_info(sig, __si_special(priv), pid); | 
|  | } | 
|  | EXPORT_SYMBOL(kill_pid); | 
|  |  | 
|  | /* | 
|  | * These functions support sending signals using preallocated sigqueue | 
|  | * structures.  This is needed "because realtime applications cannot | 
|  | * afford to lose notifications of asynchronous events, like timer | 
|  | * expirations or I/O completions".  In the case of POSIX Timers | 
|  | * we allocate the sigqueue structure from the timer_create.  If this | 
|  | * allocation fails we are able to report the failure to the application | 
|  | * with an EAGAIN error. | 
|  | */ | 
|  | struct sigqueue *sigqueue_alloc(void) | 
|  | { | 
|  | return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); | 
|  | } | 
|  |  | 
|  | void sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | unsigned long flags; | 
|  | spinlock_t *lock = ¤t->sighand->siglock; | 
|  |  | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  | /* | 
|  | * We must hold ->siglock while testing q->list | 
|  | * to serialize with collect_signal() or with | 
|  | * __exit_signal()->flush_sigqueue(). | 
|  | */ | 
|  | spin_lock_irqsave(lock, flags); | 
|  | q->flags &= ~SIGQUEUE_PREALLOC; | 
|  | /* | 
|  | * If it is queued it will be freed when dequeued, | 
|  | * like the "regular" sigqueue. | 
|  | */ | 
|  | if (!list_empty(&q->list)) | 
|  | q = NULL; | 
|  | spin_unlock_irqrestore(lock, flags); | 
|  |  | 
|  | if (q) | 
|  | __sigqueue_free(q); | 
|  | } | 
|  |  | 
|  | int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) | 
|  | { | 
|  | int sig = q->info.si_signo; | 
|  | struct sigpending *pending; | 
|  | struct task_struct *t; | 
|  | unsigned long flags; | 
|  | int ret, result; | 
|  |  | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  |  | 
|  | ret = -1; | 
|  | rcu_read_lock(); | 
|  | t = pid_task(pid, type); | 
|  | if (!t || !likely(lock_task_sighand(t, &flags))) | 
|  | goto ret; | 
|  |  | 
|  | ret = 1; /* the signal is ignored */ | 
|  | result = TRACE_SIGNAL_IGNORED; | 
|  | if (!prepare_signal(sig, t, false)) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | if (unlikely(!list_empty(&q->list))) { | 
|  | /* | 
|  | * If an SI_TIMER entry is already queue just increment | 
|  | * the overrun count. | 
|  | */ | 
|  | BUG_ON(q->info.si_code != SI_TIMER); | 
|  | q->info.si_overrun++; | 
|  | result = TRACE_SIGNAL_ALREADY_PENDING; | 
|  | goto out; | 
|  | } | 
|  | q->info.si_overrun = 0; | 
|  |  | 
|  | signalfd_notify(t, sig); | 
|  | pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; | 
|  | list_add_tail(&q->list, &pending->list); | 
|  | sigaddset(&pending->signal, sig); | 
|  | complete_signal(sig, t, type); | 
|  | result = TRACE_SIGNAL_DELIVERED; | 
|  | out: | 
|  | trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); | 
|  | unlock_task_sighand(t, &flags); | 
|  | ret: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void do_notify_pidfd(struct task_struct *task) | 
|  | { | 
|  | struct pid *pid; | 
|  |  | 
|  | WARN_ON(task->exit_state == 0); | 
|  | pid = task_pid(task); | 
|  | wake_up_all(&pid->wait_pidfd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let a parent know about the death of a child. | 
|  | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 
|  | * | 
|  | * Returns true if our parent ignored us and so we've switched to | 
|  | * self-reaping. | 
|  | */ | 
|  | bool do_notify_parent(struct task_struct *tsk, int sig) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  | unsigned long flags; | 
|  | struct sighand_struct *psig; | 
|  | bool autoreap = false; | 
|  | u64 utime, stime; | 
|  |  | 
|  | BUG_ON(sig == -1); | 
|  |  | 
|  | /* do_notify_parent_cldstop should have been called instead.  */ | 
|  | BUG_ON(task_is_stopped_or_traced(tsk)); | 
|  |  | 
|  | BUG_ON(!tsk->ptrace && | 
|  | (tsk->group_leader != tsk || !thread_group_empty(tsk))); | 
|  |  | 
|  | /* Wake up all pidfd waiters */ | 
|  | do_notify_pidfd(tsk); | 
|  |  | 
|  | if (sig != SIGCHLD) { | 
|  | /* | 
|  | * This is only possible if parent == real_parent. | 
|  | * Check if it has changed security domain. | 
|  | */ | 
|  | if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) | 
|  | sig = SIGCHLD; | 
|  | } | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | /* | 
|  | * We are under tasklist_lock here so our parent is tied to | 
|  | * us and cannot change. | 
|  | * | 
|  | * task_active_pid_ns will always return the same pid namespace | 
|  | * until a task passes through release_task. | 
|  | * | 
|  | * write_lock() currently calls preempt_disable() which is the | 
|  | * same as rcu_read_lock(), but according to Oleg, this is not | 
|  | * correct to rely on this | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); | 
|  | info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), | 
|  | task_uid(tsk)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | task_cputime(tsk, &utime, &stime); | 
|  | info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); | 
|  | info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); | 
|  |  | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | if (tsk->exit_code & 0x80) | 
|  | info.si_code = CLD_DUMPED; | 
|  | else if (tsk->exit_code & 0x7f) | 
|  | info.si_code = CLD_KILLED; | 
|  | else { | 
|  | info.si_code = CLD_EXITED; | 
|  | info.si_status = tsk->exit_code >> 8; | 
|  | } | 
|  |  | 
|  | psig = tsk->parent->sighand; | 
|  | spin_lock_irqsave(&psig->siglock, flags); | 
|  | if (!tsk->ptrace && sig == SIGCHLD && | 
|  | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | 
|  | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { | 
|  | /* | 
|  | * We are exiting and our parent doesn't care.  POSIX.1 | 
|  | * defines special semantics for setting SIGCHLD to SIG_IGN | 
|  | * or setting the SA_NOCLDWAIT flag: we should be reaped | 
|  | * automatically and not left for our parent's wait4 call. | 
|  | * Rather than having the parent do it as a magic kind of | 
|  | * signal handler, we just set this to tell do_exit that we | 
|  | * can be cleaned up without becoming a zombie.  Note that | 
|  | * we still call __wake_up_parent in this case, because a | 
|  | * blocked sys_wait4 might now return -ECHILD. | 
|  | * | 
|  | * Whether we send SIGCHLD or not for SA_NOCLDWAIT | 
|  | * is implementation-defined: we do (if you don't want | 
|  | * it, just use SIG_IGN instead). | 
|  | */ | 
|  | autoreap = true; | 
|  | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) | 
|  | sig = 0; | 
|  | } | 
|  | /* | 
|  | * Send with __send_signal as si_pid and si_uid are in the | 
|  | * parent's namespaces. | 
|  | */ | 
|  | if (valid_signal(sig) && sig) | 
|  | __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); | 
|  | __wake_up_parent(tsk, tsk->parent); | 
|  | spin_unlock_irqrestore(&psig->siglock, flags); | 
|  |  | 
|  | return autoreap; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_notify_parent_cldstop - notify parent of stopped/continued state change | 
|  | * @tsk: task reporting the state change | 
|  | * @for_ptracer: the notification is for ptracer | 
|  | * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report | 
|  | * | 
|  | * Notify @tsk's parent that the stopped/continued state has changed.  If | 
|  | * @for_ptracer is %false, @tsk's group leader notifies to its real parent. | 
|  | * If %true, @tsk reports to @tsk->parent which should be the ptracer. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with tasklist_lock at least read locked. | 
|  | */ | 
|  | static void do_notify_parent_cldstop(struct task_struct *tsk, | 
|  | bool for_ptracer, int why) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  | unsigned long flags; | 
|  | struct task_struct *parent; | 
|  | struct sighand_struct *sighand; | 
|  | u64 utime, stime; | 
|  |  | 
|  | if (for_ptracer) { | 
|  | parent = tsk->parent; | 
|  | } else { | 
|  | tsk = tsk->group_leader; | 
|  | parent = tsk->real_parent; | 
|  | } | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGCHLD; | 
|  | info.si_errno = 0; | 
|  | /* | 
|  | * see comment in do_notify_parent() about the following 4 lines | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); | 
|  | info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | task_cputime(tsk, &utime, &stime); | 
|  | info.si_utime = nsec_to_clock_t(utime); | 
|  | info.si_stime = nsec_to_clock_t(stime); | 
|  |  | 
|  | info.si_code = why; | 
|  | switch (why) { | 
|  | case CLD_CONTINUED: | 
|  | info.si_status = SIGCONT; | 
|  | break; | 
|  | case CLD_STOPPED: | 
|  | info.si_status = tsk->signal->group_exit_code & 0x7f; | 
|  | break; | 
|  | case CLD_TRAPPED: | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | sighand = parent->sighand; | 
|  | spin_lock_irqsave(&sighand->siglock, flags); | 
|  | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && | 
|  | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) | 
|  | __group_send_sig_info(SIGCHLD, &info, parent); | 
|  | /* | 
|  | * Even if SIGCHLD is not generated, we must wake up wait4 calls. | 
|  | */ | 
|  | __wake_up_parent(tsk, parent); | 
|  | spin_unlock_irqrestore(&sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called with current->sighand->siglock held. | 
|  | * | 
|  | * This should be the path for all ptrace stops. | 
|  | * We always set current->last_siginfo while stopped here. | 
|  | * That makes it a way to test a stopped process for | 
|  | * being ptrace-stopped vs being job-control-stopped. | 
|  | * | 
|  | * Returns the signal the ptracer requested the code resume | 
|  | * with.  If the code did not stop because the tracer is gone, | 
|  | * the stop signal remains unchanged unless clear_code. | 
|  | */ | 
|  | static int ptrace_stop(int exit_code, int why, int clear_code, | 
|  | unsigned long message, kernel_siginfo_t *info) | 
|  | __releases(¤t->sighand->siglock) | 
|  | __acquires(¤t->sighand->siglock) | 
|  | { | 
|  | bool gstop_done = false; | 
|  | bool read_code = true; | 
|  |  | 
|  | if (arch_ptrace_stop_needed()) { | 
|  | /* | 
|  | * The arch code has something special to do before a | 
|  | * ptrace stop.  This is allowed to block, e.g. for faults | 
|  | * on user stack pages.  We can't keep the siglock while | 
|  | * calling arch_ptrace_stop, so we must release it now. | 
|  | * To preserve proper semantics, we must do this before | 
|  | * any signal bookkeeping like checking group_stop_count. | 
|  | */ | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | arch_ptrace_stop(); | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * schedule() will not sleep if there is a pending signal that | 
|  | * can awaken the task. | 
|  | */ | 
|  | set_special_state(TASK_TRACED); | 
|  |  | 
|  | /* | 
|  | * We're committing to trapping.  TRACED should be visible before | 
|  | * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). | 
|  | * Also, transition to TRACED and updates to ->jobctl should be | 
|  | * atomic with respect to siglock and should be done after the arch | 
|  | * hook as siglock is released and regrabbed across it. | 
|  | * | 
|  | *     TRACER				    TRACEE | 
|  | * | 
|  | *     ptrace_attach() | 
|  | * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED) | 
|  | *     do_wait() | 
|  | *       set_current_state()                smp_wmb(); | 
|  | *       ptrace_do_wait() | 
|  | *         wait_task_stopped() | 
|  | *           task_stopped_code() | 
|  | * [L]         task_is_traced()		[S] task_clear_jobctl_trapping(); | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | current->ptrace_message = message; | 
|  | current->last_siginfo = info; | 
|  | current->exit_code = exit_code; | 
|  |  | 
|  | /* | 
|  | * If @why is CLD_STOPPED, we're trapping to participate in a group | 
|  | * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered | 
|  | * across siglock relocks since INTERRUPT was scheduled, PENDING | 
|  | * could be clear now.  We act as if SIGCONT is received after | 
|  | * TASK_TRACED is entered - ignore it. | 
|  | */ | 
|  | if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) | 
|  | gstop_done = task_participate_group_stop(current); | 
|  |  | 
|  | /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ | 
|  | task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); | 
|  | if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) | 
|  | task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); | 
|  |  | 
|  | /* entering a trap, clear TRAPPING */ | 
|  | task_clear_jobctl_trapping(current); | 
|  |  | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | read_lock(&tasklist_lock); | 
|  | if (likely(current->ptrace)) { | 
|  | /* | 
|  | * Notify parents of the stop. | 
|  | * | 
|  | * While ptraced, there are two parents - the ptracer and | 
|  | * the real_parent of the group_leader.  The ptracer should | 
|  | * know about every stop while the real parent is only | 
|  | * interested in the completion of group stop.  The states | 
|  | * for the two don't interact with each other.  Notify | 
|  | * separately unless they're gonna be duplicates. | 
|  | */ | 
|  | do_notify_parent_cldstop(current, true, why); | 
|  | if (gstop_done && ptrace_reparented(current)) | 
|  | do_notify_parent_cldstop(current, false, why); | 
|  |  | 
|  | /* | 
|  | * Don't want to allow preemption here, because | 
|  | * sys_ptrace() needs this task to be inactive. | 
|  | * | 
|  | * XXX: implement read_unlock_no_resched(). | 
|  | */ | 
|  | preempt_disable(); | 
|  | read_unlock(&tasklist_lock); | 
|  | cgroup_enter_frozen(); | 
|  | preempt_enable_no_resched(); | 
|  | freezable_schedule(); | 
|  | cgroup_leave_frozen(true); | 
|  | } else { | 
|  | /* | 
|  | * By the time we got the lock, our tracer went away. | 
|  | * Don't drop the lock yet, another tracer may come. | 
|  | * | 
|  | * If @gstop_done, the ptracer went away between group stop | 
|  | * completion and here.  During detach, it would have set | 
|  | * JOBCTL_STOP_PENDING on us and we'll re-enter | 
|  | * TASK_STOPPED in do_signal_stop() on return, so notifying | 
|  | * the real parent of the group stop completion is enough. | 
|  | */ | 
|  | if (gstop_done) | 
|  | do_notify_parent_cldstop(current, false, why); | 
|  |  | 
|  | /* tasklist protects us from ptrace_freeze_traced() */ | 
|  | __set_current_state(TASK_RUNNING); | 
|  | read_code = false; | 
|  | if (clear_code) | 
|  | exit_code = 0; | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are back.  Now reacquire the siglock before touching | 
|  | * last_siginfo, so that we are sure to have synchronized with | 
|  | * any signal-sending on another CPU that wants to examine it. | 
|  | */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (read_code) | 
|  | exit_code = current->exit_code; | 
|  | current->last_siginfo = NULL; | 
|  | current->ptrace_message = 0; | 
|  | current->exit_code = 0; | 
|  |  | 
|  | /* LISTENING can be set only during STOP traps, clear it */ | 
|  | current->jobctl &= ~JOBCTL_LISTENING; | 
|  |  | 
|  | /* | 
|  | * Queued signals ignored us while we were stopped for tracing. | 
|  | * So check for any that we should take before resuming user mode. | 
|  | * This sets TIF_SIGPENDING, but never clears it. | 
|  | */ | 
|  | recalc_sigpending_tsk(current); | 
|  | return exit_code; | 
|  | } | 
|  |  | 
|  | static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) | 
|  | { | 
|  | kernel_siginfo_t info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = signr; | 
|  | info.si_code = exit_code; | 
|  | info.si_pid = task_pid_vnr(current); | 
|  | info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | return ptrace_stop(exit_code, why, 1, message, &info); | 
|  | } | 
|  |  | 
|  | int ptrace_notify(int exit_code, unsigned long message) | 
|  | { | 
|  | int signr; | 
|  |  | 
|  | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); | 
|  | if (unlikely(task_work_pending(current))) | 
|  | task_work_run(); | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_signal_stop - handle group stop for SIGSTOP and other stop signals | 
|  | * @signr: signr causing group stop if initiating | 
|  | * | 
|  | * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr | 
|  | * and participate in it.  If already set, participate in the existing | 
|  | * group stop.  If participated in a group stop (and thus slept), %true is | 
|  | * returned with siglock released. | 
|  | * | 
|  | * If ptraced, this function doesn't handle stop itself.  Instead, | 
|  | * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock | 
|  | * untouched.  The caller must ensure that INTERRUPT trap handling takes | 
|  | * places afterwards. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @current->sighand->siglock held, which is released | 
|  | * on %true return. | 
|  | * | 
|  | * RETURNS: | 
|  | * %false if group stop is already cancelled or ptrace trap is scheduled. | 
|  | * %true if participated in group stop. | 
|  | */ | 
|  | static bool do_signal_stop(int signr) | 
|  | __releases(¤t->sighand->siglock) | 
|  | { | 
|  | struct signal_struct *sig = current->signal; | 
|  |  | 
|  | if (!(current->jobctl & JOBCTL_STOP_PENDING)) { | 
|  | unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; | 
|  | struct task_struct *t; | 
|  |  | 
|  | /* signr will be recorded in task->jobctl for retries */ | 
|  | WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); | 
|  |  | 
|  | if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || | 
|  | unlikely(sig->flags & SIGNAL_GROUP_EXIT) || | 
|  | unlikely(sig->group_exec_task)) | 
|  | return false; | 
|  | /* | 
|  | * There is no group stop already in progress.  We must | 
|  | * initiate one now. | 
|  | * | 
|  | * While ptraced, a task may be resumed while group stop is | 
|  | * still in effect and then receive a stop signal and | 
|  | * initiate another group stop.  This deviates from the | 
|  | * usual behavior as two consecutive stop signals can't | 
|  | * cause two group stops when !ptraced.  That is why we | 
|  | * also check !task_is_stopped(t) below. | 
|  | * | 
|  | * The condition can be distinguished by testing whether | 
|  | * SIGNAL_STOP_STOPPED is already set.  Don't generate | 
|  | * group_exit_code in such case. | 
|  | * | 
|  | * This is not necessary for SIGNAL_STOP_CONTINUED because | 
|  | * an intervening stop signal is required to cause two | 
|  | * continued events regardless of ptrace. | 
|  | */ | 
|  | if (!(sig->flags & SIGNAL_STOP_STOPPED)) | 
|  | sig->group_exit_code = signr; | 
|  |  | 
|  | sig->group_stop_count = 0; | 
|  |  | 
|  | if (task_set_jobctl_pending(current, signr | gstop)) | 
|  | sig->group_stop_count++; | 
|  |  | 
|  | t = current; | 
|  | while_each_thread(current, t) { | 
|  | /* | 
|  | * Setting state to TASK_STOPPED for a group | 
|  | * stop is always done with the siglock held, | 
|  | * so this check has no races. | 
|  | */ | 
|  | if (!task_is_stopped(t) && | 
|  | task_set_jobctl_pending(t, signr | gstop)) { | 
|  | sig->group_stop_count++; | 
|  | if (likely(!(t->ptrace & PT_SEIZED))) | 
|  | signal_wake_up(t, 0); | 
|  | else | 
|  | ptrace_trap_notify(t); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(!current->ptrace)) { | 
|  | int notify = 0; | 
|  |  | 
|  | /* | 
|  | * If there are no other threads in the group, or if there | 
|  | * is a group stop in progress and we are the last to stop, | 
|  | * report to the parent. | 
|  | */ | 
|  | if (task_participate_group_stop(current)) | 
|  | notify = CLD_STOPPED; | 
|  |  | 
|  | set_special_state(TASK_STOPPED); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Notify the parent of the group stop completion.  Because | 
|  | * we're not holding either the siglock or tasklist_lock | 
|  | * here, ptracer may attach inbetween; however, this is for | 
|  | * group stop and should always be delivered to the real | 
|  | * parent of the group leader.  The new ptracer will get | 
|  | * its notification when this task transitions into | 
|  | * TASK_TRACED. | 
|  | */ | 
|  | if (notify) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current, false, notify); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* Now we don't run again until woken by SIGCONT or SIGKILL */ | 
|  | cgroup_enter_frozen(); | 
|  | freezable_schedule(); | 
|  | return true; | 
|  | } else { | 
|  | /* | 
|  | * While ptraced, group stop is handled by STOP trap. | 
|  | * Schedule it and let the caller deal with it. | 
|  | */ | 
|  | task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_jobctl_trap - take care of ptrace jobctl traps | 
|  | * | 
|  | * When PT_SEIZED, it's used for both group stop and explicit | 
|  | * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with | 
|  | * accompanying siginfo.  If stopped, lower eight bits of exit_code contain | 
|  | * the stop signal; otherwise, %SIGTRAP. | 
|  | * | 
|  | * When !PT_SEIZED, it's used only for group stop trap with stop signal | 
|  | * number as exit_code and no siginfo. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @current->sighand->siglock held, which may be | 
|  | * released and re-acquired before returning with intervening sleep. | 
|  | */ | 
|  | static void do_jobctl_trap(void) | 
|  | { | 
|  | struct signal_struct *signal = current->signal; | 
|  | int signr = current->jobctl & JOBCTL_STOP_SIGMASK; | 
|  |  | 
|  | if (current->ptrace & PT_SEIZED) { | 
|  | if (!signal->group_stop_count && | 
|  | !(signal->flags & SIGNAL_STOP_STOPPED)) | 
|  | signr = SIGTRAP; | 
|  | WARN_ON_ONCE(!signr); | 
|  | ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), | 
|  | CLD_STOPPED, 0); | 
|  | } else { | 
|  | WARN_ON_ONCE(!signr); | 
|  | ptrace_stop(signr, CLD_STOPPED, 0, 0, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_freezer_trap - handle the freezer jobctl trap | 
|  | * | 
|  | * Puts the task into frozen state, if only the task is not about to quit. | 
|  | * In this case it drops JOBCTL_TRAP_FREEZE. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @current->sighand->siglock held, | 
|  | * which is always released before returning. | 
|  | */ | 
|  | static void do_freezer_trap(void) | 
|  | __releases(¤t->sighand->siglock) | 
|  | { | 
|  | /* | 
|  | * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, | 
|  | * let's make another loop to give it a chance to be handled. | 
|  | * In any case, we'll return back. | 
|  | */ | 
|  | if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != | 
|  | JOBCTL_TRAP_FREEZE) { | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we're sure that there is no pending fatal signal and no | 
|  | * pending traps. Clear TIF_SIGPENDING to not get out of schedule() | 
|  | * immediately (if there is a non-fatal signal pending), and | 
|  | * put the task into sleep. | 
|  | */ | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | cgroup_enter_frozen(); | 
|  | freezable_schedule(); | 
|  | } | 
|  |  | 
|  | static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) | 
|  | { | 
|  | /* | 
|  | * We do not check sig_kernel_stop(signr) but set this marker | 
|  | * unconditionally because we do not know whether debugger will | 
|  | * change signr. This flag has no meaning unless we are going | 
|  | * to stop after return from ptrace_stop(). In this case it will | 
|  | * be checked in do_signal_stop(), we should only stop if it was | 
|  | * not cleared by SIGCONT while we were sleeping. See also the | 
|  | * comment in dequeue_signal(). | 
|  | */ | 
|  | current->jobctl |= JOBCTL_STOP_DEQUEUED; | 
|  | signr = ptrace_stop(signr, CLD_TRAPPED, 0, 0, info); | 
|  |  | 
|  | /* We're back.  Did the debugger cancel the sig?  */ | 
|  | if (signr == 0) | 
|  | return signr; | 
|  |  | 
|  | /* | 
|  | * Update the siginfo structure if the signal has | 
|  | * changed.  If the debugger wanted something | 
|  | * specific in the siginfo structure then it should | 
|  | * have updated *info via PTRACE_SETSIGINFO. | 
|  | */ | 
|  | if (signr != info->si_signo) { | 
|  | clear_siginfo(info); | 
|  | info->si_signo = signr; | 
|  | info->si_errno = 0; | 
|  | info->si_code = SI_USER; | 
|  | rcu_read_lock(); | 
|  | info->si_pid = task_pid_vnr(current->parent); | 
|  | info->si_uid = from_kuid_munged(current_user_ns(), | 
|  | task_uid(current->parent)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* If the (new) signal is now blocked, requeue it.  */ | 
|  | if (sigismember(¤t->blocked, signr) || | 
|  | fatal_signal_pending(current)) { | 
|  | send_signal(signr, info, current, type); | 
|  | signr = 0; | 
|  | } | 
|  |  | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | static void hide_si_addr_tag_bits(struct ksignal *ksig) | 
|  | { | 
|  | switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { | 
|  | case SIL_FAULT: | 
|  | case SIL_FAULT_TRAPNO: | 
|  | case SIL_FAULT_MCEERR: | 
|  | case SIL_FAULT_BNDERR: | 
|  | case SIL_FAULT_PKUERR: | 
|  | case SIL_FAULT_PERF_EVENT: | 
|  | ksig->info.si_addr = arch_untagged_si_addr( | 
|  | ksig->info.si_addr, ksig->sig, ksig->info.si_code); | 
|  | break; | 
|  | case SIL_KILL: | 
|  | case SIL_TIMER: | 
|  | case SIL_POLL: | 
|  | case SIL_CHLD: | 
|  | case SIL_RT: | 
|  | case SIL_SYS: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool get_signal(struct ksignal *ksig) | 
|  | { | 
|  | struct sighand_struct *sighand = current->sighand; | 
|  | struct signal_struct *signal = current->signal; | 
|  | int signr; | 
|  |  | 
|  | clear_notify_signal(); | 
|  | if (unlikely(task_work_pending(current))) | 
|  | task_work_run(); | 
|  |  | 
|  | if (!task_sigpending(current)) | 
|  | return false; | 
|  |  | 
|  | if (unlikely(uprobe_deny_signal())) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Do this once, we can't return to user-mode if freezing() == T. | 
|  | * do_signal_stop() and ptrace_stop() do freezable_schedule() and | 
|  | * thus do not need another check after return. | 
|  | */ | 
|  | try_to_freeze(); | 
|  |  | 
|  | relock: | 
|  | spin_lock_irq(&sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Every stopped thread goes here after wakeup. Check to see if | 
|  | * we should notify the parent, prepare_signal(SIGCONT) encodes | 
|  | * the CLD_ si_code into SIGNAL_CLD_MASK bits. | 
|  | */ | 
|  | if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { | 
|  | int why; | 
|  |  | 
|  | if (signal->flags & SIGNAL_CLD_CONTINUED) | 
|  | why = CLD_CONTINUED; | 
|  | else | 
|  | why = CLD_STOPPED; | 
|  |  | 
|  | signal->flags &= ~SIGNAL_CLD_MASK; | 
|  |  | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Notify the parent that we're continuing.  This event is | 
|  | * always per-process and doesn't make whole lot of sense | 
|  | * for ptracers, who shouldn't consume the state via | 
|  | * wait(2) either, but, for backward compatibility, notify | 
|  | * the ptracer of the group leader too unless it's gonna be | 
|  | * a duplicate. | 
|  | */ | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current, false, why); | 
|  |  | 
|  | if (ptrace_reparented(current->group_leader)) | 
|  | do_notify_parent_cldstop(current->group_leader, | 
|  | true, why); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | struct k_sigaction *ka; | 
|  | enum pid_type type; | 
|  |  | 
|  | /* Has this task already been marked for death? */ | 
|  | if ((signal->flags & SIGNAL_GROUP_EXIT) || | 
|  | signal->group_exec_task) { | 
|  | ksig->info.si_signo = signr = SIGKILL; | 
|  | sigdelset(¤t->pending.signal, SIGKILL); | 
|  | trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, | 
|  | &sighand->action[SIGKILL - 1]); | 
|  | recalc_sigpending(); | 
|  | goto fatal; | 
|  | } | 
|  |  | 
|  | if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && | 
|  | do_signal_stop(0)) | 
|  | goto relock; | 
|  |  | 
|  | if (unlikely(current->jobctl & | 
|  | (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { | 
|  | if (current->jobctl & JOBCTL_TRAP_MASK) { | 
|  | do_jobctl_trap(); | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | } else if (current->jobctl & JOBCTL_TRAP_FREEZE) | 
|  | do_freezer_trap(); | 
|  |  | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the task is leaving the frozen state, let's update | 
|  | * cgroup counters and reset the frozen bit. | 
|  | */ | 
|  | if (unlikely(cgroup_task_frozen(current))) { | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | cgroup_leave_frozen(false); | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Signals generated by the execution of an instruction | 
|  | * need to be delivered before any other pending signals | 
|  | * so that the instruction pointer in the signal stack | 
|  | * frame points to the faulting instruction. | 
|  | */ | 
|  | type = PIDTYPE_PID; | 
|  | signr = dequeue_synchronous_signal(&ksig->info); | 
|  | if (!signr) | 
|  | signr = dequeue_signal(current, ¤t->blocked, | 
|  | &ksig->info, &type); | 
|  |  | 
|  | if (!signr) | 
|  | break; /* will return 0 */ | 
|  |  | 
|  | if (unlikely(current->ptrace) && (signr != SIGKILL) && | 
|  | !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { | 
|  | signr = ptrace_signal(signr, &ksig->info, type); | 
|  | if (!signr) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ka = &sighand->action[signr-1]; | 
|  |  | 
|  | /* Trace actually delivered signals. */ | 
|  | trace_signal_deliver(signr, &ksig->info, ka); | 
|  |  | 
|  | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */ | 
|  | continue; | 
|  | if (ka->sa.sa_handler != SIG_DFL) { | 
|  | /* Run the handler.  */ | 
|  | ksig->ka = *ka; | 
|  |  | 
|  | if (ka->sa.sa_flags & SA_ONESHOT) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  |  | 
|  | break; /* will return non-zero "signr" value */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are doing the default action for this signal. | 
|  | */ | 
|  | if (sig_kernel_ignore(signr)) /* Default is nothing. */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Global init gets no signals it doesn't want. | 
|  | * Container-init gets no signals it doesn't want from same | 
|  | * container. | 
|  | * | 
|  | * Note that if global/container-init sees a sig_kernel_only() | 
|  | * signal here, the signal must have been generated internally | 
|  | * or must have come from an ancestor namespace. In either | 
|  | * case, the signal cannot be dropped. | 
|  | */ | 
|  | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && | 
|  | !sig_kernel_only(signr)) | 
|  | continue; | 
|  |  | 
|  | if (sig_kernel_stop(signr)) { | 
|  | /* | 
|  | * The default action is to stop all threads in | 
|  | * the thread group.  The job control signals | 
|  | * do nothing in an orphaned pgrp, but SIGSTOP | 
|  | * always works.  Note that siglock needs to be | 
|  | * dropped during the call to is_orphaned_pgrp() | 
|  | * because of lock ordering with tasklist_lock. | 
|  | * This allows an intervening SIGCONT to be posted. | 
|  | * We need to check for that and bail out if necessary. | 
|  | */ | 
|  | if (signr != SIGSTOP) { | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* signals can be posted during this window */ | 
|  |  | 
|  | if (is_current_pgrp_orphaned()) | 
|  | goto relock; | 
|  |  | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | } | 
|  |  | 
|  | if (likely(do_signal_stop(ksig->info.si_signo))) { | 
|  | /* It released the siglock.  */ | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We didn't actually stop, due to a race | 
|  | * with SIGCONT or something like that. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | fatal: | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | if (unlikely(cgroup_task_frozen(current))) | 
|  | cgroup_leave_frozen(true); | 
|  |  | 
|  | /* | 
|  | * Anything else is fatal, maybe with a core dump. | 
|  | */ | 
|  | current->flags |= PF_SIGNALED; | 
|  |  | 
|  | if (sig_kernel_coredump(signr)) { | 
|  | if (print_fatal_signals) | 
|  | print_fatal_signal(ksig->info.si_signo); | 
|  | proc_coredump_connector(current); | 
|  | /* | 
|  | * If it was able to dump core, this kills all | 
|  | * other threads in the group and synchronizes with | 
|  | * their demise.  If we lost the race with another | 
|  | * thread getting here, it set group_exit_code | 
|  | * first and our do_group_exit call below will use | 
|  | * that value and ignore the one we pass it. | 
|  | */ | 
|  | do_coredump(&ksig->info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PF_IO_WORKER threads will catch and exit on fatal signals | 
|  | * themselves. They have cleanup that must be performed, so | 
|  | * we cannot call do_exit() on their behalf. | 
|  | */ | 
|  | if (current->flags & PF_IO_WORKER) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Death signals, no core dump. | 
|  | */ | 
|  | do_group_exit(ksig->info.si_signo); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | out: | 
|  | ksig->sig = signr; | 
|  |  | 
|  | if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) | 
|  | hide_si_addr_tag_bits(ksig); | 
|  |  | 
|  | return ksig->sig > 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * signal_delivered - called after signal delivery to update blocked signals | 
|  | * @ksig:		kernel signal struct | 
|  | * @stepping:		nonzero if debugger single-step or block-step in use | 
|  | * | 
|  | * This function should be called when a signal has successfully been | 
|  | * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask | 
|  | * is always blocked), and the signal itself is blocked unless %SA_NODEFER | 
|  | * is set in @ksig->ka.sa.sa_flags.  Tracing is notified. | 
|  | */ | 
|  | static void signal_delivered(struct ksignal *ksig, int stepping) | 
|  | { | 
|  | sigset_t blocked; | 
|  |  | 
|  | /* A signal was successfully delivered, and the | 
|  | saved sigmask was stored on the signal frame, | 
|  | and will be restored by sigreturn.  So we can | 
|  | simply clear the restore sigmask flag.  */ | 
|  | clear_restore_sigmask(); | 
|  |  | 
|  | sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); | 
|  | if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) | 
|  | sigaddset(&blocked, ksig->sig); | 
|  | set_current_blocked(&blocked); | 
|  | if (current->sas_ss_flags & SS_AUTODISARM) | 
|  | sas_ss_reset(current); | 
|  | if (stepping) | 
|  | ptrace_notify(SIGTRAP, 0); | 
|  | } | 
|  |  | 
|  | void signal_setup_done(int failed, struct ksignal *ksig, int stepping) | 
|  | { | 
|  | if (failed) | 
|  | force_sigsegv(ksig->sig); | 
|  | else | 
|  | signal_delivered(ksig, stepping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It could be that complete_signal() picked us to notify about the | 
|  | * group-wide signal. Other threads should be notified now to take | 
|  | * the shared signals in @which since we will not. | 
|  | */ | 
|  | static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) | 
|  | { | 
|  | sigset_t retarget; | 
|  | struct task_struct *t; | 
|  |  | 
|  | sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); | 
|  | if (sigisemptyset(&retarget)) | 
|  | return; | 
|  |  | 
|  | t = tsk; | 
|  | while_each_thread(tsk, t) { | 
|  | if (t->flags & PF_EXITING) | 
|  | continue; | 
|  |  | 
|  | if (!has_pending_signals(&retarget, &t->blocked)) | 
|  | continue; | 
|  | /* Remove the signals this thread can handle. */ | 
|  | sigandsets(&retarget, &retarget, &t->blocked); | 
|  |  | 
|  | if (!task_sigpending(t)) | 
|  | signal_wake_up(t, 0); | 
|  |  | 
|  | if (sigisemptyset(&retarget)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void exit_signals(struct task_struct *tsk) | 
|  | { | 
|  | int group_stop = 0; | 
|  | sigset_t unblocked; | 
|  |  | 
|  | /* | 
|  | * @tsk is about to have PF_EXITING set - lock out users which | 
|  | * expect stable threadgroup. | 
|  | */ | 
|  | cgroup_threadgroup_change_begin(tsk); | 
|  |  | 
|  | if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { | 
|  | tsk->flags |= PF_EXITING; | 
|  | cgroup_threadgroup_change_end(tsk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | /* | 
|  | * From now this task is not visible for group-wide signals, | 
|  | * see wants_signal(), do_signal_stop(). | 
|  | */ | 
|  | tsk->flags |= PF_EXITING; | 
|  |  | 
|  | cgroup_threadgroup_change_end(tsk); | 
|  |  | 
|  | if (!task_sigpending(tsk)) | 
|  | goto out; | 
|  |  | 
|  | unblocked = tsk->blocked; | 
|  | signotset(&unblocked); | 
|  | retarget_shared_pending(tsk, &unblocked); | 
|  |  | 
|  | if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && | 
|  | task_participate_group_stop(tsk)) | 
|  | group_stop = CLD_STOPPED; | 
|  | out: | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * If group stop has completed, deliver the notification.  This | 
|  | * should always go to the real parent of the group leader. | 
|  | */ | 
|  | if (unlikely(group_stop)) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(tsk, false, group_stop); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * System call entry points. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *  sys_restart_syscall - restart a system call | 
|  | */ | 
|  | SYSCALL_DEFINE0(restart_syscall) | 
|  | { | 
|  | struct restart_block *restart = ¤t->restart_block; | 
|  | return restart->fn(restart); | 
|  | } | 
|  |  | 
|  | long do_no_restart_syscall(struct restart_block *param) | 
|  | { | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) | 
|  | { | 
|  | if (task_sigpending(tsk) && !thread_group_empty(tsk)) { | 
|  | sigset_t newblocked; | 
|  | /* A set of now blocked but previously unblocked signals. */ | 
|  | sigandnsets(&newblocked, newset, ¤t->blocked); | 
|  | retarget_shared_pending(tsk, &newblocked); | 
|  | } | 
|  | tsk->blocked = *newset; | 
|  | recalc_sigpending(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_current_blocked - change current->blocked mask | 
|  | * @newset: new mask | 
|  | * | 
|  | * It is wrong to change ->blocked directly, this helper should be used | 
|  | * to ensure the process can't miss a shared signal we are going to block. | 
|  | */ | 
|  | void set_current_blocked(sigset_t *newset) | 
|  | { | 
|  | sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | __set_current_blocked(newset); | 
|  | } | 
|  |  | 
|  | void __set_current_blocked(const sigset_t *newset) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | /* | 
|  | * In case the signal mask hasn't changed, there is nothing we need | 
|  | * to do. The current->blocked shouldn't be modified by other task. | 
|  | */ | 
|  | if (sigequalsets(&tsk->blocked, newset)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | __set_task_blocked(tsk, newset); | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is also useful for kernel threads that want to temporarily | 
|  | * (or permanently) block certain signals. | 
|  | * | 
|  | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel | 
|  | * interface happily blocks "unblockable" signals like SIGKILL | 
|  | * and friends. | 
|  | */ | 
|  | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | sigset_t newset; | 
|  |  | 
|  | /* Lockless, only current can change ->blocked, never from irq */ | 
|  | if (oldset) | 
|  | *oldset = tsk->blocked; | 
|  |  | 
|  | switch (how) { | 
|  | case SIG_BLOCK: | 
|  | sigorsets(&newset, &tsk->blocked, set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | sigandnsets(&newset, &tsk->blocked, set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | newset = *set; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | __set_current_blocked(&newset); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(sigprocmask); | 
|  |  | 
|  | /* | 
|  | * The api helps set app-provided sigmasks. | 
|  | * | 
|  | * This is useful for syscalls such as ppoll, pselect, io_pgetevents and | 
|  | * epoll_pwait where a new sigmask is passed from userland for the syscalls. | 
|  | * | 
|  | * Note that it does set_restore_sigmask() in advance, so it must be always | 
|  | * paired with restore_saved_sigmask_unless() before return from syscall. | 
|  | */ | 
|  | int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) | 
|  | { | 
|  | sigset_t kmask; | 
|  |  | 
|  | if (!umask) | 
|  | return 0; | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&kmask, umask, sizeof(sigset_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | set_restore_sigmask(); | 
|  | current->saved_sigmask = current->blocked; | 
|  | set_current_blocked(&kmask); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | int set_compat_user_sigmask(const compat_sigset_t __user *umask, | 
|  | size_t sigsetsize) | 
|  | { | 
|  | sigset_t kmask; | 
|  |  | 
|  | if (!umask) | 
|  | return 0; | 
|  | if (sigsetsize != sizeof(compat_sigset_t)) | 
|  | return -EINVAL; | 
|  | if (get_compat_sigset(&kmask, umask)) | 
|  | return -EFAULT; | 
|  |  | 
|  | set_restore_sigmask(); | 
|  | current->saved_sigmask = current->blocked; | 
|  | set_current_blocked(&kmask); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigprocmask - change the list of currently blocked signals | 
|  | *  @how: whether to add, remove, or set signals | 
|  | *  @nset: stores pending signals | 
|  | *  @oset: previous value of signal mask if non-null | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, | 
|  | sigset_t __user *, oset, size_t, sigsetsize) | 
|  | { | 
|  | sigset_t old_set, new_set; | 
|  | int error; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | old_set = current->blocked; | 
|  |  | 
|  | if (nset) { | 
|  | if (copy_from_user(&new_set, nset, sizeof(sigset_t))) | 
|  | return -EFAULT; | 
|  | sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  |  | 
|  | error = sigprocmask(how, &new_set, NULL); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (oset) { | 
|  | if (copy_to_user(oset, &old_set, sizeof(sigset_t))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, | 
|  | compat_sigset_t __user *, oset, compat_size_t, sigsetsize) | 
|  | { | 
|  | sigset_t old_set = current->blocked; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (nset) { | 
|  | sigset_t new_set; | 
|  | int error; | 
|  | if (get_compat_sigset(&new_set, nset)) | 
|  | return -EFAULT; | 
|  | sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  |  | 
|  | error = sigprocmask(how, &new_set, NULL); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void do_sigpending(sigset_t *set) | 
|  | { | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sigorsets(set, ¤t->pending.signal, | 
|  | ¤t->signal->shared_pending.signal); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* Outside the lock because only this thread touches it.  */ | 
|  | sigandsets(set, ¤t->blocked, set); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigpending - examine a pending signal that has been raised | 
|  | *			while blocked | 
|  | *  @uset: stores pending signals | 
|  | *  @sigsetsize: size of sigset_t type or larger | 
|  | */ | 
|  | SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) | 
|  | { | 
|  | sigset_t set; | 
|  |  | 
|  | if (sigsetsize > sizeof(*uset)) | 
|  | return -EINVAL; | 
|  |  | 
|  | do_sigpending(&set); | 
|  |  | 
|  | if (copy_to_user(uset, &set, sigsetsize)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, | 
|  | compat_size_t, sigsetsize) | 
|  | { | 
|  | sigset_t set; | 
|  |  | 
|  | if (sigsetsize > sizeof(*uset)) | 
|  | return -EINVAL; | 
|  |  | 
|  | do_sigpending(&set); | 
|  |  | 
|  | return put_compat_sigset(uset, &set, sigsetsize); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct { | 
|  | unsigned char limit, layout; | 
|  | } sig_sicodes[] = { | 
|  | [SIGILL]  = { NSIGILL,  SIL_FAULT }, | 
|  | [SIGFPE]  = { NSIGFPE,  SIL_FAULT }, | 
|  | [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, | 
|  | [SIGBUS]  = { NSIGBUS,  SIL_FAULT }, | 
|  | [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, | 
|  | #if defined(SIGEMT) | 
|  | [SIGEMT]  = { NSIGEMT,  SIL_FAULT }, | 
|  | #endif | 
|  | [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, | 
|  | [SIGPOLL] = { NSIGPOLL, SIL_POLL }, | 
|  | [SIGSYS]  = { NSIGSYS,  SIL_SYS }, | 
|  | }; | 
|  |  | 
|  | static bool known_siginfo_layout(unsigned sig, int si_code) | 
|  | { | 
|  | if (si_code == SI_KERNEL) | 
|  | return true; | 
|  | else if ((si_code > SI_USER)) { | 
|  | if (sig_specific_sicodes(sig)) { | 
|  | if (si_code <= sig_sicodes[sig].limit) | 
|  | return true; | 
|  | } | 
|  | else if (si_code <= NSIGPOLL) | 
|  | return true; | 
|  | } | 
|  | else if (si_code >= SI_DETHREAD) | 
|  | return true; | 
|  | else if (si_code == SI_ASYNCNL) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum siginfo_layout siginfo_layout(unsigned sig, int si_code) | 
|  | { | 
|  | enum siginfo_layout layout = SIL_KILL; | 
|  | if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { | 
|  | if ((sig < ARRAY_SIZE(sig_sicodes)) && | 
|  | (si_code <= sig_sicodes[sig].limit)) { | 
|  | layout = sig_sicodes[sig].layout; | 
|  | /* Handle the exceptions */ | 
|  | if ((sig == SIGBUS) && | 
|  | (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) | 
|  | layout = SIL_FAULT_MCEERR; | 
|  | else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) | 
|  | layout = SIL_FAULT_BNDERR; | 
|  | #ifdef SEGV_PKUERR | 
|  | else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) | 
|  | layout = SIL_FAULT_PKUERR; | 
|  | #endif | 
|  | else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) | 
|  | layout = SIL_FAULT_PERF_EVENT; | 
|  | else if (IS_ENABLED(CONFIG_SPARC) && | 
|  | (sig == SIGILL) && (si_code == ILL_ILLTRP)) | 
|  | layout = SIL_FAULT_TRAPNO; | 
|  | else if (IS_ENABLED(CONFIG_ALPHA) && | 
|  | ((sig == SIGFPE) || | 
|  | ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) | 
|  | layout = SIL_FAULT_TRAPNO; | 
|  | } | 
|  | else if (si_code <= NSIGPOLL) | 
|  | layout = SIL_POLL; | 
|  | } else { | 
|  | if (si_code == SI_TIMER) | 
|  | layout = SIL_TIMER; | 
|  | else if (si_code == SI_SIGIO) | 
|  | layout = SIL_POLL; | 
|  | else if (si_code < 0) | 
|  | layout = SIL_RT; | 
|  | } | 
|  | return layout; | 
|  | } | 
|  |  | 
|  | static inline char __user *si_expansion(const siginfo_t __user *info) | 
|  | { | 
|  | return ((char __user *)info) + sizeof(struct kernel_siginfo); | 
|  | } | 
|  |  | 
|  | int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) | 
|  | { | 
|  | char __user *expansion = si_expansion(to); | 
|  | if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) | 
|  | return -EFAULT; | 
|  | if (clear_user(expansion, SI_EXPANSION_SIZE)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int post_copy_siginfo_from_user(kernel_siginfo_t *info, | 
|  | const siginfo_t __user *from) | 
|  | { | 
|  | if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { | 
|  | char __user *expansion = si_expansion(from); | 
|  | char buf[SI_EXPANSION_SIZE]; | 
|  | int i; | 
|  | /* | 
|  | * An unknown si_code might need more than | 
|  | * sizeof(struct kernel_siginfo) bytes.  Verify all of the | 
|  | * extra bytes are 0.  This guarantees copy_siginfo_to_user | 
|  | * will return this data to userspace exactly. | 
|  | */ | 
|  | if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) | 
|  | return -EFAULT; | 
|  | for (i = 0; i < SI_EXPANSION_SIZE; i++) { | 
|  | if (buf[i] != 0) | 
|  | return -E2BIG; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, | 
|  | const siginfo_t __user *from) | 
|  | { | 
|  | if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) | 
|  | return -EFAULT; | 
|  | to->si_signo = signo; | 
|  | return post_copy_siginfo_from_user(to, from); | 
|  | } | 
|  |  | 
|  | int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) | 
|  | { | 
|  | if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) | 
|  | return -EFAULT; | 
|  | return post_copy_siginfo_from_user(to, from); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | /** | 
|  | * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo | 
|  | * @to: compat siginfo destination | 
|  | * @from: kernel siginfo source | 
|  | * | 
|  | * Note: This function does not work properly for the SIGCHLD on x32, but | 
|  | * fortunately it doesn't have to.  The only valid callers for this function are | 
|  | * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. | 
|  | * The latter does not care because SIGCHLD will never cause a coredump. | 
|  | */ | 
|  | void copy_siginfo_to_external32(struct compat_siginfo *to, | 
|  | const struct kernel_siginfo *from) | 
|  | { | 
|  | memset(to, 0, sizeof(*to)); | 
|  |  | 
|  | to->si_signo = from->si_signo; | 
|  | to->si_errno = from->si_errno; | 
|  | to->si_code  = from->si_code; | 
|  | switch(siginfo_layout(from->si_signo, from->si_code)) { | 
|  | case SIL_KILL: | 
|  | to->si_pid = from->si_pid; | 
|  | to->si_uid = from->si_uid; | 
|  | break; | 
|  | case SIL_TIMER: | 
|  | to->si_tid     = from->si_tid; | 
|  | to->si_overrun = from->si_overrun; | 
|  | to->si_int     = from->si_int; | 
|  | break; | 
|  | case SIL_POLL: | 
|  | to->si_band = from->si_band; | 
|  | to->si_fd   = from->si_fd; | 
|  | break; | 
|  | case SIL_FAULT: | 
|  | to->si_addr = ptr_to_compat(from->si_addr); | 
|  | break; | 
|  | case SIL_FAULT_TRAPNO: | 
|  | to->si_addr = ptr_to_compat(from->si_addr); | 
|  | to->si_trapno = from->si_trapno; | 
|  | break; | 
|  | case SIL_FAULT_MCEERR: | 
|  | to->si_addr = ptr_to_compat(from->si_addr); | 
|  | to->si_addr_lsb = from->si_addr_lsb; | 
|  | break; | 
|  | case SIL_FAULT_BNDERR: | 
|  | to->si_addr = ptr_to_compat(from->si_addr); | 
|  | to->si_lower = ptr_to_compat(from->si_lower); | 
|  | to->si_upper = ptr_to_compat(from->si_upper); | 
|  | break; | 
|  | case SIL_FAULT_PKUERR: | 
|  | to->si_addr = ptr_to_compat(from->si_addr); | 
|  | to->si_pkey = from->si_pkey; | 
|  | break; | 
|  | case SIL_FAULT_PERF_EVENT: | 
|  | to->si_addr = ptr_to_compat(from->si_addr); | 
|  | to->si_perf_data = from->si_perf_data; | 
|  | to->si_perf_type = from->si_perf_type; | 
|  | break; | 
|  | case SIL_CHLD: | 
|  | to->si_pid = from->si_pid; | 
|  | to->si_uid = from->si_uid; | 
|  | to->si_status = from->si_status; | 
|  | to->si_utime = from->si_utime; | 
|  | to->si_stime = from->si_stime; | 
|  | break; | 
|  | case SIL_RT: | 
|  | to->si_pid = from->si_pid; | 
|  | to->si_uid = from->si_uid; | 
|  | to->si_int = from->si_int; | 
|  | break; | 
|  | case SIL_SYS: | 
|  | to->si_call_addr = ptr_to_compat(from->si_call_addr); | 
|  | to->si_syscall   = from->si_syscall; | 
|  | to->si_arch      = from->si_arch; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __copy_siginfo_to_user32(struct compat_siginfo __user *to, | 
|  | const struct kernel_siginfo *from) | 
|  | { | 
|  | struct compat_siginfo new; | 
|  |  | 
|  | copy_siginfo_to_external32(&new, from); | 
|  | if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, | 
|  | const struct compat_siginfo *from) | 
|  | { | 
|  | clear_siginfo(to); | 
|  | to->si_signo = from->si_signo; | 
|  | to->si_errno = from->si_errno; | 
|  | to->si_code  = from->si_code; | 
|  | switch(siginfo_layout(from->si_signo, from->si_code)) { | 
|  | case SIL_KILL: | 
|  | to->si_pid = from->si_pid; | 
|  | to->si_uid = from->si_uid; | 
|  | break; | 
|  | case SIL_TIMER: | 
|  | to->si_tid     = from->si_tid; | 
|  | to->si_overrun = from->si_overrun; | 
|  | to->si_int     = from->si_int; | 
|  | break; | 
|  | case SIL_POLL: | 
|  | to->si_band = from->si_band; | 
|  | to->si_fd   = from->si_fd; | 
|  | break; | 
|  | case SIL_FAULT: | 
|  | to->si_addr = compat_ptr(from->si_addr); | 
|  | break; | 
|  | case SIL_FAULT_TRAPNO: | 
|  | to->si_addr = compat_ptr(from->si_addr); | 
|  | to->si_trapno = from->si_trapno; | 
|  | break; | 
|  | case SIL_FAULT_MCEERR: | 
|  | to->si_addr = compat_ptr(from->si_addr); | 
|  | to->si_addr_lsb = from->si_addr_lsb; | 
|  | break; | 
|  | case SIL_FAULT_BNDERR: | 
|  | to->si_addr = compat_ptr(from->si_addr); | 
|  | to->si_lower = compat_ptr(from->si_lower); | 
|  | to->si_upper = compat_ptr(from->si_upper); | 
|  | break; | 
|  | case SIL_FAULT_PKUERR: | 
|  | to->si_addr = compat_ptr(from->si_addr); | 
|  | to->si_pkey = from->si_pkey; | 
|  | break; | 
|  | case SIL_FAULT_PERF_EVENT: | 
|  | to->si_addr = compat_ptr(from->si_addr); | 
|  | to->si_perf_data = from->si_perf_data; | 
|  | to->si_perf_type = from->si_perf_type; | 
|  | break; | 
|  | case SIL_CHLD: | 
|  | to->si_pid    = from->si_pid; | 
|  | to->si_uid    = from->si_uid; | 
|  | to->si_status = from->si_status; | 
|  | #ifdef CONFIG_X86_X32_ABI | 
|  | if (in_x32_syscall()) { | 
|  | to->si_utime = from->_sifields._sigchld_x32._utime; | 
|  | to->si_stime = from->_sifields._sigchld_x32._stime; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | to->si_utime = from->si_utime; | 
|  | to->si_stime = from->si_stime; | 
|  | } | 
|  | break; | 
|  | case SIL_RT: | 
|  | to->si_pid = from->si_pid; | 
|  | to->si_uid = from->si_uid; | 
|  | to->si_int = from->si_int; | 
|  | break; | 
|  | case SIL_SYS: | 
|  | to->si_call_addr = compat_ptr(from->si_call_addr); | 
|  | to->si_syscall   = from->si_syscall; | 
|  | to->si_arch      = from->si_arch; | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, | 
|  | const struct compat_siginfo __user *ufrom) | 
|  | { | 
|  | struct compat_siginfo from; | 
|  |  | 
|  | if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) | 
|  | return -EFAULT; | 
|  |  | 
|  | from.si_signo = signo; | 
|  | return post_copy_siginfo_from_user32(to, &from); | 
|  | } | 
|  |  | 
|  | int copy_siginfo_from_user32(struct kernel_siginfo *to, | 
|  | const struct compat_siginfo __user *ufrom) | 
|  | { | 
|  | struct compat_siginfo from; | 
|  |  | 
|  | if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return post_copy_siginfo_from_user32(to, &from); | 
|  | } | 
|  | #endif /* CONFIG_COMPAT */ | 
|  |  | 
|  | /** | 
|  | *  do_sigtimedwait - wait for queued signals specified in @which | 
|  | *  @which: queued signals to wait for | 
|  | *  @info: if non-null, the signal's siginfo is returned here | 
|  | *  @ts: upper bound on process time suspension | 
|  | */ | 
|  | static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, | 
|  | const struct timespec64 *ts) | 
|  | { | 
|  | ktime_t *to = NULL, timeout = KTIME_MAX; | 
|  | struct task_struct *tsk = current; | 
|  | sigset_t mask = *which; | 
|  | enum pid_type type; | 
|  | int sig, ret = 0; | 
|  |  | 
|  | if (ts) { | 
|  | if (!timespec64_valid(ts)) | 
|  | return -EINVAL; | 
|  | timeout = timespec64_to_ktime(*ts); | 
|  | to = &timeout; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invert the set of allowed signals to get those we want to block. | 
|  | */ | 
|  | sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | signotset(&mask); | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | sig = dequeue_signal(tsk, &mask, info, &type); | 
|  | if (!sig && timeout) { | 
|  | /* | 
|  | * None ready, temporarily unblock those we're interested | 
|  | * while we are sleeping in so that we'll be awakened when | 
|  | * they arrive. Unblocking is always fine, we can avoid | 
|  | * set_current_blocked(). | 
|  | */ | 
|  | tsk->real_blocked = tsk->blocked; | 
|  | sigandsets(&tsk->blocked, &tsk->blocked, &mask); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, | 
|  | HRTIMER_MODE_REL); | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | __set_task_blocked(tsk, &tsk->real_blocked); | 
|  | sigemptyset(&tsk->real_blocked); | 
|  | sig = dequeue_signal(tsk, &mask, info, &type); | 
|  | } | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | if (sig) | 
|  | return sig; | 
|  | return ret ? -EINTR : -EAGAIN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigtimedwait - synchronously wait for queued signals specified | 
|  | *			in @uthese | 
|  | *  @uthese: queued signals to wait for | 
|  | *  @uinfo: if non-null, the signal's siginfo is returned here | 
|  | *  @uts: upper bound on process time suspension | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, | 
|  | siginfo_t __user *, uinfo, | 
|  | const struct __kernel_timespec __user *, uts, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | sigset_t these; | 
|  | struct timespec64 ts; | 
|  | kernel_siginfo_t info; | 
|  | int ret; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&these, uthese, sizeof(these))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (uts) { | 
|  | if (get_timespec64(&ts, uts)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); | 
|  |  | 
|  | if (ret > 0 && uinfo) { | 
|  | if (copy_siginfo_to_user(uinfo, &info)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|  | SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, | 
|  | siginfo_t __user *, uinfo, | 
|  | const struct old_timespec32 __user *, uts, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | sigset_t these; | 
|  | struct timespec64 ts; | 
|  | kernel_siginfo_t info; | 
|  | int ret; | 
|  |  | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&these, uthese, sizeof(these))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (uts) { | 
|  | if (get_old_timespec32(&ts, uts)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); | 
|  |  | 
|  | if (ret > 0 && uinfo) { | 
|  | if (copy_siginfo_to_user(uinfo, &info)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, | 
|  | struct compat_siginfo __user *, uinfo, | 
|  | struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) | 
|  | { | 
|  | sigset_t s; | 
|  | struct timespec64 t; | 
|  | kernel_siginfo_t info; | 
|  | long ret; | 
|  |  | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (get_compat_sigset(&s, uthese)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (uts) { | 
|  | if (get_timespec64(&t, uts)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); | 
|  |  | 
|  | if (ret > 0 && uinfo) { | 
|  | if (copy_siginfo_to_user32(uinfo, &info)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|  | COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, | 
|  | struct compat_siginfo __user *, uinfo, | 
|  | struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) | 
|  | { | 
|  | sigset_t s; | 
|  | struct timespec64 t; | 
|  | kernel_siginfo_t info; | 
|  | long ret; | 
|  |  | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (get_compat_sigset(&s, uthese)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (uts) { | 
|  | if (get_old_timespec32(&t, uts)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); | 
|  |  | 
|  | if (ret > 0 && uinfo) { | 
|  | if (copy_siginfo_to_user32(uinfo, &info)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) | 
|  | { | 
|  | clear_siginfo(info); | 
|  | info->si_signo = sig; | 
|  | info->si_errno = 0; | 
|  | info->si_code = SI_USER; | 
|  | info->si_pid = task_tgid_vnr(current); | 
|  | info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_kill - send a signal to a process | 
|  | *  @pid: the PID of the process | 
|  | *  @sig: signal to be sent | 
|  | */ | 
|  | SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | prepare_kill_siginfo(sig, &info); | 
|  |  | 
|  | return kill_something_info(sig, &info, pid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the signaler and signalee either are in the same pid namespace | 
|  | * or that the signaler's pid namespace is an ancestor of the signalee's pid | 
|  | * namespace. | 
|  | */ | 
|  | static bool access_pidfd_pidns(struct pid *pid) | 
|  | { | 
|  | struct pid_namespace *active = task_active_pid_ns(current); | 
|  | struct pid_namespace *p = ns_of_pid(pid); | 
|  |  | 
|  | for (;;) { | 
|  | if (!p) | 
|  | return false; | 
|  | if (p == active) | 
|  | break; | 
|  | p = p->parent; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, | 
|  | siginfo_t __user *info) | 
|  | { | 
|  | #ifdef CONFIG_COMPAT | 
|  | /* | 
|  | * Avoid hooking up compat syscalls and instead handle necessary | 
|  | * conversions here. Note, this is a stop-gap measure and should not be | 
|  | * considered a generic solution. | 
|  | */ | 
|  | if (in_compat_syscall()) | 
|  | return copy_siginfo_from_user32( | 
|  | kinfo, (struct compat_siginfo __user *)info); | 
|  | #endif | 
|  | return copy_siginfo_from_user(kinfo, info); | 
|  | } | 
|  |  | 
|  | static struct pid *pidfd_to_pid(const struct file *file) | 
|  | { | 
|  | struct pid *pid; | 
|  |  | 
|  | pid = pidfd_pid(file); | 
|  | if (!IS_ERR(pid)) | 
|  | return pid; | 
|  |  | 
|  | return tgid_pidfd_to_pid(file); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_pidfd_send_signal - Signal a process through a pidfd | 
|  | * @pidfd:  file descriptor of the process | 
|  | * @sig:    signal to send | 
|  | * @info:   signal info | 
|  | * @flags:  future flags | 
|  | * | 
|  | * The syscall currently only signals via PIDTYPE_PID which covers | 
|  | * kill(<positive-pid>, <signal>. It does not signal threads or process | 
|  | * groups. | 
|  | * In order to extend the syscall to threads and process groups the @flags | 
|  | * argument should be used. In essence, the @flags argument will determine | 
|  | * what is signaled and not the file descriptor itself. Put in other words, | 
|  | * grouping is a property of the flags argument not a property of the file | 
|  | * descriptor. | 
|  | * | 
|  | * Return: 0 on success, negative errno on failure | 
|  | */ | 
|  | SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, | 
|  | siginfo_t __user *, info, unsigned int, flags) | 
|  | { | 
|  | int ret; | 
|  | struct fd f; | 
|  | struct pid *pid; | 
|  | kernel_siginfo_t kinfo; | 
|  |  | 
|  | /* Enforce flags be set to 0 until we add an extension. */ | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | f = fdget(pidfd); | 
|  | if (!f.file) | 
|  | return -EBADF; | 
|  |  | 
|  | /* Is this a pidfd? */ | 
|  | pid = pidfd_to_pid(f.file); | 
|  | if (IS_ERR(pid)) { | 
|  | ret = PTR_ERR(pid); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (!access_pidfd_pidns(pid)) | 
|  | goto err; | 
|  |  | 
|  | if (info) { | 
|  | ret = copy_siginfo_from_user_any(&kinfo, info); | 
|  | if (unlikely(ret)) | 
|  | goto err; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (unlikely(sig != kinfo.si_signo)) | 
|  | goto err; | 
|  |  | 
|  | /* Only allow sending arbitrary signals to yourself. */ | 
|  | ret = -EPERM; | 
|  | if ((task_pid(current) != pid) && | 
|  | (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) | 
|  | goto err; | 
|  | } else { | 
|  | prepare_kill_siginfo(sig, &kinfo); | 
|  | } | 
|  |  | 
|  | ret = kill_pid_info(sig, &kinfo, pid); | 
|  |  | 
|  | err: | 
|  | fdput(f); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int error = -ESRCH; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = find_task_by_vpid(pid); | 
|  | if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { | 
|  | error = check_kill_permission(sig, info, p); | 
|  | /* | 
|  | * The null signal is a permissions and process existence | 
|  | * probe.  No signal is actually delivered. | 
|  | */ | 
|  | if (!error && sig) { | 
|  | error = do_send_sig_info(sig, info, p, PIDTYPE_PID); | 
|  | /* | 
|  | * If lock_task_sighand() failed we pretend the task | 
|  | * dies after receiving the signal. The window is tiny, | 
|  | * and the signal is private anyway. | 
|  | */ | 
|  | if (unlikely(error == -ESRCH)) | 
|  | error = 0; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int do_tkill(pid_t tgid, pid_t pid, int sig) | 
|  | { | 
|  | struct kernel_siginfo info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_TKILL; | 
|  | info.si_pid = task_tgid_vnr(current); | 
|  | info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); | 
|  |  | 
|  | return do_send_specific(tgid, pid, sig, &info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_tgkill - send signal to one specific thread | 
|  | *  @tgid: the thread group ID of the thread | 
|  | *  @pid: the PID of the thread | 
|  | *  @sig: signal to be sent | 
|  | * | 
|  | *  This syscall also checks the @tgid and returns -ESRCH even if the PID | 
|  | *  exists but it's not belonging to the target process anymore. This | 
|  | *  method solves the problem of threads exiting and PIDs getting reused. | 
|  | */ | 
|  | SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0 || tgid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_tkill(tgid, pid, sig); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_tkill - send signal to one specific task | 
|  | *  @pid: the PID of the task | 
|  | *  @sig: signal to be sent | 
|  | * | 
|  | *  Send a signal to only one task, even if it's a CLONE_THREAD task. | 
|  | */ | 
|  | SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_tkill(0, pid, sig); | 
|  | } | 
|  |  | 
|  | static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) | 
|  | { | 
|  | /* Not even root can pretend to send signals from the kernel. | 
|  | * Nor can they impersonate a kill()/tgkill(), which adds source info. | 
|  | */ | 
|  | if ((info->si_code >= 0 || info->si_code == SI_TKILL) && | 
|  | (task_pid_vnr(current) != pid)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* POSIX.1b doesn't mention process groups.  */ | 
|  | return kill_proc_info(sig, info, pid); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigqueueinfo - send signal information to a signal | 
|  | *  @pid: the PID of the thread | 
|  | *  @sig: signal to be sent | 
|  | *  @uinfo: signal info to be sent | 
|  | */ | 
|  | SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, | 
|  | siginfo_t __user *, uinfo) | 
|  | { | 
|  | kernel_siginfo_t info; | 
|  | int ret = __copy_siginfo_from_user(sig, &info, uinfo); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | return do_rt_sigqueueinfo(pid, sig, &info); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, | 
|  | compat_pid_t, pid, | 
|  | int, sig, | 
|  | struct compat_siginfo __user *, uinfo) | 
|  | { | 
|  | kernel_siginfo_t info; | 
|  | int ret = __copy_siginfo_from_user32(sig, &info, uinfo); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | return do_rt_sigqueueinfo(pid, sig, &info); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0 || tgid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Not even root can pretend to send signals from the kernel. | 
|  | * Nor can they impersonate a kill()/tgkill(), which adds source info. | 
|  | */ | 
|  | if ((info->si_code >= 0 || info->si_code == SI_TKILL) && | 
|  | (task_pid_vnr(current) != pid)) | 
|  | return -EPERM; | 
|  |  | 
|  | return do_send_specific(tgid, pid, sig, info); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, | 
|  | siginfo_t __user *, uinfo) | 
|  | { | 
|  | kernel_siginfo_t info; | 
|  | int ret = __copy_siginfo_from_user(sig, &info, uinfo); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, | 
|  | compat_pid_t, tgid, | 
|  | compat_pid_t, pid, | 
|  | int, sig, | 
|  | struct compat_siginfo __user *, uinfo) | 
|  | { | 
|  | kernel_siginfo_t info; | 
|  | int ret = __copy_siginfo_from_user32(sig, &info, uinfo); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * For kthreads only, must not be used if cloned with CLONE_SIGHAND | 
|  | */ | 
|  | void kernel_sigaction(int sig, __sighandler_t action) | 
|  | { | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | current->sighand->action[sig - 1].sa.sa_handler = action; | 
|  | if (action == SIG_IGN) { | 
|  | sigset_t mask; | 
|  |  | 
|  | sigemptyset(&mask); | 
|  | sigaddset(&mask, sig); | 
|  |  | 
|  | flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); | 
|  | flush_sigqueue_mask(&mask, ¤t->pending); | 
|  | recalc_sigpending(); | 
|  | } | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  | EXPORT_SYMBOL(kernel_sigaction); | 
|  |  | 
|  | void __weak sigaction_compat_abi(struct k_sigaction *act, | 
|  | struct k_sigaction *oact) | 
|  | { | 
|  | } | 
|  |  | 
|  | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | 
|  | { | 
|  | struct task_struct *p = current, *t; | 
|  | struct k_sigaction *k; | 
|  | sigset_t mask; | 
|  |  | 
|  | if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) | 
|  | return -EINVAL; | 
|  |  | 
|  | k = &p->sighand->action[sig-1]; | 
|  |  | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  | if (k->sa.sa_flags & SA_IMMUTABLE) { | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (oact) | 
|  | *oact = *k; | 
|  |  | 
|  | /* | 
|  | * Make sure that we never accidentally claim to support SA_UNSUPPORTED, | 
|  | * e.g. by having an architecture use the bit in their uapi. | 
|  | */ | 
|  | BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); | 
|  |  | 
|  | /* | 
|  | * Clear unknown flag bits in order to allow userspace to detect missing | 
|  | * support for flag bits and to allow the kernel to use non-uapi bits | 
|  | * internally. | 
|  | */ | 
|  | if (act) | 
|  | act->sa.sa_flags &= UAPI_SA_FLAGS; | 
|  | if (oact) | 
|  | oact->sa.sa_flags &= UAPI_SA_FLAGS; | 
|  |  | 
|  | sigaction_compat_abi(act, oact); | 
|  |  | 
|  | if (act) { | 
|  | sigdelsetmask(&act->sa.sa_mask, | 
|  | sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | *k = *act; | 
|  | /* | 
|  | * POSIX 3.3.1.3: | 
|  | *  "Setting a signal action to SIG_IGN for a signal that is | 
|  | *   pending shall cause the pending signal to be discarded, | 
|  | *   whether or not it is blocked." | 
|  | * | 
|  | *  "Setting a signal action to SIG_DFL for a signal that is | 
|  | *   pending and whose default action is to ignore the signal | 
|  | *   (for example, SIGCHLD), shall cause the pending signal to | 
|  | *   be discarded, whether or not it is blocked" | 
|  | */ | 
|  | if (sig_handler_ignored(sig_handler(p, sig), sig)) { | 
|  | sigemptyset(&mask); | 
|  | sigaddset(&mask, sig); | 
|  | flush_sigqueue_mask(&mask, &p->signal->shared_pending); | 
|  | for_each_thread(p, t) | 
|  | flush_sigqueue_mask(&mask, &t->pending); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_SIGFRAME | 
|  | static inline void sigaltstack_lock(void) | 
|  | __acquires(¤t->sighand->siglock) | 
|  | { | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | static inline void sigaltstack_unlock(void) | 
|  | __releases(¤t->sighand->siglock) | 
|  | { | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  | #else | 
|  | static inline void sigaltstack_lock(void) { } | 
|  | static inline void sigaltstack_unlock(void) { } | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, | 
|  | size_t min_ss_size) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | int ret = 0; | 
|  |  | 
|  | if (oss) { | 
|  | memset(oss, 0, sizeof(stack_t)); | 
|  | oss->ss_sp = (void __user *) t->sas_ss_sp; | 
|  | oss->ss_size = t->sas_ss_size; | 
|  | oss->ss_flags = sas_ss_flags(sp) | | 
|  | (current->sas_ss_flags & SS_FLAG_BITS); | 
|  | } | 
|  |  | 
|  | if (ss) { | 
|  | void __user *ss_sp = ss->ss_sp; | 
|  | size_t ss_size = ss->ss_size; | 
|  | unsigned ss_flags = ss->ss_flags; | 
|  | int ss_mode; | 
|  |  | 
|  | if (unlikely(on_sig_stack(sp))) | 
|  | return -EPERM; | 
|  |  | 
|  | ss_mode = ss_flags & ~SS_FLAG_BITS; | 
|  | if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && | 
|  | ss_mode != 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Return before taking any locks if no actual | 
|  | * sigaltstack changes were requested. | 
|  | */ | 
|  | if (t->sas_ss_sp == (unsigned long)ss_sp && | 
|  | t->sas_ss_size == ss_size && | 
|  | t->sas_ss_flags == ss_flags) | 
|  | return 0; | 
|  |  | 
|  | sigaltstack_lock(); | 
|  | if (ss_mode == SS_DISABLE) { | 
|  | ss_size = 0; | 
|  | ss_sp = NULL; | 
|  | } else { | 
|  | if (unlikely(ss_size < min_ss_size)) | 
|  | ret = -ENOMEM; | 
|  | if (!sigaltstack_size_valid(ss_size)) | 
|  | ret = -ENOMEM; | 
|  | } | 
|  | if (!ret) { | 
|  | t->sas_ss_sp = (unsigned long) ss_sp; | 
|  | t->sas_ss_size = ss_size; | 
|  | t->sas_ss_flags = ss_flags; | 
|  | } | 
|  | sigaltstack_unlock(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) | 
|  | { | 
|  | stack_t new, old; | 
|  | int err; | 
|  | if (uss && copy_from_user(&new, uss, sizeof(stack_t))) | 
|  | return -EFAULT; | 
|  | err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, | 
|  | current_user_stack_pointer(), | 
|  | MINSIGSTKSZ); | 
|  | if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) | 
|  | err = -EFAULT; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int restore_altstack(const stack_t __user *uss) | 
|  | { | 
|  | stack_t new; | 
|  | if (copy_from_user(&new, uss, sizeof(stack_t))) | 
|  | return -EFAULT; | 
|  | (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), | 
|  | MINSIGSTKSZ); | 
|  | /* squash all but EFAULT for now */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __save_altstack(stack_t __user *uss, unsigned long sp) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | | 
|  | __put_user(t->sas_ss_flags, &uss->ss_flags) | | 
|  | __put_user(t->sas_ss_size, &uss->ss_size); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, | 
|  | compat_stack_t __user *uoss_ptr) | 
|  | { | 
|  | stack_t uss, uoss; | 
|  | int ret; | 
|  |  | 
|  | if (uss_ptr) { | 
|  | compat_stack_t uss32; | 
|  | if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) | 
|  | return -EFAULT; | 
|  | uss.ss_sp = compat_ptr(uss32.ss_sp); | 
|  | uss.ss_flags = uss32.ss_flags; | 
|  | uss.ss_size = uss32.ss_size; | 
|  | } | 
|  | ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, | 
|  | compat_user_stack_pointer(), | 
|  | COMPAT_MINSIGSTKSZ); | 
|  | if (ret >= 0 && uoss_ptr)  { | 
|  | compat_stack_t old; | 
|  | memset(&old, 0, sizeof(old)); | 
|  | old.ss_sp = ptr_to_compat(uoss.ss_sp); | 
|  | old.ss_flags = uoss.ss_flags; | 
|  | old.ss_size = uoss.ss_size; | 
|  | if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) | 
|  | ret = -EFAULT; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | COMPAT_SYSCALL_DEFINE2(sigaltstack, | 
|  | const compat_stack_t __user *, uss_ptr, | 
|  | compat_stack_t __user *, uoss_ptr) | 
|  | { | 
|  | return do_compat_sigaltstack(uss_ptr, uoss_ptr); | 
|  | } | 
|  |  | 
|  | int compat_restore_altstack(const compat_stack_t __user *uss) | 
|  | { | 
|  | int err = do_compat_sigaltstack(uss, NULL); | 
|  | /* squash all but -EFAULT for now */ | 
|  | return err == -EFAULT ? err : 0; | 
|  | } | 
|  |  | 
|  | int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) | 
|  | { | 
|  | int err; | 
|  | struct task_struct *t = current; | 
|  | err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), | 
|  | &uss->ss_sp) | | 
|  | __put_user(t->sas_ss_flags, &uss->ss_flags) | | 
|  | __put_user(t->sas_ss_size, &uss->ss_size); | 
|  | return err; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPENDING | 
|  |  | 
|  | /** | 
|  | *  sys_sigpending - examine pending signals | 
|  | *  @uset: where mask of pending signal is returned | 
|  | */ | 
|  | SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) | 
|  | { | 
|  | sigset_t set; | 
|  |  | 
|  | if (sizeof(old_sigset_t) > sizeof(*uset)) | 
|  | return -EINVAL; | 
|  |  | 
|  | do_sigpending(&set); | 
|  |  | 
|  | if (copy_to_user(uset, &set, sizeof(old_sigset_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) | 
|  | { | 
|  | sigset_t set; | 
|  |  | 
|  | do_sigpending(&set); | 
|  |  | 
|  | return put_user(set.sig[0], set32); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPROCMASK | 
|  | /** | 
|  | *  sys_sigprocmask - examine and change blocked signals | 
|  | *  @how: whether to add, remove, or set signals | 
|  | *  @nset: signals to add or remove (if non-null) | 
|  | *  @oset: previous value of signal mask if non-null | 
|  | * | 
|  | * Some platforms have their own version with special arguments; | 
|  | * others support only sys_rt_sigprocmask. | 
|  | */ | 
|  |  | 
|  | SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, | 
|  | old_sigset_t __user *, oset) | 
|  | { | 
|  | old_sigset_t old_set, new_set; | 
|  | sigset_t new_blocked; | 
|  |  | 
|  | old_set = current->blocked.sig[0]; | 
|  |  | 
|  | if (nset) { | 
|  | if (copy_from_user(&new_set, nset, sizeof(*nset))) | 
|  | return -EFAULT; | 
|  |  | 
|  | new_blocked = current->blocked; | 
|  |  | 
|  | switch (how) { | 
|  | case SIG_BLOCK: | 
|  | sigaddsetmask(&new_blocked, new_set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | sigdelsetmask(&new_blocked, new_set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | new_blocked.sig[0] = new_set; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | set_current_blocked(&new_blocked); | 
|  | } | 
|  |  | 
|  | if (oset) { | 
|  | if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ | 
|  |  | 
|  | #ifndef CONFIG_ODD_RT_SIGACTION | 
|  | /** | 
|  | *  sys_rt_sigaction - alter an action taken by a process | 
|  | *  @sig: signal to be sent | 
|  | *  @act: new sigaction | 
|  | *  @oact: used to save the previous sigaction | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE4(rt_sigaction, int, sig, | 
|  | const struct sigaction __user *, act, | 
|  | struct sigaction __user *, oact, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, | 
|  | const struct compat_sigaction __user *, act, | 
|  | struct compat_sigaction __user *, oact, | 
|  | compat_size_t, sigsetsize) | 
|  | { | 
|  | struct k_sigaction new_ka, old_ka; | 
|  | #ifdef __ARCH_HAS_SA_RESTORER | 
|  | compat_uptr_t restorer; | 
|  | #endif | 
|  | int ret; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(compat_sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (act) { | 
|  | compat_uptr_t handler; | 
|  | ret = get_user(handler, &act->sa_handler); | 
|  | new_ka.sa.sa_handler = compat_ptr(handler); | 
|  | #ifdef __ARCH_HAS_SA_RESTORER | 
|  | ret |= get_user(restorer, &act->sa_restorer); | 
|  | new_ka.sa.sa_restorer = compat_ptr(restorer); | 
|  | #endif | 
|  | ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); | 
|  | ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); | 
|  | if (ret) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); | 
|  | if (!ret && oact) { | 
|  | ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), | 
|  | &oact->sa_handler); | 
|  | ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, | 
|  | sizeof(oact->sa_mask)); | 
|  | ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); | 
|  | #ifdef __ARCH_HAS_SA_RESTORER | 
|  | ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), | 
|  | &oact->sa_restorer); | 
|  | #endif | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  | #endif /* !CONFIG_ODD_RT_SIGACTION */ | 
|  |  | 
|  | #ifdef CONFIG_OLD_SIGACTION | 
|  | SYSCALL_DEFINE3(sigaction, int, sig, | 
|  | const struct old_sigaction __user *, act, | 
|  | struct old_sigaction __user *, oact) | 
|  | { | 
|  | struct k_sigaction new_ka, old_ka; | 
|  | int ret; | 
|  |  | 
|  | if (act) { | 
|  | old_sigset_t mask; | 
|  | if (!access_ok(act, sizeof(*act)) || | 
|  | __get_user(new_ka.sa.sa_handler, &act->sa_handler) || | 
|  | __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || | 
|  | __get_user(new_ka.sa.sa_flags, &act->sa_flags) || | 
|  | __get_user(mask, &act->sa_mask)) | 
|  | return -EFAULT; | 
|  | #ifdef __ARCH_HAS_KA_RESTORER | 
|  | new_ka.ka_restorer = NULL; | 
|  | #endif | 
|  | siginitset(&new_ka.sa.sa_mask, mask); | 
|  | } | 
|  |  | 
|  | ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); | 
|  |  | 
|  | if (!ret && oact) { | 
|  | if (!access_ok(oact, sizeof(*oact)) || | 
|  | __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || | 
|  | __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || | 
|  | __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || | 
|  | __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_COMPAT_OLD_SIGACTION | 
|  | COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, | 
|  | const struct compat_old_sigaction __user *, act, | 
|  | struct compat_old_sigaction __user *, oact) | 
|  | { | 
|  | struct k_sigaction new_ka, old_ka; | 
|  | int ret; | 
|  | compat_old_sigset_t mask; | 
|  | compat_uptr_t handler, restorer; | 
|  |  | 
|  | if (act) { | 
|  | if (!access_ok(act, sizeof(*act)) || | 
|  | __get_user(handler, &act->sa_handler) || | 
|  | __get_user(restorer, &act->sa_restorer) || | 
|  | __get_user(new_ka.sa.sa_flags, &act->sa_flags) || | 
|  | __get_user(mask, &act->sa_mask)) | 
|  | return -EFAULT; | 
|  |  | 
|  | #ifdef __ARCH_HAS_KA_RESTORER | 
|  | new_ka.ka_restorer = NULL; | 
|  | #endif | 
|  | new_ka.sa.sa_handler = compat_ptr(handler); | 
|  | new_ka.sa.sa_restorer = compat_ptr(restorer); | 
|  | siginitset(&new_ka.sa.sa_mask, mask); | 
|  | } | 
|  |  | 
|  | ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); | 
|  |  | 
|  | if (!ret && oact) { | 
|  | if (!access_ok(oact, sizeof(*oact)) || | 
|  | __put_user(ptr_to_compat(old_ka.sa.sa_handler), | 
|  | &oact->sa_handler) || | 
|  | __put_user(ptr_to_compat(old_ka.sa.sa_restorer), | 
|  | &oact->sa_restorer) || | 
|  | __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || | 
|  | __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) | 
|  | return -EFAULT; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SGETMASK_SYSCALL | 
|  |  | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigprocmask. | 
|  | */ | 
|  | SYSCALL_DEFINE0(sgetmask) | 
|  | { | 
|  | /* SMP safe */ | 
|  | return current->blocked.sig[0]; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(ssetmask, int, newmask) | 
|  | { | 
|  | int old = current->blocked.sig[0]; | 
|  | sigset_t newset; | 
|  |  | 
|  | siginitset(&newset, newmask); | 
|  | set_current_blocked(&newset); | 
|  |  | 
|  | return old; | 
|  | } | 
|  | #endif /* CONFIG_SGETMASK_SYSCALL */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGNAL | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigaction. | 
|  | */ | 
|  | SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret; | 
|  |  | 
|  | new_sa.sa.sa_handler = handler; | 
|  | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; | 
|  | sigemptyset(&new_sa.sa.sa_mask); | 
|  |  | 
|  | ret = do_sigaction(sig, &new_sa, &old_sa); | 
|  |  | 
|  | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGNAL */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_PAUSE | 
|  |  | 
|  | SYSCALL_DEFINE0(pause) | 
|  | { | 
|  | while (!signal_pending(current)) { | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule(); | 
|  | } | 
|  | return -ERESTARTNOHAND; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int sigsuspend(sigset_t *set) | 
|  | { | 
|  | current->saved_sigmask = current->blocked; | 
|  | set_current_blocked(set); | 
|  |  | 
|  | while (!signal_pending(current)) { | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule(); | 
|  | } | 
|  | set_restore_sigmask(); | 
|  | return -ERESTARTNOHAND; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigsuspend - replace the signal mask for a value with the | 
|  | *	@unewset value until a signal is received | 
|  | *  @unewset: new signal mask value | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) | 
|  | { | 
|  | sigset_t newset; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&newset, unewset, sizeof(newset))) | 
|  | return -EFAULT; | 
|  | return sigsuspend(&newset); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) | 
|  | { | 
|  | sigset_t newset; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (get_compat_sigset(&newset, unewset)) | 
|  | return -EFAULT; | 
|  | return sigsuspend(&newset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_OLD_SIGSUSPEND | 
|  | SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) | 
|  | { | 
|  | sigset_t blocked; | 
|  | siginitset(&blocked, mask); | 
|  | return sigsuspend(&blocked); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_OLD_SIGSUSPEND3 | 
|  | SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) | 
|  | { | 
|  | sigset_t blocked; | 
|  | siginitset(&blocked, mask); | 
|  | return sigsuspend(&blocked); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | __weak const char *arch_vma_name(struct vm_area_struct *vma) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void siginfo_buildtime_checks(void) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); | 
|  |  | 
|  | /* Verify the offsets in the two siginfos match */ | 
|  | #define CHECK_OFFSET(field) \ | 
|  | BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) | 
|  |  | 
|  | /* kill */ | 
|  | CHECK_OFFSET(si_pid); | 
|  | CHECK_OFFSET(si_uid); | 
|  |  | 
|  | /* timer */ | 
|  | CHECK_OFFSET(si_tid); | 
|  | CHECK_OFFSET(si_overrun); | 
|  | CHECK_OFFSET(si_value); | 
|  |  | 
|  | /* rt */ | 
|  | CHECK_OFFSET(si_pid); | 
|  | CHECK_OFFSET(si_uid); | 
|  | CHECK_OFFSET(si_value); | 
|  |  | 
|  | /* sigchld */ | 
|  | CHECK_OFFSET(si_pid); | 
|  | CHECK_OFFSET(si_uid); | 
|  | CHECK_OFFSET(si_status); | 
|  | CHECK_OFFSET(si_utime); | 
|  | CHECK_OFFSET(si_stime); | 
|  |  | 
|  | /* sigfault */ | 
|  | CHECK_OFFSET(si_addr); | 
|  | CHECK_OFFSET(si_trapno); | 
|  | CHECK_OFFSET(si_addr_lsb); | 
|  | CHECK_OFFSET(si_lower); | 
|  | CHECK_OFFSET(si_upper); | 
|  | CHECK_OFFSET(si_pkey); | 
|  | CHECK_OFFSET(si_perf_data); | 
|  | CHECK_OFFSET(si_perf_type); | 
|  |  | 
|  | /* sigpoll */ | 
|  | CHECK_OFFSET(si_band); | 
|  | CHECK_OFFSET(si_fd); | 
|  |  | 
|  | /* sigsys */ | 
|  | CHECK_OFFSET(si_call_addr); | 
|  | CHECK_OFFSET(si_syscall); | 
|  | CHECK_OFFSET(si_arch); | 
|  | #undef CHECK_OFFSET | 
|  |  | 
|  | /* usb asyncio */ | 
|  | BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != | 
|  | offsetof(struct siginfo, si_addr)); | 
|  | if (sizeof(int) == sizeof(void __user *)) { | 
|  | BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != | 
|  | sizeof(void __user *)); | 
|  | } else { | 
|  | BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + | 
|  | sizeof_field(struct siginfo, si_uid)) != | 
|  | sizeof(void __user *)); | 
|  | BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != | 
|  | offsetof(struct siginfo, si_uid)); | 
|  | } | 
|  | #ifdef CONFIG_COMPAT | 
|  | BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != | 
|  | offsetof(struct compat_siginfo, si_addr)); | 
|  | BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != | 
|  | sizeof(compat_uptr_t)); | 
|  | BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != | 
|  | sizeof_field(struct siginfo, si_pid)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init signals_init(void) | 
|  | { | 
|  | siginfo_buildtime_checks(); | 
|  |  | 
|  | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KGDB_KDB | 
|  | #include <linux/kdb.h> | 
|  | /* | 
|  | * kdb_send_sig - Allows kdb to send signals without exposing | 
|  | * signal internals.  This function checks if the required locks are | 
|  | * available before calling the main signal code, to avoid kdb | 
|  | * deadlocks. | 
|  | */ | 
|  | void kdb_send_sig(struct task_struct *t, int sig) | 
|  | { | 
|  | static struct task_struct *kdb_prev_t; | 
|  | int new_t, ret; | 
|  | if (!spin_trylock(&t->sighand->siglock)) { | 
|  | kdb_printf("Can't do kill command now.\n" | 
|  | "The sigmask lock is held somewhere else in " | 
|  | "kernel, try again later\n"); | 
|  | return; | 
|  | } | 
|  | new_t = kdb_prev_t != t; | 
|  | kdb_prev_t = t; | 
|  | if (!task_is_running(t) && new_t) { | 
|  | spin_unlock(&t->sighand->siglock); | 
|  | kdb_printf("Process is not RUNNING, sending a signal from " | 
|  | "kdb risks deadlock\n" | 
|  | "on the run queue locks. " | 
|  | "The signal has _not_ been sent.\n" | 
|  | "Reissue the kill command if you want to risk " | 
|  | "the deadlock.\n"); | 
|  | return; | 
|  | } | 
|  | ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); | 
|  | spin_unlock(&t->sighand->siglock); | 
|  | if (ret) | 
|  | kdb_printf("Fail to deliver Signal %d to process %d.\n", | 
|  | sig, t->pid); | 
|  | else | 
|  | kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); | 
|  | } | 
|  | #endif	/* CONFIG_KGDB_KDB */ |