| /* SPDX-License-Identifier: GPL-2.0 |
| * |
| * page_pool.c |
| * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> |
| * Copyright (C) 2016 Red Hat, Inc. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/device.h> |
| |
| #include <net/page_pool.h> |
| #include <linux/dma-direction.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/page-flags.h> |
| #include <linux/mm.h> /* for __put_page() */ |
| |
| #include <trace/events/page_pool.h> |
| |
| static int page_pool_init(struct page_pool *pool, |
| const struct page_pool_params *params) |
| { |
| unsigned int ring_qsize = 1024; /* Default */ |
| |
| memcpy(&pool->p, params, sizeof(pool->p)); |
| |
| /* Validate only known flags were used */ |
| if (pool->p.flags & ~(PP_FLAG_ALL)) |
| return -EINVAL; |
| |
| if (pool->p.pool_size) |
| ring_qsize = pool->p.pool_size; |
| |
| /* Sanity limit mem that can be pinned down */ |
| if (ring_qsize > 32768) |
| return -E2BIG; |
| |
| /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. |
| * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, |
| * which is the XDP_TX use-case. |
| */ |
| if ((pool->p.dma_dir != DMA_FROM_DEVICE) && |
| (pool->p.dma_dir != DMA_BIDIRECTIONAL)) |
| return -EINVAL; |
| |
| if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) |
| return -ENOMEM; |
| |
| atomic_set(&pool->pages_state_release_cnt, 0); |
| |
| /* Driver calling page_pool_create() also call page_pool_destroy() */ |
| refcount_set(&pool->user_cnt, 1); |
| |
| if (pool->p.flags & PP_FLAG_DMA_MAP) |
| get_device(pool->p.dev); |
| |
| return 0; |
| } |
| |
| struct page_pool *page_pool_create(const struct page_pool_params *params) |
| { |
| struct page_pool *pool; |
| int err; |
| |
| pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); |
| if (!pool) |
| return ERR_PTR(-ENOMEM); |
| |
| err = page_pool_init(pool, params); |
| if (err < 0) { |
| pr_warn("%s() gave up with errno %d\n", __func__, err); |
| kfree(pool); |
| return ERR_PTR(err); |
| } |
| |
| return pool; |
| } |
| EXPORT_SYMBOL(page_pool_create); |
| |
| /* fast path */ |
| static struct page *__page_pool_get_cached(struct page_pool *pool) |
| { |
| struct ptr_ring *r = &pool->ring; |
| bool refill = false; |
| struct page *page; |
| |
| /* Test for safe-context, caller should provide this guarantee */ |
| if (likely(in_serving_softirq())) { |
| if (likely(pool->alloc.count)) { |
| /* Fast-path */ |
| page = pool->alloc.cache[--pool->alloc.count]; |
| return page; |
| } |
| refill = true; |
| } |
| |
| /* Quicker fallback, avoid locks when ring is empty */ |
| if (__ptr_ring_empty(r)) |
| return NULL; |
| |
| /* Slow-path: Get page from locked ring queue, |
| * refill alloc array if requested. |
| */ |
| spin_lock(&r->consumer_lock); |
| page = __ptr_ring_consume(r); |
| if (refill) |
| pool->alloc.count = __ptr_ring_consume_batched(r, |
| pool->alloc.cache, |
| PP_ALLOC_CACHE_REFILL); |
| spin_unlock(&r->consumer_lock); |
| return page; |
| } |
| |
| /* slow path */ |
| noinline |
| static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, |
| gfp_t _gfp) |
| { |
| struct page *page; |
| gfp_t gfp = _gfp; |
| dma_addr_t dma; |
| |
| /* We could always set __GFP_COMP, and avoid this branch, as |
| * prep_new_page() can handle order-0 with __GFP_COMP. |
| */ |
| if (pool->p.order) |
| gfp |= __GFP_COMP; |
| |
| /* FUTURE development: |
| * |
| * Current slow-path essentially falls back to single page |
| * allocations, which doesn't improve performance. This code |
| * need bulk allocation support from the page allocator code. |
| */ |
| |
| /* Cache was empty, do real allocation */ |
| page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); |
| if (!page) |
| return NULL; |
| |
| if (!(pool->p.flags & PP_FLAG_DMA_MAP)) |
| goto skip_dma_map; |
| |
| /* Setup DMA mapping: use 'struct page' area for storing DMA-addr |
| * since dma_addr_t can be either 32 or 64 bits and does not always fit |
| * into page private data (i.e 32bit cpu with 64bit DMA caps) |
| * This mapping is kept for lifetime of page, until leaving pool. |
| */ |
| dma = dma_map_page_attrs(pool->p.dev, page, 0, |
| (PAGE_SIZE << pool->p.order), |
| pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(pool->p.dev, dma)) { |
| put_page(page); |
| return NULL; |
| } |
| page->dma_addr = dma; |
| |
| skip_dma_map: |
| /* Track how many pages are held 'in-flight' */ |
| pool->pages_state_hold_cnt++; |
| |
| trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); |
| |
| /* When page just alloc'ed is should/must have refcnt 1. */ |
| return page; |
| } |
| |
| /* For using page_pool replace: alloc_pages() API calls, but provide |
| * synchronization guarantee for allocation side. |
| */ |
| struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) |
| { |
| struct page *page; |
| |
| /* Fast-path: Get a page from cache */ |
| page = __page_pool_get_cached(pool); |
| if (page) |
| return page; |
| |
| /* Slow-path: cache empty, do real allocation */ |
| page = __page_pool_alloc_pages_slow(pool, gfp); |
| return page; |
| } |
| EXPORT_SYMBOL(page_pool_alloc_pages); |
| |
| /* Calculate distance between two u32 values, valid if distance is below 2^(31) |
| * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution |
| */ |
| #define _distance(a, b) (s32)((a) - (b)) |
| |
| static s32 page_pool_inflight(struct page_pool *pool) |
| { |
| u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); |
| u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); |
| s32 distance; |
| |
| distance = _distance(hold_cnt, release_cnt); |
| |
| trace_page_pool_inflight(pool, distance, hold_cnt, release_cnt); |
| return distance; |
| } |
| |
| static bool __page_pool_safe_to_destroy(struct page_pool *pool) |
| { |
| s32 inflight = page_pool_inflight(pool); |
| |
| /* The distance should not be able to become negative */ |
| WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); |
| |
| return (inflight == 0); |
| } |
| |
| /* Cleanup page_pool state from page */ |
| static void __page_pool_clean_page(struct page_pool *pool, |
| struct page *page) |
| { |
| dma_addr_t dma; |
| |
| if (!(pool->p.flags & PP_FLAG_DMA_MAP)) |
| goto skip_dma_unmap; |
| |
| dma = page->dma_addr; |
| /* DMA unmap */ |
| dma_unmap_page_attrs(pool->p.dev, dma, |
| PAGE_SIZE << pool->p.order, pool->p.dma_dir, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| page->dma_addr = 0; |
| skip_dma_unmap: |
| atomic_inc(&pool->pages_state_release_cnt); |
| trace_page_pool_state_release(pool, page, |
| atomic_read(&pool->pages_state_release_cnt)); |
| } |
| |
| /* unmap the page and clean our state */ |
| void page_pool_unmap_page(struct page_pool *pool, struct page *page) |
| { |
| /* When page is unmapped, this implies page will not be |
| * returned to page_pool. |
| */ |
| __page_pool_clean_page(pool, page); |
| } |
| EXPORT_SYMBOL(page_pool_unmap_page); |
| |
| /* Return a page to the page allocator, cleaning up our state */ |
| static void __page_pool_return_page(struct page_pool *pool, struct page *page) |
| { |
| __page_pool_clean_page(pool, page); |
| |
| put_page(page); |
| /* An optimization would be to call __free_pages(page, pool->p.order) |
| * knowing page is not part of page-cache (thus avoiding a |
| * __page_cache_release() call). |
| */ |
| } |
| |
| static bool __page_pool_recycle_into_ring(struct page_pool *pool, |
| struct page *page) |
| { |
| int ret; |
| /* BH protection not needed if current is serving softirq */ |
| if (in_serving_softirq()) |
| ret = ptr_ring_produce(&pool->ring, page); |
| else |
| ret = ptr_ring_produce_bh(&pool->ring, page); |
| |
| return (ret == 0) ? true : false; |
| } |
| |
| /* Only allow direct recycling in special circumstances, into the |
| * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. |
| * |
| * Caller must provide appropriate safe context. |
| */ |
| static bool __page_pool_recycle_direct(struct page *page, |
| struct page_pool *pool) |
| { |
| if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) |
| return false; |
| |
| /* Caller MUST have verified/know (page_ref_count(page) == 1) */ |
| pool->alloc.cache[pool->alloc.count++] = page; |
| return true; |
| } |
| |
| void __page_pool_put_page(struct page_pool *pool, |
| struct page *page, bool allow_direct) |
| { |
| /* This allocator is optimized for the XDP mode that uses |
| * one-frame-per-page, but have fallbacks that act like the |
| * regular page allocator APIs. |
| * |
| * refcnt == 1 means page_pool owns page, and can recycle it. |
| */ |
| if (likely(page_ref_count(page) == 1)) { |
| /* Read barrier done in page_ref_count / READ_ONCE */ |
| |
| if (allow_direct && in_serving_softirq()) |
| if (__page_pool_recycle_direct(page, pool)) |
| return; |
| |
| if (!__page_pool_recycle_into_ring(pool, page)) { |
| /* Cache full, fallback to free pages */ |
| __page_pool_return_page(pool, page); |
| } |
| return; |
| } |
| /* Fallback/non-XDP mode: API user have elevated refcnt. |
| * |
| * Many drivers split up the page into fragments, and some |
| * want to keep doing this to save memory and do refcnt based |
| * recycling. Support this use case too, to ease drivers |
| * switching between XDP/non-XDP. |
| * |
| * In-case page_pool maintains the DMA mapping, API user must |
| * call page_pool_put_page once. In this elevated refcnt |
| * case, the DMA is unmapped/released, as driver is likely |
| * doing refcnt based recycle tricks, meaning another process |
| * will be invoking put_page. |
| */ |
| __page_pool_clean_page(pool, page); |
| put_page(page); |
| } |
| EXPORT_SYMBOL(__page_pool_put_page); |
| |
| static void __page_pool_empty_ring(struct page_pool *pool) |
| { |
| struct page *page; |
| |
| /* Empty recycle ring */ |
| while ((page = ptr_ring_consume_bh(&pool->ring))) { |
| /* Verify the refcnt invariant of cached pages */ |
| if (!(page_ref_count(page) == 1)) |
| pr_crit("%s() page_pool refcnt %d violation\n", |
| __func__, page_ref_count(page)); |
| |
| __page_pool_return_page(pool, page); |
| } |
| } |
| |
| static void __warn_in_flight(struct page_pool *pool) |
| { |
| u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); |
| u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); |
| s32 distance; |
| |
| distance = _distance(hold_cnt, release_cnt); |
| |
| /* Drivers should fix this, but only problematic when DMA is used */ |
| WARN(1, "Still in-flight pages:%d hold:%u released:%u", |
| distance, hold_cnt, release_cnt); |
| } |
| |
| void __page_pool_free(struct page_pool *pool) |
| { |
| /* Only last user actually free/release resources */ |
| if (!page_pool_put(pool)) |
| return; |
| |
| WARN(pool->alloc.count, "API usage violation"); |
| WARN(!ptr_ring_empty(&pool->ring), "ptr_ring is not empty"); |
| |
| /* Can happen due to forced shutdown */ |
| if (!__page_pool_safe_to_destroy(pool)) |
| __warn_in_flight(pool); |
| |
| ptr_ring_cleanup(&pool->ring, NULL); |
| |
| if (pool->p.flags & PP_FLAG_DMA_MAP) |
| put_device(pool->p.dev); |
| |
| kfree(pool); |
| } |
| EXPORT_SYMBOL(__page_pool_free); |
| |
| /* Request to shutdown: release pages cached by page_pool, and check |
| * for in-flight pages |
| */ |
| bool __page_pool_request_shutdown(struct page_pool *pool) |
| { |
| struct page *page; |
| |
| /* Empty alloc cache, assume caller made sure this is |
| * no-longer in use, and page_pool_alloc_pages() cannot be |
| * call concurrently. |
| */ |
| while (pool->alloc.count) { |
| page = pool->alloc.cache[--pool->alloc.count]; |
| __page_pool_return_page(pool, page); |
| } |
| |
| /* No more consumers should exist, but producers could still |
| * be in-flight. |
| */ |
| __page_pool_empty_ring(pool); |
| |
| return __page_pool_safe_to_destroy(pool); |
| } |
| EXPORT_SYMBOL(__page_pool_request_shutdown); |