| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright (C) 2018 James.Bottomley@HansenPartnership.com |
| * |
| * Cryptographic helper routines for handling TPM2 sessions for |
| * authorization HMAC and request response encryption. |
| * |
| * The idea is to ensure that every TPM command is HMAC protected by a |
| * session, meaning in-flight tampering would be detected and in |
| * addition all sensitive inputs and responses should be encrypted. |
| * |
| * The basic way this works is to use a TPM feature called salted |
| * sessions where a random secret used in session construction is |
| * encrypted to the public part of a known TPM key. The problem is we |
| * have no known keys, so initially a primary Elliptic Curve key is |
| * derived from the NULL seed (we use EC because most TPMs generate |
| * these keys much faster than RSA ones). The curve used is NIST_P256 |
| * because that's now mandated to be present in 'TCG TPM v2.0 |
| * Provisioning Guidance' |
| * |
| * Threat problems: the initial TPM2_CreatePrimary is not (and cannot |
| * be) session protected, so a clever Man in the Middle could return a |
| * public key they control to this command and from there intercept |
| * and decode all subsequent session based transactions. The kernel |
| * cannot mitigate this threat but, after boot, userspace can get |
| * proof this has not happened by asking the TPM to certify the NULL |
| * key. This certification would chain back to the TPM Endorsement |
| * Certificate and prove the NULL seed primary had not been tampered |
| * with and thus all sessions must have been cryptographically secure. |
| * To assist with this, the initial NULL seed public key name is made |
| * available in a sysfs file. |
| * |
| * Use of these functions: |
| * |
| * The design is all the crypto, hash and hmac gunk is confined in this |
| * file and never needs to be seen even by the kernel internal user. To |
| * the user there's an init function tpm2_sessions_init() that needs to |
| * be called once per TPM which generates the NULL seed primary key. |
| * |
| * These are the usage functions: |
| * |
| * tpm2_start_auth_session() which allocates the opaque auth structure |
| * and gets a session from the TPM. This must be called before |
| * any of the following functions. The session is protected by a |
| * session_key which is derived from a random salt value |
| * encrypted to the NULL seed. |
| * tpm2_end_auth_session() kills the session and frees the resources. |
| * Under normal operation this function is done by |
| * tpm_buf_check_hmac_response(), so this is only to be used on |
| * error legs where the latter is not executed. |
| * tpm_buf_append_name() to add a handle to the buffer. This must be |
| * used in place of the usual tpm_buf_append_u32() for adding |
| * handles because handles have to be processed specially when |
| * calculating the HMAC. In particular, for NV, volatile and |
| * permanent objects you now need to provide the name. |
| * tpm_buf_append_hmac_session() which appends the hmac session to the |
| * buf in the same way tpm_buf_append_auth does(). |
| * tpm_buf_fill_hmac_session() This calculates the correct hash and |
| * places it in the buffer. It must be called after the complete |
| * command buffer is finalized so it can fill in the correct HMAC |
| * based on the parameters. |
| * tpm_buf_check_hmac_response() which checks the session response in |
| * the buffer and calculates what it should be. If there's a |
| * mismatch it will log a warning and return an error. If |
| * tpm_buf_append_hmac_session() did not specify |
| * TPM_SA_CONTINUE_SESSION then the session will be closed (if it |
| * hasn't been consumed) and the auth structure freed. |
| */ |
| |
| #include "tpm.h" |
| #include <linux/random.h> |
| #include <linux/scatterlist.h> |
| #include <asm/unaligned.h> |
| #include <crypto/kpp.h> |
| #include <crypto/ecdh.h> |
| #include <crypto/hash.h> |
| #include <crypto/hmac.h> |
| |
| /* maximum number of names the TPM must remember for authorization */ |
| #define AUTH_MAX_NAMES 3 |
| |
| #define AES_KEY_BYTES AES_KEYSIZE_128 |
| #define AES_KEY_BITS (AES_KEY_BYTES*8) |
| |
| /* |
| * This is the structure that carries all the auth information (like |
| * session handle, nonces, session key and auth) from use to use it is |
| * designed to be opaque to anything outside. |
| */ |
| struct tpm2_auth { |
| u32 handle; |
| /* |
| * This has two meanings: before tpm_buf_fill_hmac_session() |
| * it marks the offset in the buffer of the start of the |
| * sessions (i.e. after all the handles). Once the buffer has |
| * been filled it markes the session number of our auth |
| * session so we can find it again in the response buffer. |
| * |
| * The two cases are distinguished because the first offset |
| * must always be greater than TPM_HEADER_SIZE and the second |
| * must be less than or equal to 5. |
| */ |
| u32 session; |
| /* |
| * the size here is variable and set by the size of our_nonce |
| * which must be between 16 and the name hash length. we set |
| * the maximum sha256 size for the greatest protection |
| */ |
| u8 our_nonce[SHA256_DIGEST_SIZE]; |
| u8 tpm_nonce[SHA256_DIGEST_SIZE]; |
| /* |
| * the salt is only used across the session command/response |
| * after that it can be used as a scratch area |
| */ |
| union { |
| u8 salt[EC_PT_SZ]; |
| /* scratch for key + IV */ |
| u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE]; |
| }; |
| /* |
| * the session key and passphrase are the same size as the |
| * name digest (sha256 again). The session key is constant |
| * for the use of the session and the passphrase can change |
| * with every invocation. |
| * |
| * Note: these fields must be adjacent and in this order |
| * because several HMAC/KDF schemes use the combination of the |
| * session_key and passphrase. |
| */ |
| u8 session_key[SHA256_DIGEST_SIZE]; |
| u8 passphrase[SHA256_DIGEST_SIZE]; |
| int passphrase_len; |
| struct crypto_aes_ctx aes_ctx; |
| /* saved session attributes: */ |
| u8 attrs; |
| __be32 ordinal; |
| |
| /* |
| * memory for three authorization handles. We know them by |
| * handle, but they are part of the session by name, which |
| * we must compute and remember |
| */ |
| u32 name_h[AUTH_MAX_NAMES]; |
| u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE]; |
| }; |
| |
| #ifdef CONFIG_TCG_TPM2_HMAC |
| /* |
| * Name Size based on TPM algorithm (assumes no hash bigger than 255) |
| */ |
| static u8 name_size(const u8 *name) |
| { |
| static u8 size_map[] = { |
| [TPM_ALG_SHA1] = SHA1_DIGEST_SIZE, |
| [TPM_ALG_SHA256] = SHA256_DIGEST_SIZE, |
| [TPM_ALG_SHA384] = SHA384_DIGEST_SIZE, |
| [TPM_ALG_SHA512] = SHA512_DIGEST_SIZE, |
| }; |
| u16 alg = get_unaligned_be16(name); |
| return size_map[alg] + 2; |
| } |
| |
| static int tpm2_parse_read_public(char *name, struct tpm_buf *buf) |
| { |
| struct tpm_header *head = (struct tpm_header *)buf->data; |
| off_t offset = TPM_HEADER_SIZE; |
| u32 tot_len = be32_to_cpu(head->length); |
| u32 val; |
| |
| /* we're starting after the header so adjust the length */ |
| tot_len -= TPM_HEADER_SIZE; |
| |
| /* skip public */ |
| val = tpm_buf_read_u16(buf, &offset); |
| if (val > tot_len) |
| return -EINVAL; |
| offset += val; |
| /* name */ |
| val = tpm_buf_read_u16(buf, &offset); |
| if (val != name_size(&buf->data[offset])) |
| return -EINVAL; |
| memcpy(name, &buf->data[offset], val); |
| /* forget the rest */ |
| return 0; |
| } |
| |
| static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name) |
| { |
| struct tpm_buf buf; |
| int rc; |
| |
| rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC); |
| if (rc) |
| return rc; |
| |
| tpm_buf_append_u32(&buf, handle); |
| rc = tpm_transmit_cmd(chip, &buf, 0, "read public"); |
| if (rc == TPM2_RC_SUCCESS) |
| rc = tpm2_parse_read_public(name, &buf); |
| |
| tpm_buf_destroy(&buf); |
| |
| return rc; |
| } |
| #endif /* CONFIG_TCG_TPM2_HMAC */ |
| |
| /** |
| * tpm_buf_append_name() - add a handle area to the buffer |
| * @chip: the TPM chip structure |
| * @buf: The buffer to be appended |
| * @handle: The handle to be appended |
| * @name: The name of the handle (may be NULL) |
| * |
| * In order to compute session HMACs, we need to know the names of the |
| * objects pointed to by the handles. For most objects, this is simply |
| * the actual 4 byte handle or an empty buf (in these cases @name |
| * should be NULL) but for volatile objects, permanent objects and NV |
| * areas, the name is defined as the hash (according to the name |
| * algorithm which should be set to sha256) of the public area to |
| * which the two byte algorithm id has been appended. For these |
| * objects, the @name pointer should point to this. If a name is |
| * required but @name is NULL, then TPM2_ReadPublic() will be called |
| * on the handle to obtain the name. |
| * |
| * As with most tpm_buf operations, success is assumed because failure |
| * will be caused by an incorrect programming model and indicated by a |
| * kernel message. |
| */ |
| void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf, |
| u32 handle, u8 *name) |
| { |
| #ifdef CONFIG_TCG_TPM2_HMAC |
| enum tpm2_mso_type mso = tpm2_handle_mso(handle); |
| struct tpm2_auth *auth; |
| int slot; |
| #endif |
| |
| if (!tpm2_chip_auth(chip)) { |
| tpm_buf_append_u32(buf, handle); |
| /* count the number of handles in the upper bits of flags */ |
| buf->handles++; |
| return; |
| } |
| |
| #ifdef CONFIG_TCG_TPM2_HMAC |
| slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4; |
| if (slot >= AUTH_MAX_NAMES) { |
| dev_err(&chip->dev, "TPM: too many handles\n"); |
| return; |
| } |
| auth = chip->auth; |
| WARN(auth->session != tpm_buf_length(buf), |
| "name added in wrong place\n"); |
| tpm_buf_append_u32(buf, handle); |
| auth->session += 4; |
| |
| if (mso == TPM2_MSO_PERSISTENT || |
| mso == TPM2_MSO_VOLATILE || |
| mso == TPM2_MSO_NVRAM) { |
| if (!name) |
| tpm2_read_public(chip, handle, auth->name[slot]); |
| } else { |
| if (name) |
| dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n"); |
| } |
| |
| auth->name_h[slot] = handle; |
| if (name) |
| memcpy(auth->name[slot], name, name_size(name)); |
| #endif |
| } |
| EXPORT_SYMBOL_GPL(tpm_buf_append_name); |
| |
| /** |
| * tpm_buf_append_hmac_session() - Append a TPM session element |
| * @chip: the TPM chip structure |
| * @buf: The buffer to be appended |
| * @attributes: The session attributes |
| * @passphrase: The session authority (NULL if none) |
| * @passphrase_len: The length of the session authority (0 if none) |
| * |
| * This fills in a session structure in the TPM command buffer, except |
| * for the HMAC which cannot be computed until the command buffer is |
| * complete. The type of session is controlled by the @attributes, |
| * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the |
| * session won't terminate after tpm_buf_check_hmac_response(), |
| * TPM2_SA_DECRYPT which means this buffers first parameter should be |
| * encrypted with a session key and TPM2_SA_ENCRYPT, which means the |
| * response buffer's first parameter needs to be decrypted (confusing, |
| * but the defines are written from the point of view of the TPM). |
| * |
| * Any session appended by this command must be finalized by calling |
| * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect |
| * and the TPM will reject the command. |
| * |
| * As with most tpm_buf operations, success is assumed because failure |
| * will be caused by an incorrect programming model and indicated by a |
| * kernel message. |
| */ |
| void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf, |
| u8 attributes, u8 *passphrase, |
| int passphrase_len) |
| { |
| #ifdef CONFIG_TCG_TPM2_HMAC |
| u8 nonce[SHA256_DIGEST_SIZE]; |
| struct tpm2_auth *auth; |
| u32 len; |
| #endif |
| |
| if (!tpm2_chip_auth(chip)) { |
| /* offset tells us where the sessions area begins */ |
| int offset = buf->handles * 4 + TPM_HEADER_SIZE; |
| u32 len = 9 + passphrase_len; |
| |
| if (tpm_buf_length(buf) != offset) { |
| /* not the first session so update the existing length */ |
| len += get_unaligned_be32(&buf->data[offset]); |
| put_unaligned_be32(len, &buf->data[offset]); |
| } else { |
| tpm_buf_append_u32(buf, len); |
| } |
| /* auth handle */ |
| tpm_buf_append_u32(buf, TPM2_RS_PW); |
| /* nonce */ |
| tpm_buf_append_u16(buf, 0); |
| /* attributes */ |
| tpm_buf_append_u8(buf, 0); |
| /* passphrase */ |
| tpm_buf_append_u16(buf, passphrase_len); |
| tpm_buf_append(buf, passphrase, passphrase_len); |
| return; |
| } |
| |
| #ifdef CONFIG_TCG_TPM2_HMAC |
| /* |
| * The Architecture Guide requires us to strip trailing zeros |
| * before computing the HMAC |
| */ |
| while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0') |
| passphrase_len--; |
| |
| auth = chip->auth; |
| auth->attrs = attributes; |
| auth->passphrase_len = passphrase_len; |
| if (passphrase_len) |
| memcpy(auth->passphrase, passphrase, passphrase_len); |
| |
| if (auth->session != tpm_buf_length(buf)) { |
| /* we're not the first session */ |
| len = get_unaligned_be32(&buf->data[auth->session]); |
| if (4 + len + auth->session != tpm_buf_length(buf)) { |
| WARN(1, "session length mismatch, cannot append"); |
| return; |
| } |
| |
| /* add our new session */ |
| len += 9 + 2 * SHA256_DIGEST_SIZE; |
| put_unaligned_be32(len, &buf->data[auth->session]); |
| } else { |
| tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE); |
| } |
| |
| /* random number for our nonce */ |
| get_random_bytes(nonce, sizeof(nonce)); |
| memcpy(auth->our_nonce, nonce, sizeof(nonce)); |
| tpm_buf_append_u32(buf, auth->handle); |
| /* our new nonce */ |
| tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); |
| tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); |
| tpm_buf_append_u8(buf, auth->attrs); |
| /* and put a placeholder for the hmac */ |
| tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE); |
| tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE); |
| #endif |
| } |
| EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session); |
| |
| #ifdef CONFIG_TCG_TPM2_HMAC |
| |
| static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, |
| u32 *handle, u8 *name); |
| |
| /* |
| * It turns out the crypto hmac(sha256) is hard for us to consume |
| * because it assumes a fixed key and the TPM seems to change the key |
| * on every operation, so we weld the hmac init and final functions in |
| * here to give it the same usage characteristics as a regular hash |
| */ |
| static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len) |
| { |
| u8 pad[SHA256_BLOCK_SIZE]; |
| int i; |
| |
| sha256_init(sctx); |
| for (i = 0; i < sizeof(pad); i++) { |
| if (i < key_len) |
| pad[i] = key[i]; |
| else |
| pad[i] = 0; |
| pad[i] ^= HMAC_IPAD_VALUE; |
| } |
| sha256_update(sctx, pad, sizeof(pad)); |
| } |
| |
| static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len, |
| u8 *out) |
| { |
| u8 pad[SHA256_BLOCK_SIZE]; |
| int i; |
| |
| for (i = 0; i < sizeof(pad); i++) { |
| if (i < key_len) |
| pad[i] = key[i]; |
| else |
| pad[i] = 0; |
| pad[i] ^= HMAC_OPAD_VALUE; |
| } |
| |
| /* collect the final hash; use out as temporary storage */ |
| sha256_final(sctx, out); |
| |
| sha256_init(sctx); |
| sha256_update(sctx, pad, sizeof(pad)); |
| sha256_update(sctx, out, SHA256_DIGEST_SIZE); |
| sha256_final(sctx, out); |
| } |
| |
| /* |
| * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but |
| * otherwise standard tpm2_KDFa. Note output is in bytes not bits. |
| */ |
| static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u, |
| u8 *v, u32 bytes, u8 *out) |
| { |
| u32 counter = 1; |
| const __be32 bits = cpu_to_be32(bytes * 8); |
| |
| while (bytes > 0) { |
| struct sha256_state sctx; |
| __be32 c = cpu_to_be32(counter); |
| |
| tpm2_hmac_init(&sctx, key, key_len); |
| sha256_update(&sctx, (u8 *)&c, sizeof(c)); |
| sha256_update(&sctx, label, strlen(label)+1); |
| sha256_update(&sctx, u, SHA256_DIGEST_SIZE); |
| sha256_update(&sctx, v, SHA256_DIGEST_SIZE); |
| sha256_update(&sctx, (u8 *)&bits, sizeof(bits)); |
| tpm2_hmac_final(&sctx, key, key_len, out); |
| |
| bytes -= SHA256_DIGEST_SIZE; |
| counter++; |
| out += SHA256_DIGEST_SIZE; |
| } |
| } |
| |
| /* |
| * Somewhat of a bastardization of the real KDFe. We're assuming |
| * we're working with known point sizes for the input parameters and |
| * the hash algorithm is fixed at sha256. Because we know that the |
| * point size is 32 bytes like the hash size, there's no need to loop |
| * in this KDF. |
| */ |
| static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v, |
| u8 *out) |
| { |
| struct sha256_state sctx; |
| /* |
| * this should be an iterative counter, but because we know |
| * we're only taking 32 bytes for the point using a sha256 |
| * hash which is also 32 bytes, there's only one loop |
| */ |
| __be32 c = cpu_to_be32(1); |
| |
| sha256_init(&sctx); |
| /* counter (BE) */ |
| sha256_update(&sctx, (u8 *)&c, sizeof(c)); |
| /* secret value */ |
| sha256_update(&sctx, z, EC_PT_SZ); |
| /* string including trailing zero */ |
| sha256_update(&sctx, str, strlen(str)+1); |
| sha256_update(&sctx, pt_u, EC_PT_SZ); |
| sha256_update(&sctx, pt_v, EC_PT_SZ); |
| sha256_final(&sctx, out); |
| } |
| |
| static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip) |
| { |
| struct crypto_kpp *kpp; |
| struct kpp_request *req; |
| struct scatterlist s[2], d[1]; |
| struct ecdh p = {0}; |
| u8 encoded_key[EC_PT_SZ], *x, *y; |
| unsigned int buf_len; |
| |
| /* secret is two sized points */ |
| tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2); |
| /* |
| * we cheat here and append uninitialized data to form |
| * the points. All we care about is getting the two |
| * co-ordinate pointers, which will be used to overwrite |
| * the uninitialized data |
| */ |
| tpm_buf_append_u16(buf, EC_PT_SZ); |
| x = &buf->data[tpm_buf_length(buf)]; |
| tpm_buf_append(buf, encoded_key, EC_PT_SZ); |
| tpm_buf_append_u16(buf, EC_PT_SZ); |
| y = &buf->data[tpm_buf_length(buf)]; |
| tpm_buf_append(buf, encoded_key, EC_PT_SZ); |
| sg_init_table(s, 2); |
| sg_set_buf(&s[0], x, EC_PT_SZ); |
| sg_set_buf(&s[1], y, EC_PT_SZ); |
| |
| kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0); |
| if (IS_ERR(kpp)) { |
| dev_err(&chip->dev, "crypto ecdh allocation failed\n"); |
| return; |
| } |
| |
| buf_len = crypto_ecdh_key_len(&p); |
| if (sizeof(encoded_key) < buf_len) { |
| dev_err(&chip->dev, "salt buffer too small needs %d\n", |
| buf_len); |
| goto out; |
| } |
| crypto_ecdh_encode_key(encoded_key, buf_len, &p); |
| /* this generates a random private key */ |
| crypto_kpp_set_secret(kpp, encoded_key, buf_len); |
| |
| /* salt is now the public point of this private key */ |
| req = kpp_request_alloc(kpp, GFP_KERNEL); |
| if (!req) |
| goto out; |
| kpp_request_set_input(req, NULL, 0); |
| kpp_request_set_output(req, s, EC_PT_SZ*2); |
| crypto_kpp_generate_public_key(req); |
| /* |
| * we're not done: now we have to compute the shared secret |
| * which is our private key multiplied by the tpm_key public |
| * point, we actually only take the x point and discard the y |
| * point and feed it through KDFe to get the final secret salt |
| */ |
| sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ); |
| sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ); |
| kpp_request_set_input(req, s, EC_PT_SZ*2); |
| sg_init_one(d, chip->auth->salt, EC_PT_SZ); |
| kpp_request_set_output(req, d, EC_PT_SZ); |
| crypto_kpp_compute_shared_secret(req); |
| kpp_request_free(req); |
| |
| /* |
| * pass the shared secret through KDFe for salt. Note salt |
| * area is used both for input shared secret and output salt. |
| * This works because KDFe fully consumes the secret before it |
| * writes the salt |
| */ |
| tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x, |
| chip->auth->salt); |
| |
| out: |
| crypto_free_kpp(kpp); |
| } |
| |
| /** |
| * tpm_buf_fill_hmac_session() - finalize the session HMAC |
| * @chip: the TPM chip structure |
| * @buf: The buffer to be appended |
| * |
| * This command must not be called until all of the parameters have |
| * been appended to @buf otherwise the computed HMAC will be |
| * incorrect. |
| * |
| * This function computes and fills in the session HMAC using the |
| * session key and, if TPM2_SA_DECRYPT was specified, computes the |
| * encryption key and encrypts the first parameter of the command |
| * buffer with it. |
| * |
| * As with most tpm_buf operations, success is assumed because failure |
| * will be caused by an incorrect programming model and indicated by a |
| * kernel message. |
| */ |
| void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf) |
| { |
| u32 cc, handles, val; |
| struct tpm2_auth *auth = chip->auth; |
| int i; |
| struct tpm_header *head = (struct tpm_header *)buf->data; |
| off_t offset_s = TPM_HEADER_SIZE, offset_p; |
| u8 *hmac = NULL; |
| u32 attrs; |
| u8 cphash[SHA256_DIGEST_SIZE]; |
| struct sha256_state sctx; |
| |
| if (!auth) |
| return; |
| |
| /* save the command code in BE format */ |
| auth->ordinal = head->ordinal; |
| |
| cc = be32_to_cpu(head->ordinal); |
| |
| i = tpm2_find_cc(chip, cc); |
| if (i < 0) { |
| dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc); |
| return; |
| } |
| attrs = chip->cc_attrs_tbl[i]; |
| |
| handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0); |
| |
| /* |
| * just check the names, it's easy to make mistakes. This |
| * would happen if someone added a handle via |
| * tpm_buf_append_u32() instead of tpm_buf_append_name() |
| */ |
| for (i = 0; i < handles; i++) { |
| u32 handle = tpm_buf_read_u32(buf, &offset_s); |
| |
| if (auth->name_h[i] != handle) { |
| dev_err(&chip->dev, "TPM: handle %d wrong for name\n", |
| i); |
| return; |
| } |
| } |
| /* point offset_s to the start of the sessions */ |
| val = tpm_buf_read_u32(buf, &offset_s); |
| /* point offset_p to the start of the parameters */ |
| offset_p = offset_s + val; |
| for (i = 1; offset_s < offset_p; i++) { |
| u32 handle = tpm_buf_read_u32(buf, &offset_s); |
| u16 len; |
| u8 a; |
| |
| /* nonce (already in auth) */ |
| len = tpm_buf_read_u16(buf, &offset_s); |
| offset_s += len; |
| |
| a = tpm_buf_read_u8(buf, &offset_s); |
| |
| len = tpm_buf_read_u16(buf, &offset_s); |
| if (handle == auth->handle && auth->attrs == a) { |
| hmac = &buf->data[offset_s]; |
| /* |
| * save our session number so we know which |
| * session in the response belongs to us |
| */ |
| auth->session = i; |
| } |
| |
| offset_s += len; |
| } |
| if (offset_s != offset_p) { |
| dev_err(&chip->dev, "TPM session length is incorrect\n"); |
| return; |
| } |
| if (!hmac) { |
| dev_err(&chip->dev, "TPM could not find HMAC session\n"); |
| return; |
| } |
| |
| /* encrypt before HMAC */ |
| if (auth->attrs & TPM2_SA_DECRYPT) { |
| u16 len; |
| |
| /* need key and IV */ |
| tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE |
| + auth->passphrase_len, "CFB", auth->our_nonce, |
| auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, |
| auth->scratch); |
| |
| len = tpm_buf_read_u16(buf, &offset_p); |
| aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); |
| aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p], |
| &buf->data[offset_p], len, |
| auth->scratch + AES_KEY_BYTES); |
| /* reset p to beginning of parameters for HMAC */ |
| offset_p -= 2; |
| } |
| |
| sha256_init(&sctx); |
| /* ordinal is already BE */ |
| sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal)); |
| /* add the handle names */ |
| for (i = 0; i < handles; i++) { |
| enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]); |
| |
| if (mso == TPM2_MSO_PERSISTENT || |
| mso == TPM2_MSO_VOLATILE || |
| mso == TPM2_MSO_NVRAM) { |
| sha256_update(&sctx, auth->name[i], |
| name_size(auth->name[i])); |
| } else { |
| __be32 h = cpu_to_be32(auth->name_h[i]); |
| |
| sha256_update(&sctx, (u8 *)&h, 4); |
| } |
| } |
| if (offset_s != tpm_buf_length(buf)) |
| sha256_update(&sctx, &buf->data[offset_s], |
| tpm_buf_length(buf) - offset_s); |
| sha256_final(&sctx, cphash); |
| |
| /* now calculate the hmac */ |
| tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) |
| + auth->passphrase_len); |
| sha256_update(&sctx, cphash, sizeof(cphash)); |
| sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); |
| sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); |
| sha256_update(&sctx, &auth->attrs, 1); |
| tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) |
| + auth->passphrase_len, hmac); |
| } |
| EXPORT_SYMBOL(tpm_buf_fill_hmac_session); |
| |
| /** |
| * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness |
| * @chip: the TPM chip structure |
| * @buf: the original command buffer (which now contains the response) |
| * @rc: the return code from tpm_transmit_cmd |
| * |
| * If @rc is non zero, @buf may not contain an actual return, so @rc |
| * is passed through as the return and the session cleaned up and |
| * de-allocated if required (this is required if |
| * TPM2_SA_CONTINUE_SESSION was not specified as a session flag). |
| * |
| * If @rc is zero, the response HMAC is computed against the returned |
| * @buf and matched to the TPM one in the session area. If there is a |
| * mismatch, an error is logged and -EINVAL returned. |
| * |
| * The reason for this is that the command issue and HMAC check |
| * sequence should look like: |
| * |
| * rc = tpm_transmit_cmd(...); |
| * rc = tpm_buf_check_hmac_response(&buf, auth, rc); |
| * if (rc) |
| * ... |
| * |
| * Which is easily layered into the current contrl flow. |
| * |
| * Returns: 0 on success or an error. |
| */ |
| int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf, |
| int rc) |
| { |
| struct tpm_header *head = (struct tpm_header *)buf->data; |
| struct tpm2_auth *auth = chip->auth; |
| off_t offset_s, offset_p; |
| u8 rphash[SHA256_DIGEST_SIZE]; |
| u32 attrs, cc; |
| struct sha256_state sctx; |
| u16 tag = be16_to_cpu(head->tag); |
| int parm_len, len, i, handles; |
| |
| if (!auth) |
| return rc; |
| |
| cc = be32_to_cpu(auth->ordinal); |
| |
| if (auth->session >= TPM_HEADER_SIZE) { |
| WARN(1, "tpm session not filled correctly\n"); |
| goto out; |
| } |
| |
| if (rc != 0) |
| /* pass non success rc through and close the session */ |
| goto out; |
| |
| rc = -EINVAL; |
| if (tag != TPM2_ST_SESSIONS) { |
| dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n"); |
| goto out; |
| } |
| |
| i = tpm2_find_cc(chip, cc); |
| if (i < 0) |
| goto out; |
| attrs = chip->cc_attrs_tbl[i]; |
| handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1; |
| |
| /* point to area beyond handles */ |
| offset_s = TPM_HEADER_SIZE + handles * 4; |
| parm_len = tpm_buf_read_u32(buf, &offset_s); |
| offset_p = offset_s; |
| offset_s += parm_len; |
| /* skip over any sessions before ours */ |
| for (i = 0; i < auth->session - 1; i++) { |
| len = tpm_buf_read_u16(buf, &offset_s); |
| offset_s += len + 1; |
| len = tpm_buf_read_u16(buf, &offset_s); |
| offset_s += len; |
| } |
| /* TPM nonce */ |
| len = tpm_buf_read_u16(buf, &offset_s); |
| if (offset_s + len > tpm_buf_length(buf)) |
| goto out; |
| if (len != SHA256_DIGEST_SIZE) |
| goto out; |
| memcpy(auth->tpm_nonce, &buf->data[offset_s], len); |
| offset_s += len; |
| attrs = tpm_buf_read_u8(buf, &offset_s); |
| len = tpm_buf_read_u16(buf, &offset_s); |
| if (offset_s + len != tpm_buf_length(buf)) |
| goto out; |
| if (len != SHA256_DIGEST_SIZE) |
| goto out; |
| /* |
| * offset_s points to the HMAC. now calculate comparison, beginning |
| * with rphash |
| */ |
| sha256_init(&sctx); |
| /* yes, I know this is now zero, but it's what the standard says */ |
| sha256_update(&sctx, (u8 *)&head->return_code, |
| sizeof(head->return_code)); |
| /* ordinal is already BE */ |
| sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal)); |
| sha256_update(&sctx, &buf->data[offset_p], parm_len); |
| sha256_final(&sctx, rphash); |
| |
| /* now calculate the hmac */ |
| tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key) |
| + auth->passphrase_len); |
| sha256_update(&sctx, rphash, sizeof(rphash)); |
| sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce)); |
| sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce)); |
| sha256_update(&sctx, &auth->attrs, 1); |
| /* we're done with the rphash, so put our idea of the hmac there */ |
| tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key) |
| + auth->passphrase_len, rphash); |
| if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) { |
| rc = 0; |
| } else { |
| dev_err(&chip->dev, "TPM: HMAC check failed\n"); |
| goto out; |
| } |
| |
| /* now do response decryption */ |
| if (auth->attrs & TPM2_SA_ENCRYPT) { |
| /* need key and IV */ |
| tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE |
| + auth->passphrase_len, "CFB", auth->tpm_nonce, |
| auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE, |
| auth->scratch); |
| |
| len = tpm_buf_read_u16(buf, &offset_p); |
| aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES); |
| aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p], |
| &buf->data[offset_p], len, |
| auth->scratch + AES_KEY_BYTES); |
| } |
| |
| out: |
| if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) { |
| if (rc) |
| /* manually close the session if it wasn't consumed */ |
| tpm2_flush_context(chip, auth->handle); |
| memzero_explicit(auth, sizeof(*auth)); |
| } else { |
| /* reset for next use */ |
| auth->session = TPM_HEADER_SIZE; |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(tpm_buf_check_hmac_response); |
| |
| /** |
| * tpm2_end_auth_session() - kill the allocated auth session |
| * @chip: the TPM chip structure |
| * |
| * ends the session started by tpm2_start_auth_session and frees all |
| * the resources. Under normal conditions, |
| * tpm_buf_check_hmac_response() will correctly end the session if |
| * required, so this function is only for use in error legs that will |
| * bypass the normal invocation of tpm_buf_check_hmac_response(). |
| */ |
| void tpm2_end_auth_session(struct tpm_chip *chip) |
| { |
| struct tpm2_auth *auth = chip->auth; |
| |
| if (!auth) |
| return; |
| |
| tpm2_flush_context(chip, auth->handle); |
| memzero_explicit(auth, sizeof(*auth)); |
| } |
| EXPORT_SYMBOL(tpm2_end_auth_session); |
| |
| static int tpm2_parse_start_auth_session(struct tpm2_auth *auth, |
| struct tpm_buf *buf) |
| { |
| struct tpm_header *head = (struct tpm_header *)buf->data; |
| u32 tot_len = be32_to_cpu(head->length); |
| off_t offset = TPM_HEADER_SIZE; |
| u32 val; |
| |
| /* we're starting after the header so adjust the length */ |
| tot_len -= TPM_HEADER_SIZE; |
| |
| /* should have handle plus nonce */ |
| if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce)) |
| return -EINVAL; |
| |
| auth->handle = tpm_buf_read_u32(buf, &offset); |
| val = tpm_buf_read_u16(buf, &offset); |
| if (val != sizeof(auth->tpm_nonce)) |
| return -EINVAL; |
| memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce)); |
| /* now compute the session key from the nonces */ |
| tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce, |
| auth->our_nonce, sizeof(auth->session_key), |
| auth->session_key); |
| |
| return 0; |
| } |
| |
| static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key) |
| { |
| int rc; |
| unsigned int offset = 0; /* dummy offset for null seed context */ |
| u8 name[SHA256_DIGEST_SIZE + 2]; |
| |
| rc = tpm2_load_context(chip, chip->null_key_context, &offset, |
| null_key); |
| if (rc != -EINVAL) |
| return rc; |
| |
| /* an integrity failure may mean the TPM has been reset */ |
| dev_err(&chip->dev, "NULL key integrity failure!\n"); |
| /* check the null name against what we know */ |
| tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name); |
| if (memcmp(name, chip->null_key_name, sizeof(name)) == 0) |
| /* name unchanged, assume transient integrity failure */ |
| return rc; |
| /* |
| * Fatal TPM failure: the NULL seed has actually changed, so |
| * the TPM must have been illegally reset. All in-kernel TPM |
| * operations will fail because the NULL primary can't be |
| * loaded to salt the sessions, but disable the TPM anyway so |
| * userspace programmes can't be compromised by it. |
| */ |
| dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n"); |
| chip->flags |= TPM_CHIP_FLAG_DISABLE; |
| |
| return rc; |
| } |
| |
| /** |
| * tpm2_start_auth_session() - create a HMAC authentication session with the TPM |
| * @chip: the TPM chip structure to create the session with |
| * |
| * This function loads the NULL seed from its saved context and starts |
| * an authentication session on the null seed, fills in the |
| * @chip->auth structure to contain all the session details necessary |
| * for performing the HMAC, encrypt and decrypt operations and |
| * returns. The NULL seed is flushed before this function returns. |
| * |
| * Return: zero on success or actual error encountered. |
| */ |
| int tpm2_start_auth_session(struct tpm_chip *chip) |
| { |
| struct tpm_buf buf; |
| struct tpm2_auth *auth = chip->auth; |
| int rc; |
| u32 null_key; |
| |
| if (!auth) { |
| dev_warn_once(&chip->dev, "auth session is not active\n"); |
| return 0; |
| } |
| |
| rc = tpm2_load_null(chip, &null_key); |
| if (rc) |
| goto out; |
| |
| auth->session = TPM_HEADER_SIZE; |
| |
| rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS); |
| if (rc) |
| goto out; |
| |
| /* salt key handle */ |
| tpm_buf_append_u32(&buf, null_key); |
| /* bind key handle */ |
| tpm_buf_append_u32(&buf, TPM2_RH_NULL); |
| /* nonce caller */ |
| get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce)); |
| tpm_buf_append_u16(&buf, sizeof(auth->our_nonce)); |
| tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce)); |
| |
| /* append encrypted salt and squirrel away unencrypted in auth */ |
| tpm_buf_append_salt(&buf, chip); |
| /* session type (HMAC, audit or policy) */ |
| tpm_buf_append_u8(&buf, TPM2_SE_HMAC); |
| |
| /* symmetric encryption parameters */ |
| /* symmetric algorithm */ |
| tpm_buf_append_u16(&buf, TPM_ALG_AES); |
| /* bits for symmetric algorithm */ |
| tpm_buf_append_u16(&buf, AES_KEY_BITS); |
| /* symmetric algorithm mode (must be CFB) */ |
| tpm_buf_append_u16(&buf, TPM_ALG_CFB); |
| /* hash algorithm for session */ |
| tpm_buf_append_u16(&buf, TPM_ALG_SHA256); |
| |
| rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session"); |
| tpm2_flush_context(chip, null_key); |
| |
| if (rc == TPM2_RC_SUCCESS) |
| rc = tpm2_parse_start_auth_session(auth, &buf); |
| |
| tpm_buf_destroy(&buf); |
| |
| if (rc) |
| goto out; |
| |
| out: |
| return rc; |
| } |
| EXPORT_SYMBOL(tpm2_start_auth_session); |
| |
| /* |
| * A mask containing the object attributes for the kernel held null primary key |
| * used in HMAC encryption. For more information on specific attributes look up |
| * to "8.3 TPMA_OBJECT (Object Attributes)". |
| */ |
| #define TPM2_OA_NULL_KEY ( \ |
| TPM2_OA_NO_DA | \ |
| TPM2_OA_FIXED_TPM | \ |
| TPM2_OA_FIXED_PARENT | \ |
| TPM2_OA_SENSITIVE_DATA_ORIGIN | \ |
| TPM2_OA_USER_WITH_AUTH | \ |
| TPM2_OA_DECRYPT | \ |
| TPM2_OA_RESTRICTED) |
| |
| /** |
| * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY |
| * |
| * @chip: The TPM the primary was created under |
| * @buf: The response buffer from the chip |
| * @handle: pointer to be filled in with the return handle of the primary |
| * @hierarchy: The hierarchy the primary was created for |
| * @name: pointer to be filled in with the primary key name |
| * |
| * Return: |
| * * 0 - OK |
| * * -errno - A system error |
| * * TPM_RC - A TPM error |
| */ |
| static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf, |
| u32 *handle, u32 hierarchy, u8 *name) |
| { |
| struct tpm_header *head = (struct tpm_header *)buf->data; |
| off_t offset_r = TPM_HEADER_SIZE, offset_t; |
| u16 len = TPM_HEADER_SIZE; |
| u32 total_len = be32_to_cpu(head->length); |
| u32 val, param_len, keyhandle; |
| |
| keyhandle = tpm_buf_read_u32(buf, &offset_r); |
| if (handle) |
| *handle = keyhandle; |
| else |
| tpm2_flush_context(chip, keyhandle); |
| |
| param_len = tpm_buf_read_u32(buf, &offset_r); |
| /* |
| * param_len doesn't include the header, but all the other |
| * lengths and offsets do, so add it to parm len to make |
| * the comparisons easier |
| */ |
| param_len += TPM_HEADER_SIZE; |
| |
| if (param_len + 8 > total_len) |
| return -EINVAL; |
| len = tpm_buf_read_u16(buf, &offset_r); |
| offset_t = offset_r; |
| if (name) { |
| /* |
| * now we have the public area, compute the name of |
| * the object |
| */ |
| put_unaligned_be16(TPM_ALG_SHA256, name); |
| sha256(&buf->data[offset_r], len, name + 2); |
| } |
| |
| /* validate the public key */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| |
| /* key type (must be what we asked for) */ |
| if (val != TPM_ALG_ECC) |
| return -EINVAL; |
| val = tpm_buf_read_u16(buf, &offset_t); |
| |
| /* name algorithm */ |
| if (val != TPM_ALG_SHA256) |
| return -EINVAL; |
| val = tpm_buf_read_u32(buf, &offset_t); |
| |
| /* object properties */ |
| if (val != TPM2_OA_NULL_KEY) |
| return -EINVAL; |
| |
| /* auth policy (empty) */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != 0) |
| return -EINVAL; |
| |
| /* symmetric key parameters */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != TPM_ALG_AES) |
| return -EINVAL; |
| |
| /* symmetric key length */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != AES_KEY_BITS) |
| return -EINVAL; |
| |
| /* symmetric encryption scheme */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != TPM_ALG_CFB) |
| return -EINVAL; |
| |
| /* signing scheme */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != TPM_ALG_NULL) |
| return -EINVAL; |
| |
| /* ECC Curve */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != TPM2_ECC_NIST_P256) |
| return -EINVAL; |
| |
| /* KDF Scheme */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != TPM_ALG_NULL) |
| return -EINVAL; |
| |
| /* extract public key (x and y points) */ |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != EC_PT_SZ) |
| return -EINVAL; |
| memcpy(chip->null_ec_key_x, &buf->data[offset_t], val); |
| offset_t += val; |
| val = tpm_buf_read_u16(buf, &offset_t); |
| if (val != EC_PT_SZ) |
| return -EINVAL; |
| memcpy(chip->null_ec_key_y, &buf->data[offset_t], val); |
| offset_t += val; |
| |
| /* original length of the whole TPM2B */ |
| offset_r += len; |
| |
| /* should have exactly consumed the TPM2B public structure */ |
| if (offset_t != offset_r) |
| return -EINVAL; |
| if (offset_r > param_len) |
| return -EINVAL; |
| |
| /* creation data (skip) */ |
| len = tpm_buf_read_u16(buf, &offset_r); |
| offset_r += len; |
| if (offset_r > param_len) |
| return -EINVAL; |
| |
| /* creation digest (must be sha256) */ |
| len = tpm_buf_read_u16(buf, &offset_r); |
| offset_r += len; |
| if (len != SHA256_DIGEST_SIZE || offset_r > param_len) |
| return -EINVAL; |
| |
| /* TPMT_TK_CREATION follows */ |
| /* tag, must be TPM_ST_CREATION (0x8021) */ |
| val = tpm_buf_read_u16(buf, &offset_r); |
| if (val != TPM2_ST_CREATION || offset_r > param_len) |
| return -EINVAL; |
| |
| /* hierarchy */ |
| val = tpm_buf_read_u32(buf, &offset_r); |
| if (val != hierarchy || offset_r > param_len) |
| return -EINVAL; |
| |
| /* the ticket digest HMAC (might not be sha256) */ |
| len = tpm_buf_read_u16(buf, &offset_r); |
| offset_r += len; |
| if (offset_r > param_len) |
| return -EINVAL; |
| |
| /* |
| * finally we have the name, which is a sha256 digest plus a 2 |
| * byte algorithm type |
| */ |
| len = tpm_buf_read_u16(buf, &offset_r); |
| if (offset_r + len != param_len + 8) |
| return -EINVAL; |
| if (len != SHA256_DIGEST_SIZE + 2) |
| return -EINVAL; |
| |
| if (memcmp(chip->null_key_name, &buf->data[offset_r], |
| SHA256_DIGEST_SIZE + 2) != 0) { |
| dev_err(&chip->dev, "NULL Seed name comparison failed\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * tpm2_create_primary() - create a primary key using a fixed P-256 template |
| * |
| * @chip: the TPM chip to create under |
| * @hierarchy: The hierarchy handle to create under |
| * @handle: The returned volatile handle on success |
| * @name: The name of the returned key |
| * |
| * For platforms that might not have a persistent primary, this can be |
| * used to create one quickly on the fly (it uses Elliptic Curve not |
| * RSA, so even slow TPMs can create one fast). The template uses the |
| * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256 |
| * elliptic curve (the only current one all TPM2s are required to |
| * have) a sha256 name hash and no policy. |
| * |
| * Return: |
| * * 0 - OK |
| * * -errno - A system error |
| * * TPM_RC - A TPM error |
| */ |
| static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy, |
| u32 *handle, u8 *name) |
| { |
| int rc; |
| struct tpm_buf buf; |
| struct tpm_buf template; |
| |
| rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY); |
| if (rc) |
| return rc; |
| |
| rc = tpm_buf_init_sized(&template); |
| if (rc) { |
| tpm_buf_destroy(&buf); |
| return rc; |
| } |
| |
| /* |
| * create the template. Note: in order for userspace to |
| * verify the security of the system, it will have to create |
| * and certify this NULL primary, meaning all the template |
| * parameters will have to be identical, so conform exactly to |
| * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC |
| * key H template (H has zero size unique points) |
| */ |
| |
| /* key type */ |
| tpm_buf_append_u16(&template, TPM_ALG_ECC); |
| |
| /* name algorithm */ |
| tpm_buf_append_u16(&template, TPM_ALG_SHA256); |
| |
| /* object properties */ |
| tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY); |
| |
| /* sauth policy (empty) */ |
| tpm_buf_append_u16(&template, 0); |
| |
| /* BEGIN parameters: key specific; for ECC*/ |
| |
| /* symmetric algorithm */ |
| tpm_buf_append_u16(&template, TPM_ALG_AES); |
| |
| /* bits for symmetric algorithm */ |
| tpm_buf_append_u16(&template, AES_KEY_BITS); |
| |
| /* algorithm mode (must be CFB) */ |
| tpm_buf_append_u16(&template, TPM_ALG_CFB); |
| |
| /* scheme (NULL means any scheme) */ |
| tpm_buf_append_u16(&template, TPM_ALG_NULL); |
| |
| /* ECC Curve ID */ |
| tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256); |
| |
| /* KDF Scheme */ |
| tpm_buf_append_u16(&template, TPM_ALG_NULL); |
| |
| /* unique: key specific; for ECC it is two zero size points */ |
| tpm_buf_append_u16(&template, 0); |
| tpm_buf_append_u16(&template, 0); |
| |
| /* END parameters */ |
| |
| /* primary handle */ |
| tpm_buf_append_u32(&buf, hierarchy); |
| tpm_buf_append_empty_auth(&buf, TPM2_RS_PW); |
| |
| /* sensitive create size is 4 for two empty buffers */ |
| tpm_buf_append_u16(&buf, 4); |
| |
| /* sensitive create auth data (empty) */ |
| tpm_buf_append_u16(&buf, 0); |
| |
| /* sensitive create sensitive data (empty) */ |
| tpm_buf_append_u16(&buf, 0); |
| |
| /* the public template */ |
| tpm_buf_append(&buf, template.data, template.length); |
| tpm_buf_destroy(&template); |
| |
| /* outside info (empty) */ |
| tpm_buf_append_u16(&buf, 0); |
| |
| /* creation PCR (none) */ |
| tpm_buf_append_u32(&buf, 0); |
| |
| rc = tpm_transmit_cmd(chip, &buf, 0, |
| "attempting to create NULL primary"); |
| |
| if (rc == TPM2_RC_SUCCESS) |
| rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy, |
| name); |
| |
| tpm_buf_destroy(&buf); |
| |
| return rc; |
| } |
| |
| static int tpm2_create_null_primary(struct tpm_chip *chip) |
| { |
| u32 null_key; |
| int rc; |
| |
| rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key, |
| chip->null_key_name); |
| |
| if (rc == TPM2_RC_SUCCESS) { |
| unsigned int offset = 0; /* dummy offset for null key context */ |
| |
| rc = tpm2_save_context(chip, null_key, chip->null_key_context, |
| sizeof(chip->null_key_context), &offset); |
| tpm2_flush_context(chip, null_key); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * tpm2_sessions_init() - start of day initialization for the sessions code |
| * @chip: TPM chip |
| * |
| * Derive and context save the null primary and allocate memory in the |
| * struct tpm_chip for the authorizations. |
| */ |
| int tpm2_sessions_init(struct tpm_chip *chip) |
| { |
| int rc; |
| |
| rc = tpm2_create_null_primary(chip); |
| if (rc) |
| dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc); |
| |
| chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL); |
| if (!chip->auth) |
| return -ENOMEM; |
| |
| return rc; |
| } |
| #endif /* CONFIG_TCG_TPM2_HMAC */ |