| // SPDX-License-Identifier: GPL-2.0 | 
 |  | 
 | /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. | 
 |  * Copyright (C) 2019-2020 Linaro Ltd. | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/bits.h> | 
 | #include <linux/bitfield.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/dma-direction.h> | 
 |  | 
 | #include "gsi.h" | 
 | #include "gsi_private.h" | 
 | #include "gsi_trans.h" | 
 | #include "ipa_gsi.h" | 
 | #include "ipa_data.h" | 
 | #include "ipa_cmd.h" | 
 |  | 
 | /** | 
 |  * DOC: GSI Transactions | 
 |  * | 
 |  * A GSI transaction abstracts the behavior of a GSI channel by representing | 
 |  * everything about a related group of IPA commands in a single structure. | 
 |  * (A "command" in this sense is either a data transfer or an IPA immediate | 
 |  * command.)  Most details of interaction with the GSI hardware are managed | 
 |  * by the GSI transaction core, allowing users to simply describe commands | 
 |  * to be performed.  When a transaction has completed a callback function | 
 |  * (dependent on the type of endpoint associated with the channel) allows | 
 |  * cleanup of resources associated with the transaction. | 
 |  * | 
 |  * To perform a command (or set of them), a user of the GSI transaction | 
 |  * interface allocates a transaction, indicating the number of TREs required | 
 |  * (one per command).  If sufficient TREs are available, they are reserved | 
 |  * for use in the transaction and the allocation succeeds.  This way | 
 |  * exhaustion of the available TREs in a channel ring is detected | 
 |  * as early as possible.  All resources required to complete a transaction | 
 |  * are allocated at transaction allocation time. | 
 |  * | 
 |  * Commands performed as part of a transaction are represented in an array | 
 |  * of Linux scatterlist structures.  This array is allocated with the | 
 |  * transaction, and its entries are initialized using standard scatterlist | 
 |  * functions (such as sg_set_buf() or skb_to_sgvec()). | 
 |  * | 
 |  * Once a transaction's scatterlist structures have been initialized, the | 
 |  * transaction is committed.  The caller is responsible for mapping buffers | 
 |  * for DMA if necessary, and this should be done *before* allocating | 
 |  * the transaction.  Between a successful allocation and commit of a | 
 |  * transaction no errors should occur. | 
 |  * | 
 |  * Committing transfers ownership of the entire transaction to the GSI | 
 |  * transaction core.  The GSI transaction code formats the content of | 
 |  * the scatterlist array into the channel ring buffer and informs the | 
 |  * hardware that new TREs are available to process. | 
 |  * | 
 |  * The last TRE in each transaction is marked to interrupt the AP when the | 
 |  * GSI hardware has completed it.  Because transfers described by TREs are | 
 |  * performed strictly in order, signaling the completion of just the last | 
 |  * TRE in the transaction is sufficient to indicate the full transaction | 
 |  * is complete. | 
 |  * | 
 |  * When a transaction is complete, ipa_gsi_trans_complete() is called by the | 
 |  * GSI code into the IPA layer, allowing it to perform any final cleanup | 
 |  * required before the transaction is freed. | 
 |  */ | 
 |  | 
 | /* Hardware values representing a transfer element type */ | 
 | enum gsi_tre_type { | 
 | 	GSI_RE_XFER	= 0x2, | 
 | 	GSI_RE_IMMD_CMD	= 0x3, | 
 | }; | 
 |  | 
 | /* An entry in a channel ring */ | 
 | struct gsi_tre { | 
 | 	__le64 addr;		/* DMA address */ | 
 | 	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */ | 
 | 	__le16 reserved; | 
 | 	__le32 flags;		/* TRE_FLAGS_* */ | 
 | }; | 
 |  | 
 | /* gsi_tre->flags mask values (in CPU byte order) */ | 
 | #define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0) | 
 | #define TRE_FLAGS_IEOB_FMASK	GENMASK(8, 8) | 
 | #define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9) | 
 | #define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10) | 
 | #define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16) | 
 |  | 
 | int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count, | 
 | 			u32 max_alloc) | 
 | { | 
 | 	void *virt; | 
 |  | 
 | #ifdef IPA_VALIDATE | 
 | 	if (!size || size % 8) | 
 | 		return -EINVAL; | 
 | 	if (count < max_alloc) | 
 | 		return -EINVAL; | 
 | 	if (!max_alloc) | 
 | 		return -EINVAL; | 
 | #endif /* IPA_VALIDATE */ | 
 |  | 
 | 	/* By allocating a few extra entries in our pool (one less | 
 | 	 * than the maximum number that will be requested in a | 
 | 	 * single allocation), we can always satisfy requests without | 
 | 	 * ever worrying about straddling the end of the pool array. | 
 | 	 * If there aren't enough entries starting at the free index, | 
 | 	 * we just allocate free entries from the beginning of the pool. | 
 | 	 */ | 
 | 	virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL); | 
 | 	if (!virt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pool->base = virt; | 
 | 	/* If the allocator gave us any extra memory, use it */ | 
 | 	pool->count = ksize(pool->base) / size; | 
 | 	pool->free = 0; | 
 | 	pool->max_alloc = max_alloc; | 
 | 	pool->size = size; | 
 | 	pool->addr = 0;		/* Only used for DMA pools */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void gsi_trans_pool_exit(struct gsi_trans_pool *pool) | 
 | { | 
 | 	kfree(pool->base); | 
 | 	memset(pool, 0, sizeof(*pool)); | 
 | } | 
 |  | 
 | /* Allocate the requested number of (zeroed) entries from the pool */ | 
 | /* Home-grown DMA pool.  This way we can preallocate and use the tre_count | 
 |  * to guarantee allocations will succeed.  Even though we specify max_alloc | 
 |  * (and it can be more than one), we only allow allocation of a single | 
 |  * element from a DMA pool. | 
 |  */ | 
 | int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool, | 
 | 			    size_t size, u32 count, u32 max_alloc) | 
 | { | 
 | 	size_t total_size; | 
 | 	dma_addr_t addr; | 
 | 	void *virt; | 
 |  | 
 | #ifdef IPA_VALIDATE | 
 | 	if (!size || size % 8) | 
 | 		return -EINVAL; | 
 | 	if (count < max_alloc) | 
 | 		return -EINVAL; | 
 | 	if (!max_alloc) | 
 | 		return -EINVAL; | 
 | #endif /* IPA_VALIDATE */ | 
 |  | 
 | 	/* Don't let allocations cross a power-of-two boundary */ | 
 | 	size = __roundup_pow_of_two(size); | 
 | 	total_size = (count + max_alloc - 1) * size; | 
 |  | 
 | 	/* The allocator will give us a power-of-2 number of pages.  But we | 
 | 	 * can't guarantee that, so request it.  That way we won't waste any | 
 | 	 * memory that would be available beyond the required space. | 
 | 	 */ | 
 | 	total_size = get_order(total_size) << PAGE_SHIFT; | 
 |  | 
 | 	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL); | 
 | 	if (!virt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pool->base = virt; | 
 | 	pool->count = total_size / size; | 
 | 	pool->free = 0; | 
 | 	pool->size = size; | 
 | 	pool->max_alloc = max_alloc; | 
 | 	pool->addr = addr; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool) | 
 | { | 
 | 	dma_free_coherent(dev, pool->size, pool->base, pool->addr); | 
 | 	memset(pool, 0, sizeof(*pool)); | 
 | } | 
 |  | 
 | /* Return the byte offset of the next free entry in the pool */ | 
 | static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count) | 
 | { | 
 | 	u32 offset; | 
 |  | 
 | 	/* assert(count > 0); */ | 
 | 	/* assert(count <= pool->max_alloc); */ | 
 |  | 
 | 	/* Allocate from beginning if wrap would occur */ | 
 | 	if (count > pool->count - pool->free) | 
 | 		pool->free = 0; | 
 |  | 
 | 	offset = pool->free * pool->size; | 
 | 	pool->free += count; | 
 | 	memset(pool->base + offset, 0, count * pool->size); | 
 |  | 
 | 	return offset; | 
 | } | 
 |  | 
 | /* Allocate a contiguous block of zeroed entries from a pool */ | 
 | void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count) | 
 | { | 
 | 	return pool->base + gsi_trans_pool_alloc_common(pool, count); | 
 | } | 
 |  | 
 | /* Allocate a single zeroed entry from a DMA pool */ | 
 | void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr) | 
 | { | 
 | 	u32 offset = gsi_trans_pool_alloc_common(pool, 1); | 
 |  | 
 | 	*addr = pool->addr + offset; | 
 |  | 
 | 	return pool->base + offset; | 
 | } | 
 |  | 
 | /* Return the pool element that immediately follows the one given. | 
 |  * This only works done if elements are allocated one at a time. | 
 |  */ | 
 | void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element) | 
 | { | 
 | 	void *end = pool->base + pool->count * pool->size; | 
 |  | 
 | 	/* assert(element >= pool->base); */ | 
 | 	/* assert(element < end); */ | 
 | 	/* assert(pool->max_alloc == 1); */ | 
 | 	element += pool->size; | 
 |  | 
 | 	return element < end ? element : pool->base; | 
 | } | 
 |  | 
 | /* Map a given ring entry index to the transaction associated with it */ | 
 | static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index, | 
 | 				  struct gsi_trans *trans) | 
 | { | 
 | 	/* Note: index *must* be used modulo the ring count here */ | 
 | 	channel->trans_info.map[index % channel->tre_ring.count] = trans; | 
 | } | 
 |  | 
 | /* Return the transaction mapped to a given ring entry */ | 
 | struct gsi_trans * | 
 | gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index) | 
 | { | 
 | 	/* Note: index *must* be used modulo the ring count here */ | 
 | 	return channel->trans_info.map[index % channel->tre_ring.count]; | 
 | } | 
 |  | 
 | /* Return the oldest completed transaction for a channel (or null) */ | 
 | struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel) | 
 | { | 
 | 	return list_first_entry_or_null(&channel->trans_info.complete, | 
 | 					struct gsi_trans, links); | 
 | } | 
 |  | 
 | /* Move a transaction from the allocated list to the pending list */ | 
 | static void gsi_trans_move_pending(struct gsi_trans *trans) | 
 | { | 
 | 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; | 
 | 	struct gsi_trans_info *trans_info = &channel->trans_info; | 
 |  | 
 | 	spin_lock_bh(&trans_info->spinlock); | 
 |  | 
 | 	list_move_tail(&trans->links, &trans_info->pending); | 
 |  | 
 | 	spin_unlock_bh(&trans_info->spinlock); | 
 | } | 
 |  | 
 | /* Move a transaction and all of its predecessors from the pending list | 
 |  * to the completed list. | 
 |  */ | 
 | void gsi_trans_move_complete(struct gsi_trans *trans) | 
 | { | 
 | 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; | 
 | 	struct gsi_trans_info *trans_info = &channel->trans_info; | 
 | 	struct list_head list; | 
 |  | 
 | 	spin_lock_bh(&trans_info->spinlock); | 
 |  | 
 | 	/* Move this transaction and all predecessors to completed list */ | 
 | 	list_cut_position(&list, &trans_info->pending, &trans->links); | 
 | 	list_splice_tail(&list, &trans_info->complete); | 
 |  | 
 | 	spin_unlock_bh(&trans_info->spinlock); | 
 | } | 
 |  | 
 | /* Move a transaction from the completed list to the polled list */ | 
 | void gsi_trans_move_polled(struct gsi_trans *trans) | 
 | { | 
 | 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; | 
 | 	struct gsi_trans_info *trans_info = &channel->trans_info; | 
 |  | 
 | 	spin_lock_bh(&trans_info->spinlock); | 
 |  | 
 | 	list_move_tail(&trans->links, &trans_info->polled); | 
 |  | 
 | 	spin_unlock_bh(&trans_info->spinlock); | 
 | } | 
 |  | 
 | /* Reserve some number of TREs on a channel.  Returns true if successful */ | 
 | static bool | 
 | gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count) | 
 | { | 
 | 	int avail = atomic_read(&trans_info->tre_avail); | 
 | 	int new; | 
 |  | 
 | 	do { | 
 | 		new = avail - (int)tre_count; | 
 | 		if (unlikely(new < 0)) | 
 | 			return false; | 
 | 	} while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new)); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Release previously-reserved TRE entries to a channel */ | 
 | static void | 
 | gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count) | 
 | { | 
 | 	atomic_add(tre_count, &trans_info->tre_avail); | 
 | } | 
 |  | 
 | /* Allocate a GSI transaction on a channel */ | 
 | struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id, | 
 | 					  u32 tre_count, | 
 | 					  enum dma_data_direction direction) | 
 | { | 
 | 	struct gsi_channel *channel = &gsi->channel[channel_id]; | 
 | 	struct gsi_trans_info *trans_info; | 
 | 	struct gsi_trans *trans; | 
 |  | 
 | 	/* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */ | 
 |  | 
 | 	trans_info = &channel->trans_info; | 
 |  | 
 | 	/* We reserve the TREs now, but consume them at commit time. | 
 | 	 * If there aren't enough available, we're done. | 
 | 	 */ | 
 | 	if (!gsi_trans_tre_reserve(trans_info, tre_count)) | 
 | 		return NULL; | 
 |  | 
 | 	/* Allocate and initialize non-zero fields in the the transaction */ | 
 | 	trans = gsi_trans_pool_alloc(&trans_info->pool, 1); | 
 | 	trans->gsi = gsi; | 
 | 	trans->channel_id = channel_id; | 
 | 	trans->tre_count = tre_count; | 
 | 	init_completion(&trans->completion); | 
 |  | 
 | 	/* Allocate the scatterlist and (if requested) info entries. */ | 
 | 	trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count); | 
 | 	sg_init_marker(trans->sgl, tre_count); | 
 |  | 
 | 	trans->direction = direction; | 
 |  | 
 | 	spin_lock_bh(&trans_info->spinlock); | 
 |  | 
 | 	list_add_tail(&trans->links, &trans_info->alloc); | 
 |  | 
 | 	spin_unlock_bh(&trans_info->spinlock); | 
 |  | 
 | 	refcount_set(&trans->refcount, 1); | 
 |  | 
 | 	return trans; | 
 | } | 
 |  | 
 | /* Free a previously-allocated transaction (used only in case of error) */ | 
 | void gsi_trans_free(struct gsi_trans *trans) | 
 | { | 
 | 	struct gsi_trans_info *trans_info; | 
 |  | 
 | 	if (!refcount_dec_and_test(&trans->refcount)) | 
 | 		return; | 
 |  | 
 | 	trans_info = &trans->gsi->channel[trans->channel_id].trans_info; | 
 |  | 
 | 	spin_lock_bh(&trans_info->spinlock); | 
 |  | 
 | 	list_del(&trans->links); | 
 |  | 
 | 	spin_unlock_bh(&trans_info->spinlock); | 
 |  | 
 | 	ipa_gsi_trans_release(trans); | 
 |  | 
 | 	/* Releasing the reserved TREs implicitly frees the sgl[] and | 
 | 	 * (if present) info[] arrays, plus the transaction itself. | 
 | 	 */ | 
 | 	gsi_trans_tre_release(trans_info, trans->tre_count); | 
 | } | 
 |  | 
 | /* Add an immediate command to a transaction */ | 
 | void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size, | 
 | 		       dma_addr_t addr, enum dma_data_direction direction, | 
 | 		       enum ipa_cmd_opcode opcode) | 
 | { | 
 | 	struct ipa_cmd_info *info; | 
 | 	u32 which = trans->used++; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	/* assert(which < trans->tre_count); */ | 
 |  | 
 | 	/* Set the page information for the buffer.  We also need to fill in | 
 | 	 * the DMA address and length for the buffer (something dma_map_sg() | 
 | 	 * normally does). | 
 | 	 */ | 
 | 	sg = &trans->sgl[which]; | 
 |  | 
 | 	sg_set_buf(sg, buf, size); | 
 | 	sg_dma_address(sg) = addr; | 
 | 	sg_dma_len(sg) = sg->length; | 
 |  | 
 | 	info = &trans->info[which]; | 
 | 	info->opcode = opcode; | 
 | 	info->direction = direction; | 
 | } | 
 |  | 
 | /* Add a page transfer to a transaction.  It will fill the only TRE. */ | 
 | int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size, | 
 | 		       u32 offset) | 
 | { | 
 | 	struct scatterlist *sg = &trans->sgl[0]; | 
 | 	int ret; | 
 |  | 
 | 	/* assert(trans->tre_count == 1); */ | 
 | 	/* assert(!trans->used); */ | 
 |  | 
 | 	sg_set_page(sg, page, size, offset); | 
 | 	ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction); | 
 | 	if (!ret) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	trans->used++;	/* Transaction now owns the (DMA mapped) page */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Add an SKB transfer to a transaction.  No other TREs will be used. */ | 
 | int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb) | 
 | { | 
 | 	struct scatterlist *sg = &trans->sgl[0]; | 
 | 	u32 used; | 
 | 	int ret; | 
 |  | 
 | 	/* assert(trans->tre_count == 1); */ | 
 | 	/* assert(!trans->used); */ | 
 |  | 
 | 	/* skb->len will not be 0 (checked early) */ | 
 | 	ret = skb_to_sgvec(skb, sg, 0, skb->len); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	used = ret; | 
 |  | 
 | 	ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction); | 
 | 	if (!ret) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	trans->used += used;	/* Transaction now owns the (DMA mapped) skb */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Compute the length/opcode value to use for a TRE */ | 
 | static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len) | 
 | { | 
 | 	return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len) | 
 | 				      : cpu_to_le16((u16)opcode); | 
 | } | 
 |  | 
 | /* Compute the flags value to use for a given TRE */ | 
 | static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode) | 
 | { | 
 | 	enum gsi_tre_type tre_type; | 
 | 	u32 tre_flags; | 
 |  | 
 | 	tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD; | 
 | 	tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK); | 
 |  | 
 | 	/* Last TRE contains interrupt flags */ | 
 | 	if (last_tre) { | 
 | 		/* All transactions end in a transfer completion interrupt */ | 
 | 		tre_flags |= TRE_FLAGS_IEOT_FMASK; | 
 | 		/* Don't interrupt when outbound commands are acknowledged */ | 
 | 		if (bei) | 
 | 			tre_flags |= TRE_FLAGS_BEI_FMASK; | 
 | 	} else {	/* All others indicate there's more to come */ | 
 | 		tre_flags |= TRE_FLAGS_CHAIN_FMASK; | 
 | 	} | 
 |  | 
 | 	return cpu_to_le32(tre_flags); | 
 | } | 
 |  | 
 | static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr, | 
 | 			       u32 len, bool last_tre, bool bei, | 
 | 			       enum ipa_cmd_opcode opcode) | 
 | { | 
 | 	struct gsi_tre tre; | 
 |  | 
 | 	tre.addr = cpu_to_le64(addr); | 
 | 	tre.len_opcode = gsi_tre_len_opcode(opcode, len); | 
 | 	tre.reserved = 0; | 
 | 	tre.flags = gsi_tre_flags(last_tre, bei, opcode); | 
 |  | 
 | 	/* ARM64 can write 16 bytes as a unit with a single instruction. | 
 | 	 * Doing the assignment this way is an attempt to make that happen. | 
 | 	 */ | 
 | 	*dest_tre = tre; | 
 | } | 
 |  | 
 | /** | 
 |  * __gsi_trans_commit() - Common GSI transaction commit code | 
 |  * @trans:	Transaction to commit | 
 |  * @ring_db:	Whether to tell the hardware about these queued transfers | 
 |  * | 
 |  * Formats channel ring TRE entries based on the content of the scatterlist. | 
 |  * Maps a transaction pointer to the last ring entry used for the transaction, | 
 |  * so it can be recovered when it completes.  Moves the transaction to the | 
 |  * pending list.  Finally, updates the channel ring pointer and optionally | 
 |  * rings the doorbell. | 
 |  */ | 
 | static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db) | 
 | { | 
 | 	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; | 
 | 	struct gsi_ring *ring = &channel->tre_ring; | 
 | 	enum ipa_cmd_opcode opcode = IPA_CMD_NONE; | 
 | 	bool bei = channel->toward_ipa; | 
 | 	struct ipa_cmd_info *info; | 
 | 	struct gsi_tre *dest_tre; | 
 | 	struct scatterlist *sg; | 
 | 	u32 byte_count = 0; | 
 | 	u32 avail; | 
 | 	u32 i; | 
 |  | 
 | 	/* assert(trans->used > 0); */ | 
 |  | 
 | 	/* Consume the entries.  If we cross the end of the ring while | 
 | 	 * filling them we'll switch to the beginning to finish. | 
 | 	 * If there is no info array we're doing a simple data | 
 | 	 * transfer request, whose opcode is IPA_CMD_NONE. | 
 | 	 */ | 
 | 	info = trans->info ? &trans->info[0] : NULL; | 
 | 	avail = ring->count - ring->index % ring->count; | 
 | 	dest_tre = gsi_ring_virt(ring, ring->index); | 
 | 	for_each_sg(trans->sgl, sg, trans->used, i) { | 
 | 		bool last_tre = i == trans->used - 1; | 
 | 		dma_addr_t addr = sg_dma_address(sg); | 
 | 		u32 len = sg_dma_len(sg); | 
 |  | 
 | 		byte_count += len; | 
 | 		if (!avail--) | 
 | 			dest_tre = gsi_ring_virt(ring, 0); | 
 | 		if (info) | 
 | 			opcode = info++->opcode; | 
 |  | 
 | 		gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode); | 
 | 		dest_tre++; | 
 | 	} | 
 | 	ring->index += trans->used; | 
 |  | 
 | 	if (channel->toward_ipa) { | 
 | 		/* We record TX bytes when they are sent */ | 
 | 		trans->len = byte_count; | 
 | 		trans->trans_count = channel->trans_count; | 
 | 		trans->byte_count = channel->byte_count; | 
 | 		channel->trans_count++; | 
 | 		channel->byte_count += byte_count; | 
 | 	} | 
 |  | 
 | 	/* Associate the last TRE with the transaction */ | 
 | 	gsi_channel_trans_map(channel, ring->index - 1, trans); | 
 |  | 
 | 	gsi_trans_move_pending(trans); | 
 |  | 
 | 	/* Ring doorbell if requested, or if all TREs are allocated */ | 
 | 	if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) { | 
 | 		/* Report what we're handing off to hardware for TX channels */ | 
 | 		if (channel->toward_ipa) | 
 | 			gsi_channel_tx_queued(channel); | 
 | 		gsi_channel_doorbell(channel); | 
 | 	} | 
 | } | 
 |  | 
 | /* Commit a GSI transaction */ | 
 | void gsi_trans_commit(struct gsi_trans *trans, bool ring_db) | 
 | { | 
 | 	if (trans->used) | 
 | 		__gsi_trans_commit(trans, ring_db); | 
 | 	else | 
 | 		gsi_trans_free(trans); | 
 | } | 
 |  | 
 | /* Commit a GSI transaction and wait for it to complete */ | 
 | void gsi_trans_commit_wait(struct gsi_trans *trans) | 
 | { | 
 | 	if (!trans->used) | 
 | 		goto out_trans_free; | 
 |  | 
 | 	refcount_inc(&trans->refcount); | 
 |  | 
 | 	__gsi_trans_commit(trans, true); | 
 |  | 
 | 	wait_for_completion(&trans->completion); | 
 |  | 
 | out_trans_free: | 
 | 	gsi_trans_free(trans); | 
 | } | 
 |  | 
 | /* Commit a GSI transaction and wait for it to complete, with timeout */ | 
 | int gsi_trans_commit_wait_timeout(struct gsi_trans *trans, | 
 | 				  unsigned long timeout) | 
 | { | 
 | 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout); | 
 | 	unsigned long remaining = 1;	/* In case of empty transaction */ | 
 |  | 
 | 	if (!trans->used) | 
 | 		goto out_trans_free; | 
 |  | 
 | 	refcount_inc(&trans->refcount); | 
 |  | 
 | 	__gsi_trans_commit(trans, true); | 
 |  | 
 | 	remaining = wait_for_completion_timeout(&trans->completion, | 
 | 						timeout_jiffies); | 
 | out_trans_free: | 
 | 	gsi_trans_free(trans); | 
 |  | 
 | 	return remaining ? 0 : -ETIMEDOUT; | 
 | } | 
 |  | 
 | /* Process the completion of a transaction; called while polling */ | 
 | void gsi_trans_complete(struct gsi_trans *trans) | 
 | { | 
 | 	/* If the entire SGL was mapped when added, unmap it now */ | 
 | 	if (trans->direction != DMA_NONE) | 
 | 		dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used, | 
 | 			     trans->direction); | 
 |  | 
 | 	ipa_gsi_trans_complete(trans); | 
 |  | 
 | 	complete(&trans->completion); | 
 |  | 
 | 	gsi_trans_free(trans); | 
 | } | 
 |  | 
 | /* Cancel a channel's pending transactions */ | 
 | void gsi_channel_trans_cancel_pending(struct gsi_channel *channel) | 
 | { | 
 | 	struct gsi_trans_info *trans_info = &channel->trans_info; | 
 | 	struct gsi_trans *trans; | 
 | 	bool cancelled; | 
 |  | 
 | 	/* channel->gsi->mutex is held by caller */ | 
 | 	spin_lock_bh(&trans_info->spinlock); | 
 |  | 
 | 	cancelled = !list_empty(&trans_info->pending); | 
 | 	list_for_each_entry(trans, &trans_info->pending, links) | 
 | 		trans->cancelled = true; | 
 |  | 
 | 	list_splice_tail_init(&trans_info->pending, &trans_info->complete); | 
 |  | 
 | 	spin_unlock_bh(&trans_info->spinlock); | 
 |  | 
 | 	/* Schedule NAPI polling to complete the cancelled transactions */ | 
 | 	if (cancelled) | 
 | 		napi_schedule(&channel->napi); | 
 | } | 
 |  | 
 | /* Issue a command to read a single byte from a channel */ | 
 | int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr) | 
 | { | 
 | 	struct gsi_channel *channel = &gsi->channel[channel_id]; | 
 | 	struct gsi_ring *ring = &channel->tre_ring; | 
 | 	struct gsi_trans_info *trans_info; | 
 | 	struct gsi_tre *dest_tre; | 
 |  | 
 | 	trans_info = &channel->trans_info; | 
 |  | 
 | 	/* First reserve the TRE, if possible */ | 
 | 	if (!gsi_trans_tre_reserve(trans_info, 1)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* Now fill the the reserved TRE and tell the hardware */ | 
 |  | 
 | 	dest_tre = gsi_ring_virt(ring, ring->index); | 
 | 	gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE); | 
 |  | 
 | 	ring->index++; | 
 | 	gsi_channel_doorbell(channel); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Mark a gsi_trans_read_byte() request done */ | 
 | void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id) | 
 | { | 
 | 	struct gsi_channel *channel = &gsi->channel[channel_id]; | 
 |  | 
 | 	gsi_trans_tre_release(&channel->trans_info, 1); | 
 | } | 
 |  | 
 | /* Initialize a channel's GSI transaction info */ | 
 | int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id) | 
 | { | 
 | 	struct gsi_channel *channel = &gsi->channel[channel_id]; | 
 | 	struct gsi_trans_info *trans_info; | 
 | 	u32 tre_max; | 
 | 	int ret; | 
 |  | 
 | 	/* Ensure the size of a channel element is what's expected */ | 
 | 	BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE); | 
 |  | 
 | 	/* The map array is used to determine what transaction is associated | 
 | 	 * with a TRE that the hardware reports has completed.  We need one | 
 | 	 * map entry per TRE. | 
 | 	 */ | 
 | 	trans_info = &channel->trans_info; | 
 | 	trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map), | 
 | 				  GFP_KERNEL); | 
 | 	if (!trans_info->map) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* We can't use more TREs than there are available in the ring. | 
 | 	 * This limits the number of transactions that can be oustanding. | 
 | 	 * Worst case is one TRE per transaction (but we actually limit | 
 | 	 * it to something a little less than that).  We allocate resources | 
 | 	 * for transactions (including transaction structures) based on | 
 | 	 * this maximum number. | 
 | 	 */ | 
 | 	tre_max = gsi_channel_tre_max(channel->gsi, channel_id); | 
 |  | 
 | 	/* Transactions are allocated one at a time. */ | 
 | 	ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans), | 
 | 				  tre_max, 1); | 
 | 	if (ret) | 
 | 		goto err_kfree; | 
 |  | 
 | 	/* A transaction uses a scatterlist array to represent the data | 
 | 	 * transfers implemented by the transaction.  Each scatterlist | 
 | 	 * element is used to fill a single TRE when the transaction is | 
 | 	 * committed.  So we need as many scatterlist elements as the | 
 | 	 * maximum number of TREs that can be outstanding. | 
 | 	 * | 
 | 	 * All TREs in a transaction must fit within the channel's TLV FIFO. | 
 | 	 * A transaction on a channel can allocate as many TREs as that but | 
 | 	 * no more. | 
 | 	 */ | 
 | 	ret = gsi_trans_pool_init(&trans_info->sg_pool, | 
 | 				  sizeof(struct scatterlist), | 
 | 				  tre_max, channel->tlv_count); | 
 | 	if (ret) | 
 | 		goto err_trans_pool_exit; | 
 |  | 
 | 	/* Finally, the tre_avail field is what ultimately limits the number | 
 | 	 * of outstanding transactions and their resources.  A transaction | 
 | 	 * allocation succeeds only if the TREs available are sufficient for | 
 | 	 * what the transaction might need.  Transaction resource pools are | 
 | 	 * sized based on the maximum number of outstanding TREs, so there | 
 | 	 * will always be resources available if there are TREs available. | 
 | 	 */ | 
 | 	atomic_set(&trans_info->tre_avail, tre_max); | 
 |  | 
 | 	spin_lock_init(&trans_info->spinlock); | 
 | 	INIT_LIST_HEAD(&trans_info->alloc); | 
 | 	INIT_LIST_HEAD(&trans_info->pending); | 
 | 	INIT_LIST_HEAD(&trans_info->complete); | 
 | 	INIT_LIST_HEAD(&trans_info->polled); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_trans_pool_exit: | 
 | 	gsi_trans_pool_exit(&trans_info->pool); | 
 | err_kfree: | 
 | 	kfree(trans_info->map); | 
 |  | 
 | 	dev_err(gsi->dev, "error %d initializing channel %u transactions\n", | 
 | 		ret, channel_id); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Inverse of gsi_channel_trans_init() */ | 
 | void gsi_channel_trans_exit(struct gsi_channel *channel) | 
 | { | 
 | 	struct gsi_trans_info *trans_info = &channel->trans_info; | 
 |  | 
 | 	gsi_trans_pool_exit(&trans_info->sg_pool); | 
 | 	gsi_trans_pool_exit(&trans_info->pool); | 
 | 	kfree(trans_info->map); | 
 | } |