| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1994 - 2000 Ralf Baechle |
| * Copyright (C) 1999, 2000 Silicon Graphics, Inc. |
| * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com |
| * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. |
| */ |
| #include <linux/bug.h> |
| #include <linux/init.h> |
| #include <linux/export.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/pagemap.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/memblock.h> |
| #include <linux/highmem.h> |
| #include <linux/swap.h> |
| #include <linux/proc_fs.h> |
| #include <linux/pfn.h> |
| #include <linux/hardirq.h> |
| #include <linux/gfp.h> |
| #include <linux/kcore.h> |
| #include <linux/initrd.h> |
| |
| #include <asm/bootinfo.h> |
| #include <asm/cachectl.h> |
| #include <asm/cpu.h> |
| #include <asm/dma.h> |
| #include <asm/kmap_types.h> |
| #include <asm/maar.h> |
| #include <asm/mmu_context.h> |
| #include <asm/sections.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlb.h> |
| #include <asm/fixmap.h> |
| |
| /* |
| * We have up to 8 empty zeroed pages so we can map one of the right colour |
| * when needed. This is necessary only on R4000 / R4400 SC and MC versions |
| * where we have to avoid VCED / VECI exceptions for good performance at |
| * any price. Since page is never written to after the initialization we |
| * don't have to care about aliases on other CPUs. |
| */ |
| unsigned long empty_zero_page, zero_page_mask; |
| EXPORT_SYMBOL_GPL(empty_zero_page); |
| EXPORT_SYMBOL(zero_page_mask); |
| |
| /* |
| * Not static inline because used by IP27 special magic initialization code |
| */ |
| void setup_zero_pages(void) |
| { |
| unsigned int order, i; |
| struct page *page; |
| |
| if (cpu_has_vce) |
| order = 3; |
| else |
| order = 0; |
| |
| empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); |
| if (!empty_zero_page) |
| panic("Oh boy, that early out of memory?"); |
| |
| page = virt_to_page((void *)empty_zero_page); |
| split_page(page, order); |
| for (i = 0; i < (1 << order); i++, page++) |
| mark_page_reserved(page); |
| |
| zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK; |
| } |
| |
| static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot) |
| { |
| enum fixed_addresses idx; |
| unsigned int uninitialized_var(old_mmid); |
| unsigned long vaddr, flags, entrylo; |
| unsigned long old_ctx; |
| pte_t pte; |
| int tlbidx; |
| |
| BUG_ON(Page_dcache_dirty(page)); |
| |
| preempt_disable(); |
| pagefault_disable(); |
| idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); |
| idx += in_interrupt() ? FIX_N_COLOURS : 0; |
| vaddr = __fix_to_virt(FIX_CMAP_END - idx); |
| pte = mk_pte(page, prot); |
| #if defined(CONFIG_XPA) |
| entrylo = pte_to_entrylo(pte.pte_high); |
| #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) |
| entrylo = pte.pte_high; |
| #else |
| entrylo = pte_to_entrylo(pte_val(pte)); |
| #endif |
| |
| local_irq_save(flags); |
| old_ctx = read_c0_entryhi(); |
| write_c0_entryhi(vaddr & (PAGE_MASK << 1)); |
| write_c0_entrylo0(entrylo); |
| write_c0_entrylo1(entrylo); |
| if (cpu_has_mmid) { |
| old_mmid = read_c0_memorymapid(); |
| write_c0_memorymapid(MMID_KERNEL_WIRED); |
| } |
| #ifdef CONFIG_XPA |
| if (cpu_has_xpa) { |
| entrylo = (pte.pte_low & _PFNX_MASK); |
| writex_c0_entrylo0(entrylo); |
| writex_c0_entrylo1(entrylo); |
| } |
| #endif |
| tlbidx = num_wired_entries(); |
| write_c0_wired(tlbidx + 1); |
| write_c0_index(tlbidx); |
| mtc0_tlbw_hazard(); |
| tlb_write_indexed(); |
| tlbw_use_hazard(); |
| write_c0_entryhi(old_ctx); |
| if (cpu_has_mmid) |
| write_c0_memorymapid(old_mmid); |
| local_irq_restore(flags); |
| |
| return (void*) vaddr; |
| } |
| |
| void *kmap_coherent(struct page *page, unsigned long addr) |
| { |
| return __kmap_pgprot(page, addr, PAGE_KERNEL); |
| } |
| |
| void *kmap_noncoherent(struct page *page, unsigned long addr) |
| { |
| return __kmap_pgprot(page, addr, PAGE_KERNEL_NC); |
| } |
| |
| void kunmap_coherent(void) |
| { |
| unsigned int wired; |
| unsigned long flags, old_ctx; |
| |
| local_irq_save(flags); |
| old_ctx = read_c0_entryhi(); |
| wired = num_wired_entries() - 1; |
| write_c0_wired(wired); |
| write_c0_index(wired); |
| write_c0_entryhi(UNIQUE_ENTRYHI(wired)); |
| write_c0_entrylo0(0); |
| write_c0_entrylo1(0); |
| mtc0_tlbw_hazard(); |
| tlb_write_indexed(); |
| tlbw_use_hazard(); |
| write_c0_entryhi(old_ctx); |
| local_irq_restore(flags); |
| pagefault_enable(); |
| preempt_enable(); |
| } |
| |
| void copy_user_highpage(struct page *to, struct page *from, |
| unsigned long vaddr, struct vm_area_struct *vma) |
| { |
| void *vfrom, *vto; |
| |
| vto = kmap_atomic(to); |
| if (cpu_has_dc_aliases && |
| page_mapcount(from) && !Page_dcache_dirty(from)) { |
| vfrom = kmap_coherent(from, vaddr); |
| copy_page(vto, vfrom); |
| kunmap_coherent(); |
| } else { |
| vfrom = kmap_atomic(from); |
| copy_page(vto, vfrom); |
| kunmap_atomic(vfrom); |
| } |
| if ((!cpu_has_ic_fills_f_dc) || |
| pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) |
| flush_data_cache_page((unsigned long)vto); |
| kunmap_atomic(vto); |
| /* Make sure this page is cleared on other CPU's too before using it */ |
| smp_wmb(); |
| } |
| |
| void copy_to_user_page(struct vm_area_struct *vma, |
| struct page *page, unsigned long vaddr, void *dst, const void *src, |
| unsigned long len) |
| { |
| if (cpu_has_dc_aliases && |
| page_mapcount(page) && !Page_dcache_dirty(page)) { |
| void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); |
| memcpy(vto, src, len); |
| kunmap_coherent(); |
| } else { |
| memcpy(dst, src, len); |
| if (cpu_has_dc_aliases) |
| SetPageDcacheDirty(page); |
| } |
| if (vma->vm_flags & VM_EXEC) |
| flush_cache_page(vma, vaddr, page_to_pfn(page)); |
| } |
| |
| void copy_from_user_page(struct vm_area_struct *vma, |
| struct page *page, unsigned long vaddr, void *dst, const void *src, |
| unsigned long len) |
| { |
| if (cpu_has_dc_aliases && |
| page_mapcount(page) && !Page_dcache_dirty(page)) { |
| void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); |
| memcpy(dst, vfrom, len); |
| kunmap_coherent(); |
| } else { |
| memcpy(dst, src, len); |
| if (cpu_has_dc_aliases) |
| SetPageDcacheDirty(page); |
| } |
| } |
| EXPORT_SYMBOL_GPL(copy_from_user_page); |
| |
| void __init fixrange_init(unsigned long start, unsigned long end, |
| pgd_t *pgd_base) |
| { |
| #ifdef CONFIG_HIGHMEM |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| int i, j, k; |
| unsigned long vaddr; |
| |
| vaddr = start; |
| i = pgd_index(vaddr); |
| j = pud_index(vaddr); |
| k = pmd_index(vaddr); |
| pgd = pgd_base + i; |
| |
| for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) { |
| pud = (pud_t *)pgd; |
| for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) { |
| pmd = (pmd_t *)pud; |
| for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) { |
| if (pmd_none(*pmd)) { |
| pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, |
| PAGE_SIZE); |
| if (!pte) |
| panic("%s: Failed to allocate %lu bytes align=%lx\n", |
| __func__, PAGE_SIZE, |
| PAGE_SIZE); |
| |
| set_pmd(pmd, __pmd((unsigned long)pte)); |
| BUG_ON(pte != pte_offset_kernel(pmd, 0)); |
| } |
| vaddr += PMD_SIZE; |
| } |
| k = 0; |
| } |
| j = 0; |
| } |
| #endif |
| } |
| |
| struct maar_walk_info { |
| struct maar_config cfg[16]; |
| unsigned int num_cfg; |
| }; |
| |
| static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages, |
| void *data) |
| { |
| struct maar_walk_info *wi = data; |
| struct maar_config *cfg = &wi->cfg[wi->num_cfg]; |
| unsigned int maar_align; |
| |
| /* MAAR registers hold physical addresses right shifted by 4 bits */ |
| maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4); |
| |
| /* Fill in the MAAR config entry */ |
| cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align); |
| cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1; |
| cfg->attrs = MIPS_MAAR_S; |
| |
| /* Ensure we don't overflow the cfg array */ |
| if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg))) |
| wi->num_cfg++; |
| |
| return 0; |
| } |
| |
| |
| unsigned __weak platform_maar_init(unsigned num_pairs) |
| { |
| unsigned int num_configured; |
| struct maar_walk_info wi; |
| |
| wi.num_cfg = 0; |
| walk_system_ram_range(0, max_pfn, &wi, maar_res_walk); |
| |
| num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs); |
| if (num_configured < wi.num_cfg) |
| pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n", |
| num_pairs, wi.num_cfg); |
| |
| return num_configured; |
| } |
| |
| void maar_init(void) |
| { |
| unsigned num_maars, used, i; |
| phys_addr_t lower, upper, attr; |
| static struct { |
| struct maar_config cfgs[3]; |
| unsigned used; |
| } recorded = { { { 0 } }, 0 }; |
| |
| if (!cpu_has_maar) |
| return; |
| |
| /* Detect the number of MAARs */ |
| write_c0_maari(~0); |
| back_to_back_c0_hazard(); |
| num_maars = read_c0_maari() + 1; |
| |
| /* MAARs should be in pairs */ |
| WARN_ON(num_maars % 2); |
| |
| /* Set MAARs using values we recorded already */ |
| if (recorded.used) { |
| used = maar_config(recorded.cfgs, recorded.used, num_maars / 2); |
| BUG_ON(used != recorded.used); |
| } else { |
| /* Configure the required MAARs */ |
| used = platform_maar_init(num_maars / 2); |
| } |
| |
| /* Disable any further MAARs */ |
| for (i = (used * 2); i < num_maars; i++) { |
| write_c0_maari(i); |
| back_to_back_c0_hazard(); |
| write_c0_maar(0); |
| back_to_back_c0_hazard(); |
| } |
| |
| if (recorded.used) |
| return; |
| |
| pr_info("MAAR configuration:\n"); |
| for (i = 0; i < num_maars; i += 2) { |
| write_c0_maari(i); |
| back_to_back_c0_hazard(); |
| upper = read_c0_maar(); |
| |
| write_c0_maari(i + 1); |
| back_to_back_c0_hazard(); |
| lower = read_c0_maar(); |
| |
| attr = lower & upper; |
| lower = (lower & MIPS_MAAR_ADDR) << 4; |
| upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff; |
| |
| pr_info(" [%d]: ", i / 2); |
| if (!(attr & MIPS_MAAR_VL)) { |
| pr_cont("disabled\n"); |
| continue; |
| } |
| |
| pr_cont("%pa-%pa", &lower, &upper); |
| |
| if (attr & MIPS_MAAR_S) |
| pr_cont(" speculate"); |
| |
| pr_cont("\n"); |
| |
| /* Record the setup for use on secondary CPUs */ |
| if (used <= ARRAY_SIZE(recorded.cfgs)) { |
| recorded.cfgs[recorded.used].lower = lower; |
| recorded.cfgs[recorded.used].upper = upper; |
| recorded.cfgs[recorded.used].attrs = attr; |
| recorded.used++; |
| } |
| } |
| } |
| |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| void __init paging_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| pagetable_init(); |
| |
| #ifdef CONFIG_HIGHMEM |
| kmap_init(); |
| #endif |
| #ifdef CONFIG_ZONE_DMA |
| max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; |
| #endif |
| max_zone_pfns[ZONE_NORMAL] = max_low_pfn; |
| #ifdef CONFIG_HIGHMEM |
| max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; |
| |
| if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) { |
| printk(KERN_WARNING "This processor doesn't support highmem." |
| " %ldk highmem ignored\n", |
| (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10)); |
| max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn; |
| } |
| #endif |
| |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |
| #ifdef CONFIG_64BIT |
| static struct kcore_list kcore_kseg0; |
| #endif |
| |
| static inline void __init mem_init_free_highmem(void) |
| { |
| #ifdef CONFIG_HIGHMEM |
| unsigned long tmp; |
| |
| if (cpu_has_dc_aliases) |
| return; |
| |
| for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { |
| struct page *page = pfn_to_page(tmp); |
| |
| if (!memblock_is_memory(PFN_PHYS(tmp))) |
| SetPageReserved(page); |
| else |
| free_highmem_page(page); |
| } |
| #endif |
| } |
| |
| void __init mem_init(void) |
| { |
| /* |
| * When _PFN_SHIFT is greater than PAGE_SHIFT we won't have enough PTE |
| * bits to hold a full 32b physical address on MIPS32 systems. |
| */ |
| BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (_PFN_SHIFT > PAGE_SHIFT)); |
| |
| #ifdef CONFIG_HIGHMEM |
| #ifdef CONFIG_DISCONTIGMEM |
| #error "CONFIG_HIGHMEM and CONFIG_DISCONTIGMEM dont work together yet" |
| #endif |
| max_mapnr = highend_pfn ? highend_pfn : max_low_pfn; |
| #else |
| max_mapnr = max_low_pfn; |
| #endif |
| high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); |
| |
| maar_init(); |
| memblock_free_all(); |
| setup_zero_pages(); /* Setup zeroed pages. */ |
| mem_init_free_highmem(); |
| mem_init_print_info(NULL); |
| |
| #ifdef CONFIG_64BIT |
| if ((unsigned long) &_text > (unsigned long) CKSEG0) |
| /* The -4 is a hack so that user tools don't have to handle |
| the overflow. */ |
| kclist_add(&kcore_kseg0, (void *) CKSEG0, |
| 0x80000000 - 4, KCORE_TEXT); |
| #endif |
| } |
| #endif /* !CONFIG_NEED_MULTIPLE_NODES */ |
| |
| void free_init_pages(const char *what, unsigned long begin, unsigned long end) |
| { |
| unsigned long pfn; |
| |
| for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) { |
| struct page *page = pfn_to_page(pfn); |
| void *addr = phys_to_virt(PFN_PHYS(pfn)); |
| |
| memset(addr, POISON_FREE_INITMEM, PAGE_SIZE); |
| free_reserved_page(page); |
| } |
| printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); |
| } |
| |
| void (*free_init_pages_eva)(void *begin, void *end) = NULL; |
| |
| void __ref free_initmem(void) |
| { |
| prom_free_prom_memory(); |
| /* |
| * Let the platform define a specific function to free the |
| * init section since EVA may have used any possible mapping |
| * between virtual and physical addresses. |
| */ |
| if (free_init_pages_eva) |
| free_init_pages_eva((void *)&__init_begin, (void *)&__init_end); |
| else |
| free_initmem_default(POISON_FREE_INITMEM); |
| } |
| |
| #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA |
| unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(__per_cpu_offset); |
| |
| static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) |
| { |
| return node_distance(cpu_to_node(from), cpu_to_node(to)); |
| } |
| |
| static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, |
| size_t align) |
| { |
| return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS), |
| MEMBLOCK_ALLOC_ACCESSIBLE, |
| cpu_to_node(cpu)); |
| } |
| |
| static void __init pcpu_fc_free(void *ptr, size_t size) |
| { |
| memblock_free_early(__pa(ptr), size); |
| } |
| |
| void __init setup_per_cpu_areas(void) |
| { |
| unsigned long delta; |
| unsigned int cpu; |
| int rc; |
| |
| /* |
| * Always reserve area for module percpu variables. That's |
| * what the legacy allocator did. |
| */ |
| rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
| PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, |
| pcpu_cpu_distance, |
| pcpu_fc_alloc, pcpu_fc_free); |
| if (rc < 0) |
| panic("Failed to initialize percpu areas."); |
| |
| delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| for_each_possible_cpu(cpu) |
| __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
| } |
| #endif |
| |
| #ifndef CONFIG_MIPS_PGD_C0_CONTEXT |
| unsigned long pgd_current[NR_CPUS]; |
| #endif |
| |
| /* |
| * Align swapper_pg_dir in to 64K, allows its address to be loaded |
| * with a single LUI instruction in the TLB handlers. If we used |
| * __aligned(64K), its size would get rounded up to the alignment |
| * size, and waste space. So we place it in its own section and align |
| * it in the linker script. |
| */ |
| pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(.bss..swapper_pg_dir); |
| #ifndef __PAGETABLE_PUD_FOLDED |
| pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss; |
| #endif |
| #ifndef __PAGETABLE_PMD_FOLDED |
| pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss; |
| EXPORT_SYMBOL_GPL(invalid_pmd_table); |
| #endif |
| pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss; |
| EXPORT_SYMBOL(invalid_pte_table); |