| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Memory Migration functionality - linux/mm/migrate.c |
| * |
| * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter |
| * |
| * Page migration was first developed in the context of the memory hotplug |
| * project. The main authors of the migration code are: |
| * |
| * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> |
| * Hirokazu Takahashi <taka@valinux.co.jp> |
| * Dave Hansen <haveblue@us.ibm.com> |
| * Christoph Lameter |
| */ |
| |
| #include <linux/migrate.h> |
| #include <linux/export.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/pagemap.h> |
| #include <linux/buffer_head.h> |
| #include <linux/mm_inline.h> |
| #include <linux/nsproxy.h> |
| #include <linux/pagevec.h> |
| #include <linux/ksm.h> |
| #include <linux/rmap.h> |
| #include <linux/topology.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/writeback.h> |
| #include <linux/mempolicy.h> |
| #include <linux/vmalloc.h> |
| #include <linux/security.h> |
| #include <linux/backing-dev.h> |
| #include <linux/compaction.h> |
| #include <linux/syscalls.h> |
| #include <linux/compat.h> |
| #include <linux/hugetlb.h> |
| #include <linux/hugetlb_cgroup.h> |
| #include <linux/gfp.h> |
| #include <linux/pfn_t.h> |
| #include <linux/memremap.h> |
| #include <linux/userfaultfd_k.h> |
| #include <linux/balloon_compaction.h> |
| #include <linux/page_idle.h> |
| #include <linux/page_owner.h> |
| #include <linux/sched/mm.h> |
| #include <linux/ptrace.h> |
| #include <linux/oom.h> |
| #include <linux/memory.h> |
| #include <linux/random.h> |
| #include <linux/sched/sysctl.h> |
| |
| #include <asm/tlbflush.h> |
| |
| #include <trace/events/migrate.h> |
| |
| #include "internal.h" |
| |
| int isolate_movable_page(struct page *page, isolate_mode_t mode) |
| { |
| const struct movable_operations *mops; |
| |
| /* |
| * Avoid burning cycles with pages that are yet under __free_pages(), |
| * or just got freed under us. |
| * |
| * In case we 'win' a race for a movable page being freed under us and |
| * raise its refcount preventing __free_pages() from doing its job |
| * the put_page() at the end of this block will take care of |
| * release this page, thus avoiding a nasty leakage. |
| */ |
| if (unlikely(!get_page_unless_zero(page))) |
| goto out; |
| |
| /* |
| * Check PageMovable before holding a PG_lock because page's owner |
| * assumes anybody doesn't touch PG_lock of newly allocated page |
| * so unconditionally grabbing the lock ruins page's owner side. |
| */ |
| if (unlikely(!__PageMovable(page))) |
| goto out_putpage; |
| /* |
| * As movable pages are not isolated from LRU lists, concurrent |
| * compaction threads can race against page migration functions |
| * as well as race against the releasing a page. |
| * |
| * In order to avoid having an already isolated movable page |
| * being (wrongly) re-isolated while it is under migration, |
| * or to avoid attempting to isolate pages being released, |
| * lets be sure we have the page lock |
| * before proceeding with the movable page isolation steps. |
| */ |
| if (unlikely(!trylock_page(page))) |
| goto out_putpage; |
| |
| if (!PageMovable(page) || PageIsolated(page)) |
| goto out_no_isolated; |
| |
| mops = page_movable_ops(page); |
| VM_BUG_ON_PAGE(!mops, page); |
| |
| if (!mops->isolate_page(page, mode)) |
| goto out_no_isolated; |
| |
| /* Driver shouldn't use PG_isolated bit of page->flags */ |
| WARN_ON_ONCE(PageIsolated(page)); |
| SetPageIsolated(page); |
| unlock_page(page); |
| |
| return 0; |
| |
| out_no_isolated: |
| unlock_page(page); |
| out_putpage: |
| put_page(page); |
| out: |
| return -EBUSY; |
| } |
| |
| static void putback_movable_page(struct page *page) |
| { |
| const struct movable_operations *mops = page_movable_ops(page); |
| |
| mops->putback_page(page); |
| ClearPageIsolated(page); |
| } |
| |
| /* |
| * Put previously isolated pages back onto the appropriate lists |
| * from where they were once taken off for compaction/migration. |
| * |
| * This function shall be used whenever the isolated pageset has been |
| * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() |
| * and isolate_huge_page(). |
| */ |
| void putback_movable_pages(struct list_head *l) |
| { |
| struct page *page; |
| struct page *page2; |
| |
| list_for_each_entry_safe(page, page2, l, lru) { |
| if (unlikely(PageHuge(page))) { |
| putback_active_hugepage(page); |
| continue; |
| } |
| list_del(&page->lru); |
| /* |
| * We isolated non-lru movable page so here we can use |
| * __PageMovable because LRU page's mapping cannot have |
| * PAGE_MAPPING_MOVABLE. |
| */ |
| if (unlikely(__PageMovable(page))) { |
| VM_BUG_ON_PAGE(!PageIsolated(page), page); |
| lock_page(page); |
| if (PageMovable(page)) |
| putback_movable_page(page); |
| else |
| ClearPageIsolated(page); |
| unlock_page(page); |
| put_page(page); |
| } else { |
| mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
| page_is_file_lru(page), -thp_nr_pages(page)); |
| putback_lru_page(page); |
| } |
| } |
| } |
| |
| /* |
| * Restore a potential migration pte to a working pte entry |
| */ |
| static bool remove_migration_pte(struct folio *folio, |
| struct vm_area_struct *vma, unsigned long addr, void *old) |
| { |
| DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); |
| |
| while (page_vma_mapped_walk(&pvmw)) { |
| rmap_t rmap_flags = RMAP_NONE; |
| pte_t pte; |
| swp_entry_t entry; |
| struct page *new; |
| unsigned long idx = 0; |
| |
| /* pgoff is invalid for ksm pages, but they are never large */ |
| if (folio_test_large(folio) && !folio_test_hugetlb(folio)) |
| idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; |
| new = folio_page(folio, idx); |
| |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| /* PMD-mapped THP migration entry */ |
| if (!pvmw.pte) { |
| VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || |
| !folio_test_pmd_mappable(folio), folio); |
| remove_migration_pmd(&pvmw, new); |
| continue; |
| } |
| #endif |
| |
| folio_get(folio); |
| pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); |
| if (pte_swp_soft_dirty(*pvmw.pte)) |
| pte = pte_mksoft_dirty(pte); |
| |
| /* |
| * Recheck VMA as permissions can change since migration started |
| */ |
| entry = pte_to_swp_entry(*pvmw.pte); |
| if (is_writable_migration_entry(entry)) |
| pte = maybe_mkwrite(pte, vma); |
| else if (pte_swp_uffd_wp(*pvmw.pte)) |
| pte = pte_mkuffd_wp(pte); |
| |
| if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) |
| rmap_flags |= RMAP_EXCLUSIVE; |
| |
| if (unlikely(is_device_private_page(new))) { |
| if (pte_write(pte)) |
| entry = make_writable_device_private_entry( |
| page_to_pfn(new)); |
| else |
| entry = make_readable_device_private_entry( |
| page_to_pfn(new)); |
| pte = swp_entry_to_pte(entry); |
| if (pte_swp_soft_dirty(*pvmw.pte)) |
| pte = pte_swp_mksoft_dirty(pte); |
| if (pte_swp_uffd_wp(*pvmw.pte)) |
| pte = pte_swp_mkuffd_wp(pte); |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| if (folio_test_hugetlb(folio)) { |
| unsigned int shift = huge_page_shift(hstate_vma(vma)); |
| |
| pte = pte_mkhuge(pte); |
| pte = arch_make_huge_pte(pte, shift, vma->vm_flags); |
| if (folio_test_anon(folio)) |
| hugepage_add_anon_rmap(new, vma, pvmw.address, |
| rmap_flags); |
| else |
| page_dup_file_rmap(new, true); |
| set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); |
| } else |
| #endif |
| { |
| if (folio_test_anon(folio)) |
| page_add_anon_rmap(new, vma, pvmw.address, |
| rmap_flags); |
| else |
| page_add_file_rmap(new, vma, false); |
| set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); |
| } |
| if (vma->vm_flags & VM_LOCKED) |
| mlock_page_drain_local(); |
| |
| trace_remove_migration_pte(pvmw.address, pte_val(pte), |
| compound_order(new)); |
| |
| /* No need to invalidate - it was non-present before */ |
| update_mmu_cache(vma, pvmw.address, pvmw.pte); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Get rid of all migration entries and replace them by |
| * references to the indicated page. |
| */ |
| void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) |
| { |
| struct rmap_walk_control rwc = { |
| .rmap_one = remove_migration_pte, |
| .arg = src, |
| }; |
| |
| if (locked) |
| rmap_walk_locked(dst, &rwc); |
| else |
| rmap_walk(dst, &rwc); |
| } |
| |
| /* |
| * Something used the pte of a page under migration. We need to |
| * get to the page and wait until migration is finished. |
| * When we return from this function the fault will be retried. |
| */ |
| void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, |
| spinlock_t *ptl) |
| { |
| pte_t pte; |
| swp_entry_t entry; |
| |
| spin_lock(ptl); |
| pte = *ptep; |
| if (!is_swap_pte(pte)) |
| goto out; |
| |
| entry = pte_to_swp_entry(pte); |
| if (!is_migration_entry(entry)) |
| goto out; |
| |
| migration_entry_wait_on_locked(entry, ptep, ptl); |
| return; |
| out: |
| pte_unmap_unlock(ptep, ptl); |
| } |
| |
| void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, |
| unsigned long address) |
| { |
| spinlock_t *ptl = pte_lockptr(mm, pmd); |
| pte_t *ptep = pte_offset_map(pmd, address); |
| __migration_entry_wait(mm, ptep, ptl); |
| } |
| |
| void migration_entry_wait_huge(struct vm_area_struct *vma, |
| struct mm_struct *mm, pte_t *pte) |
| { |
| spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); |
| __migration_entry_wait(mm, pte, ptl); |
| } |
| |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) |
| { |
| spinlock_t *ptl; |
| |
| ptl = pmd_lock(mm, pmd); |
| if (!is_pmd_migration_entry(*pmd)) |
| goto unlock; |
| migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); |
| return; |
| unlock: |
| spin_unlock(ptl); |
| } |
| #endif |
| |
| static int expected_page_refs(struct address_space *mapping, struct page *page) |
| { |
| int expected_count = 1; |
| |
| if (mapping) |
| expected_count += compound_nr(page) + page_has_private(page); |
| return expected_count; |
| } |
| |
| /* |
| * Replace the page in the mapping. |
| * |
| * The number of remaining references must be: |
| * 1 for anonymous pages without a mapping |
| * 2 for pages with a mapping |
| * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
| */ |
| int folio_migrate_mapping(struct address_space *mapping, |
| struct folio *newfolio, struct folio *folio, int extra_count) |
| { |
| XA_STATE(xas, &mapping->i_pages, folio_index(folio)); |
| struct zone *oldzone, *newzone; |
| int dirty; |
| int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; |
| long nr = folio_nr_pages(folio); |
| |
| if (!mapping) { |
| /* Anonymous page without mapping */ |
| if (folio_ref_count(folio) != expected_count) |
| return -EAGAIN; |
| |
| /* No turning back from here */ |
| newfolio->index = folio->index; |
| newfolio->mapping = folio->mapping; |
| if (folio_test_swapbacked(folio)) |
| __folio_set_swapbacked(newfolio); |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| |
| oldzone = folio_zone(folio); |
| newzone = folio_zone(newfolio); |
| |
| xas_lock_irq(&xas); |
| if (!folio_ref_freeze(folio, expected_count)) { |
| xas_unlock_irq(&xas); |
| return -EAGAIN; |
| } |
| |
| /* |
| * Now we know that no one else is looking at the folio: |
| * no turning back from here. |
| */ |
| newfolio->index = folio->index; |
| newfolio->mapping = folio->mapping; |
| folio_ref_add(newfolio, nr); /* add cache reference */ |
| if (folio_test_swapbacked(folio)) { |
| __folio_set_swapbacked(newfolio); |
| if (folio_test_swapcache(folio)) { |
| folio_set_swapcache(newfolio); |
| newfolio->private = folio_get_private(folio); |
| } |
| } else { |
| VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); |
| } |
| |
| /* Move dirty while page refs frozen and newpage not yet exposed */ |
| dirty = folio_test_dirty(folio); |
| if (dirty) { |
| folio_clear_dirty(folio); |
| folio_set_dirty(newfolio); |
| } |
| |
| xas_store(&xas, newfolio); |
| |
| /* |
| * Drop cache reference from old page by unfreezing |
| * to one less reference. |
| * We know this isn't the last reference. |
| */ |
| folio_ref_unfreeze(folio, expected_count - nr); |
| |
| xas_unlock(&xas); |
| /* Leave irq disabled to prevent preemption while updating stats */ |
| |
| /* |
| * If moved to a different zone then also account |
| * the page for that zone. Other VM counters will be |
| * taken care of when we establish references to the |
| * new page and drop references to the old page. |
| * |
| * Note that anonymous pages are accounted for |
| * via NR_FILE_PAGES and NR_ANON_MAPPED if they |
| * are mapped to swap space. |
| */ |
| if (newzone != oldzone) { |
| struct lruvec *old_lruvec, *new_lruvec; |
| struct mem_cgroup *memcg; |
| |
| memcg = folio_memcg(folio); |
| old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); |
| new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); |
| |
| __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); |
| __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); |
| if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { |
| __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); |
| __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); |
| } |
| #ifdef CONFIG_SWAP |
| if (folio_test_swapcache(folio)) { |
| __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); |
| __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); |
| } |
| #endif |
| if (dirty && mapping_can_writeback(mapping)) { |
| __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); |
| __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); |
| __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); |
| __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); |
| } |
| } |
| local_irq_enable(); |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| EXPORT_SYMBOL(folio_migrate_mapping); |
| |
| /* |
| * The expected number of remaining references is the same as that |
| * of folio_migrate_mapping(). |
| */ |
| int migrate_huge_page_move_mapping(struct address_space *mapping, |
| struct page *newpage, struct page *page) |
| { |
| XA_STATE(xas, &mapping->i_pages, page_index(page)); |
| int expected_count; |
| |
| xas_lock_irq(&xas); |
| expected_count = 2 + page_has_private(page); |
| if (!page_ref_freeze(page, expected_count)) { |
| xas_unlock_irq(&xas); |
| return -EAGAIN; |
| } |
| |
| newpage->index = page->index; |
| newpage->mapping = page->mapping; |
| |
| get_page(newpage); |
| |
| xas_store(&xas, newpage); |
| |
| page_ref_unfreeze(page, expected_count - 1); |
| |
| xas_unlock_irq(&xas); |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| |
| /* |
| * Copy the flags and some other ancillary information |
| */ |
| void folio_migrate_flags(struct folio *newfolio, struct folio *folio) |
| { |
| int cpupid; |
| |
| if (folio_test_error(folio)) |
| folio_set_error(newfolio); |
| if (folio_test_referenced(folio)) |
| folio_set_referenced(newfolio); |
| if (folio_test_uptodate(folio)) |
| folio_mark_uptodate(newfolio); |
| if (folio_test_clear_active(folio)) { |
| VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); |
| folio_set_active(newfolio); |
| } else if (folio_test_clear_unevictable(folio)) |
| folio_set_unevictable(newfolio); |
| if (folio_test_workingset(folio)) |
| folio_set_workingset(newfolio); |
| if (folio_test_checked(folio)) |
| folio_set_checked(newfolio); |
| /* |
| * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via |
| * migration entries. We can still have PG_anon_exclusive set on an |
| * effectively unmapped and unreferenced first sub-pages of an |
| * anonymous THP: we can simply copy it here via PG_mappedtodisk. |
| */ |
| if (folio_test_mappedtodisk(folio)) |
| folio_set_mappedtodisk(newfolio); |
| |
| /* Move dirty on pages not done by folio_migrate_mapping() */ |
| if (folio_test_dirty(folio)) |
| folio_set_dirty(newfolio); |
| |
| if (folio_test_young(folio)) |
| folio_set_young(newfolio); |
| if (folio_test_idle(folio)) |
| folio_set_idle(newfolio); |
| |
| /* |
| * Copy NUMA information to the new page, to prevent over-eager |
| * future migrations of this same page. |
| */ |
| cpupid = page_cpupid_xchg_last(&folio->page, -1); |
| page_cpupid_xchg_last(&newfolio->page, cpupid); |
| |
| folio_migrate_ksm(newfolio, folio); |
| /* |
| * Please do not reorder this without considering how mm/ksm.c's |
| * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). |
| */ |
| if (folio_test_swapcache(folio)) |
| folio_clear_swapcache(folio); |
| folio_clear_private(folio); |
| |
| /* page->private contains hugetlb specific flags */ |
| if (!folio_test_hugetlb(folio)) |
| folio->private = NULL; |
| |
| /* |
| * If any waiters have accumulated on the new page then |
| * wake them up. |
| */ |
| if (folio_test_writeback(newfolio)) |
| folio_end_writeback(newfolio); |
| |
| /* |
| * PG_readahead shares the same bit with PG_reclaim. The above |
| * end_page_writeback() may clear PG_readahead mistakenly, so set the |
| * bit after that. |
| */ |
| if (folio_test_readahead(folio)) |
| folio_set_readahead(newfolio); |
| |
| folio_copy_owner(newfolio, folio); |
| |
| if (!folio_test_hugetlb(folio)) |
| mem_cgroup_migrate(folio, newfolio); |
| } |
| EXPORT_SYMBOL(folio_migrate_flags); |
| |
| void folio_migrate_copy(struct folio *newfolio, struct folio *folio) |
| { |
| folio_copy(newfolio, folio); |
| folio_migrate_flags(newfolio, folio); |
| } |
| EXPORT_SYMBOL(folio_migrate_copy); |
| |
| /************************************************************ |
| * Migration functions |
| ***********************************************************/ |
| |
| /* |
| * Common logic to directly migrate a single LRU page suitable for |
| * pages that do not use PagePrivate/PagePrivate2. |
| * |
| * Pages are locked upon entry and exit. |
| */ |
| int migrate_page(struct address_space *mapping, |
| struct page *newpage, struct page *page, |
| enum migrate_mode mode) |
| { |
| struct folio *newfolio = page_folio(newpage); |
| struct folio *folio = page_folio(page); |
| int rc; |
| |
| BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */ |
| |
| rc = folio_migrate_mapping(mapping, newfolio, folio, 0); |
| |
| if (rc != MIGRATEPAGE_SUCCESS) |
| return rc; |
| |
| if (mode != MIGRATE_SYNC_NO_COPY) |
| folio_migrate_copy(newfolio, folio); |
| else |
| folio_migrate_flags(newfolio, folio); |
| return MIGRATEPAGE_SUCCESS; |
| } |
| EXPORT_SYMBOL(migrate_page); |
| |
| #ifdef CONFIG_BLOCK |
| /* Returns true if all buffers are successfully locked */ |
| static bool buffer_migrate_lock_buffers(struct buffer_head *head, |
| enum migrate_mode mode) |
| { |
| struct buffer_head *bh = head; |
| |
| /* Simple case, sync compaction */ |
| if (mode != MIGRATE_ASYNC) { |
| do { |
| lock_buffer(bh); |
| bh = bh->b_this_page; |
| |
| } while (bh != head); |
| |
| return true; |
| } |
| |
| /* async case, we cannot block on lock_buffer so use trylock_buffer */ |
| do { |
| if (!trylock_buffer(bh)) { |
| /* |
| * We failed to lock the buffer and cannot stall in |
| * async migration. Release the taken locks |
| */ |
| struct buffer_head *failed_bh = bh; |
| bh = head; |
| while (bh != failed_bh) { |
| unlock_buffer(bh); |
| bh = bh->b_this_page; |
| } |
| return false; |
| } |
| |
| bh = bh->b_this_page; |
| } while (bh != head); |
| return true; |
| } |
| |
| static int __buffer_migrate_page(struct address_space *mapping, |
| struct page *newpage, struct page *page, enum migrate_mode mode, |
| bool check_refs) |
| { |
| struct buffer_head *bh, *head; |
| int rc; |
| int expected_count; |
| |
| if (!page_has_buffers(page)) |
| return migrate_page(mapping, newpage, page, mode); |
| |
| /* Check whether page does not have extra refs before we do more work */ |
| expected_count = expected_page_refs(mapping, page); |
| if (page_count(page) != expected_count) |
| return -EAGAIN; |
| |
| head = page_buffers(page); |
| if (!buffer_migrate_lock_buffers(head, mode)) |
| return -EAGAIN; |
| |
| if (check_refs) { |
| bool busy; |
| bool invalidated = false; |
| |
| recheck_buffers: |
| busy = false; |
| spin_lock(&mapping->private_lock); |
| bh = head; |
| do { |
| if (atomic_read(&bh->b_count)) { |
| busy = true; |
| break; |
| } |
| bh = bh->b_this_page; |
| } while (bh != head); |
| if (busy) { |
| if (invalidated) { |
| rc = -EAGAIN; |
| goto unlock_buffers; |
| } |
| spin_unlock(&mapping->private_lock); |
| invalidate_bh_lrus(); |
| invalidated = true; |
| goto recheck_buffers; |
| } |
| } |
| |
| rc = migrate_page_move_mapping(mapping, newpage, page, 0); |
| if (rc != MIGRATEPAGE_SUCCESS) |
| goto unlock_buffers; |
| |
| attach_page_private(newpage, detach_page_private(page)); |
| |
| bh = head; |
| do { |
| set_bh_page(bh, newpage, bh_offset(bh)); |
| bh = bh->b_this_page; |
| |
| } while (bh != head); |
| |
| if (mode != MIGRATE_SYNC_NO_COPY) |
| migrate_page_copy(newpage, page); |
| else |
| migrate_page_states(newpage, page); |
| |
| rc = MIGRATEPAGE_SUCCESS; |
| unlock_buffers: |
| if (check_refs) |
| spin_unlock(&mapping->private_lock); |
| bh = head; |
| do { |
| unlock_buffer(bh); |
| bh = bh->b_this_page; |
| |
| } while (bh != head); |
| |
| return rc; |
| } |
| |
| /* |
| * Migration function for pages with buffers. This function can only be used |
| * if the underlying filesystem guarantees that no other references to "page" |
| * exist. For example attached buffer heads are accessed only under page lock. |
| */ |
| int buffer_migrate_page(struct address_space *mapping, |
| struct page *newpage, struct page *page, enum migrate_mode mode) |
| { |
| return __buffer_migrate_page(mapping, newpage, page, mode, false); |
| } |
| EXPORT_SYMBOL(buffer_migrate_page); |
| |
| /* |
| * Same as above except that this variant is more careful and checks that there |
| * are also no buffer head references. This function is the right one for |
| * mappings where buffer heads are directly looked up and referenced (such as |
| * block device mappings). |
| */ |
| int buffer_migrate_page_norefs(struct address_space *mapping, |
| struct page *newpage, struct page *page, enum migrate_mode mode) |
| { |
| return __buffer_migrate_page(mapping, newpage, page, mode, true); |
| } |
| #endif |
| |
| /* |
| * Writeback a page to clean the dirty state |
| */ |
| static int writeout(struct address_space *mapping, struct page *page) |
| { |
| struct folio *folio = page_folio(page); |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_NONE, |
| .nr_to_write = 1, |
| .range_start = 0, |
| .range_end = LLONG_MAX, |
| .for_reclaim = 1 |
| }; |
| int rc; |
| |
| if (!mapping->a_ops->writepage) |
| /* No write method for the address space */ |
| return -EINVAL; |
| |
| if (!clear_page_dirty_for_io(page)) |
| /* Someone else already triggered a write */ |
| return -EAGAIN; |
| |
| /* |
| * A dirty page may imply that the underlying filesystem has |
| * the page on some queue. So the page must be clean for |
| * migration. Writeout may mean we loose the lock and the |
| * page state is no longer what we checked for earlier. |
| * At this point we know that the migration attempt cannot |
| * be successful. |
| */ |
| remove_migration_ptes(folio, folio, false); |
| |
| rc = mapping->a_ops->writepage(page, &wbc); |
| |
| if (rc != AOP_WRITEPAGE_ACTIVATE) |
| /* unlocked. Relock */ |
| lock_page(page); |
| |
| return (rc < 0) ? -EIO : -EAGAIN; |
| } |
| |
| /* |
| * Default handling if a filesystem does not provide a migration function. |
| */ |
| static int fallback_migrate_folio(struct address_space *mapping, |
| struct folio *dst, struct folio *src, enum migrate_mode mode) |
| { |
| if (folio_test_dirty(src)) { |
| /* Only writeback folios in full synchronous migration */ |
| switch (mode) { |
| case MIGRATE_SYNC: |
| case MIGRATE_SYNC_NO_COPY: |
| break; |
| default: |
| return -EBUSY; |
| } |
| return writeout(mapping, &src->page); |
| } |
| |
| /* |
| * Buffers may be managed in a filesystem specific way. |
| * We must have no buffers or drop them. |
| */ |
| if (folio_test_private(src) && |
| !filemap_release_folio(src, GFP_KERNEL)) |
| return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; |
| |
| return migrate_page(mapping, &dst->page, &src->page, mode); |
| } |
| |
| /* |
| * Move a page to a newly allocated page |
| * The page is locked and all ptes have been successfully removed. |
| * |
| * The new page will have replaced the old page if this function |
| * is successful. |
| * |
| * Return value: |
| * < 0 - error code |
| * MIGRATEPAGE_SUCCESS - success |
| */ |
| static int move_to_new_folio(struct folio *dst, struct folio *src, |
| enum migrate_mode mode) |
| { |
| int rc = -EAGAIN; |
| bool is_lru = !__PageMovable(&src->page); |
| |
| VM_BUG_ON_FOLIO(!folio_test_locked(src), src); |
| VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); |
| |
| if (likely(is_lru)) { |
| struct address_space *mapping = folio_mapping(src); |
| |
| if (!mapping) |
| rc = migrate_page(mapping, &dst->page, &src->page, mode); |
| else if (mapping->a_ops->migrate_folio) |
| /* |
| * Most folios have a mapping and most filesystems |
| * provide a migrate_folio callback. Anonymous folios |
| * are part of swap space which also has its own |
| * migrate_folio callback. This is the most common path |
| * for page migration. |
| */ |
| rc = mapping->a_ops->migrate_folio(mapping, dst, src, |
| mode); |
| else if (mapping->a_ops->migratepage) |
| rc = mapping->a_ops->migratepage(mapping, &dst->page, |
| &src->page, mode); |
| else |
| rc = fallback_migrate_folio(mapping, dst, src, mode); |
| } else { |
| const struct movable_operations *mops; |
| |
| /* |
| * In case of non-lru page, it could be released after |
| * isolation step. In that case, we shouldn't try migration. |
| */ |
| VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); |
| if (!folio_test_movable(src)) { |
| rc = MIGRATEPAGE_SUCCESS; |
| folio_clear_isolated(src); |
| goto out; |
| } |
| |
| mops = page_movable_ops(&src->page); |
| rc = mops->migrate_page(&dst->page, &src->page, mode); |
| WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && |
| !folio_test_isolated(src)); |
| } |
| |
| /* |
| * When successful, old pagecache src->mapping must be cleared before |
| * src is freed; but stats require that PageAnon be left as PageAnon. |
| */ |
| if (rc == MIGRATEPAGE_SUCCESS) { |
| if (__PageMovable(&src->page)) { |
| VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); |
| |
| /* |
| * We clear PG_movable under page_lock so any compactor |
| * cannot try to migrate this page. |
| */ |
| folio_clear_isolated(src); |
| } |
| |
| /* |
| * Anonymous and movable src->mapping will be cleared by |
| * free_pages_prepare so don't reset it here for keeping |
| * the type to work PageAnon, for example. |
| */ |
| if (!folio_mapping_flags(src)) |
| src->mapping = NULL; |
| |
| if (likely(!folio_is_zone_device(dst))) |
| flush_dcache_folio(dst); |
| } |
| out: |
| return rc; |
| } |
| |
| static int __unmap_and_move(struct page *page, struct page *newpage, |
| int force, enum migrate_mode mode) |
| { |
| struct folio *folio = page_folio(page); |
| struct folio *dst = page_folio(newpage); |
| int rc = -EAGAIN; |
| bool page_was_mapped = false; |
| struct anon_vma *anon_vma = NULL; |
| bool is_lru = !__PageMovable(page); |
| |
| if (!trylock_page(page)) { |
| if (!force || mode == MIGRATE_ASYNC) |
| goto out; |
| |
| /* |
| * It's not safe for direct compaction to call lock_page. |
| * For example, during page readahead pages are added locked |
| * to the LRU. Later, when the IO completes the pages are |
| * marked uptodate and unlocked. However, the queueing |
| * could be merging multiple pages for one bio (e.g. |
| * mpage_readahead). If an allocation happens for the |
| * second or third page, the process can end up locking |
| * the same page twice and deadlocking. Rather than |
| * trying to be clever about what pages can be locked, |
| * avoid the use of lock_page for direct compaction |
| * altogether. |
| */ |
| if (current->flags & PF_MEMALLOC) |
| goto out; |
| |
| lock_page(page); |
| } |
| |
| if (PageWriteback(page)) { |
| /* |
| * Only in the case of a full synchronous migration is it |
| * necessary to wait for PageWriteback. In the async case, |
| * the retry loop is too short and in the sync-light case, |
| * the overhead of stalling is too much |
| */ |
| switch (mode) { |
| case MIGRATE_SYNC: |
| case MIGRATE_SYNC_NO_COPY: |
| break; |
| default: |
| rc = -EBUSY; |
| goto out_unlock; |
| } |
| if (!force) |
| goto out_unlock; |
| wait_on_page_writeback(page); |
| } |
| |
| /* |
| * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, |
| * we cannot notice that anon_vma is freed while we migrates a page. |
| * This get_anon_vma() delays freeing anon_vma pointer until the end |
| * of migration. File cache pages are no problem because of page_lock() |
| * File Caches may use write_page() or lock_page() in migration, then, |
| * just care Anon page here. |
| * |
| * Only page_get_anon_vma() understands the subtleties of |
| * getting a hold on an anon_vma from outside one of its mms. |
| * But if we cannot get anon_vma, then we won't need it anyway, |
| * because that implies that the anon page is no longer mapped |
| * (and cannot be remapped so long as we hold the page lock). |
| */ |
| if (PageAnon(page) && !PageKsm(page)) |
| anon_vma = page_get_anon_vma(page); |
| |
| /* |
| * Block others from accessing the new page when we get around to |
| * establishing additional references. We are usually the only one |
| * holding a reference to newpage at this point. We used to have a BUG |
| * here if trylock_page(newpage) fails, but would like to allow for |
| * cases where there might be a race with the previous use of newpage. |
| * This is much like races on refcount of oldpage: just don't BUG(). |
| */ |
| if (unlikely(!trylock_page(newpage))) |
| goto out_unlock; |
| |
| if (unlikely(!is_lru)) { |
| rc = move_to_new_folio(dst, folio, mode); |
| goto out_unlock_both; |
| } |
| |
| /* |
| * Corner case handling: |
| * 1. When a new swap-cache page is read into, it is added to the LRU |
| * and treated as swapcache but it has no rmap yet. |
| * Calling try_to_unmap() against a page->mapping==NULL page will |
| * trigger a BUG. So handle it here. |
| * 2. An orphaned page (see truncate_cleanup_page) might have |
| * fs-private metadata. The page can be picked up due to memory |
| * offlining. Everywhere else except page reclaim, the page is |
| * invisible to the vm, so the page can not be migrated. So try to |
| * free the metadata, so the page can be freed. |
| */ |
| if (!page->mapping) { |
| VM_BUG_ON_PAGE(PageAnon(page), page); |
| if (page_has_private(page)) { |
| try_to_free_buffers(folio); |
| goto out_unlock_both; |
| } |
| } else if (page_mapped(page)) { |
| /* Establish migration ptes */ |
| VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, |
| page); |
| try_to_migrate(folio, 0); |
| page_was_mapped = true; |
| } |
| |
| if (!page_mapped(page)) |
| rc = move_to_new_folio(dst, folio, mode); |
| |
| /* |
| * When successful, push newpage to LRU immediately: so that if it |
| * turns out to be an mlocked page, remove_migration_ptes() will |
| * automatically build up the correct newpage->mlock_count for it. |
| * |
| * We would like to do something similar for the old page, when |
| * unsuccessful, and other cases when a page has been temporarily |
| * isolated from the unevictable LRU: but this case is the easiest. |
| */ |
| if (rc == MIGRATEPAGE_SUCCESS) { |
| lru_cache_add(newpage); |
| if (page_was_mapped) |
| lru_add_drain(); |
| } |
| |
| if (page_was_mapped) |
| remove_migration_ptes(folio, |
| rc == MIGRATEPAGE_SUCCESS ? dst : folio, false); |
| |
| out_unlock_both: |
| unlock_page(newpage); |
| out_unlock: |
| /* Drop an anon_vma reference if we took one */ |
| if (anon_vma) |
| put_anon_vma(anon_vma); |
| unlock_page(page); |
| out: |
| /* |
| * If migration is successful, decrease refcount of the newpage, |
| * which will not free the page because new page owner increased |
| * refcounter. |
| */ |
| if (rc == MIGRATEPAGE_SUCCESS) |
| put_page(newpage); |
| |
| return rc; |
| } |
| |
| /* |
| * Obtain the lock on page, remove all ptes and migrate the page |
| * to the newly allocated page in newpage. |
| */ |
| static int unmap_and_move(new_page_t get_new_page, |
| free_page_t put_new_page, |
| unsigned long private, struct page *page, |
| int force, enum migrate_mode mode, |
| enum migrate_reason reason, |
| struct list_head *ret) |
| { |
| int rc = MIGRATEPAGE_SUCCESS; |
| struct page *newpage = NULL; |
| |
| if (!thp_migration_supported() && PageTransHuge(page)) |
| return -ENOSYS; |
| |
| if (page_count(page) == 1) { |
| /* page was freed from under us. So we are done. */ |
| ClearPageActive(page); |
| ClearPageUnevictable(page); |
| if (unlikely(__PageMovable(page))) { |
| lock_page(page); |
| if (!PageMovable(page)) |
| ClearPageIsolated(page); |
| unlock_page(page); |
| } |
| goto out; |
| } |
| |
| newpage = get_new_page(page, private); |
| if (!newpage) |
| return -ENOMEM; |
| |
| newpage->private = 0; |
| rc = __unmap_and_move(page, newpage, force, mode); |
| if (rc == MIGRATEPAGE_SUCCESS) |
| set_page_owner_migrate_reason(newpage, reason); |
| |
| out: |
| if (rc != -EAGAIN) { |
| /* |
| * A page that has been migrated has all references |
| * removed and will be freed. A page that has not been |
| * migrated will have kept its references and be restored. |
| */ |
| list_del(&page->lru); |
| } |
| |
| /* |
| * If migration is successful, releases reference grabbed during |
| * isolation. Otherwise, restore the page to right list unless |
| * we want to retry. |
| */ |
| if (rc == MIGRATEPAGE_SUCCESS) { |
| /* |
| * Compaction can migrate also non-LRU pages which are |
| * not accounted to NR_ISOLATED_*. They can be recognized |
| * as __PageMovable |
| */ |
| if (likely(!__PageMovable(page))) |
| mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
| page_is_file_lru(page), -thp_nr_pages(page)); |
| |
| if (reason != MR_MEMORY_FAILURE) |
| /* |
| * We release the page in page_handle_poison. |
| */ |
| put_page(page); |
| } else { |
| if (rc != -EAGAIN) |
| list_add_tail(&page->lru, ret); |
| |
| if (put_new_page) |
| put_new_page(newpage, private); |
| else |
| put_page(newpage); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Counterpart of unmap_and_move_page() for hugepage migration. |
| * |
| * This function doesn't wait the completion of hugepage I/O |
| * because there is no race between I/O and migration for hugepage. |
| * Note that currently hugepage I/O occurs only in direct I/O |
| * where no lock is held and PG_writeback is irrelevant, |
| * and writeback status of all subpages are counted in the reference |
| * count of the head page (i.e. if all subpages of a 2MB hugepage are |
| * under direct I/O, the reference of the head page is 512 and a bit more.) |
| * This means that when we try to migrate hugepage whose subpages are |
| * doing direct I/O, some references remain after try_to_unmap() and |
| * hugepage migration fails without data corruption. |
| * |
| * There is also no race when direct I/O is issued on the page under migration, |
| * because then pte is replaced with migration swap entry and direct I/O code |
| * will wait in the page fault for migration to complete. |
| */ |
| static int unmap_and_move_huge_page(new_page_t get_new_page, |
| free_page_t put_new_page, unsigned long private, |
| struct page *hpage, int force, |
| enum migrate_mode mode, int reason, |
| struct list_head *ret) |
| { |
| struct folio *dst, *src = page_folio(hpage); |
| int rc = -EAGAIN; |
| int page_was_mapped = 0; |
| struct page *new_hpage; |
| struct anon_vma *anon_vma = NULL; |
| struct address_space *mapping = NULL; |
| |
| /* |
| * Migratability of hugepages depends on architectures and their size. |
| * This check is necessary because some callers of hugepage migration |
| * like soft offline and memory hotremove don't walk through page |
| * tables or check whether the hugepage is pmd-based or not before |
| * kicking migration. |
| */ |
| if (!hugepage_migration_supported(page_hstate(hpage))) { |
| list_move_tail(&hpage->lru, ret); |
| return -ENOSYS; |
| } |
| |
| if (page_count(hpage) == 1) { |
| /* page was freed from under us. So we are done. */ |
| putback_active_hugepage(hpage); |
| return MIGRATEPAGE_SUCCESS; |
| } |
| |
| new_hpage = get_new_page(hpage, private); |
| if (!new_hpage) |
| return -ENOMEM; |
| dst = page_folio(new_hpage); |
| |
| if (!trylock_page(hpage)) { |
| if (!force) |
| goto out; |
| switch (mode) { |
| case MIGRATE_SYNC: |
| case MIGRATE_SYNC_NO_COPY: |
| break; |
| default: |
| goto out; |
| } |
| lock_page(hpage); |
| } |
| |
| /* |
| * Check for pages which are in the process of being freed. Without |
| * page_mapping() set, hugetlbfs specific move page routine will not |
| * be called and we could leak usage counts for subpools. |
| */ |
| if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { |
| rc = -EBUSY; |
| goto out_unlock; |
| } |
| |
| if (PageAnon(hpage)) |
| anon_vma = page_get_anon_vma(hpage); |
| |
| if (unlikely(!trylock_page(new_hpage))) |
| goto put_anon; |
| |
| if (page_mapped(hpage)) { |
| enum ttu_flags ttu = 0; |
| |
| if (!PageAnon(hpage)) { |
| /* |
| * In shared mappings, try_to_unmap could potentially |
| * call huge_pmd_unshare. Because of this, take |
| * semaphore in write mode here and set TTU_RMAP_LOCKED |
| * to let lower levels know we have taken the lock. |
| */ |
| mapping = hugetlb_page_mapping_lock_write(hpage); |
| if (unlikely(!mapping)) |
| goto unlock_put_anon; |
| |
| ttu = TTU_RMAP_LOCKED; |
| } |
| |
| try_to_migrate(src, ttu); |
| page_was_mapped = 1; |
| |
| if (ttu & TTU_RMAP_LOCKED) |
| i_mmap_unlock_write(mapping); |
| } |
| |
| if (!page_mapped(hpage)) |
| rc = move_to_new_folio(dst, src, mode); |
| |
| if (page_was_mapped) |
| remove_migration_ptes(src, |
| rc == MIGRATEPAGE_SUCCESS ? dst : src, false); |
| |
| unlock_put_anon: |
| unlock_page(new_hpage); |
| |
| put_anon: |
| if (anon_vma) |
| put_anon_vma(anon_vma); |
| |
| if (rc == MIGRATEPAGE_SUCCESS) { |
| move_hugetlb_state(hpage, new_hpage, reason); |
| put_new_page = NULL; |
| } |
| |
| out_unlock: |
| unlock_page(hpage); |
| out: |
| if (rc == MIGRATEPAGE_SUCCESS) |
| putback_active_hugepage(hpage); |
| else if (rc != -EAGAIN) |
| list_move_tail(&hpage->lru, ret); |
| |
| /* |
| * If migration was not successful and there's a freeing callback, use |
| * it. Otherwise, put_page() will drop the reference grabbed during |
| * isolation. |
| */ |
| if (put_new_page) |
| put_new_page(new_hpage, private); |
| else |
| putback_active_hugepage(new_hpage); |
| |
| return rc; |
| } |
| |
| static inline int try_split_thp(struct page *page, struct page **page2, |
| struct list_head *from) |
| { |
| int rc = 0; |
| |
| lock_page(page); |
| rc = split_huge_page_to_list(page, from); |
| unlock_page(page); |
| if (!rc) |
| list_safe_reset_next(page, *page2, lru); |
| |
| return rc; |
| } |
| |
| /* |
| * migrate_pages - migrate the pages specified in a list, to the free pages |
| * supplied as the target for the page migration |
| * |
| * @from: The list of pages to be migrated. |
| * @get_new_page: The function used to allocate free pages to be used |
| * as the target of the page migration. |
| * @put_new_page: The function used to free target pages if migration |
| * fails, or NULL if no special handling is necessary. |
| * @private: Private data to be passed on to get_new_page() |
| * @mode: The migration mode that specifies the constraints for |
| * page migration, if any. |
| * @reason: The reason for page migration. |
| * @ret_succeeded: Set to the number of normal pages migrated successfully if |
| * the caller passes a non-NULL pointer. |
| * |
| * The function returns after 10 attempts or if no pages are movable any more |
| * because the list has become empty or no retryable pages exist any more. |
| * It is caller's responsibility to call putback_movable_pages() to return pages |
| * to the LRU or free list only if ret != 0. |
| * |
| * Returns the number of {normal page, THP, hugetlb} that were not migrated, or |
| * an error code. The number of THP splits will be considered as the number of |
| * non-migrated THP, no matter how many subpages of the THP are migrated successfully. |
| */ |
| int migrate_pages(struct list_head *from, new_page_t get_new_page, |
| free_page_t put_new_page, unsigned long private, |
| enum migrate_mode mode, int reason, unsigned int *ret_succeeded) |
| { |
| int retry = 1; |
| int thp_retry = 1; |
| int nr_failed = 0; |
| int nr_failed_pages = 0; |
| int nr_succeeded = 0; |
| int nr_thp_succeeded = 0; |
| int nr_thp_failed = 0; |
| int nr_thp_split = 0; |
| int pass = 0; |
| bool is_thp = false; |
| struct page *page; |
| struct page *page2; |
| int rc, nr_subpages; |
| LIST_HEAD(ret_pages); |
| LIST_HEAD(thp_split_pages); |
| bool nosplit = (reason == MR_NUMA_MISPLACED); |
| bool no_subpage_counting = false; |
| |
| trace_mm_migrate_pages_start(mode, reason); |
| |
| thp_subpage_migration: |
| for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { |
| retry = 0; |
| thp_retry = 0; |
| |
| list_for_each_entry_safe(page, page2, from, lru) { |
| retry: |
| /* |
| * THP statistics is based on the source huge page. |
| * Capture required information that might get lost |
| * during migration. |
| */ |
| is_thp = PageTransHuge(page) && !PageHuge(page); |
| nr_subpages = compound_nr(page); |
| cond_resched(); |
| |
| if (PageHuge(page)) |
| rc = unmap_and_move_huge_page(get_new_page, |
| put_new_page, private, page, |
| pass > 2, mode, reason, |
| &ret_pages); |
| else |
| rc = unmap_and_move(get_new_page, put_new_page, |
| private, page, pass > 2, mode, |
| reason, &ret_pages); |
| /* |
| * The rules are: |
| * Success: non hugetlb page will be freed, hugetlb |
| * page will be put back |
| * -EAGAIN: stay on the from list |
| * -ENOMEM: stay on the from list |
| * Other errno: put on ret_pages list then splice to |
| * from list |
| */ |
| switch(rc) { |
| /* |
| * THP migration might be unsupported or the |
| * allocation could've failed so we should |
| * retry on the same page with the THP split |
| * to base pages. |
| * |
| * Head page is retried immediately and tail |
| * pages are added to the tail of the list so |
| * we encounter them after the rest of the list |
| * is processed. |
| */ |
| case -ENOSYS: |
| /* THP migration is unsupported */ |
| if (is_thp) { |
| nr_thp_failed++; |
| if (!try_split_thp(page, &page2, &thp_split_pages)) { |
| nr_thp_split++; |
| goto retry; |
| } |
| /* Hugetlb migration is unsupported */ |
| } else if (!no_subpage_counting) { |
| nr_failed++; |
| } |
| |
| nr_failed_pages += nr_subpages; |
| break; |
| case -ENOMEM: |
| /* |
| * When memory is low, don't bother to try to migrate |
| * other pages, just exit. |
| * THP NUMA faulting doesn't split THP to retry. |
| */ |
| if (is_thp && !nosplit) { |
| nr_thp_failed++; |
| if (!try_split_thp(page, &page2, &thp_split_pages)) { |
| nr_thp_split++; |
| goto retry; |
| } |
| } else if (!no_subpage_counting) { |
| nr_failed++; |
| } |
| |
| nr_failed_pages += nr_subpages; |
| /* |
| * There might be some subpages of fail-to-migrate THPs |
| * left in thp_split_pages list. Move them back to migration |
| * list so that they could be put back to the right list by |
| * the caller otherwise the page refcnt will be leaked. |
| */ |
| list_splice_init(&thp_split_pages, from); |
| nr_thp_failed += thp_retry; |
| goto out; |
| case -EAGAIN: |
| if (is_thp) |
| thp_retry++; |
| else |
| retry++; |
| break; |
| case MIGRATEPAGE_SUCCESS: |
| nr_succeeded += nr_subpages; |
| if (is_thp) |
| nr_thp_succeeded++; |
| break; |
| default: |
| /* |
| * Permanent failure (-EBUSY, etc.): |
| * unlike -EAGAIN case, the failed page is |
| * removed from migration page list and not |
| * retried in the next outer loop. |
| */ |
| if (is_thp) |
| nr_thp_failed++; |
| else if (!no_subpage_counting) |
| nr_failed++; |
| |
| nr_failed_pages += nr_subpages; |
| break; |
| } |
| } |
| } |
| nr_failed += retry; |
| nr_thp_failed += thp_retry; |
| /* |
| * Try to migrate subpages of fail-to-migrate THPs, no nr_failed |
| * counting in this round, since all subpages of a THP is counted |
| * as 1 failure in the first round. |
| */ |
| if (!list_empty(&thp_split_pages)) { |
| /* |
| * Move non-migrated pages (after 10 retries) to ret_pages |
| * to avoid migrating them again. |
| */ |
| list_splice_init(from, &ret_pages); |
| list_splice_init(&thp_split_pages, from); |
| no_subpage_counting = true; |
| retry = 1; |
| goto thp_subpage_migration; |
| } |
| |
| rc = nr_failed + nr_thp_failed; |
| out: |
| /* |
| * Put the permanent failure page back to migration list, they |
| * will be put back to the right list by the caller. |
| */ |
| list_splice(&ret_pages, from); |
| |
| count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); |
| count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); |
| count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); |
| count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); |
| count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); |
| trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, |
| nr_thp_failed, nr_thp_split, mode, reason); |
| |
| if (ret_succeeded) |
| *ret_succeeded = nr_succeeded; |
| |
| return rc; |
| } |
| |
| struct page *alloc_migration_target(struct page *page, unsigned long private) |
| { |
| struct folio *folio = page_folio(page); |
| struct migration_target_control *mtc; |
| gfp_t gfp_mask; |
| unsigned int order = 0; |
| struct folio *new_folio = NULL; |
| int nid; |
| int zidx; |
| |
| mtc = (struct migration_target_control *)private; |
| gfp_mask = mtc->gfp_mask; |
| nid = mtc->nid; |
| if (nid == NUMA_NO_NODE) |
| nid = folio_nid(folio); |
| |
| if (folio_test_hugetlb(folio)) { |
| struct hstate *h = page_hstate(&folio->page); |
| |
| gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); |
| return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); |
| } |
| |
| if (folio_test_large(folio)) { |
| /* |
| * clear __GFP_RECLAIM to make the migration callback |
| * consistent with regular THP allocations. |
| */ |
| gfp_mask &= ~__GFP_RECLAIM; |
| gfp_mask |= GFP_TRANSHUGE; |
| order = folio_order(folio); |
| } |
| zidx = zone_idx(folio_zone(folio)); |
| if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) |
| gfp_mask |= __GFP_HIGHMEM; |
| |
| new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); |
| |
| return &new_folio->page; |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| static int store_status(int __user *status, int start, int value, int nr) |
| { |
| while (nr-- > 0) { |
| if (put_user(value, status + start)) |
| return -EFAULT; |
| start++; |
| } |
| |
| return 0; |
| } |
| |
| static int do_move_pages_to_node(struct mm_struct *mm, |
| struct list_head *pagelist, int node) |
| { |
| int err; |
| struct migration_target_control mtc = { |
| .nid = node, |
| .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, |
| }; |
| |
| err = migrate_pages(pagelist, alloc_migration_target, NULL, |
| (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); |
| if (err) |
| putback_movable_pages(pagelist); |
| return err; |
| } |
| |
| /* |
| * Resolves the given address to a struct page, isolates it from the LRU and |
| * puts it to the given pagelist. |
| * Returns: |
| * errno - if the page cannot be found/isolated |
| * 0 - when it doesn't have to be migrated because it is already on the |
| * target node |
| * 1 - when it has been queued |
| */ |
| static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, |
| int node, struct list_head *pagelist, bool migrate_all) |
| { |
| struct vm_area_struct *vma; |
| struct page *page; |
| int err; |
| |
| mmap_read_lock(mm); |
| err = -EFAULT; |
| vma = vma_lookup(mm, addr); |
| if (!vma || !vma_migratable(vma)) |
| goto out; |
| |
| /* FOLL_DUMP to ignore special (like zero) pages */ |
| page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); |
| |
| err = PTR_ERR(page); |
| if (IS_ERR(page)) |
| goto out; |
| |
| err = -ENOENT; |
| if (!page) |
| goto out; |
| |
| err = 0; |
| if (page_to_nid(page) == node) |
| goto out_putpage; |
| |
| err = -EACCES; |
| if (page_mapcount(page) > 1 && !migrate_all) |
| goto out_putpage; |
| |
| if (PageHuge(page)) { |
| if (PageHead(page)) { |
| isolate_huge_page(page, pagelist); |
| err = 1; |
| } |
| } else { |
| struct page *head; |
| |
| head = compound_head(page); |
| err = isolate_lru_page(head); |
| if (err) |
| goto out_putpage; |
| |
| err = 1; |
| list_add_tail(&head->lru, pagelist); |
| mod_node_page_state(page_pgdat(head), |
| NR_ISOLATED_ANON + page_is_file_lru(head), |
| thp_nr_pages(head)); |
| } |
| out_putpage: |
| /* |
| * Either remove the duplicate refcount from |
| * isolate_lru_page() or drop the page ref if it was |
| * not isolated. |
| */ |
| put_page(page); |
| out: |
| mmap_read_unlock(mm); |
| return err; |
| } |
| |
| static int move_pages_and_store_status(struct mm_struct *mm, int node, |
| struct list_head *pagelist, int __user *status, |
| int start, int i, unsigned long nr_pages) |
| { |
| int err; |
| |
| if (list_empty(pagelist)) |
| return 0; |
| |
| err = do_move_pages_to_node(mm, pagelist, node); |
| if (err) { |
| /* |
| * Positive err means the number of failed |
| * pages to migrate. Since we are going to |
| * abort and return the number of non-migrated |
| * pages, so need to include the rest of the |
| * nr_pages that have not been attempted as |
| * well. |
| */ |
| if (err > 0) |
| err += nr_pages - i - 1; |
| return err; |
| } |
| return store_status(status, start, node, i - start); |
| } |
| |
| /* |
| * Migrate an array of page address onto an array of nodes and fill |
| * the corresponding array of status. |
| */ |
| static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, |
| unsigned long nr_pages, |
| const void __user * __user *pages, |
| const int __user *nodes, |
| int __user *status, int flags) |
| { |
| int current_node = NUMA_NO_NODE; |
| LIST_HEAD(pagelist); |
| int start, i; |
| int err = 0, err1; |
| |
| lru_cache_disable(); |
| |
| for (i = start = 0; i < nr_pages; i++) { |
| const void __user *p; |
| unsigned long addr; |
| int node; |
| |
| err = -EFAULT; |
| if (get_user(p, pages + i)) |
| goto out_flush; |
| if (get_user(node, nodes + i)) |
| goto out_flush; |
| addr = (unsigned long)untagged_addr(p); |
| |
| err = -ENODEV; |
| if (node < 0 || node >= MAX_NUMNODES) |
| goto out_flush; |
| if (!node_state(node, N_MEMORY)) |
| goto out_flush; |
| |
| err = -EACCES; |
| if (!node_isset(node, task_nodes)) |
| goto out_flush; |
| |
| if (current_node == NUMA_NO_NODE) { |
| current_node = node; |
| start = i; |
| } else if (node != current_node) { |
| err = move_pages_and_store_status(mm, current_node, |
| &pagelist, status, start, i, nr_pages); |
| if (err) |
| goto out; |
| start = i; |
| current_node = node; |
| } |
| |
| /* |
| * Errors in the page lookup or isolation are not fatal and we simply |
| * report them via status |
| */ |
| err = add_page_for_migration(mm, addr, current_node, |
| &pagelist, flags & MPOL_MF_MOVE_ALL); |
| |
| if (err > 0) { |
| /* The page is successfully queued for migration */ |
| continue; |
| } |
| |
| /* |
| * The move_pages() man page does not have an -EEXIST choice, so |
| * use -EFAULT instead. |
| */ |
| if (err == -EEXIST) |
| err = -EFAULT; |
| |
| /* |
| * If the page is already on the target node (!err), store the |
| * node, otherwise, store the err. |
| */ |
| err = store_status(status, i, err ? : current_node, 1); |
| if (err) |
| goto out_flush; |
| |
| err = move_pages_and_store_status(mm, current_node, &pagelist, |
| status, start, i, nr_pages); |
| if (err) |
| goto out; |
| current_node = NUMA_NO_NODE; |
| } |
| out_flush: |
| /* Make sure we do not overwrite the existing error */ |
| err1 = move_pages_and_store_status(mm, current_node, &pagelist, |
| status, start, i, nr_pages); |
| if (err >= 0) |
| err = err1; |
| out: |
| lru_cache_enable(); |
| return err; |
| } |
| |
| /* |
| * Determine the nodes of an array of pages and store it in an array of status. |
| */ |
| static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, |
| const void __user **pages, int *status) |
| { |
| unsigned long i; |
| |
| mmap_read_lock(mm); |
| |
| for (i = 0; i < nr_pages; i++) { |
| unsigned long addr = (unsigned long)(*pages); |
| struct vm_area_struct *vma; |
| struct page *page; |
| int err = -EFAULT; |
| |
| vma = vma_lookup(mm, addr); |
| if (!vma) |
| goto set_status; |
| |
| /* FOLL_DUMP to ignore special (like zero) pages */ |
| page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); |
| |
| err = PTR_ERR(page); |
| if (IS_ERR(page)) |
| goto set_status; |
| |
| if (page) { |
| err = page_to_nid(page); |
| put_page(page); |
| } else { |
| err = -ENOENT; |
| } |
| set_status: |
| *status = err; |
| |
| pages++; |
| status++; |
| } |
| |
| mmap_read_unlock(mm); |
| } |
| |
| static int get_compat_pages_array(const void __user *chunk_pages[], |
| const void __user * __user *pages, |
| unsigned long chunk_nr) |
| { |
| compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; |
| compat_uptr_t p; |
| int i; |
| |
| for (i = 0; i < chunk_nr; i++) { |
| if (get_user(p, pages32 + i)) |
| return -EFAULT; |
| chunk_pages[i] = compat_ptr(p); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Determine the nodes of a user array of pages and store it in |
| * a user array of status. |
| */ |
| static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, |
| const void __user * __user *pages, |
| int __user *status) |
| { |
| #define DO_PAGES_STAT_CHUNK_NR 16UL |
| const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; |
| int chunk_status[DO_PAGES_STAT_CHUNK_NR]; |
| |
| while (nr_pages) { |
| unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); |
| |
| if (in_compat_syscall()) { |
| if (get_compat_pages_array(chunk_pages, pages, |
| chunk_nr)) |
| break; |
| } else { |
| if (copy_from_user(chunk_pages, pages, |
| chunk_nr * sizeof(*chunk_pages))) |
| break; |
| } |
| |
| do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); |
| |
| if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) |
| break; |
| |
| pages += chunk_nr; |
| status += chunk_nr; |
| nr_pages -= chunk_nr; |
| } |
| return nr_pages ? -EFAULT : 0; |
| } |
| |
| static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) |
| { |
| struct task_struct *task; |
| struct mm_struct *mm; |
| |
| /* |
| * There is no need to check if current process has the right to modify |
| * the specified process when they are same. |
| */ |
| if (!pid) { |
| mmget(current->mm); |
| *mem_nodes = cpuset_mems_allowed(current); |
| return current->mm; |
| } |
| |
| /* Find the mm_struct */ |
| rcu_read_lock(); |
| task = find_task_by_vpid(pid); |
| if (!task) { |
| rcu_read_unlock(); |
| return ERR_PTR(-ESRCH); |
| } |
| get_task_struct(task); |
| |
| /* |
| * Check if this process has the right to modify the specified |
| * process. Use the regular "ptrace_may_access()" checks. |
| */ |
| if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { |
| rcu_read_unlock(); |
| mm = ERR_PTR(-EPERM); |
| goto out; |
| } |
| rcu_read_unlock(); |
| |
| mm = ERR_PTR(security_task_movememory(task)); |
| if (IS_ERR(mm)) |
| goto out; |
| *mem_nodes = cpuset_mems_allowed(task); |
| mm = get_task_mm(task); |
| out: |
| put_task_struct(task); |
| if (!mm) |
| mm = ERR_PTR(-EINVAL); |
| return mm; |
| } |
| |
| /* |
| * Move a list of pages in the address space of the currently executing |
| * process. |
| */ |
| static int kernel_move_pages(pid_t pid, unsigned long nr_pages, |
| const void __user * __user *pages, |
| const int __user *nodes, |
| int __user *status, int flags) |
| { |
| struct mm_struct *mm; |
| int err; |
| nodemask_t task_nodes; |
| |
| /* Check flags */ |
| if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) |
| return -EINVAL; |
| |
| if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) |
| return -EPERM; |
| |
| mm = find_mm_struct(pid, &task_nodes); |
| if (IS_ERR(mm)) |
| return PTR_ERR(mm); |
| |
| if (nodes) |
| err = do_pages_move(mm, task_nodes, nr_pages, pages, |
| nodes, status, flags); |
| else |
| err = do_pages_stat(mm, nr_pages, pages, status); |
| |
| mmput(mm); |
| return err; |
| } |
| |
| SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, |
| const void __user * __user *, pages, |
| const int __user *, nodes, |
| int __user *, status, int, flags) |
| { |
| return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); |
| } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* |
| * Returns true if this is a safe migration target node for misplaced NUMA |
| * pages. Currently it only checks the watermarks which is crude. |
| */ |
| static bool migrate_balanced_pgdat(struct pglist_data *pgdat, |
| unsigned long nr_migrate_pages) |
| { |
| int z; |
| |
| for (z = pgdat->nr_zones - 1; z >= 0; z--) { |
| struct zone *zone = pgdat->node_zones + z; |
| |
| if (!managed_zone(zone)) |
| continue; |
| |
| /* Avoid waking kswapd by allocating pages_to_migrate pages. */ |
| if (!zone_watermark_ok(zone, 0, |
| high_wmark_pages(zone) + |
| nr_migrate_pages, |
| ZONE_MOVABLE, 0)) |
| continue; |
| return true; |
| } |
| return false; |
| } |
| |
| static struct page *alloc_misplaced_dst_page(struct page *page, |
| unsigned long data) |
| { |
| int nid = (int) data; |
| int order = compound_order(page); |
| gfp_t gfp = __GFP_THISNODE; |
| struct folio *new; |
| |
| if (order > 0) |
| gfp |= GFP_TRANSHUGE_LIGHT; |
| else { |
| gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | |
| __GFP_NOWARN; |
| gfp &= ~__GFP_RECLAIM; |
| } |
| new = __folio_alloc_node(gfp, order, nid); |
| |
| return &new->page; |
| } |
| |
| static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) |
| { |
| int nr_pages = thp_nr_pages(page); |
| int order = compound_order(page); |
| |
| VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); |
| |
| /* Do not migrate THP mapped by multiple processes */ |
| if (PageTransHuge(page) && total_mapcount(page) > 1) |
| return 0; |
| |
| /* Avoid migrating to a node that is nearly full */ |
| if (!migrate_balanced_pgdat(pgdat, nr_pages)) { |
| int z; |
| |
| if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) |
| return 0; |
| for (z = pgdat->nr_zones - 1; z >= 0; z--) { |
| if (managed_zone(pgdat->node_zones + z)) |
| break; |
| } |
| wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); |
| return 0; |
| } |
| |
| if (isolate_lru_page(page)) |
| return 0; |
| |
| mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), |
| nr_pages); |
| |
| /* |
| * Isolating the page has taken another reference, so the |
| * caller's reference can be safely dropped without the page |
| * disappearing underneath us during migration. |
| */ |
| put_page(page); |
| return 1; |
| } |
| |
| /* |
| * Attempt to migrate a misplaced page to the specified destination |
| * node. Caller is expected to have an elevated reference count on |
| * the page that will be dropped by this function before returning. |
| */ |
| int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, |
| int node) |
| { |
| pg_data_t *pgdat = NODE_DATA(node); |
| int isolated; |
| int nr_remaining; |
| unsigned int nr_succeeded; |
| LIST_HEAD(migratepages); |
| int nr_pages = thp_nr_pages(page); |
| |
| /* |
| * Don't migrate file pages that are mapped in multiple processes |
| * with execute permissions as they are probably shared libraries. |
| */ |
| if (page_mapcount(page) != 1 && page_is_file_lru(page) && |
| (vma->vm_flags & VM_EXEC)) |
| goto out; |
| |
| /* |
| * Also do not migrate dirty pages as not all filesystems can move |
| * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. |
| */ |
| if (page_is_file_lru(page) && PageDirty(page)) |
| goto out; |
| |
| isolated = numamigrate_isolate_page(pgdat, page); |
| if (!isolated) |
| goto out; |
| |
| list_add(&page->lru, &migratepages); |
| nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, |
| NULL, node, MIGRATE_ASYNC, |
| MR_NUMA_MISPLACED, &nr_succeeded); |
| if (nr_remaining) { |
| if (!list_empty(&migratepages)) { |
| list_del(&page->lru); |
| mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
| page_is_file_lru(page), -nr_pages); |
| putback_lru_page(page); |
| } |
| isolated = 0; |
| } |
| if (nr_succeeded) { |
| count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); |
| if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) |
| mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, |
| nr_succeeded); |
| } |
| BUG_ON(!list_empty(&migratepages)); |
| return isolated; |
| |
| out: |
| put_page(page); |
| return 0; |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| /* |
| * node_demotion[] example: |
| * |
| * Consider a system with two sockets. Each socket has |
| * three classes of memory attached: fast, medium and slow. |
| * Each memory class is placed in its own NUMA node. The |
| * CPUs are placed in the node with the "fast" memory. The |
| * 6 NUMA nodes (0-5) might be split among the sockets like |
| * this: |
| * |
| * Socket A: 0, 1, 2 |
| * Socket B: 3, 4, 5 |
| * |
| * When Node 0 fills up, its memory should be migrated to |
| * Node 1. When Node 1 fills up, it should be migrated to |
| * Node 2. The migration path start on the nodes with the |
| * processors (since allocations default to this node) and |
| * fast memory, progress through medium and end with the |
| * slow memory: |
| * |
| * 0 -> 1 -> 2 -> stop |
| * 3 -> 4 -> 5 -> stop |
| * |
| * This is represented in the node_demotion[] like this: |
| * |
| * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1 |
| * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2 |
| * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate |
| * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4 |
| * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5 |
| * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate |
| * |
| * Moreover some systems may have multiple slow memory nodes. |
| * Suppose a system has one socket with 3 memory nodes, node 0 |
| * is fast memory type, and node 1/2 both are slow memory |
| * type, and the distance between fast memory node and slow |
| * memory node is same. So the migration path should be: |
| * |
| * 0 -> 1/2 -> stop |
| * |
| * This is represented in the node_demotion[] like this: |
| * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 |
| * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate |
| * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate |
| */ |
| |
| /* |
| * Writes to this array occur without locking. Cycles are |
| * not allowed: Node X demotes to Y which demotes to X... |
| * |
| * If multiple reads are performed, a single rcu_read_lock() |
| * must be held over all reads to ensure that no cycles are |
| * observed. |
| */ |
| #define DEFAULT_DEMOTION_TARGET_NODES 15 |
| |
| #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES |
| #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1) |
| #else |
| #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES |
| #endif |
| |
| struct demotion_nodes { |
| unsigned short nr; |
| short nodes[DEMOTION_TARGET_NODES]; |
| }; |
| |
| static struct demotion_nodes *node_demotion __read_mostly; |
| |
| /** |
| * next_demotion_node() - Get the next node in the demotion path |
| * @node: The starting node to lookup the next node |
| * |
| * Return: node id for next memory node in the demotion path hierarchy |
| * from @node; NUMA_NO_NODE if @node is terminal. This does not keep |
| * @node online or guarantee that it *continues* to be the next demotion |
| * target. |
| */ |
| int next_demotion_node(int node) |
| { |
| struct demotion_nodes *nd; |
| unsigned short target_nr, index; |
| int target; |
| |
| if (!node_demotion) |
| return NUMA_NO_NODE; |
| |
| nd = &node_demotion[node]; |
| |
| /* |
| * node_demotion[] is updated without excluding this |
| * function from running. RCU doesn't provide any |
| * compiler barriers, so the READ_ONCE() is required |
| * to avoid compiler reordering or read merging. |
| * |
| * Make sure to use RCU over entire code blocks if |
| * node_demotion[] reads need to be consistent. |
| */ |
| rcu_read_lock(); |
| target_nr = READ_ONCE(nd->nr); |
| |
| switch (target_nr) { |
| case 0: |
| target = NUMA_NO_NODE; |
| goto out; |
| case 1: |
| index = 0; |
| break; |
| default: |
| /* |
| * If there are multiple target nodes, just select one |
| * target node randomly. |
| * |
| * In addition, we can also use round-robin to select |
| * target node, but we should introduce another variable |
| * for node_demotion[] to record last selected target node, |
| * that may cause cache ping-pong due to the changing of |
| * last target node. Or introducing per-cpu data to avoid |
| * caching issue, which seems more complicated. So selecting |
| * target node randomly seems better until now. |
| */ |
| index = get_random_int() % target_nr; |
| break; |
| } |
| |
| target = READ_ONCE(nd->nodes[index]); |
| |
| out: |
| rcu_read_unlock(); |
| return target; |
| } |
| |
| /* Disable reclaim-based migration. */ |
| static void __disable_all_migrate_targets(void) |
| { |
| int node, i; |
| |
| if (!node_demotion) |
| return; |
| |
| for_each_online_node(node) { |
| node_demotion[node].nr = 0; |
| for (i = 0; i < DEMOTION_TARGET_NODES; i++) |
| node_demotion[node].nodes[i] = NUMA_NO_NODE; |
| } |
| } |
| |
| static void disable_all_migrate_targets(void) |
| { |
| __disable_all_migrate_targets(); |
| |
| /* |
| * Ensure that the "disable" is visible across the system. |
| * Readers will see either a combination of before+disable |
| * state or disable+after. They will never see before and |
| * after state together. |
| * |
| * The before+after state together might have cycles and |
| * could cause readers to do things like loop until this |
| * function finishes. This ensures they can only see a |
| * single "bad" read and would, for instance, only loop |
| * once. |
| */ |
| synchronize_rcu(); |
| } |
| |
| /* |
| * Find an automatic demotion target for 'node'. |
| * Failing here is OK. It might just indicate |
| * being at the end of a chain. |
| */ |
| static int establish_migrate_target(int node, nodemask_t *used, |
| int best_distance) |
| { |
| int migration_target, index, val; |
| struct demotion_nodes *nd; |
| |
| if (!node_demotion) |
| return NUMA_NO_NODE; |
| |
| nd = &node_demotion[node]; |
| |
| migration_target = find_next_best_node(node, used); |
| if (migration_target == NUMA_NO_NODE) |
| return NUMA_NO_NODE; |
| |
| /* |
| * If the node has been set a migration target node before, |
| * which means it's the best distance between them. Still |
| * check if this node can be demoted to other target nodes |
| * if they have a same best distance. |
| */ |
| if (best_distance != -1) { |
| val = node_distance(node, migration_target); |
| if (val > best_distance) |
| goto out_clear; |
| } |
| |
| index = nd->nr; |
| if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, |
| "Exceeds maximum demotion target nodes\n")) |
| goto out_clear; |
| |
| nd->nodes[index] = migration_target; |
| nd->nr++; |
| |
| return migration_target; |
| out_clear: |
| node_clear(migration_target, *used); |
| return NUMA_NO_NODE; |
| } |
| |
| /* |
| * When memory fills up on a node, memory contents can be |
| * automatically migrated to another node instead of |
| * discarded at reclaim. |
| * |
| * Establish a "migration path" which will start at nodes |
| * with CPUs and will follow the priorities used to build the |
| * page allocator zonelists. |
| * |
| * The difference here is that cycles must be avoided. If |
| * node0 migrates to node1, then neither node1, nor anything |
| * node1 migrates to can migrate to node0. Also one node can |
| * be migrated to multiple nodes if the target nodes all have |
| * a same best-distance against the source node. |
| * |
| * This function can run simultaneously with readers of |
| * node_demotion[]. However, it can not run simultaneously |
| * with itself. Exclusion is provided by memory hotplug events |
| * being single-threaded. |
| */ |
| static void __set_migration_target_nodes(void) |
| { |
| nodemask_t next_pass; |
| nodemask_t this_pass; |
| nodemask_t used_targets = NODE_MASK_NONE; |
| int node, best_distance; |
| |
| /* |
| * Avoid any oddities like cycles that could occur |
| * from changes in the topology. This will leave |
| * a momentary gap when migration is disabled. |
| */ |
| disable_all_migrate_targets(); |
| |
| /* |
| * Allocations go close to CPUs, first. Assume that |
| * the migration path starts at the nodes with CPUs. |
| */ |
| next_pass = node_states[N_CPU]; |
| again: |
| this_pass = next_pass; |
| next_pass = NODE_MASK_NONE; |
| /* |
| * To avoid cycles in the migration "graph", ensure |
| * that migration sources are not future targets by |
| * setting them in 'used_targets'. Do this only |
| * once per pass so that multiple source nodes can |
| * share a target node. |
| * |
| * 'used_targets' will become unavailable in future |
| * passes. This limits some opportunities for |
| * multiple source nodes to share a destination. |
| */ |
| nodes_or(used_targets, used_targets, this_pass); |
| |
| for_each_node_mask(node, this_pass) { |
| best_distance = -1; |
| |
| /* |
| * Try to set up the migration path for the node, and the target |
| * migration nodes can be multiple, so doing a loop to find all |
| * the target nodes if they all have a best node distance. |
| */ |
| do { |
| int target_node = |
| establish_migrate_target(node, &used_targets, |
| best_distance); |
| |
| if (target_node == NUMA_NO_NODE) |
| break; |
| |
| if (best_distance == -1) |
| best_distance = node_distance(node, target_node); |
| |
| /* |
| * Visit targets from this pass in the next pass. |
| * Eventually, every node will have been part of |
| * a pass, and will become set in 'used_targets'. |
| */ |
| node_set(target_node, next_pass); |
| } while (1); |
| } |
| /* |
| * 'next_pass' contains nodes which became migration |
| * targets in this pass. Make additional passes until |
| * no more migrations targets are available. |
| */ |
| if (!nodes_empty(next_pass)) |
| goto again; |
| } |
| |
| /* |
| * For callers that do not hold get_online_mems() already. |
| */ |
| void set_migration_target_nodes(void) |
| { |
| get_online_mems(); |
| __set_migration_target_nodes(); |
| put_online_mems(); |
| } |
| |
| /* |
| * This leaves migrate-on-reclaim transiently disabled between |
| * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs |
| * whether reclaim-based migration is enabled or not, which |
| * ensures that the user can turn reclaim-based migration at |
| * any time without needing to recalculate migration targets. |
| * |
| * These callbacks already hold get_online_mems(). That is why |
| * __set_migration_target_nodes() can be used as opposed to |
| * set_migration_target_nodes(). |
| */ |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, |
| unsigned long action, void *_arg) |
| { |
| struct memory_notify *arg = _arg; |
| |
| /* |
| * Only update the node migration order when a node is |
| * changing status, like online->offline. This avoids |
| * the overhead of synchronize_rcu() in most cases. |
| */ |
| if (arg->status_change_nid < 0) |
| return notifier_from_errno(0); |
| |
| switch (action) { |
| case MEM_GOING_OFFLINE: |
| /* |
| * Make sure there are not transient states where |
| * an offline node is a migration target. This |
| * will leave migration disabled until the offline |
| * completes and the MEM_OFFLINE case below runs. |
| */ |
| disable_all_migrate_targets(); |
| break; |
| case MEM_OFFLINE: |
| case MEM_ONLINE: |
| /* |
| * Recalculate the target nodes once the node |
| * reaches its final state (online or offline). |
| */ |
| __set_migration_target_nodes(); |
| break; |
| case MEM_CANCEL_OFFLINE: |
| /* |
| * MEM_GOING_OFFLINE disabled all the migration |
| * targets. Reenable them. |
| */ |
| __set_migration_target_nodes(); |
| break; |
| case MEM_GOING_ONLINE: |
| case MEM_CANCEL_ONLINE: |
| break; |
| } |
| |
| return notifier_from_errno(0); |
| } |
| #endif |
| |
| void __init migrate_on_reclaim_init(void) |
| { |
| node_demotion = kcalloc(nr_node_ids, |
| sizeof(struct demotion_nodes), |
| GFP_KERNEL); |
| WARN_ON(!node_demotion); |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| hotplug_memory_notifier(migrate_on_reclaim_callback, 100); |
| #endif |
| /* |
| * At this point, all numa nodes with memory/CPus have their state |
| * properly set, so we can build the demotion order now. |
| * Let us hold the cpu_hotplug lock just, as we could possibily have |
| * CPU hotplug events during boot. |
| */ |
| cpus_read_lock(); |
| set_migration_target_nodes(); |
| cpus_read_unlock(); |
| } |
| |
| bool numa_demotion_enabled = false; |
| |
| #ifdef CONFIG_SYSFS |
| static ssize_t numa_demotion_enabled_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", |
| numa_demotion_enabled ? "true" : "false"); |
| } |
| |
| static ssize_t numa_demotion_enabled_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| ssize_t ret; |
| |
| ret = kstrtobool(buf, &numa_demotion_enabled); |
| if (ret) |
| return ret; |
| |
| return count; |
| } |
| |
| static struct kobj_attribute numa_demotion_enabled_attr = |
| __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, |
| numa_demotion_enabled_store); |
| |
| static struct attribute *numa_attrs[] = { |
| &numa_demotion_enabled_attr.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group numa_attr_group = { |
| .attrs = numa_attrs, |
| }; |
| |
| static int __init numa_init_sysfs(void) |
| { |
| int err; |
| struct kobject *numa_kobj; |
| |
| numa_kobj = kobject_create_and_add("numa", mm_kobj); |
| if (!numa_kobj) { |
| pr_err("failed to create numa kobject\n"); |
| return -ENOMEM; |
| } |
| err = sysfs_create_group(numa_kobj, &numa_attr_group); |
| if (err) { |
| pr_err("failed to register numa group\n"); |
| goto delete_obj; |
| } |
| return 0; |
| |
| delete_obj: |
| kobject_put(numa_kobj); |
| return err; |
| } |
| subsys_initcall(numa_init_sysfs); |
| #endif /* CONFIG_SYSFS */ |
| #endif /* CONFIG_NUMA */ |