| /* |
| * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| * Authors: |
| * Zhiyuan Lv <zhiyuan.lv@intel.com> |
| * Zhi Wang <zhi.a.wang@intel.com> |
| * |
| * Contributors: |
| * Min He <min.he@intel.com> |
| * Bing Niu <bing.niu@intel.com> |
| * Ping Gao <ping.a.gao@intel.com> |
| * Tina Zhang <tina.zhang@intel.com> |
| * |
| */ |
| |
| #include "i915_drv.h" |
| #include "gvt.h" |
| |
| #define _EL_OFFSET_STATUS 0x234 |
| #define _EL_OFFSET_STATUS_BUF 0x370 |
| #define _EL_OFFSET_STATUS_PTR 0x3A0 |
| |
| #define execlist_ring_mmio(gvt, ring_id, offset) \ |
| (gvt->dev_priv->engine[ring_id]->mmio_base + (offset)) |
| |
| #define valid_context(ctx) ((ctx)->valid) |
| #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ |
| ((a)->lrca == (b)->lrca)) |
| |
| static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask); |
| |
| static int context_switch_events[] = { |
| [RCS] = RCS_AS_CONTEXT_SWITCH, |
| [BCS] = BCS_AS_CONTEXT_SWITCH, |
| [VCS] = VCS_AS_CONTEXT_SWITCH, |
| [VCS2] = VCS2_AS_CONTEXT_SWITCH, |
| [VECS] = VECS_AS_CONTEXT_SWITCH, |
| }; |
| |
| static int ring_id_to_context_switch_event(int ring_id) |
| { |
| if (WARN_ON(ring_id < RCS || |
| ring_id >= ARRAY_SIZE(context_switch_events))) |
| return -EINVAL; |
| |
| return context_switch_events[ring_id]; |
| } |
| |
| static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist) |
| { |
| gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n", |
| execlist->running_slot ? |
| execlist->running_slot->index : -1, |
| execlist->running_context ? |
| execlist->running_context->context_id : 0, |
| execlist->pending_slot ? |
| execlist->pending_slot->index : -1); |
| |
| execlist->running_slot = execlist->pending_slot; |
| execlist->pending_slot = NULL; |
| execlist->running_context = execlist->running_context ? |
| &execlist->running_slot->ctx[0] : NULL; |
| |
| gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n", |
| execlist->running_slot ? |
| execlist->running_slot->index : -1, |
| execlist->running_context ? |
| execlist->running_context->context_id : 0, |
| execlist->pending_slot ? |
| execlist->pending_slot->index : -1); |
| } |
| |
| static void emulate_execlist_status(struct intel_vgpu_execlist *execlist) |
| { |
| struct intel_vgpu_execlist_slot *running = execlist->running_slot; |
| struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; |
| struct execlist_ctx_descriptor_format *desc = execlist->running_context; |
| struct intel_vgpu *vgpu = execlist->vgpu; |
| struct execlist_status_format status; |
| int ring_id = execlist->ring_id; |
| u32 status_reg = execlist_ring_mmio(vgpu->gvt, |
| ring_id, _EL_OFFSET_STATUS); |
| |
| status.ldw = vgpu_vreg(vgpu, status_reg); |
| status.udw = vgpu_vreg(vgpu, status_reg + 4); |
| |
| if (running) { |
| status.current_execlist_pointer = !!running->index; |
| status.execlist_write_pointer = !!!running->index; |
| status.execlist_0_active = status.execlist_0_valid = |
| !!!(running->index); |
| status.execlist_1_active = status.execlist_1_valid = |
| !!(running->index); |
| } else { |
| status.context_id = 0; |
| status.execlist_0_active = status.execlist_0_valid = 0; |
| status.execlist_1_active = status.execlist_1_valid = 0; |
| } |
| |
| status.context_id = desc ? desc->context_id : 0; |
| status.execlist_queue_full = !!(pending); |
| |
| vgpu_vreg(vgpu, status_reg) = status.ldw; |
| vgpu_vreg(vgpu, status_reg + 4) = status.udw; |
| |
| gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n", |
| vgpu->id, status_reg, status.ldw, status.udw); |
| } |
| |
| static void emulate_csb_update(struct intel_vgpu_execlist *execlist, |
| struct execlist_context_status_format *status, |
| bool trigger_interrupt_later) |
| { |
| struct intel_vgpu *vgpu = execlist->vgpu; |
| int ring_id = execlist->ring_id; |
| struct execlist_context_status_pointer_format ctx_status_ptr; |
| u32 write_pointer; |
| u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset; |
| |
| ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, |
| _EL_OFFSET_STATUS_PTR); |
| ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id, |
| _EL_OFFSET_STATUS_BUF); |
| |
| ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); |
| |
| write_pointer = ctx_status_ptr.write_ptr; |
| |
| if (write_pointer == 0x7) |
| write_pointer = 0; |
| else { |
| ++write_pointer; |
| write_pointer %= 0x6; |
| } |
| |
| offset = ctx_status_buf_reg + write_pointer * 8; |
| |
| vgpu_vreg(vgpu, offset) = status->ldw; |
| vgpu_vreg(vgpu, offset + 4) = status->udw; |
| |
| ctx_status_ptr.write_ptr = write_pointer; |
| vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; |
| |
| gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n", |
| vgpu->id, write_pointer, offset, status->ldw, status->udw); |
| |
| if (trigger_interrupt_later) |
| return; |
| |
| intel_vgpu_trigger_virtual_event(vgpu, |
| ring_id_to_context_switch_event(execlist->ring_id)); |
| } |
| |
| static int emulate_execlist_ctx_schedule_out( |
| struct intel_vgpu_execlist *execlist, |
| struct execlist_ctx_descriptor_format *ctx) |
| { |
| struct intel_vgpu *vgpu = execlist->vgpu; |
| struct intel_vgpu_execlist_slot *running = execlist->running_slot; |
| struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; |
| struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0]; |
| struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1]; |
| struct execlist_context_status_format status; |
| |
| memset(&status, 0, sizeof(status)); |
| |
| gvt_dbg_el("schedule out context id %x\n", ctx->context_id); |
| |
| if (WARN_ON(!same_context(ctx, execlist->running_context))) { |
| gvt_vgpu_err("schedule out context is not running context," |
| "ctx id %x running ctx id %x\n", |
| ctx->context_id, |
| execlist->running_context->context_id); |
| return -EINVAL; |
| } |
| |
| /* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */ |
| if (valid_context(ctx1) && same_context(ctx0, ctx)) { |
| gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n"); |
| |
| execlist->running_context = ctx1; |
| |
| emulate_execlist_status(execlist); |
| |
| status.context_complete = status.element_switch = 1; |
| status.context_id = ctx->context_id; |
| |
| emulate_csb_update(execlist, &status, false); |
| /* |
| * ctx1 is not valid, ctx == ctx0 |
| * ctx1 is valid, ctx1 == ctx |
| * --> last element is finished |
| * emulate: |
| * active-to-idle if there is *no* pending execlist |
| * context-complete if there *is* pending execlist |
| */ |
| } else if ((!valid_context(ctx1) && same_context(ctx0, ctx)) |
| || (valid_context(ctx1) && same_context(ctx1, ctx))) { |
| gvt_dbg_el("need to switch virtual execlist slot\n"); |
| |
| switch_virtual_execlist_slot(execlist); |
| |
| emulate_execlist_status(execlist); |
| |
| status.context_complete = status.active_to_idle = 1; |
| status.context_id = ctx->context_id; |
| |
| if (!pending) { |
| emulate_csb_update(execlist, &status, false); |
| } else { |
| emulate_csb_update(execlist, &status, true); |
| |
| memset(&status, 0, sizeof(status)); |
| |
| status.idle_to_active = 1; |
| status.context_id = 0; |
| |
| emulate_csb_update(execlist, &status, false); |
| } |
| } else { |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static struct intel_vgpu_execlist_slot *get_next_execlist_slot( |
| struct intel_vgpu_execlist *execlist) |
| { |
| struct intel_vgpu *vgpu = execlist->vgpu; |
| int ring_id = execlist->ring_id; |
| u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id, |
| _EL_OFFSET_STATUS); |
| struct execlist_status_format status; |
| |
| status.ldw = vgpu_vreg(vgpu, status_reg); |
| status.udw = vgpu_vreg(vgpu, status_reg + 4); |
| |
| if (status.execlist_queue_full) { |
| gvt_vgpu_err("virtual execlist slots are full\n"); |
| return NULL; |
| } |
| |
| return &execlist->slot[status.execlist_write_pointer]; |
| } |
| |
| static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist, |
| struct execlist_ctx_descriptor_format ctx[2]) |
| { |
| struct intel_vgpu_execlist_slot *running = execlist->running_slot; |
| struct intel_vgpu_execlist_slot *slot = |
| get_next_execlist_slot(execlist); |
| |
| struct execlist_ctx_descriptor_format *ctx0, *ctx1; |
| struct execlist_context_status_format status; |
| struct intel_vgpu *vgpu = execlist->vgpu; |
| |
| gvt_dbg_el("emulate schedule-in\n"); |
| |
| if (!slot) { |
| gvt_vgpu_err("no available execlist slot\n"); |
| return -EINVAL; |
| } |
| |
| memset(&status, 0, sizeof(status)); |
| memset(slot->ctx, 0, sizeof(slot->ctx)); |
| |
| slot->ctx[0] = ctx[0]; |
| slot->ctx[1] = ctx[1]; |
| |
| gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n", |
| slot->index, ctx[0].context_id, |
| ctx[1].context_id); |
| |
| /* |
| * no running execlist, make this write bundle as running execlist |
| * -> idle-to-active |
| */ |
| if (!running) { |
| gvt_dbg_el("no current running execlist\n"); |
| |
| execlist->running_slot = slot; |
| execlist->pending_slot = NULL; |
| execlist->running_context = &slot->ctx[0]; |
| |
| gvt_dbg_el("running slot index %d running context %x\n", |
| execlist->running_slot->index, |
| execlist->running_context->context_id); |
| |
| emulate_execlist_status(execlist); |
| |
| status.idle_to_active = 1; |
| status.context_id = 0; |
| |
| emulate_csb_update(execlist, &status, false); |
| return 0; |
| } |
| |
| ctx0 = &running->ctx[0]; |
| ctx1 = &running->ctx[1]; |
| |
| gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n", |
| running->index, ctx0->context_id, ctx1->context_id); |
| |
| /* |
| * already has an running execlist |
| * a. running ctx1 is valid, |
| * ctx0 is finished, and running ctx1 == new execlist ctx[0] |
| * b. running ctx1 is not valid, |
| * ctx0 == new execlist ctx[0] |
| * ----> lite-restore + preempted |
| */ |
| if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) && |
| /* condition a */ |
| (!same_context(ctx0, execlist->running_context))) || |
| (!valid_context(ctx1) && |
| same_context(ctx0, &slot->ctx[0]))) { /* condition b */ |
| gvt_dbg_el("need to switch virtual execlist slot\n"); |
| |
| execlist->pending_slot = slot; |
| switch_virtual_execlist_slot(execlist); |
| |
| emulate_execlist_status(execlist); |
| |
| status.lite_restore = status.preempted = 1; |
| status.context_id = ctx[0].context_id; |
| |
| emulate_csb_update(execlist, &status, false); |
| } else { |
| gvt_dbg_el("emulate as pending slot\n"); |
| /* |
| * otherwise |
| * --> emulate pending execlist exist + but no preemption case |
| */ |
| execlist->pending_slot = slot; |
| emulate_execlist_status(execlist); |
| } |
| return 0; |
| } |
| |
| static void free_workload(struct intel_vgpu_workload *workload) |
| { |
| intel_vgpu_unpin_mm(workload->shadow_mm); |
| intel_gvt_mm_unreference(workload->shadow_mm); |
| kmem_cache_free(workload->vgpu->workloads, workload); |
| } |
| |
| #define get_desc_from_elsp_dwords(ed, i) \ |
| ((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2])) |
| |
| static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) |
| { |
| const int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd; |
| struct intel_shadow_bb_entry *entry_obj; |
| |
| /* pin the gem object to ggtt */ |
| list_for_each_entry(entry_obj, &workload->shadow_bb, list) { |
| struct i915_vma *vma; |
| |
| vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0, 4, 0); |
| if (IS_ERR(vma)) { |
| return; |
| } |
| |
| /* FIXME: we are not tracking our pinned VMA leaving it |
| * up to the core to fix up the stray pin_count upon |
| * free. |
| */ |
| |
| /* update the relocate gma with shadow batch buffer*/ |
| entry_obj->bb_start_cmd_va[1] = i915_ggtt_offset(vma); |
| if (gmadr_bytes == 8) |
| entry_obj->bb_start_cmd_va[2] = 0; |
| } |
| } |
| |
| static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) |
| { |
| struct intel_vgpu_workload *workload = container_of(wa_ctx, |
| struct intel_vgpu_workload, |
| wa_ctx); |
| int ring_id = workload->ring_id; |
| struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx; |
| struct drm_i915_gem_object *ctx_obj = |
| shadow_ctx->engine[ring_id].state->obj; |
| struct execlist_ring_context *shadow_ring_context; |
| struct page *page; |
| |
| page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); |
| shadow_ring_context = kmap_atomic(page); |
| |
| shadow_ring_context->bb_per_ctx_ptr.val = |
| (shadow_ring_context->bb_per_ctx_ptr.val & |
| (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; |
| shadow_ring_context->rcs_indirect_ctx.val = |
| (shadow_ring_context->rcs_indirect_ctx.val & |
| (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; |
| |
| kunmap_atomic(shadow_ring_context); |
| return 0; |
| } |
| |
| static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) |
| { |
| struct i915_vma *vma; |
| unsigned char *per_ctx_va = |
| (unsigned char *)wa_ctx->indirect_ctx.shadow_va + |
| wa_ctx->indirect_ctx.size; |
| |
| if (wa_ctx->indirect_ctx.size == 0) |
| return; |
| |
| vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, |
| 0, CACHELINE_BYTES, 0); |
| if (IS_ERR(vma)) { |
| return; |
| } |
| |
| /* FIXME: we are not tracking our pinned VMA leaving it |
| * up to the core to fix up the stray pin_count upon |
| * free. |
| */ |
| |
| wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); |
| |
| wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); |
| memset(per_ctx_va, 0, CACHELINE_BYTES); |
| |
| update_wa_ctx_2_shadow_ctx(wa_ctx); |
| } |
| |
| static int prepare_execlist_workload(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct execlist_ctx_descriptor_format ctx[2]; |
| int ring_id = workload->ring_id; |
| |
| intel_vgpu_pin_mm(workload->shadow_mm); |
| intel_vgpu_sync_oos_pages(workload->vgpu); |
| intel_vgpu_flush_post_shadow(workload->vgpu); |
| prepare_shadow_batch_buffer(workload); |
| prepare_shadow_wa_ctx(&workload->wa_ctx); |
| if (!workload->emulate_schedule_in) |
| return 0; |
| |
| ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1); |
| ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0); |
| |
| return emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx); |
| } |
| |
| static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) |
| { |
| /* release all the shadow batch buffer */ |
| if (!list_empty(&workload->shadow_bb)) { |
| struct intel_shadow_bb_entry *entry_obj = |
| list_first_entry(&workload->shadow_bb, |
| struct intel_shadow_bb_entry, |
| list); |
| struct intel_shadow_bb_entry *temp; |
| |
| list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb, |
| list) { |
| i915_gem_object_unpin_map(entry_obj->obj); |
| i915_gem_object_put(entry_obj->obj); |
| list_del(&entry_obj->list); |
| kfree(entry_obj); |
| } |
| } |
| } |
| |
| static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) |
| { |
| if (!wa_ctx->indirect_ctx.obj) |
| return; |
| |
| i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); |
| i915_gem_object_put(wa_ctx->indirect_ctx.obj); |
| } |
| |
| static int complete_execlist_workload(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| int ring_id = workload->ring_id; |
| struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id]; |
| struct intel_vgpu_workload *next_workload; |
| struct list_head *next = workload_q_head(vgpu, ring_id)->next; |
| bool lite_restore = false; |
| int ret; |
| |
| gvt_dbg_el("complete workload %p status %d\n", workload, |
| workload->status); |
| |
| release_shadow_batch_buffer(workload); |
| release_shadow_wa_ctx(&workload->wa_ctx); |
| |
| if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) { |
| /* if workload->status is not successful means HW GPU |
| * has occurred GPU hang or something wrong with i915/GVT, |
| * and GVT won't inject context switch interrupt to guest. |
| * So this error is a vGPU hang actually to the guest. |
| * According to this we should emunlate a vGPU hang. If |
| * there are pending workloads which are already submitted |
| * from guest, we should clean them up like HW GPU does. |
| * |
| * if it is in middle of engine resetting, the pending |
| * workloads won't be submitted to HW GPU and will be |
| * cleaned up during the resetting process later, so doing |
| * the workload clean up here doesn't have any impact. |
| **/ |
| clean_workloads(vgpu, ENGINE_MASK(ring_id)); |
| goto out; |
| } |
| |
| if (!list_empty(workload_q_head(vgpu, ring_id))) { |
| struct execlist_ctx_descriptor_format *this_desc, *next_desc; |
| |
| next_workload = container_of(next, |
| struct intel_vgpu_workload, list); |
| this_desc = &workload->ctx_desc; |
| next_desc = &next_workload->ctx_desc; |
| |
| lite_restore = same_context(this_desc, next_desc); |
| } |
| |
| if (lite_restore) { |
| gvt_dbg_el("next context == current - no schedule-out\n"); |
| free_workload(workload); |
| return 0; |
| } |
| |
| ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc); |
| if (ret) |
| goto err; |
| out: |
| free_workload(workload); |
| return 0; |
| err: |
| free_workload(workload); |
| return ret; |
| } |
| |
| #define RING_CTX_OFF(x) \ |
| offsetof(struct execlist_ring_context, x) |
| |
| static void read_guest_pdps(struct intel_vgpu *vgpu, |
| u64 ring_context_gpa, u32 pdp[8]) |
| { |
| u64 gpa; |
| int i; |
| |
| gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val); |
| |
| for (i = 0; i < 8; i++) |
| intel_gvt_hypervisor_read_gpa(vgpu, |
| gpa + i * 8, &pdp[7 - i], 4); |
| } |
| |
| static int prepare_mm(struct intel_vgpu_workload *workload) |
| { |
| struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; |
| struct intel_vgpu_mm *mm; |
| struct intel_vgpu *vgpu = workload->vgpu; |
| int page_table_level; |
| u32 pdp[8]; |
| |
| if (desc->addressing_mode == 1) { /* legacy 32-bit */ |
| page_table_level = 3; |
| } else if (desc->addressing_mode == 3) { /* legacy 64 bit */ |
| page_table_level = 4; |
| } else { |
| gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); |
| return -EINVAL; |
| } |
| |
| read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp); |
| |
| mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp); |
| if (mm) { |
| intel_gvt_mm_reference(mm); |
| } else { |
| |
| mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT, |
| pdp, page_table_level, 0); |
| if (IS_ERR(mm)) { |
| gvt_vgpu_err("fail to create mm object.\n"); |
| return PTR_ERR(mm); |
| } |
| } |
| workload->shadow_mm = mm; |
| return 0; |
| } |
| |
| #define get_last_workload(q) \ |
| (list_empty(q) ? NULL : container_of(q->prev, \ |
| struct intel_vgpu_workload, list)) |
| |
| static int submit_context(struct intel_vgpu *vgpu, int ring_id, |
| struct execlist_ctx_descriptor_format *desc, |
| bool emulate_schedule_in) |
| { |
| struct list_head *q = workload_q_head(vgpu, ring_id); |
| struct intel_vgpu_workload *last_workload = get_last_workload(q); |
| struct intel_vgpu_workload *workload = NULL; |
| struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; |
| u64 ring_context_gpa; |
| u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; |
| int ret; |
| |
| ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, |
| (u32)((desc->lrca + 1) << GTT_PAGE_SHIFT)); |
| if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { |
| gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); |
| return -EINVAL; |
| } |
| |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(ring_header.val), &head, 4); |
| |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(ring_tail.val), &tail, 4); |
| |
| head &= RB_HEAD_OFF_MASK; |
| tail &= RB_TAIL_OFF_MASK; |
| |
| if (last_workload && same_context(&last_workload->ctx_desc, desc)) { |
| gvt_dbg_el("ring id %d cur workload == last\n", ring_id); |
| gvt_dbg_el("ctx head %x real head %lx\n", head, |
| last_workload->rb_tail); |
| /* |
| * cannot use guest context head pointer here, |
| * as it might not be updated at this time |
| */ |
| head = last_workload->rb_tail; |
| } |
| |
| gvt_dbg_el("ring id %d begin a new workload\n", ring_id); |
| |
| workload = kmem_cache_zalloc(vgpu->workloads, GFP_KERNEL); |
| if (!workload) |
| return -ENOMEM; |
| |
| /* record some ring buffer register values for scan and shadow */ |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(rb_start.val), &start, 4); |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(rb_ctrl.val), &ctl, 4); |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); |
| |
| INIT_LIST_HEAD(&workload->list); |
| INIT_LIST_HEAD(&workload->shadow_bb); |
| |
| init_waitqueue_head(&workload->shadow_ctx_status_wq); |
| atomic_set(&workload->shadow_ctx_active, 0); |
| |
| workload->vgpu = vgpu; |
| workload->ring_id = ring_id; |
| workload->ctx_desc = *desc; |
| workload->ring_context_gpa = ring_context_gpa; |
| workload->rb_head = head; |
| workload->rb_tail = tail; |
| workload->rb_start = start; |
| workload->rb_ctl = ctl; |
| workload->prepare = prepare_execlist_workload; |
| workload->complete = complete_execlist_workload; |
| workload->status = -EINPROGRESS; |
| workload->emulate_schedule_in = emulate_schedule_in; |
| workload->shadowed = false; |
| |
| if (ring_id == RCS) { |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); |
| |
| workload->wa_ctx.indirect_ctx.guest_gma = |
| indirect_ctx & INDIRECT_CTX_ADDR_MASK; |
| workload->wa_ctx.indirect_ctx.size = |
| (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * |
| CACHELINE_BYTES; |
| workload->wa_ctx.per_ctx.guest_gma = |
| per_ctx & PER_CTX_ADDR_MASK; |
| |
| WARN_ON(workload->wa_ctx.indirect_ctx.size && !(per_ctx & 0x1)); |
| } |
| |
| if (emulate_schedule_in) |
| workload->elsp_dwords = vgpu->execlist[ring_id].elsp_dwords; |
| |
| gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", |
| workload, ring_id, head, tail, start, ctl); |
| |
| gvt_dbg_el("workload %p emulate schedule_in %d\n", workload, |
| emulate_schedule_in); |
| |
| ret = prepare_mm(workload); |
| if (ret) { |
| kmem_cache_free(vgpu->workloads, workload); |
| return ret; |
| } |
| |
| /* Only scan and shadow the first workload in the queue |
| * as there is only one pre-allocated buf-obj for shadow. |
| */ |
| if (list_empty(workload_q_head(vgpu, ring_id))) { |
| intel_runtime_pm_get(dev_priv); |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| intel_gvt_scan_and_shadow_workload(workload); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| intel_runtime_pm_put(dev_priv); |
| } |
| |
| queue_workload(workload); |
| return 0; |
| } |
| |
| int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id) |
| { |
| struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id]; |
| struct execlist_ctx_descriptor_format desc[2]; |
| int i, ret; |
| |
| desc[0] = *get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1); |
| desc[1] = *get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0); |
| |
| if (!desc[0].valid) { |
| gvt_vgpu_err("invalid elsp submission, desc0 is invalid\n"); |
| goto inv_desc; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(desc); i++) { |
| if (!desc[i].valid) |
| continue; |
| if (!desc[i].privilege_access) { |
| gvt_vgpu_err("unexpected GGTT elsp submission\n"); |
| goto inv_desc; |
| } |
| } |
| |
| /* submit workload */ |
| for (i = 0; i < ARRAY_SIZE(desc); i++) { |
| if (!desc[i].valid) |
| continue; |
| ret = submit_context(vgpu, ring_id, &desc[i], i == 0); |
| if (ret) { |
| gvt_vgpu_err("failed to submit desc %d\n", i); |
| return ret; |
| } |
| } |
| |
| return 0; |
| |
| inv_desc: |
| gvt_vgpu_err("descriptors content: desc0 %08x %08x desc1 %08x %08x\n", |
| desc[0].udw, desc[0].ldw, desc[1].udw, desc[1].ldw); |
| return -EINVAL; |
| } |
| |
| static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id) |
| { |
| struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id]; |
| struct execlist_context_status_pointer_format ctx_status_ptr; |
| u32 ctx_status_ptr_reg; |
| |
| memset(execlist, 0, sizeof(*execlist)); |
| |
| execlist->vgpu = vgpu; |
| execlist->ring_id = ring_id; |
| execlist->slot[0].index = 0; |
| execlist->slot[1].index = 1; |
| |
| ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, |
| _EL_OFFSET_STATUS_PTR); |
| |
| ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); |
| ctx_status_ptr.read_ptr = 0; |
| ctx_status_ptr.write_ptr = 0x7; |
| vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; |
| } |
| |
| static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask) |
| { |
| struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; |
| struct intel_engine_cs *engine; |
| struct intel_vgpu_workload *pos, *n; |
| unsigned int tmp; |
| |
| /* free the unsubmited workloads in the queues. */ |
| for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { |
| list_for_each_entry_safe(pos, n, |
| &vgpu->workload_q_head[engine->id], list) { |
| list_del_init(&pos->list); |
| free_workload(pos); |
| } |
| |
| clear_bit(engine->id, vgpu->shadow_ctx_desc_updated); |
| } |
| } |
| |
| void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu) |
| { |
| clean_workloads(vgpu, ALL_ENGINES); |
| kmem_cache_destroy(vgpu->workloads); |
| } |
| |
| int intel_vgpu_init_execlist(struct intel_vgpu *vgpu) |
| { |
| enum intel_engine_id i; |
| struct intel_engine_cs *engine; |
| |
| /* each ring has a virtual execlist engine */ |
| for_each_engine(engine, vgpu->gvt->dev_priv, i) { |
| init_vgpu_execlist(vgpu, i); |
| INIT_LIST_HEAD(&vgpu->workload_q_head[i]); |
| } |
| |
| vgpu->workloads = kmem_cache_create("gvt-g_vgpu_workload", |
| sizeof(struct intel_vgpu_workload), 0, |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| |
| if (!vgpu->workloads) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu, |
| unsigned long engine_mask) |
| { |
| struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; |
| struct intel_engine_cs *engine; |
| unsigned int tmp; |
| |
| clean_workloads(vgpu, engine_mask); |
| for_each_engine_masked(engine, dev_priv, engine_mask, tmp) |
| init_vgpu_execlist(vgpu, engine->id); |
| } |