blob: dbd901e94ea637bcfad26cc21de52c89e10862e9 [file] [log] [blame]
/*
* Intel GTT (Graphics Translation Table) routines
*
* Caveat: This driver implements the linux agp interface, but this is far from
* a agp driver! GTT support ended up here for purely historical reasons: The
* old userspace intel graphics drivers needed an interface to map memory into
* the GTT. And the drm provides a default interface for graphic devices sitting
* on an agp port. So it made sense to fake the GTT support as an agp port to
* avoid having to create a new api.
*
* With gem this does not make much sense anymore, just needlessly complicates
* the code. But as long as the old graphics stack is still support, it's stuck
* here.
*
* /fairy-tale-mode off
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/pagemap.h>
#include <linux/agp_backend.h>
#include <linux/delay.h>
#include <asm/smp.h>
#include "agp.h"
#include "intel-agp.h"
#include <drm/intel-gtt.h>
/*
* If we have Intel graphics, we're not going to have anything other than
* an Intel IOMMU. So make the correct use of the PCI DMA API contingent
* on the Intel IOMMU support (CONFIG_INTEL_IOMMU).
* Only newer chipsets need to bother with this, of course.
*/
#ifdef CONFIG_INTEL_IOMMU
#define USE_PCI_DMA_API 1
#else
#define USE_PCI_DMA_API 0
#endif
struct intel_gtt_driver {
unsigned int gen : 8;
unsigned int is_g33 : 1;
unsigned int is_pineview : 1;
unsigned int is_ironlake : 1;
unsigned int has_pgtbl_enable : 1;
unsigned int dma_mask_size : 8;
/* Chipset specific GTT setup */
int (*setup)(void);
/* This should undo anything done in ->setup() save the unmapping
* of the mmio register file, that's done in the generic code. */
void (*cleanup)(void);
void (*write_entry)(dma_addr_t addr, unsigned int entry, unsigned int flags);
/* Flags is a more or less chipset specific opaque value.
* For chipsets that need to support old ums (non-gem) code, this
* needs to be identical to the various supported agp memory types! */
bool (*check_flags)(unsigned int flags);
void (*chipset_flush)(void);
};
static struct _intel_private {
struct intel_gtt base;
const struct intel_gtt_driver *driver;
struct pci_dev *pcidev; /* device one */
struct pci_dev *bridge_dev;
u8 __iomem *registers;
phys_addr_t gtt_bus_addr;
u32 PGETBL_save;
u32 __iomem *gtt; /* I915G */
bool clear_fake_agp; /* on first access via agp, fill with scratch */
int num_dcache_entries;
void __iomem *i9xx_flush_page;
char *i81x_gtt_table;
struct resource ifp_resource;
int resource_valid;
struct page *scratch_page;
int refcount;
} intel_private;
#define INTEL_GTT_GEN intel_private.driver->gen
#define IS_G33 intel_private.driver->is_g33
#define IS_PINEVIEW intel_private.driver->is_pineview
#define IS_IRONLAKE intel_private.driver->is_ironlake
#define HAS_PGTBL_EN intel_private.driver->has_pgtbl_enable
static int intel_gtt_map_memory(struct page **pages,
unsigned int num_entries,
struct sg_table *st)
{
struct scatterlist *sg;
int i;
DBG("try mapping %lu pages\n", (unsigned long)num_entries);
if (sg_alloc_table(st, num_entries, GFP_KERNEL))
goto err;
for_each_sg(st->sgl, sg, num_entries, i)
sg_set_page(sg, pages[i], PAGE_SIZE, 0);
if (!pci_map_sg(intel_private.pcidev,
st->sgl, st->nents, PCI_DMA_BIDIRECTIONAL))
goto err;
return 0;
err:
sg_free_table(st);
return -ENOMEM;
}
static void intel_gtt_unmap_memory(struct scatterlist *sg_list, int num_sg)
{
struct sg_table st;
DBG("try unmapping %lu pages\n", (unsigned long)mem->page_count);
pci_unmap_sg(intel_private.pcidev, sg_list,
num_sg, PCI_DMA_BIDIRECTIONAL);
st.sgl = sg_list;
st.orig_nents = st.nents = num_sg;
sg_free_table(&st);
}
static void intel_fake_agp_enable(struct agp_bridge_data *bridge, u32 mode)
{
return;
}
/* Exists to support ARGB cursors */
static struct page *i8xx_alloc_pages(void)
{
struct page *page;
page = alloc_pages(GFP_KERNEL | GFP_DMA32, 2);
if (page == NULL)
return NULL;
if (set_pages_uc(page, 4) < 0) {
set_pages_wb(page, 4);
__free_pages(page, 2);
return NULL;
}
get_page(page);
atomic_inc(&agp_bridge->current_memory_agp);
return page;
}
static void i8xx_destroy_pages(struct page *page)
{
if (page == NULL)
return;
set_pages_wb(page, 4);
put_page(page);
__free_pages(page, 2);
atomic_dec(&agp_bridge->current_memory_agp);
}
#define I810_GTT_ORDER 4
static int i810_setup(void)
{
u32 reg_addr;
char *gtt_table;
/* i81x does not preallocate the gtt. It's always 64kb in size. */
gtt_table = alloc_gatt_pages(I810_GTT_ORDER);
if (gtt_table == NULL)
return -ENOMEM;
intel_private.i81x_gtt_table = gtt_table;
pci_read_config_dword(intel_private.pcidev, I810_MMADDR, &reg_addr);
reg_addr &= 0xfff80000;
intel_private.registers = ioremap(reg_addr, KB(64));
if (!intel_private.registers)
return -ENOMEM;
writel(virt_to_phys(gtt_table) | I810_PGETBL_ENABLED,
intel_private.registers+I810_PGETBL_CTL);
intel_private.gtt_bus_addr = reg_addr + I810_PTE_BASE;
if ((readl(intel_private.registers+I810_DRAM_CTL)
& I810_DRAM_ROW_0) == I810_DRAM_ROW_0_SDRAM) {
dev_info(&intel_private.pcidev->dev,
"detected 4MB dedicated video ram\n");
intel_private.num_dcache_entries = 1024;
}
return 0;
}
static void i810_cleanup(void)
{
writel(0, intel_private.registers+I810_PGETBL_CTL);
free_gatt_pages(intel_private.i81x_gtt_table, I810_GTT_ORDER);
}
static int i810_insert_dcache_entries(struct agp_memory *mem, off_t pg_start,
int type)
{
int i;
if ((pg_start + mem->page_count)
> intel_private.num_dcache_entries)
return -EINVAL;
if (!mem->is_flushed)
global_cache_flush();
for (i = pg_start; i < (pg_start + mem->page_count); i++) {
dma_addr_t addr = i << PAGE_SHIFT;
intel_private.driver->write_entry(addr,
i, type);
}
readl(intel_private.gtt+i-1);
return 0;
}
/*
* The i810/i830 requires a physical address to program its mouse
* pointer into hardware.
* However the Xserver still writes to it through the agp aperture.
*/
static struct agp_memory *alloc_agpphysmem_i8xx(size_t pg_count, int type)
{
struct agp_memory *new;
struct page *page;
switch (pg_count) {
case 1: page = agp_bridge->driver->agp_alloc_page(agp_bridge);
break;
case 4:
/* kludge to get 4 physical pages for ARGB cursor */
page = i8xx_alloc_pages();
break;
default:
return NULL;
}
if (page == NULL)
return NULL;
new = agp_create_memory(pg_count);
if (new == NULL)
return NULL;
new->pages[0] = page;
if (pg_count == 4) {
/* kludge to get 4 physical pages for ARGB cursor */
new->pages[1] = new->pages[0] + 1;
new->pages[2] = new->pages[1] + 1;
new->pages[3] = new->pages[2] + 1;
}
new->page_count = pg_count;
new->num_scratch_pages = pg_count;
new->type = AGP_PHYS_MEMORY;
new->physical = page_to_phys(new->pages[0]);
return new;
}
static void intel_i810_free_by_type(struct agp_memory *curr)
{
agp_free_key(curr->key);
if (curr->type == AGP_PHYS_MEMORY) {
if (curr->page_count == 4)
i8xx_destroy_pages(curr->pages[0]);
else {
agp_bridge->driver->agp_destroy_page(curr->pages[0],
AGP_PAGE_DESTROY_UNMAP);
agp_bridge->driver->agp_destroy_page(curr->pages[0],
AGP_PAGE_DESTROY_FREE);
}
agp_free_page_array(curr);
}
kfree(curr);
}
static int intel_gtt_setup_scratch_page(void)
{
struct page *page;
dma_addr_t dma_addr;
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (page == NULL)
return -ENOMEM;
get_page(page);
set_pages_uc(page, 1);
if (intel_private.base.needs_dmar) {
dma_addr = pci_map_page(intel_private.pcidev, page, 0,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(intel_private.pcidev, dma_addr))
return -EINVAL;
intel_private.base.scratch_page_dma = dma_addr;
} else
intel_private.base.scratch_page_dma = page_to_phys(page);
intel_private.scratch_page = page;
return 0;
}
static void i810_write_entry(dma_addr_t addr, unsigned int entry,
unsigned int flags)
{
u32 pte_flags = I810_PTE_VALID;
switch (flags) {
case AGP_DCACHE_MEMORY:
pte_flags |= I810_PTE_LOCAL;
break;
case AGP_USER_CACHED_MEMORY:
pte_flags |= I830_PTE_SYSTEM_CACHED;
break;
}
writel(addr | pte_flags, intel_private.gtt + entry);
}
static const struct aper_size_info_fixed intel_fake_agp_sizes[] = {
{32, 8192, 3},
{64, 16384, 4},
{128, 32768, 5},
{256, 65536, 6},
{512, 131072, 7},
};
static unsigned int intel_gtt_stolen_size(void)
{
u16 gmch_ctrl;
u8 rdct;
int local = 0;
static const int ddt[4] = { 0, 16, 32, 64 };
unsigned int stolen_size = 0;
if (INTEL_GTT_GEN == 1)
return 0; /* no stolen mem on i81x */
pci_read_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, &gmch_ctrl);
if (intel_private.bridge_dev->device == PCI_DEVICE_ID_INTEL_82830_HB ||
intel_private.bridge_dev->device == PCI_DEVICE_ID_INTEL_82845G_HB) {
switch (gmch_ctrl & I830_GMCH_GMS_MASK) {
case I830_GMCH_GMS_STOLEN_512:
stolen_size = KB(512);
break;
case I830_GMCH_GMS_STOLEN_1024:
stolen_size = MB(1);
break;
case I830_GMCH_GMS_STOLEN_8192:
stolen_size = MB(8);
break;
case I830_GMCH_GMS_LOCAL:
rdct = readb(intel_private.registers+I830_RDRAM_CHANNEL_TYPE);
stolen_size = (I830_RDRAM_ND(rdct) + 1) *
MB(ddt[I830_RDRAM_DDT(rdct)]);
local = 1;
break;
default:
stolen_size = 0;
break;
}
} else {
switch (gmch_ctrl & I855_GMCH_GMS_MASK) {
case I855_GMCH_GMS_STOLEN_1M:
stolen_size = MB(1);
break;
case I855_GMCH_GMS_STOLEN_4M:
stolen_size = MB(4);
break;
case I855_GMCH_GMS_STOLEN_8M:
stolen_size = MB(8);
break;
case I855_GMCH_GMS_STOLEN_16M:
stolen_size = MB(16);
break;
case I855_GMCH_GMS_STOLEN_32M:
stolen_size = MB(32);
break;
case I915_GMCH_GMS_STOLEN_48M:
stolen_size = MB(48);
break;
case I915_GMCH_GMS_STOLEN_64M:
stolen_size = MB(64);
break;
case G33_GMCH_GMS_STOLEN_128M:
stolen_size = MB(128);
break;
case G33_GMCH_GMS_STOLEN_256M:
stolen_size = MB(256);
break;
case INTEL_GMCH_GMS_STOLEN_96M:
stolen_size = MB(96);
break;
case INTEL_GMCH_GMS_STOLEN_160M:
stolen_size = MB(160);
break;
case INTEL_GMCH_GMS_STOLEN_224M:
stolen_size = MB(224);
break;
case INTEL_GMCH_GMS_STOLEN_352M:
stolen_size = MB(352);
break;
default:
stolen_size = 0;
break;
}
}
if (stolen_size > 0) {
dev_info(&intel_private.bridge_dev->dev, "detected %dK %s memory\n",
stolen_size / KB(1), local ? "local" : "stolen");
} else {
dev_info(&intel_private.bridge_dev->dev,
"no pre-allocated video memory detected\n");
stolen_size = 0;
}
return stolen_size;
}
static void i965_adjust_pgetbl_size(unsigned int size_flag)
{
u32 pgetbl_ctl, pgetbl_ctl2;
/* ensure that ppgtt is disabled */
pgetbl_ctl2 = readl(intel_private.registers+I965_PGETBL_CTL2);
pgetbl_ctl2 &= ~I810_PGETBL_ENABLED;
writel(pgetbl_ctl2, intel_private.registers+I965_PGETBL_CTL2);
/* write the new ggtt size */
pgetbl_ctl = readl(intel_private.registers+I810_PGETBL_CTL);
pgetbl_ctl &= ~I965_PGETBL_SIZE_MASK;
pgetbl_ctl |= size_flag;
writel(pgetbl_ctl, intel_private.registers+I810_PGETBL_CTL);
}
static unsigned int i965_gtt_total_entries(void)
{
int size;
u32 pgetbl_ctl;
u16 gmch_ctl;
pci_read_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, &gmch_ctl);
if (INTEL_GTT_GEN == 5) {
switch (gmch_ctl & G4x_GMCH_SIZE_MASK) {
case G4x_GMCH_SIZE_1M:
case G4x_GMCH_SIZE_VT_1M:
i965_adjust_pgetbl_size(I965_PGETBL_SIZE_1MB);
break;
case G4x_GMCH_SIZE_VT_1_5M:
i965_adjust_pgetbl_size(I965_PGETBL_SIZE_1_5MB);
break;
case G4x_GMCH_SIZE_2M:
case G4x_GMCH_SIZE_VT_2M:
i965_adjust_pgetbl_size(I965_PGETBL_SIZE_2MB);
break;
}
}
pgetbl_ctl = readl(intel_private.registers+I810_PGETBL_CTL);
switch (pgetbl_ctl & I965_PGETBL_SIZE_MASK) {
case I965_PGETBL_SIZE_128KB:
size = KB(128);
break;
case I965_PGETBL_SIZE_256KB:
size = KB(256);
break;
case I965_PGETBL_SIZE_512KB:
size = KB(512);
break;
/* GTT pagetable sizes bigger than 512KB are not possible on G33! */
case I965_PGETBL_SIZE_1MB:
size = KB(1024);
break;
case I965_PGETBL_SIZE_2MB:
size = KB(2048);
break;
case I965_PGETBL_SIZE_1_5MB:
size = KB(1024 + 512);
break;
default:
dev_info(&intel_private.pcidev->dev,
"unknown page table size, assuming 512KB\n");
size = KB(512);
}
return size/4;
}
static unsigned int intel_gtt_total_entries(void)
{
if (IS_G33 || INTEL_GTT_GEN == 4 || INTEL_GTT_GEN == 5)
return i965_gtt_total_entries();
else {
/* On previous hardware, the GTT size was just what was
* required to map the aperture.
*/
return intel_private.base.gtt_mappable_entries;
}
}
static unsigned int intel_gtt_mappable_entries(void)
{
unsigned int aperture_size;
if (INTEL_GTT_GEN == 1) {
u32 smram_miscc;
pci_read_config_dword(intel_private.bridge_dev,
I810_SMRAM_MISCC, &smram_miscc);
if ((smram_miscc & I810_GFX_MEM_WIN_SIZE)
== I810_GFX_MEM_WIN_32M)
aperture_size = MB(32);
else
aperture_size = MB(64);
} else if (INTEL_GTT_GEN == 2) {
u16 gmch_ctrl;
pci_read_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, &gmch_ctrl);
if ((gmch_ctrl & I830_GMCH_MEM_MASK) == I830_GMCH_MEM_64M)
aperture_size = MB(64);
else
aperture_size = MB(128);
} else {
/* 9xx supports large sizes, just look at the length */
aperture_size = pci_resource_len(intel_private.pcidev, 2);
}
return aperture_size >> PAGE_SHIFT;
}
static void intel_gtt_teardown_scratch_page(void)
{
set_pages_wb(intel_private.scratch_page, 1);
pci_unmap_page(intel_private.pcidev, intel_private.base.scratch_page_dma,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
put_page(intel_private.scratch_page);
__free_page(intel_private.scratch_page);
}
static void intel_gtt_cleanup(void)
{
intel_private.driver->cleanup();
iounmap(intel_private.gtt);
iounmap(intel_private.registers);
intel_gtt_teardown_scratch_page();
}
static int intel_gtt_init(void)
{
u32 gma_addr;
u32 gtt_map_size;
int ret;
ret = intel_private.driver->setup();
if (ret != 0)
return ret;
intel_private.base.gtt_mappable_entries = intel_gtt_mappable_entries();
intel_private.base.gtt_total_entries = intel_gtt_total_entries();
/* save the PGETBL reg for resume */
intel_private.PGETBL_save =
readl(intel_private.registers+I810_PGETBL_CTL)
& ~I810_PGETBL_ENABLED;
/* we only ever restore the register when enabling the PGTBL... */
if (HAS_PGTBL_EN)
intel_private.PGETBL_save |= I810_PGETBL_ENABLED;
dev_info(&intel_private.bridge_dev->dev,
"detected gtt size: %dK total, %dK mappable\n",
intel_private.base.gtt_total_entries * 4,
intel_private.base.gtt_mappable_entries * 4);
gtt_map_size = intel_private.base.gtt_total_entries * 4;
intel_private.gtt = NULL;
if (INTEL_GTT_GEN < 6 && INTEL_GTT_GEN > 2)
intel_private.gtt = ioremap_wc(intel_private.gtt_bus_addr,
gtt_map_size);
if (intel_private.gtt == NULL)
intel_private.gtt = ioremap(intel_private.gtt_bus_addr,
gtt_map_size);
if (intel_private.gtt == NULL) {
intel_private.driver->cleanup();
iounmap(intel_private.registers);
return -ENOMEM;
}
intel_private.base.gtt = intel_private.gtt;
global_cache_flush(); /* FIXME: ? */
intel_private.base.stolen_size = intel_gtt_stolen_size();
intel_private.base.needs_dmar = USE_PCI_DMA_API && INTEL_GTT_GEN > 2;
ret = intel_gtt_setup_scratch_page();
if (ret != 0) {
intel_gtt_cleanup();
return ret;
}
if (INTEL_GTT_GEN <= 2)
pci_read_config_dword(intel_private.pcidev, I810_GMADDR,
&gma_addr);
else
pci_read_config_dword(intel_private.pcidev, I915_GMADDR,
&gma_addr);
intel_private.base.gma_bus_addr = (gma_addr & PCI_BASE_ADDRESS_MEM_MASK);
return 0;
}
static int intel_fake_agp_fetch_size(void)
{
int num_sizes = ARRAY_SIZE(intel_fake_agp_sizes);
unsigned int aper_size;
int i;
aper_size = (intel_private.base.gtt_mappable_entries << PAGE_SHIFT)
/ MB(1);
for (i = 0; i < num_sizes; i++) {
if (aper_size == intel_fake_agp_sizes[i].size) {
agp_bridge->current_size =
(void *) (intel_fake_agp_sizes + i);
return aper_size;
}
}
return 0;
}
static void i830_cleanup(void)
{
}
/* The chipset_flush interface needs to get data that has already been
* flushed out of the CPU all the way out to main memory, because the GPU
* doesn't snoop those buffers.
*
* The 8xx series doesn't have the same lovely interface for flushing the
* chipset write buffers that the later chips do. According to the 865
* specs, it's 64 octwords, or 1KB. So, to get those previous things in
* that buffer out, we just fill 1KB and clflush it out, on the assumption
* that it'll push whatever was in there out. It appears to work.
*/
static void i830_chipset_flush(void)
{
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
/* Forcibly evict everything from the CPU write buffers.
* clflush appears to be insufficient.
*/
wbinvd_on_all_cpus();
/* Now we've only seen documents for this magic bit on 855GM,
* we hope it exists for the other gen2 chipsets...
*
* Also works as advertised on my 845G.
*/
writel(readl(intel_private.registers+I830_HIC) | (1<<31),
intel_private.registers+I830_HIC);
while (readl(intel_private.registers+I830_HIC) & (1<<31)) {
if (time_after(jiffies, timeout))
break;
udelay(50);
}
}
static void i830_write_entry(dma_addr_t addr, unsigned int entry,
unsigned int flags)
{
u32 pte_flags = I810_PTE_VALID;
if (flags == AGP_USER_CACHED_MEMORY)
pte_flags |= I830_PTE_SYSTEM_CACHED;
writel(addr | pte_flags, intel_private.gtt + entry);
}
bool intel_enable_gtt(void)
{
u8 __iomem *reg;
if (INTEL_GTT_GEN == 2) {
u16 gmch_ctrl;
pci_read_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, &gmch_ctrl);
gmch_ctrl |= I830_GMCH_ENABLED;
pci_write_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, gmch_ctrl);
pci_read_config_word(intel_private.bridge_dev,
I830_GMCH_CTRL, &gmch_ctrl);
if ((gmch_ctrl & I830_GMCH_ENABLED) == 0) {
dev_err(&intel_private.pcidev->dev,
"failed to enable the GTT: GMCH_CTRL=%x\n",
gmch_ctrl);
return false;
}
}
/* On the resume path we may be adjusting the PGTBL value, so
* be paranoid and flush all chipset write buffers...
*/
if (INTEL_GTT_GEN >= 3)
writel(0, intel_private.registers+GFX_FLSH_CNTL);
reg = intel_private.registers+I810_PGETBL_CTL;
writel(intel_private.PGETBL_save, reg);
if (HAS_PGTBL_EN && (readl(reg) & I810_PGETBL_ENABLED) == 0) {
dev_err(&intel_private.pcidev->dev,
"failed to enable the GTT: PGETBL=%x [expected %x]\n",
readl(reg), intel_private.PGETBL_save);
return false;
}
if (INTEL_GTT_GEN >= 3)
writel(0, intel_private.registers+GFX_FLSH_CNTL);
return true;
}
EXPORT_SYMBOL(intel_enable_gtt);
static int i830_setup(void)
{
u32 reg_addr;
pci_read_config_dword(intel_private.pcidev, I810_MMADDR, &reg_addr);
reg_addr &= 0xfff80000;
intel_private.registers = ioremap(reg_addr, KB(64));
if (!intel_private.registers)
return -ENOMEM;
intel_private.gtt_bus_addr = reg_addr + I810_PTE_BASE;
return 0;
}
static int intel_fake_agp_create_gatt_table(struct agp_bridge_data *bridge)
{
agp_bridge->gatt_table_real = NULL;
agp_bridge->gatt_table = NULL;
agp_bridge->gatt_bus_addr = 0;
return 0;
}
static int intel_fake_agp_free_gatt_table(struct agp_bridge_data *bridge)
{
return 0;
}
static int intel_fake_agp_configure(void)
{
if (!intel_enable_gtt())
return -EIO;
intel_private.clear_fake_agp = true;
agp_bridge->gart_bus_addr = intel_private.base.gma_bus_addr;
return 0;
}
static bool i830_check_flags(unsigned int flags)
{
switch (flags) {
case 0:
case AGP_PHYS_MEMORY:
case AGP_USER_CACHED_MEMORY:
case AGP_USER_MEMORY:
return true;
}
return false;
}
void intel_gtt_insert_sg_entries(struct sg_table *st,
unsigned int pg_start,
unsigned int flags)
{
struct scatterlist *sg;
unsigned int len, m;
int i, j;
j = pg_start;
/* sg may merge pages, but we have to separate
* per-page addr for GTT */
for_each_sg(st->sgl, sg, st->nents, i) {
len = sg_dma_len(sg) >> PAGE_SHIFT;
for (m = 0; m < len; m++) {
dma_addr_t addr = sg_dma_address(sg) + (m << PAGE_SHIFT);
intel_private.driver->write_entry(addr, j, flags);
j++;
}
}
readl(intel_private.gtt+j-1);
}
EXPORT_SYMBOL(intel_gtt_insert_sg_entries);
static void intel_gtt_insert_pages(unsigned int first_entry,
unsigned int num_entries,
struct page **pages,
unsigned int flags)
{
int i, j;
for (i = 0, j = first_entry; i < num_entries; i++, j++) {
dma_addr_t addr = page_to_phys(pages[i]);
intel_private.driver->write_entry(addr,
j, flags);
}
readl(intel_private.gtt+j-1);
}
static int intel_fake_agp_insert_entries(struct agp_memory *mem,
off_t pg_start, int type)
{
int ret = -EINVAL;
if (intel_private.base.do_idle_maps)
return -ENODEV;
if (intel_private.clear_fake_agp) {
int start = intel_private.base.stolen_size / PAGE_SIZE;
int end = intel_private.base.gtt_mappable_entries;
intel_gtt_clear_range(start, end - start);
intel_private.clear_fake_agp = false;
}
if (INTEL_GTT_GEN == 1 && type == AGP_DCACHE_MEMORY)
return i810_insert_dcache_entries(mem, pg_start, type);
if (mem->page_count == 0)
goto out;
if (pg_start + mem->page_count > intel_private.base.gtt_total_entries)
goto out_err;
if (type != mem->type)
goto out_err;
if (!intel_private.driver->check_flags(type))
goto out_err;
if (!mem->is_flushed)
global_cache_flush();
if (intel_private.base.needs_dmar) {
struct sg_table st;
ret = intel_gtt_map_memory(mem->pages, mem->page_count, &st);
if (ret != 0)
return ret;
intel_gtt_insert_sg_entries(&st, pg_start, type);
mem->sg_list = st.sgl;
mem->num_sg = st.nents;
} else
intel_gtt_insert_pages(pg_start, mem->page_count, mem->pages,
type);
out:
ret = 0;
out_err:
mem->is_flushed = true;
return ret;
}
void intel_gtt_clear_range(unsigned int first_entry, unsigned int num_entries)
{
unsigned int i;
for (i = first_entry; i < (first_entry + num_entries); i++) {
intel_private.driver->write_entry(intel_private.base.scratch_page_dma,
i, 0);
}
readl(intel_private.gtt+i-1);
}
EXPORT_SYMBOL(intel_gtt_clear_range);
static int intel_fake_agp_remove_entries(struct agp_memory *mem,
off_t pg_start, int type)
{
if (mem->page_count == 0)
return 0;
if (intel_private.base.do_idle_maps)
return -ENODEV;
intel_gtt_clear_range(pg_start, mem->page_count);
if (intel_private.base.needs_dmar) {
intel_gtt_unmap_memory(mem->sg_list, mem->num_sg);
mem->sg_list = NULL;
mem->num_sg = 0;
}
return 0;
}
static struct agp_memory *intel_fake_agp_alloc_by_type(size_t pg_count,
int type)
{
struct agp_memory *new;
if (type == AGP_DCACHE_MEMORY && INTEL_GTT_GEN == 1) {
if (pg_count != intel_private.num_dcache_entries)
return NULL;
new = agp_create_memory(1);
if (new == NULL)
return NULL;
new->type = AGP_DCACHE_MEMORY;
new->page_count = pg_count;
new->num_scratch_pages = 0;
agp_free_page_array(new);
return new;
}
if (type == AGP_PHYS_MEMORY)
return alloc_agpphysmem_i8xx(pg_count, type);
/* always return NULL for other allocation types for now */
return NULL;
}
static int intel_alloc_chipset_flush_resource(void)
{
int ret;
ret = pci_bus_alloc_resource(intel_private.bridge_dev->bus, &intel_private.ifp_resource, PAGE_SIZE,
PAGE_SIZE, PCIBIOS_MIN_MEM, 0,
pcibios_align_resource, intel_private.bridge_dev);
return ret;
}
static void intel_i915_setup_chipset_flush(void)
{
int ret;
u32 temp;
pci_read_config_dword(intel_private.bridge_dev, I915_IFPADDR, &temp);
if (!(temp & 0x1)) {
intel_alloc_chipset_flush_resource();
intel_private.resource_valid = 1;
pci_write_config_dword(intel_private.bridge_dev, I915_IFPADDR, (intel_private.ifp_resource.start & 0xffffffff) | 0x1);
} else {
temp &= ~1;
intel_private.resource_valid = 1;
intel_private.ifp_resource.start = temp;
intel_private.ifp_resource.end = temp + PAGE_SIZE;
ret = request_resource(&iomem_resource, &intel_private.ifp_resource);
/* some BIOSes reserve this area in a pnp some don't */
if (ret)
intel_private.resource_valid = 0;
}
}
static void intel_i965_g33_setup_chipset_flush(void)
{
u32 temp_hi, temp_lo;
int ret;
pci_read_config_dword(intel_private.bridge_dev, I965_IFPADDR + 4, &temp_hi);
pci_read_config_dword(intel_private.bridge_dev, I965_IFPADDR, &temp_lo);
if (!(temp_lo & 0x1)) {
intel_alloc_chipset_flush_resource();
intel_private.resource_valid = 1;
pci_write_config_dword(intel_private.bridge_dev, I965_IFPADDR + 4,
upper_32_bits(intel_private.ifp_resource.start));
pci_write_config_dword(intel_private.bridge_dev, I965_IFPADDR, (intel_private.ifp_resource.start & 0xffffffff) | 0x1);
} else {
u64 l64;
temp_lo &= ~0x1;
l64 = ((u64)temp_hi << 32) | temp_lo;
intel_private.resource_valid = 1;
intel_private.ifp_resource.start = l64;
intel_private.ifp_resource.end = l64 + PAGE_SIZE;
ret = request_resource(&iomem_resource, &intel_private.ifp_resource);
/* some BIOSes reserve this area in a pnp some don't */
if (ret)
intel_private.resource_valid = 0;
}
}
static void intel_i9xx_setup_flush(void)
{
/* return if already configured */
if (intel_private.ifp_resource.start)
return;
if (INTEL_GTT_GEN == 6)
return;
/* setup a resource for this object */
intel_private.ifp_resource.name = "Intel Flush Page";
intel_private.ifp_resource.flags = IORESOURCE_MEM;
/* Setup chipset flush for 915 */
if (IS_G33 || INTEL_GTT_GEN >= 4) {
intel_i965_g33_setup_chipset_flush();
} else {
intel_i915_setup_chipset_flush();
}
if (intel_private.ifp_resource.start)
intel_private.i9xx_flush_page = ioremap_nocache(intel_private.ifp_resource.start, PAGE_SIZE);
if (!intel_private.i9xx_flush_page)
dev_err(&intel_private.pcidev->dev,
"can't ioremap flush page - no chipset flushing\n");
}
static void i9xx_cleanup(void)
{
if (intel_private.i9xx_flush_page)
iounmap(intel_private.i9xx_flush_page);
if (intel_private.resource_valid)
release_resource(&intel_private.ifp_resource);
intel_private.ifp_resource.start = 0;
intel_private.resource_valid = 0;
}
static void i9xx_chipset_flush(void)
{
if (intel_private.i9xx_flush_page)
writel(1, intel_private.i9xx_flush_page);
}
static void i965_write_entry(dma_addr_t addr,
unsigned int entry,
unsigned int flags)
{
u32 pte_flags;
pte_flags = I810_PTE_VALID;
if (flags == AGP_USER_CACHED_MEMORY)
pte_flags |= I830_PTE_SYSTEM_CACHED;
/* Shift high bits down */
addr |= (addr >> 28) & 0xf0;
writel(addr | pte_flags, intel_private.gtt + entry);
}
/* Certain Gen5 chipsets require require idling the GPU before
* unmapping anything from the GTT when VT-d is enabled.
*/
static inline int needs_idle_maps(void)
{
#ifdef CONFIG_INTEL_IOMMU
const unsigned short gpu_devid = intel_private.pcidev->device;
/* Query intel_iommu to see if we need the workaround. Presumably that
* was loaded first.
*/
if ((gpu_devid == PCI_DEVICE_ID_INTEL_IRONLAKE_M_HB ||
gpu_devid == PCI_DEVICE_ID_INTEL_IRONLAKE_M_IG) &&
intel_iommu_gfx_mapped)
return 1;
#endif
return 0;
}
static int i9xx_setup(void)
{
u32 reg_addr, gtt_addr;
int size = KB(512);
pci_read_config_dword(intel_private.pcidev, I915_MMADDR, &reg_addr);
reg_addr &= 0xfff80000;
intel_private.registers = ioremap(reg_addr, size);
if (!intel_private.registers)
return -ENOMEM;
switch (INTEL_GTT_GEN) {
case 3:
pci_read_config_dword(intel_private.pcidev,
I915_PTEADDR, &gtt_addr);
intel_private.gtt_bus_addr = gtt_addr;
break;
case 5:
intel_private.gtt_bus_addr = reg_addr + MB(2);
break;
default:
intel_private.gtt_bus_addr = reg_addr + KB(512);
break;
}
if (needs_idle_maps())
intel_private.base.do_idle_maps = 1;
intel_i9xx_setup_flush();
return 0;
}
static const struct agp_bridge_driver intel_fake_agp_driver = {
.owner = THIS_MODULE,
.size_type = FIXED_APER_SIZE,
.aperture_sizes = intel_fake_agp_sizes,
.num_aperture_sizes = ARRAY_SIZE(intel_fake_agp_sizes),
.configure = intel_fake_agp_configure,
.fetch_size = intel_fake_agp_fetch_size,
.cleanup = intel_gtt_cleanup,
.agp_enable = intel_fake_agp_enable,
.cache_flush = global_cache_flush,
.create_gatt_table = intel_fake_agp_create_gatt_table,
.free_gatt_table = intel_fake_agp_free_gatt_table,
.insert_memory = intel_fake_agp_insert_entries,
.remove_memory = intel_fake_agp_remove_entries,
.alloc_by_type = intel_fake_agp_alloc_by_type,
.free_by_type = intel_i810_free_by_type,
.agp_alloc_page = agp_generic_alloc_page,
.agp_alloc_pages = agp_generic_alloc_pages,
.agp_destroy_page = agp_generic_destroy_page,
.agp_destroy_pages = agp_generic_destroy_pages,
};
static const struct intel_gtt_driver i81x_gtt_driver = {
.gen = 1,
.has_pgtbl_enable = 1,
.dma_mask_size = 32,
.setup = i810_setup,
.cleanup = i810_cleanup,
.check_flags = i830_check_flags,
.write_entry = i810_write_entry,
};
static const struct intel_gtt_driver i8xx_gtt_driver = {
.gen = 2,
.has_pgtbl_enable = 1,
.setup = i830_setup,
.cleanup = i830_cleanup,
.write_entry = i830_write_entry,
.dma_mask_size = 32,
.check_flags = i830_check_flags,
.chipset_flush = i830_chipset_flush,
};
static const struct intel_gtt_driver i915_gtt_driver = {
.gen = 3,
.has_pgtbl_enable = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
/* i945 is the last gpu to need phys mem (for overlay and cursors). */
.write_entry = i830_write_entry,
.dma_mask_size = 32,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver g33_gtt_driver = {
.gen = 3,
.is_g33 = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver pineview_gtt_driver = {
.gen = 3,
.is_pineview = 1, .is_g33 = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver i965_gtt_driver = {
.gen = 4,
.has_pgtbl_enable = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver g4x_gtt_driver = {
.gen = 5,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
static const struct intel_gtt_driver ironlake_gtt_driver = {
.gen = 5,
.is_ironlake = 1,
.setup = i9xx_setup,
.cleanup = i9xx_cleanup,
.write_entry = i965_write_entry,
.dma_mask_size = 36,
.check_flags = i830_check_flags,
.chipset_flush = i9xx_chipset_flush,
};
/* Table to describe Intel GMCH and AGP/PCIE GART drivers. At least one of
* driver and gmch_driver must be non-null, and find_gmch will determine
* which one should be used if a gmch_chip_id is present.
*/
static const struct intel_gtt_driver_description {
unsigned int gmch_chip_id;
char *name;
const struct intel_gtt_driver *gtt_driver;
} intel_gtt_chipsets[] = {
{ PCI_DEVICE_ID_INTEL_82810_IG1, "i810",
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82810_IG3, "i810",
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82810E_IG, "i810",
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82815_CGC, "i815",
&i81x_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82830_CGC, "830M",
&i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82845G_IG, "845G",
&i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82854_IG, "854",
&i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82855GM_IG, "855GM",
&i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_82865_IG, "865",
&i8xx_gtt_driver},
{ PCI_DEVICE_ID_INTEL_E7221_IG, "E7221 (i915)",
&i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82915G_IG, "915G",
&i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82915GM_IG, "915GM",
&i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82945G_IG, "945G",
&i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82945GM_IG, "945GM",
&i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82945GME_IG, "945GME",
&i915_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82946GZ_IG, "946GZ",
&i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82G35_IG, "G35",
&i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965Q_IG, "965Q",
&i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965G_IG, "965G",
&i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965GM_IG, "965GM",
&i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_82965GME_IG, "965GME/GLE",
&i965_gtt_driver },
{ PCI_DEVICE_ID_INTEL_G33_IG, "G33",
&g33_gtt_driver },
{ PCI_DEVICE_ID_INTEL_Q35_IG, "Q35",
&g33_gtt_driver },
{ PCI_DEVICE_ID_INTEL_Q33_IG, "Q33",
&g33_gtt_driver },
{ PCI_DEVICE_ID_INTEL_PINEVIEW_M_IG, "GMA3150",
&pineview_gtt_driver },
{ PCI_DEVICE_ID_INTEL_PINEVIEW_IG, "GMA3150",
&pineview_gtt_driver },
{ PCI_DEVICE_ID_INTEL_GM45_IG, "GM45",
&g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_EAGLELAKE_IG, "Eaglelake",
&g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_Q45_IG, "Q45/Q43",
&g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_G45_IG, "G45/G43",
&g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_B43_IG, "B43",
&g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_B43_1_IG, "B43",
&g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_G41_IG, "G41",
&g4x_gtt_driver },
{ PCI_DEVICE_ID_INTEL_IRONLAKE_D_IG,
"HD Graphics", &ironlake_gtt_driver },
{ PCI_DEVICE_ID_INTEL_IRONLAKE_M_IG,
"HD Graphics", &ironlake_gtt_driver },
{ 0, NULL, NULL }
};
static int find_gmch(u16 device)
{
struct pci_dev *gmch_device;
gmch_device = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
if (gmch_device && PCI_FUNC(gmch_device->devfn) != 0) {
gmch_device = pci_get_device(PCI_VENDOR_ID_INTEL,
device, gmch_device);
}
if (!gmch_device)
return 0;
intel_private.pcidev = gmch_device;
return 1;
}
int intel_gmch_probe(struct pci_dev *bridge_pdev, struct pci_dev *gpu_pdev,
struct agp_bridge_data *bridge)
{
int i, mask;
/*
* Can be called from the fake agp driver but also directly from
* drm/i915.ko. Hence we need to check whether everything is set up
* already.
*/
if (intel_private.driver) {
intel_private.refcount++;
return 1;
}
for (i = 0; intel_gtt_chipsets[i].name != NULL; i++) {
if (gpu_pdev) {
if (gpu_pdev->device ==
intel_gtt_chipsets[i].gmch_chip_id) {
intel_private.pcidev = pci_dev_get(gpu_pdev);
intel_private.driver =
intel_gtt_chipsets[i].gtt_driver;
break;
}
} else if (find_gmch(intel_gtt_chipsets[i].gmch_chip_id)) {
intel_private.driver =
intel_gtt_chipsets[i].gtt_driver;
break;
}
}
if (!intel_private.driver)
return 0;
intel_private.refcount++;
if (bridge) {
bridge->driver = &intel_fake_agp_driver;
bridge->dev_private_data = &intel_private;
bridge->dev = bridge_pdev;
}
intel_private.bridge_dev = pci_dev_get(bridge_pdev);
dev_info(&bridge_pdev->dev, "Intel %s Chipset\n", intel_gtt_chipsets[i].name);
mask = intel_private.driver->dma_mask_size;
if (pci_set_dma_mask(intel_private.pcidev, DMA_BIT_MASK(mask)))
dev_err(&intel_private.pcidev->dev,
"set gfx device dma mask %d-bit failed!\n", mask);
else
pci_set_consistent_dma_mask(intel_private.pcidev,
DMA_BIT_MASK(mask));
if (intel_gtt_init() != 0) {
intel_gmch_remove();
return 0;
}
return 1;
}
EXPORT_SYMBOL(intel_gmch_probe);
struct intel_gtt *intel_gtt_get(void)
{
return &intel_private.base;
}
EXPORT_SYMBOL(intel_gtt_get);
void intel_gtt_chipset_flush(void)
{
if (intel_private.driver->chipset_flush)
intel_private.driver->chipset_flush();
}
EXPORT_SYMBOL(intel_gtt_chipset_flush);
void intel_gmch_remove(void)
{
if (--intel_private.refcount)
return;
if (intel_private.pcidev)
pci_dev_put(intel_private.pcidev);
if (intel_private.bridge_dev)
pci_dev_put(intel_private.bridge_dev);
intel_private.driver = NULL;
}
EXPORT_SYMBOL(intel_gmch_remove);
MODULE_AUTHOR("Dave Jones <davej@redhat.com>");
MODULE_LICENSE("GPL and additional rights");