| /* |
| * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> |
| * Copyright © 2004 Micron Technology Inc. |
| * Copyright © 2004 David Brownell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/jiffies.h> |
| #include <linux/sched.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH |
| #include <linux/bch.h> |
| #endif |
| |
| #include <plat/dma.h> |
| #include <plat/gpmc.h> |
| #include <plat/nand.h> |
| |
| #define DRIVER_NAME "omap2-nand" |
| #define OMAP_NAND_TIMEOUT_MS 5000 |
| |
| #define NAND_Ecc_P1e (1 << 0) |
| #define NAND_Ecc_P2e (1 << 1) |
| #define NAND_Ecc_P4e (1 << 2) |
| #define NAND_Ecc_P8e (1 << 3) |
| #define NAND_Ecc_P16e (1 << 4) |
| #define NAND_Ecc_P32e (1 << 5) |
| #define NAND_Ecc_P64e (1 << 6) |
| #define NAND_Ecc_P128e (1 << 7) |
| #define NAND_Ecc_P256e (1 << 8) |
| #define NAND_Ecc_P512e (1 << 9) |
| #define NAND_Ecc_P1024e (1 << 10) |
| #define NAND_Ecc_P2048e (1 << 11) |
| |
| #define NAND_Ecc_P1o (1 << 16) |
| #define NAND_Ecc_P2o (1 << 17) |
| #define NAND_Ecc_P4o (1 << 18) |
| #define NAND_Ecc_P8o (1 << 19) |
| #define NAND_Ecc_P16o (1 << 20) |
| #define NAND_Ecc_P32o (1 << 21) |
| #define NAND_Ecc_P64o (1 << 22) |
| #define NAND_Ecc_P128o (1 << 23) |
| #define NAND_Ecc_P256o (1 << 24) |
| #define NAND_Ecc_P512o (1 << 25) |
| #define NAND_Ecc_P1024o (1 << 26) |
| #define NAND_Ecc_P2048o (1 << 27) |
| |
| #define TF(value) (value ? 1 : 0) |
| |
| #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) |
| #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) |
| #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) |
| #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) |
| #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) |
| #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) |
| #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) |
| #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) |
| |
| #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) |
| #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) |
| #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) |
| #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) |
| #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) |
| #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) |
| #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) |
| #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) |
| |
| #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) |
| #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) |
| #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) |
| #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) |
| #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) |
| #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) |
| #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) |
| #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) |
| |
| #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) |
| #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) |
| #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) |
| #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) |
| #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) |
| #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) |
| #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) |
| #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) |
| |
| #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) |
| #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) |
| |
| /* oob info generated runtime depending on ecc algorithm and layout selected */ |
| static struct nand_ecclayout omap_oobinfo; |
| /* Define some generic bad / good block scan pattern which are used |
| * while scanning a device for factory marked good / bad blocks |
| */ |
| static uint8_t scan_ff_pattern[] = { 0xff }; |
| static struct nand_bbt_descr bb_descrip_flashbased = { |
| .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, |
| .offs = 0, |
| .len = 1, |
| .pattern = scan_ff_pattern, |
| }; |
| |
| |
| struct omap_nand_info { |
| struct nand_hw_control controller; |
| struct omap_nand_platform_data *pdata; |
| struct mtd_info mtd; |
| struct nand_chip nand; |
| struct platform_device *pdev; |
| |
| int gpmc_cs; |
| unsigned long phys_base; |
| struct completion comp; |
| int dma_ch; |
| int gpmc_irq; |
| enum { |
| OMAP_NAND_IO_READ = 0, /* read */ |
| OMAP_NAND_IO_WRITE, /* write */ |
| } iomode; |
| u_char *buf; |
| int buf_len; |
| |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH |
| struct bch_control *bch; |
| struct nand_ecclayout ecclayout; |
| #endif |
| }; |
| |
| /** |
| * omap_hwcontrol - hardware specific access to control-lines |
| * @mtd: MTD device structure |
| * @cmd: command to device |
| * @ctrl: |
| * NAND_NCE: bit 0 -> don't care |
| * NAND_CLE: bit 1 -> Command Latch |
| * NAND_ALE: bit 2 -> Address Latch |
| * |
| * NOTE: boards may use different bits for these!! |
| */ |
| static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| |
| if (cmd != NAND_CMD_NONE) { |
| if (ctrl & NAND_CLE) |
| gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd); |
| |
| else if (ctrl & NAND_ALE) |
| gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd); |
| |
| else /* NAND_NCE */ |
| gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd); |
| } |
| } |
| |
| /** |
| * omap_read_buf8 - read data from NAND controller into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *nand = mtd->priv; |
| |
| ioread8_rep(nand->IO_ADDR_R, buf, len); |
| } |
| |
| /** |
| * omap_write_buf8 - write buffer to NAND controller |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| u_char *p = (u_char *)buf; |
| u32 status = 0; |
| |
| while (len--) { |
| iowrite8(*p++, info->nand.IO_ADDR_W); |
| /* wait until buffer is available for write */ |
| do { |
| status = gpmc_read_status(GPMC_STATUS_BUFFER); |
| } while (!status); |
| } |
| } |
| |
| /** |
| * omap_read_buf16 - read data from NAND controller into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *nand = mtd->priv; |
| |
| ioread16_rep(nand->IO_ADDR_R, buf, len / 2); |
| } |
| |
| /** |
| * omap_write_buf16 - write buffer to NAND controller |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| u16 *p = (u16 *) buf; |
| u32 status = 0; |
| /* FIXME try bursts of writesw() or DMA ... */ |
| len >>= 1; |
| |
| while (len--) { |
| iowrite16(*p++, info->nand.IO_ADDR_W); |
| /* wait until buffer is available for write */ |
| do { |
| status = gpmc_read_status(GPMC_STATUS_BUFFER); |
| } while (!status); |
| } |
| } |
| |
| /** |
| * omap_read_buf_pref - read data from NAND controller into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| uint32_t r_count = 0; |
| int ret = 0; |
| u32 *p = (u32 *)buf; |
| |
| /* take care of subpage reads */ |
| if (len % 4) { |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_read_buf16(mtd, buf, len % 4); |
| else |
| omap_read_buf8(mtd, buf, len % 4); |
| p = (u32 *) (buf + len % 4); |
| len -= len % 4; |
| } |
| |
| /* configure and start prefetch transfer */ |
| ret = gpmc_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0); |
| if (ret) { |
| /* PFPW engine is busy, use cpu copy method */ |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_read_buf16(mtd, (u_char *)p, len); |
| else |
| omap_read_buf8(mtd, (u_char *)p, len); |
| } else { |
| do { |
| r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); |
| r_count = r_count >> 2; |
| ioread32_rep(info->nand.IO_ADDR_R, p, r_count); |
| p += r_count; |
| len -= r_count << 2; |
| } while (len); |
| /* disable and stop the PFPW engine */ |
| gpmc_prefetch_reset(info->gpmc_cs); |
| } |
| } |
| |
| /** |
| * omap_write_buf_pref - write buffer to NAND controller |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf_pref(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| uint32_t w_count = 0; |
| int i = 0, ret = 0; |
| u16 *p = (u16 *)buf; |
| unsigned long tim, limit; |
| |
| /* take care of subpage writes */ |
| if (len % 2 != 0) { |
| writeb(*buf, info->nand.IO_ADDR_W); |
| p = (u16 *)(buf + 1); |
| len--; |
| } |
| |
| /* configure and start prefetch transfer */ |
| ret = gpmc_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1); |
| if (ret) { |
| /* PFPW engine is busy, use cpu copy method */ |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_write_buf16(mtd, (u_char *)p, len); |
| else |
| omap_write_buf8(mtd, (u_char *)p, len); |
| } else { |
| while (len) { |
| w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); |
| w_count = w_count >> 1; |
| for (i = 0; (i < w_count) && len; i++, len -= 2) |
| iowrite16(*p++, info->nand.IO_ADDR_W); |
| } |
| /* wait for data to flushed-out before reset the prefetch */ |
| tim = 0; |
| limit = (loops_per_jiffy * |
| msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); |
| while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) |
| cpu_relax(); |
| |
| /* disable and stop the PFPW engine */ |
| gpmc_prefetch_reset(info->gpmc_cs); |
| } |
| } |
| |
| /* |
| * omap_nand_dma_cb: callback on the completion of dma transfer |
| * @lch: logical channel |
| * @ch_satuts: channel status |
| * @data: pointer to completion data structure |
| */ |
| static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) |
| { |
| complete((struct completion *) data); |
| } |
| |
| /* |
| * omap_nand_dma_transfer: configer and start dma transfer |
| * @mtd: MTD device structure |
| * @addr: virtual address in RAM of source/destination |
| * @len: number of data bytes to be transferred |
| * @is_write: flag for read/write operation |
| */ |
| static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, |
| unsigned int len, int is_write) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : |
| DMA_FROM_DEVICE; |
| dma_addr_t dma_addr; |
| int ret; |
| unsigned long tim, limit; |
| |
| /* The fifo depth is 64 bytes max. |
| * But configure the FIFO-threahold to 32 to get a sync at each frame |
| * and frame length is 32 bytes. |
| */ |
| int buf_len = len >> 6; |
| |
| if (addr >= high_memory) { |
| struct page *p1; |
| |
| if (((size_t)addr & PAGE_MASK) != |
| ((size_t)(addr + len - 1) & PAGE_MASK)) |
| goto out_copy; |
| p1 = vmalloc_to_page(addr); |
| if (!p1) |
| goto out_copy; |
| addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); |
| } |
| |
| dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); |
| if (dma_mapping_error(&info->pdev->dev, dma_addr)) { |
| dev_err(&info->pdev->dev, |
| "Couldn't DMA map a %d byte buffer\n", len); |
| goto out_copy; |
| } |
| |
| if (is_write) { |
| omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, |
| info->phys_base, 0, 0); |
| omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, |
| dma_addr, 0, 0); |
| omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, |
| 0x10, buf_len, OMAP_DMA_SYNC_FRAME, |
| OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); |
| } else { |
| omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, |
| info->phys_base, 0, 0); |
| omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, |
| dma_addr, 0, 0); |
| omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, |
| 0x10, buf_len, OMAP_DMA_SYNC_FRAME, |
| OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); |
| } |
| /* configure and start prefetch transfer */ |
| ret = gpmc_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write); |
| if (ret) |
| /* PFPW engine is busy, use cpu copy method */ |
| goto out_copy_unmap; |
| |
| init_completion(&info->comp); |
| |
| omap_start_dma(info->dma_ch); |
| |
| /* setup and start DMA using dma_addr */ |
| wait_for_completion(&info->comp); |
| tim = 0; |
| limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); |
| while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) |
| cpu_relax(); |
| |
| /* disable and stop the PFPW engine */ |
| gpmc_prefetch_reset(info->gpmc_cs); |
| |
| dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); |
| return 0; |
| |
| out_copy_unmap: |
| dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); |
| out_copy: |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) |
| : omap_write_buf16(mtd, (u_char *) addr, len); |
| else |
| is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) |
| : omap_write_buf8(mtd, (u_char *) addr, len); |
| return 0; |
| } |
| |
| /** |
| * omap_read_buf_dma_pref - read data from NAND controller into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| if (len <= mtd->oobsize) |
| omap_read_buf_pref(mtd, buf, len); |
| else |
| /* start transfer in DMA mode */ |
| omap_nand_dma_transfer(mtd, buf, len, 0x0); |
| } |
| |
| /** |
| * omap_write_buf_dma_pref - write buffer to NAND controller |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf_dma_pref(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| if (len <= mtd->oobsize) |
| omap_write_buf_pref(mtd, buf, len); |
| else |
| /* start transfer in DMA mode */ |
| omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); |
| } |
| |
| /* |
| * omap_nand_irq - GMPC irq handler |
| * @this_irq: gpmc irq number |
| * @dev: omap_nand_info structure pointer is passed here |
| */ |
| static irqreturn_t omap_nand_irq(int this_irq, void *dev) |
| { |
| struct omap_nand_info *info = (struct omap_nand_info *) dev; |
| u32 bytes; |
| u32 irq_stat; |
| |
| irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS); |
| bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); |
| bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ |
| if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ |
| if (irq_stat & 0x2) |
| goto done; |
| |
| if (info->buf_len && (info->buf_len < bytes)) |
| bytes = info->buf_len; |
| else if (!info->buf_len) |
| bytes = 0; |
| iowrite32_rep(info->nand.IO_ADDR_W, |
| (u32 *)info->buf, bytes >> 2); |
| info->buf = info->buf + bytes; |
| info->buf_len -= bytes; |
| |
| } else { |
| ioread32_rep(info->nand.IO_ADDR_R, |
| (u32 *)info->buf, bytes >> 2); |
| info->buf = info->buf + bytes; |
| |
| if (irq_stat & 0x2) |
| goto done; |
| } |
| gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); |
| |
| return IRQ_HANDLED; |
| |
| done: |
| complete(&info->comp); |
| /* disable irq */ |
| gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0); |
| |
| /* clear status */ |
| gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * omap_read_buf_irq_pref - read data from NAND controller into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| int ret = 0; |
| |
| if (len <= mtd->oobsize) { |
| omap_read_buf_pref(mtd, buf, len); |
| return; |
| } |
| |
| info->iomode = OMAP_NAND_IO_READ; |
| info->buf = buf; |
| init_completion(&info->comp); |
| |
| /* configure and start prefetch transfer */ |
| ret = gpmc_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0); |
| if (ret) |
| /* PFPW engine is busy, use cpu copy method */ |
| goto out_copy; |
| |
| info->buf_len = len; |
| /* enable irq */ |
| gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, |
| (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); |
| |
| /* waiting for read to complete */ |
| wait_for_completion(&info->comp); |
| |
| /* disable and stop the PFPW engine */ |
| gpmc_prefetch_reset(info->gpmc_cs); |
| return; |
| |
| out_copy: |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_read_buf16(mtd, buf, len); |
| else |
| omap_read_buf8(mtd, buf, len); |
| } |
| |
| /* |
| * omap_write_buf_irq_pref - write buffer to NAND controller |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf_irq_pref(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| struct omap_nand_info *info = container_of(mtd, |
| struct omap_nand_info, mtd); |
| int ret = 0; |
| unsigned long tim, limit; |
| |
| if (len <= mtd->oobsize) { |
| omap_write_buf_pref(mtd, buf, len); |
| return; |
| } |
| |
| info->iomode = OMAP_NAND_IO_WRITE; |
| info->buf = (u_char *) buf; |
| init_completion(&info->comp); |
| |
| /* configure and start prefetch transfer : size=24 */ |
| ret = gpmc_prefetch_enable(info->gpmc_cs, |
| (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1); |
| if (ret) |
| /* PFPW engine is busy, use cpu copy method */ |
| goto out_copy; |
| |
| info->buf_len = len; |
| /* enable irq */ |
| gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, |
| (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); |
| |
| /* waiting for write to complete */ |
| wait_for_completion(&info->comp); |
| /* wait for data to flushed-out before reset the prefetch */ |
| tim = 0; |
| limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); |
| while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) |
| cpu_relax(); |
| |
| /* disable and stop the PFPW engine */ |
| gpmc_prefetch_reset(info->gpmc_cs); |
| return; |
| |
| out_copy: |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_write_buf16(mtd, buf, len); |
| else |
| omap_write_buf8(mtd, buf, len); |
| } |
| |
| /** |
| * omap_verify_buf - Verify chip data against buffer |
| * @mtd: MTD device structure |
| * @buf: buffer containing the data to compare |
| * @len: number of bytes to compare |
| */ |
| static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) |
| { |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| u16 *p = (u16 *) buf; |
| |
| len >>= 1; |
| while (len--) { |
| if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * gen_true_ecc - This function will generate true ECC value |
| * @ecc_buf: buffer to store ecc code |
| * |
| * This generated true ECC value can be used when correcting |
| * data read from NAND flash memory core |
| */ |
| static void gen_true_ecc(u8 *ecc_buf) |
| { |
| u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | |
| ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); |
| |
| ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | |
| P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); |
| ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | |
| P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); |
| ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | |
| P1e(tmp) | P2048o(tmp) | P2048e(tmp)); |
| } |
| |
| /** |
| * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data |
| * @ecc_data1: ecc code from nand spare area |
| * @ecc_data2: ecc code from hardware register obtained from hardware ecc |
| * @page_data: page data |
| * |
| * This function compares two ECC's and indicates if there is an error. |
| * If the error can be corrected it will be corrected to the buffer. |
| * If there is no error, %0 is returned. If there is an error but it |
| * was corrected, %1 is returned. Otherwise, %-1 is returned. |
| */ |
| static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ |
| u8 *ecc_data2, /* read from register */ |
| u8 *page_data) |
| { |
| uint i; |
| u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; |
| u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; |
| u8 ecc_bit[24]; |
| u8 ecc_sum = 0; |
| u8 find_bit = 0; |
| uint find_byte = 0; |
| int isEccFF; |
| |
| isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); |
| |
| gen_true_ecc(ecc_data1); |
| gen_true_ecc(ecc_data2); |
| |
| for (i = 0; i <= 2; i++) { |
| *(ecc_data1 + i) = ~(*(ecc_data1 + i)); |
| *(ecc_data2 + i) = ~(*(ecc_data2 + i)); |
| } |
| |
| for (i = 0; i < 8; i++) { |
| tmp0_bit[i] = *ecc_data1 % 2; |
| *ecc_data1 = *ecc_data1 / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| tmp1_bit[i] = *(ecc_data1 + 1) % 2; |
| *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| tmp2_bit[i] = *(ecc_data1 + 2) % 2; |
| *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| comp0_bit[i] = *ecc_data2 % 2; |
| *ecc_data2 = *ecc_data2 / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| comp1_bit[i] = *(ecc_data2 + 1) % 2; |
| *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| comp2_bit[i] = *(ecc_data2 + 2) % 2; |
| *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; |
| } |
| |
| for (i = 0; i < 6; i++) |
| ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; |
| |
| for (i = 0; i < 8; i++) |
| ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; |
| |
| for (i = 0; i < 8; i++) |
| ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; |
| |
| ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; |
| ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; |
| |
| for (i = 0; i < 24; i++) |
| ecc_sum += ecc_bit[i]; |
| |
| switch (ecc_sum) { |
| case 0: |
| /* Not reached because this function is not called if |
| * ECC values are equal |
| */ |
| return 0; |
| |
| case 1: |
| /* Uncorrectable error */ |
| pr_debug("ECC UNCORRECTED_ERROR 1\n"); |
| return -1; |
| |
| case 11: |
| /* UN-Correctable error */ |
| pr_debug("ECC UNCORRECTED_ERROR B\n"); |
| return -1; |
| |
| case 12: |
| /* Correctable error */ |
| find_byte = (ecc_bit[23] << 8) + |
| (ecc_bit[21] << 7) + |
| (ecc_bit[19] << 6) + |
| (ecc_bit[17] << 5) + |
| (ecc_bit[15] << 4) + |
| (ecc_bit[13] << 3) + |
| (ecc_bit[11] << 2) + |
| (ecc_bit[9] << 1) + |
| ecc_bit[7]; |
| |
| find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; |
| |
| pr_debug("Correcting single bit ECC error at offset: " |
| "%d, bit: %d\n", find_byte, find_bit); |
| |
| page_data[find_byte] ^= (1 << find_bit); |
| |
| return 1; |
| default: |
| if (isEccFF) { |
| if (ecc_data2[0] == 0 && |
| ecc_data2[1] == 0 && |
| ecc_data2[2] == 0) |
| return 0; |
| } |
| pr_debug("UNCORRECTED_ERROR default\n"); |
| return -1; |
| } |
| } |
| |
| /** |
| * omap_correct_data - Compares the ECC read with HW generated ECC |
| * @mtd: MTD device structure |
| * @dat: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from HW ECC registers |
| * |
| * Compares the ecc read from nand spare area with ECC registers values |
| * and if ECC's mismatched, it will call 'omap_compare_ecc' for error |
| * detection and correction. If there are no errors, %0 is returned. If |
| * there were errors and all of the errors were corrected, the number of |
| * corrected errors is returned. If uncorrectable errors exist, %-1 is |
| * returned. |
| */ |
| static int omap_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| int blockCnt = 0, i = 0, ret = 0; |
| int stat = 0; |
| |
| /* Ex NAND_ECC_HW12_2048 */ |
| if ((info->nand.ecc.mode == NAND_ECC_HW) && |
| (info->nand.ecc.size == 2048)) |
| blockCnt = 4; |
| else |
| blockCnt = 1; |
| |
| for (i = 0; i < blockCnt; i++) { |
| if (memcmp(read_ecc, calc_ecc, 3) != 0) { |
| ret = omap_compare_ecc(read_ecc, calc_ecc, dat); |
| if (ret < 0) |
| return ret; |
| /* keep track of the number of corrected errors */ |
| stat += ret; |
| } |
| read_ecc += 3; |
| calc_ecc += 3; |
| dat += 512; |
| } |
| return stat; |
| } |
| |
| /** |
| * omap_calcuate_ecc - Generate non-inverted ECC bytes. |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * |
| * Using noninverted ECC can be considered ugly since writing a blank |
| * page ie. padding will clear the ECC bytes. This is no problem as long |
| * nobody is trying to write data on the seemingly unused page. Reading |
| * an erased page will produce an ECC mismatch between generated and read |
| * ECC bytes that has to be dealt with separately. |
| */ |
| static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
| u_char *ecc_code) |
| { |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code); |
| } |
| |
| /** |
| * omap_enable_hwecc - This function enables the hardware ecc functionality |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| static void omap_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| struct nand_chip *chip = mtd->priv; |
| unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| |
| gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size); |
| } |
| |
| /** |
| * omap_wait - wait until the command is done |
| * @mtd: MTD device structure |
| * @chip: NAND Chip structure |
| * |
| * Wait function is called during Program and erase operations and |
| * the way it is called from MTD layer, we should wait till the NAND |
| * chip is ready after the programming/erase operation has completed. |
| * |
| * Erase can take up to 400ms and program up to 20ms according to |
| * general NAND and SmartMedia specs |
| */ |
| static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| unsigned long timeo = jiffies; |
| int status, state = this->state; |
| |
| if (state == FL_ERASING) |
| timeo += (HZ * 400) / 1000; |
| else |
| timeo += (HZ * 20) / 1000; |
| |
| gpmc_nand_write(info->gpmc_cs, |
| GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF)); |
| while (time_before(jiffies, timeo)) { |
| status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA); |
| if (status & NAND_STATUS_READY) |
| break; |
| cond_resched(); |
| } |
| |
| status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA); |
| return status; |
| } |
| |
| /** |
| * omap_dev_ready - calls the platform specific dev_ready function |
| * @mtd: MTD device structure |
| */ |
| static int omap_dev_ready(struct mtd_info *mtd) |
| { |
| unsigned int val = 0; |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| |
| val = gpmc_read_status(GPMC_GET_IRQ_STATUS); |
| if ((val & 0x100) == 0x100) { |
| /* Clear IRQ Interrupt */ |
| val |= 0x100; |
| val &= ~(0x0); |
| gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val); |
| } else { |
| unsigned int cnt = 0; |
| while (cnt++ < 0x1FF) { |
| if ((val & 0x100) == 0x100) |
| return 0; |
| val = gpmc_read_status(GPMC_GET_IRQ_STATUS); |
| } |
| } |
| |
| return 1; |
| } |
| |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH |
| |
| /** |
| * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode) |
| { |
| int nerrors; |
| unsigned int dev_width; |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| struct nand_chip *chip = mtd->priv; |
| |
| nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4; |
| dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| /* |
| * Program GPMC to perform correction on one 512-byte sector at a time. |
| * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and |
| * gives a slight (5%) performance gain (but requires additional code). |
| */ |
| (void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors); |
| } |
| |
| /** |
| * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| */ |
| static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat, |
| u_char *ecc_code) |
| { |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code); |
| } |
| |
| /** |
| * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| */ |
| static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat, |
| u_char *ecc_code) |
| { |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code); |
| } |
| |
| /** |
| * omap3_correct_data_bch - Decode received data and correct errors |
| * @mtd: MTD device structure |
| * @data: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from HW ECC registers |
| */ |
| static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| int i, count; |
| /* cannot correct more than 8 errors */ |
| unsigned int errloc[8]; |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| |
| count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL, |
| errloc); |
| if (count > 0) { |
| /* correct errors */ |
| for (i = 0; i < count; i++) { |
| /* correct data only, not ecc bytes */ |
| if (errloc[i] < 8*512) |
| data[errloc[i]/8] ^= 1 << (errloc[i] & 7); |
| pr_debug("corrected bitflip %u\n", errloc[i]); |
| } |
| } else if (count < 0) { |
| pr_err("ecc unrecoverable error\n"); |
| } |
| return count; |
| } |
| |
| /** |
| * omap3_free_bch - Release BCH ecc resources |
| * @mtd: MTD device structure |
| */ |
| static void omap3_free_bch(struct mtd_info *mtd) |
| { |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| if (info->bch) { |
| free_bch(info->bch); |
| info->bch = NULL; |
| } |
| } |
| |
| /** |
| * omap3_init_bch - Initialize BCH ECC |
| * @mtd: MTD device structure |
| * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW) |
| */ |
| static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) |
| { |
| int ret, max_errors; |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| #ifdef CONFIG_MTD_NAND_OMAP_BCH8 |
| const int hw_errors = 8; |
| #else |
| const int hw_errors = 4; |
| #endif |
| info->bch = NULL; |
| |
| max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4; |
| if (max_errors != hw_errors) { |
| pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported", |
| max_errors, hw_errors); |
| goto fail; |
| } |
| |
| /* initialize GPMC BCH engine */ |
| ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors); |
| if (ret) |
| goto fail; |
| |
| /* software bch library is only used to detect and locate errors */ |
| info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */); |
| if (!info->bch) |
| goto fail; |
| |
| info->nand.ecc.size = 512; |
| info->nand.ecc.hwctl = omap3_enable_hwecc_bch; |
| info->nand.ecc.correct = omap3_correct_data_bch; |
| info->nand.ecc.mode = NAND_ECC_HW; |
| |
| /* |
| * The number of corrected errors in an ecc block that will trigger |
| * block scrubbing defaults to the ecc strength (4 or 8). |
| * Set mtd->bitflip_threshold here to define a custom threshold. |
| */ |
| |
| if (max_errors == 8) { |
| info->nand.ecc.strength = 8; |
| info->nand.ecc.bytes = 13; |
| info->nand.ecc.calculate = omap3_calculate_ecc_bch8; |
| } else { |
| info->nand.ecc.strength = 4; |
| info->nand.ecc.bytes = 7; |
| info->nand.ecc.calculate = omap3_calculate_ecc_bch4; |
| } |
| |
| pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors); |
| return 0; |
| fail: |
| omap3_free_bch(mtd); |
| return -1; |
| } |
| |
| /** |
| * omap3_init_bch_tail - Build an oob layout for BCH ECC correction. |
| * @mtd: MTD device structure |
| */ |
| static int omap3_init_bch_tail(struct mtd_info *mtd) |
| { |
| int i, steps; |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| struct nand_ecclayout *layout = &info->ecclayout; |
| |
| /* build oob layout */ |
| steps = mtd->writesize/info->nand.ecc.size; |
| layout->eccbytes = steps*info->nand.ecc.bytes; |
| |
| /* do not bother creating special oob layouts for small page devices */ |
| if (mtd->oobsize < 64) { |
| pr_err("BCH ecc is not supported on small page devices\n"); |
| goto fail; |
| } |
| |
| /* reserve 2 bytes for bad block marker */ |
| if (layout->eccbytes+2 > mtd->oobsize) { |
| pr_err("no oob layout available for oobsize %d eccbytes %u\n", |
| mtd->oobsize, layout->eccbytes); |
| goto fail; |
| } |
| |
| /* put ecc bytes at oob tail */ |
| for (i = 0; i < layout->eccbytes; i++) |
| layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; |
| |
| layout->oobfree[0].offset = 2; |
| layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; |
| info->nand.ecc.layout = layout; |
| |
| if (!(info->nand.options & NAND_BUSWIDTH_16)) |
| info->nand.badblock_pattern = &bb_descrip_flashbased; |
| return 0; |
| fail: |
| omap3_free_bch(mtd); |
| return -1; |
| } |
| |
| #else |
| static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) |
| { |
| pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n"); |
| return -1; |
| } |
| static int omap3_init_bch_tail(struct mtd_info *mtd) |
| { |
| return -1; |
| } |
| static void omap3_free_bch(struct mtd_info *mtd) |
| { |
| } |
| #endif /* CONFIG_MTD_NAND_OMAP_BCH */ |
| |
| static int __devinit omap_nand_probe(struct platform_device *pdev) |
| { |
| struct omap_nand_info *info; |
| struct omap_nand_platform_data *pdata; |
| int err; |
| int i, offset; |
| |
| pdata = pdev->dev.platform_data; |
| if (pdata == NULL) { |
| dev_err(&pdev->dev, "platform data missing\n"); |
| return -ENODEV; |
| } |
| |
| info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, info); |
| |
| spin_lock_init(&info->controller.lock); |
| init_waitqueue_head(&info->controller.wq); |
| |
| info->pdev = pdev; |
| |
| info->gpmc_cs = pdata->cs; |
| info->phys_base = pdata->phys_base; |
| |
| info->mtd.priv = &info->nand; |
| info->mtd.name = dev_name(&pdev->dev); |
| info->mtd.owner = THIS_MODULE; |
| |
| info->nand.options = pdata->devsize; |
| info->nand.options |= NAND_SKIP_BBTSCAN; |
| |
| /* NAND write protect off */ |
| gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0); |
| |
| if (!request_mem_region(info->phys_base, NAND_IO_SIZE, |
| pdev->dev.driver->name)) { |
| err = -EBUSY; |
| goto out_free_info; |
| } |
| |
| info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); |
| if (!info->nand.IO_ADDR_R) { |
| err = -ENOMEM; |
| goto out_release_mem_region; |
| } |
| |
| info->nand.controller = &info->controller; |
| |
| info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; |
| info->nand.cmd_ctrl = omap_hwcontrol; |
| |
| /* |
| * If RDY/BSY line is connected to OMAP then use the omap ready |
| * funcrtion and the generic nand_wait function which reads the status |
| * register after monitoring the RDY/BSY line.Otherwise use a standard |
| * chip delay which is slightly more than tR (AC Timing) of the NAND |
| * device and read status register until you get a failure or success |
| */ |
| if (pdata->dev_ready) { |
| info->nand.dev_ready = omap_dev_ready; |
| info->nand.chip_delay = 0; |
| } else { |
| info->nand.waitfunc = omap_wait; |
| info->nand.chip_delay = 50; |
| } |
| |
| switch (pdata->xfer_type) { |
| case NAND_OMAP_PREFETCH_POLLED: |
| info->nand.read_buf = omap_read_buf_pref; |
| info->nand.write_buf = omap_write_buf_pref; |
| break; |
| |
| case NAND_OMAP_POLLED: |
| if (info->nand.options & NAND_BUSWIDTH_16) { |
| info->nand.read_buf = omap_read_buf16; |
| info->nand.write_buf = omap_write_buf16; |
| } else { |
| info->nand.read_buf = omap_read_buf8; |
| info->nand.write_buf = omap_write_buf8; |
| } |
| break; |
| |
| case NAND_OMAP_PREFETCH_DMA: |
| err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", |
| omap_nand_dma_cb, &info->comp, &info->dma_ch); |
| if (err < 0) { |
| info->dma_ch = -1; |
| dev_err(&pdev->dev, "DMA request failed!\n"); |
| goto out_release_mem_region; |
| } else { |
| omap_set_dma_dest_burst_mode(info->dma_ch, |
| OMAP_DMA_DATA_BURST_16); |
| omap_set_dma_src_burst_mode(info->dma_ch, |
| OMAP_DMA_DATA_BURST_16); |
| |
| info->nand.read_buf = omap_read_buf_dma_pref; |
| info->nand.write_buf = omap_write_buf_dma_pref; |
| } |
| break; |
| |
| case NAND_OMAP_PREFETCH_IRQ: |
| err = request_irq(pdata->gpmc_irq, |
| omap_nand_irq, IRQF_SHARED, "gpmc-nand", info); |
| if (err) { |
| dev_err(&pdev->dev, "requesting irq(%d) error:%d", |
| pdata->gpmc_irq, err); |
| goto out_release_mem_region; |
| } else { |
| info->gpmc_irq = pdata->gpmc_irq; |
| info->nand.read_buf = omap_read_buf_irq_pref; |
| info->nand.write_buf = omap_write_buf_irq_pref; |
| } |
| break; |
| |
| default: |
| dev_err(&pdev->dev, |
| "xfer_type(%d) not supported!\n", pdata->xfer_type); |
| err = -EINVAL; |
| goto out_release_mem_region; |
| } |
| |
| info->nand.verify_buf = omap_verify_buf; |
| |
| /* selsect the ecc type */ |
| if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) |
| info->nand.ecc.mode = NAND_ECC_SOFT; |
| else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || |
| (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) { |
| info->nand.ecc.bytes = 3; |
| info->nand.ecc.size = 512; |
| info->nand.ecc.strength = 1; |
| info->nand.ecc.calculate = omap_calculate_ecc; |
| info->nand.ecc.hwctl = omap_enable_hwecc; |
| info->nand.ecc.correct = omap_correct_data; |
| info->nand.ecc.mode = NAND_ECC_HW; |
| } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || |
| (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { |
| err = omap3_init_bch(&info->mtd, pdata->ecc_opt); |
| if (err) { |
| err = -EINVAL; |
| goto out_release_mem_region; |
| } |
| } |
| |
| /* DIP switches on some boards change between 8 and 16 bit |
| * bus widths for flash. Try the other width if the first try fails. |
| */ |
| if (nand_scan_ident(&info->mtd, 1, NULL)) { |
| info->nand.options ^= NAND_BUSWIDTH_16; |
| if (nand_scan_ident(&info->mtd, 1, NULL)) { |
| err = -ENXIO; |
| goto out_release_mem_region; |
| } |
| } |
| |
| /* rom code layout */ |
| if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) { |
| |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| offset = 2; |
| else { |
| offset = 1; |
| info->nand.badblock_pattern = &bb_descrip_flashbased; |
| } |
| omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16); |
| for (i = 0; i < omap_oobinfo.eccbytes; i++) |
| omap_oobinfo.eccpos[i] = i+offset; |
| |
| omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes; |
| omap_oobinfo.oobfree->length = info->mtd.oobsize - |
| (offset + omap_oobinfo.eccbytes); |
| |
| info->nand.ecc.layout = &omap_oobinfo; |
| } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || |
| (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { |
| /* build OOB layout for BCH ECC correction */ |
| err = omap3_init_bch_tail(&info->mtd); |
| if (err) { |
| err = -EINVAL; |
| goto out_release_mem_region; |
| } |
| } |
| |
| /* second phase scan */ |
| if (nand_scan_tail(&info->mtd)) { |
| err = -ENXIO; |
| goto out_release_mem_region; |
| } |
| |
| mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts, |
| pdata->nr_parts); |
| |
| platform_set_drvdata(pdev, &info->mtd); |
| |
| return 0; |
| |
| out_release_mem_region: |
| release_mem_region(info->phys_base, NAND_IO_SIZE); |
| out_free_info: |
| kfree(info); |
| |
| return err; |
| } |
| |
| static int omap_nand_remove(struct platform_device *pdev) |
| { |
| struct mtd_info *mtd = platform_get_drvdata(pdev); |
| struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| mtd); |
| omap3_free_bch(&info->mtd); |
| |
| platform_set_drvdata(pdev, NULL); |
| if (info->dma_ch != -1) |
| omap_free_dma(info->dma_ch); |
| |
| if (info->gpmc_irq) |
| free_irq(info->gpmc_irq, info); |
| |
| /* Release NAND device, its internal structures and partitions */ |
| nand_release(&info->mtd); |
| iounmap(info->nand.IO_ADDR_R); |
| kfree(&info->mtd); |
| return 0; |
| } |
| |
| static struct platform_driver omap_nand_driver = { |
| .probe = omap_nand_probe, |
| .remove = omap_nand_remove, |
| .driver = { |
| .name = DRIVER_NAME, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| module_platform_driver(omap_nand_driver); |
| |
| MODULE_ALIAS("platform:" DRIVER_NAME); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |