| /* |
| * DRBG: Deterministic Random Bits Generator |
| * Based on NIST Recommended DRBG from NIST SP800-90A with the following |
| * properties: |
| * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores |
| * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores |
| * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores |
| * * with and without prediction resistance |
| * |
| * Copyright Stephan Mueller <smueller@chronox.de>, 2014 |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, and the entire permission notice in its entirety, |
| * including the disclaimer of warranties. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote |
| * products derived from this software without specific prior |
| * written permission. |
| * |
| * ALTERNATIVELY, this product may be distributed under the terms of |
| * the GNU General Public License, in which case the provisions of the GPL are |
| * required INSTEAD OF the above restrictions. (This clause is |
| * necessary due to a potential bad interaction between the GPL and |
| * the restrictions contained in a BSD-style copyright.) |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF |
| * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| * DRBG Usage |
| * ========== |
| * The SP 800-90A DRBG allows the user to specify a personalization string |
| * for initialization as well as an additional information string for each |
| * random number request. The following code fragments show how a caller |
| * uses the kernel crypto API to use the full functionality of the DRBG. |
| * |
| * Usage without any additional data |
| * --------------------------------- |
| * struct crypto_rng *drng; |
| * int err; |
| * char data[DATALEN]; |
| * |
| * drng = crypto_alloc_rng(drng_name, 0, 0); |
| * err = crypto_rng_get_bytes(drng, &data, DATALEN); |
| * crypto_free_rng(drng); |
| * |
| * |
| * Usage with personalization string during initialization |
| * ------------------------------------------------------- |
| * struct crypto_rng *drng; |
| * int err; |
| * char data[DATALEN]; |
| * struct drbg_string pers; |
| * char personalization[11] = "some-string"; |
| * |
| * drbg_string_fill(&pers, personalization, strlen(personalization)); |
| * drng = crypto_alloc_rng(drng_name, 0, 0); |
| * // The reset completely re-initializes the DRBG with the provided |
| * // personalization string |
| * err = crypto_rng_reset(drng, &personalization, strlen(personalization)); |
| * err = crypto_rng_get_bytes(drng, &data, DATALEN); |
| * crypto_free_rng(drng); |
| * |
| * |
| * Usage with additional information string during random number request |
| * --------------------------------------------------------------------- |
| * struct crypto_rng *drng; |
| * int err; |
| * char data[DATALEN]; |
| * char addtl_string[11] = "some-string"; |
| * string drbg_string addtl; |
| * |
| * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string)); |
| * drng = crypto_alloc_rng(drng_name, 0, 0); |
| * // The following call is a wrapper to crypto_rng_get_bytes() and returns |
| * // the same error codes. |
| * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl); |
| * crypto_free_rng(drng); |
| * |
| * |
| * Usage with personalization and additional information strings |
| * ------------------------------------------------------------- |
| * Just mix both scenarios above. |
| */ |
| |
| #include <crypto/drbg.h> |
| |
| #if !defined(CONFIG_CRYPTO_DRBG_HASH) && \ |
| !defined(CONFIG_CRYPTO_DRBG_HMAC) && \ |
| !defined(CONFIG_CRYPTO_DRBG_CTR) |
| #warning "The DRBG code is useless without compiling at least one DRBG type" |
| #endif |
| |
| /*************************************************************** |
| * Backend cipher definitions available to DRBG |
| ***************************************************************/ |
| |
| /* |
| * The order of the DRBG definitions here matter: every DRBG is registered |
| * as stdrng. Each DRBG receives an increasing cra_priority values the later |
| * they are defined in this array (see drbg_fill_array). |
| * |
| * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and |
| * the SHA256 / AES 256 over other ciphers. Thus, the favored |
| * DRBGs are the latest entries in this array. |
| */ |
| static const struct drbg_core drbg_cores[] = { |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| { |
| .flags = DRBG_CTR | DRBG_STRENGTH128, |
| .statelen = 32, /* 256 bits as defined in 10.2.1 */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 16, |
| .cra_name = "ctr_aes128", |
| .backend_cra_name = "ecb(aes)", |
| }, { |
| .flags = DRBG_CTR | DRBG_STRENGTH192, |
| .statelen = 40, /* 320 bits as defined in 10.2.1 */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 16, |
| .cra_name = "ctr_aes192", |
| .backend_cra_name = "ecb(aes)", |
| }, { |
| .flags = DRBG_CTR | DRBG_STRENGTH256, |
| .statelen = 48, /* 384 bits as defined in 10.2.1 */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 16, |
| .cra_name = "ctr_aes256", |
| .backend_cra_name = "ecb(aes)", |
| }, |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| #ifdef CONFIG_CRYPTO_DRBG_HASH |
| { |
| .flags = DRBG_HASH | DRBG_STRENGTH128, |
| .statelen = 55, /* 440 bits */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 20, |
| .cra_name = "sha1", |
| .backend_cra_name = "sha1", |
| }, { |
| .flags = DRBG_HASH | DRBG_STRENGTH256, |
| .statelen = 111, /* 888 bits */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 48, |
| .cra_name = "sha384", |
| .backend_cra_name = "sha384", |
| }, { |
| .flags = DRBG_HASH | DRBG_STRENGTH256, |
| .statelen = 111, /* 888 bits */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 64, |
| .cra_name = "sha512", |
| .backend_cra_name = "sha512", |
| }, { |
| .flags = DRBG_HASH | DRBG_STRENGTH256, |
| .statelen = 55, /* 440 bits */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 32, |
| .cra_name = "sha256", |
| .backend_cra_name = "sha256", |
| }, |
| #endif /* CONFIG_CRYPTO_DRBG_HASH */ |
| #ifdef CONFIG_CRYPTO_DRBG_HMAC |
| { |
| .flags = DRBG_HMAC | DRBG_STRENGTH256, |
| .statelen = 20, /* block length of cipher */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 20, |
| .cra_name = "hmac_sha1", |
| .backend_cra_name = "hmac(sha1)", |
| }, { |
| .flags = DRBG_HMAC | DRBG_STRENGTH256, |
| .statelen = 48, /* block length of cipher */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 48, |
| .cra_name = "hmac_sha384", |
| .backend_cra_name = "hmac(sha384)", |
| }, { |
| .flags = DRBG_HMAC | DRBG_STRENGTH256, |
| .statelen = 64, /* block length of cipher */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 64, |
| .cra_name = "hmac_sha512", |
| .backend_cra_name = "hmac(sha512)", |
| }, { |
| .flags = DRBG_HMAC | DRBG_STRENGTH256, |
| .statelen = 32, /* block length of cipher */ |
| .max_addtllen = 35, |
| .max_bits = 19, |
| .max_req = 48, |
| .blocklen_bytes = 32, |
| .cra_name = "hmac_sha256", |
| .backend_cra_name = "hmac(sha256)", |
| }, |
| #endif /* CONFIG_CRYPTO_DRBG_HMAC */ |
| }; |
| |
| /****************************************************************** |
| * Generic helper functions |
| ******************************************************************/ |
| |
| /* |
| * Return strength of DRBG according to SP800-90A section 8.4 |
| * |
| * @flags DRBG flags reference |
| * |
| * Return: normalized strength in *bytes* value or 32 as default |
| * to counter programming errors |
| */ |
| static inline unsigned short drbg_sec_strength(drbg_flag_t flags) |
| { |
| switch (flags & DRBG_STRENGTH_MASK) { |
| case DRBG_STRENGTH128: |
| return 16; |
| case DRBG_STRENGTH192: |
| return 24; |
| case DRBG_STRENGTH256: |
| return 32; |
| default: |
| return 32; |
| } |
| } |
| |
| /* |
| * FIPS 140-2 continuous self test |
| * The test is performed on the result of one round of the output |
| * function. Thus, the function implicitly knows the size of the |
| * buffer. |
| * |
| * The FIPS test can be called in an endless loop until it returns |
| * true. Although the code looks like a potential for a deadlock, it |
| * is not the case, because returning a false cannot mathematically |
| * occur (except once when a reseed took place and the updated state |
| * would is now set up such that the generation of new value returns |
| * an identical one -- this is most unlikely and would happen only once). |
| * Thus, if this function repeatedly returns false and thus would cause |
| * a deadlock, the integrity of the entire kernel is lost. |
| * |
| * @drbg DRBG handle |
| * @buf output buffer of random data to be checked |
| * |
| * return: |
| * true on success |
| * false on error |
| */ |
| static bool drbg_fips_continuous_test(struct drbg_state *drbg, |
| const unsigned char *buf) |
| { |
| #ifdef CONFIG_CRYPTO_FIPS |
| int ret = 0; |
| /* skip test if we test the overall system */ |
| if (drbg->test_data) |
| return true; |
| /* only perform test in FIPS mode */ |
| if (0 == fips_enabled) |
| return true; |
| if (!drbg->fips_primed) { |
| /* Priming of FIPS test */ |
| memcpy(drbg->prev, buf, drbg_blocklen(drbg)); |
| drbg->fips_primed = true; |
| /* return false due to priming, i.e. another round is needed */ |
| return false; |
| } |
| ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg)); |
| memcpy(drbg->prev, buf, drbg_blocklen(drbg)); |
| /* the test shall pass when the two compared values are not equal */ |
| return ret != 0; |
| #else |
| return true; |
| #endif /* CONFIG_CRYPTO_FIPS */ |
| } |
| |
| /* |
| * Convert an integer into a byte representation of this integer. |
| * The byte representation is big-endian |
| * |
| * @buf buffer holding the converted integer |
| * @val value to be converted |
| * @buflen length of buffer |
| */ |
| #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR)) |
| static inline void drbg_int2byte(unsigned char *buf, uint64_t val, |
| size_t buflen) |
| { |
| unsigned char *byte; |
| uint64_t i; |
| |
| byte = buf + (buflen - 1); |
| for (i = 0; i < buflen; i++) |
| *(byte--) = val >> (i * 8) & 0xff; |
| } |
| |
| /* |
| * Increment buffer |
| * |
| * @dst buffer to increment |
| * @add value to add |
| */ |
| static inline void drbg_add_buf(unsigned char *dst, size_t dstlen, |
| const unsigned char *add, size_t addlen) |
| { |
| /* implied: dstlen > addlen */ |
| unsigned char *dstptr; |
| const unsigned char *addptr; |
| unsigned int remainder = 0; |
| size_t len = addlen; |
| |
| dstptr = dst + (dstlen-1); |
| addptr = add + (addlen-1); |
| while (len) { |
| remainder += *dstptr + *addptr; |
| *dstptr = remainder & 0xff; |
| remainder >>= 8; |
| len--; dstptr--; addptr--; |
| } |
| len = dstlen - addlen; |
| while (len && remainder > 0) { |
| remainder = *dstptr + 1; |
| *dstptr = remainder & 0xff; |
| remainder >>= 8; |
| len--; dstptr--; |
| } |
| } |
| #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */ |
| |
| /****************************************************************** |
| * CTR DRBG callback functions |
| ******************************************************************/ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key, |
| unsigned char *outval, const struct drbg_string *in); |
| static int drbg_init_sym_kernel(struct drbg_state *drbg); |
| static int drbg_fini_sym_kernel(struct drbg_state *drbg); |
| |
| /* BCC function for CTR DRBG as defined in 10.4.3 */ |
| static int drbg_ctr_bcc(struct drbg_state *drbg, |
| unsigned char *out, const unsigned char *key, |
| struct drbg_string *in) |
| { |
| int ret = -EFAULT; |
| struct drbg_string *curr = in; |
| size_t inpos = curr->len; |
| const unsigned char *pos = curr->buf; |
| struct drbg_string data; |
| |
| drbg_string_fill(&data, out, drbg_blocklen(drbg)); |
| |
| /* 10.4.3 step 1 */ |
| memset(out, 0, drbg_blocklen(drbg)); |
| |
| /* 10.4.3 step 2 / 4 */ |
| while (inpos) { |
| short cnt = 0; |
| /* 10.4.3 step 4.1 */ |
| for (cnt = 0; cnt < drbg_blocklen(drbg); cnt++) { |
| out[cnt] ^= *pos; |
| pos++; inpos--; |
| /* |
| * The following branch implements the linked list |
| * iteration of drbg_string *in. If we are at the |
| * end of the current list member, we have to start |
| * using the next member if available. The inpos |
| * value always points to the current byte and will |
| * be zero if we have processed the last byte of |
| * the last linked list member. |
| */ |
| if (0 == inpos) { |
| curr = curr->next; |
| if (NULL != curr) { |
| pos = curr->buf; |
| inpos = curr->len; |
| } else { |
| inpos = 0; |
| break; |
| } |
| } |
| } |
| /* 10.4.3 step 4.2 */ |
| ret = drbg_kcapi_sym(drbg, key, out, &data); |
| if (ret) |
| return ret; |
| /* 10.4.3 step 2 */ |
| } |
| return 0; |
| } |
| |
| /* |
| * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df |
| * (and drbg_ctr_bcc, but this function does not need any temporary buffers), |
| * the scratchpad is used as follows: |
| * drbg_ctr_update: |
| * temp |
| * start: drbg->scratchpad |
| * length: drbg_statelen(drbg) + drbg_blocklen(drbg) |
| * note: the cipher writing into this variable works |
| * blocklen-wise. Now, when the statelen is not a multiple |
| * of blocklen, the generateion loop below "spills over" |
| * by at most blocklen. Thus, we need to give sufficient |
| * memory. |
| * df_data |
| * start: drbg->scratchpad + |
| * drbg_statelen(drbg) + drbg_blocklen(drbg) |
| * length: drbg_statelen(drbg) |
| * |
| * drbg_ctr_df: |
| * pad |
| * start: df_data + drbg_statelen(drbg) |
| * length: drbg_blocklen(drbg) |
| * iv |
| * start: pad + drbg_blocklen(drbg) |
| * length: drbg_blocklen(drbg) |
| * temp |
| * start: iv + drbg_blocklen(drbg) |
| * length: drbg_satelen(drbg) + drbg_blocklen(drbg) |
| * note: temp is the buffer that the BCC function operates |
| * on. BCC operates blockwise. drbg_statelen(drbg) |
| * is sufficient when the DRBG state length is a multiple |
| * of the block size. For AES192 (and maybe other ciphers) |
| * this is not correct and the length for temp is |
| * insufficient (yes, that also means for such ciphers, |
| * the final output of all BCC rounds are truncated). |
| * Therefore, add drbg_blocklen(drbg) to cover all |
| * possibilities. |
| */ |
| |
| /* Derivation Function for CTR DRBG as defined in 10.4.2 */ |
| static int drbg_ctr_df(struct drbg_state *drbg, |
| unsigned char *df_data, size_t bytes_to_return, |
| struct drbg_string *addtl) |
| { |
| int ret = -EFAULT; |
| unsigned char L_N[8]; |
| /* S3 is input */ |
| struct drbg_string S1, S2, S4, cipherin; |
| struct drbg_string *tempstr = addtl; |
| unsigned char *pad = df_data + drbg_statelen(drbg); |
| unsigned char *iv = pad + drbg_blocklen(drbg); |
| unsigned char *temp = iv + drbg_blocklen(drbg); |
| size_t padlen = 0; |
| unsigned int templen = 0; |
| /* 10.4.2 step 7 */ |
| unsigned int i = 0; |
| /* 10.4.2 step 8 */ |
| const unsigned char *K = (unsigned char *) |
| "\x00\x01\x02\x03\x04\x05\x06\x07" |
| "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" |
| "\x10\x11\x12\x13\x14\x15\x16\x17" |
| "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"; |
| unsigned char *X; |
| size_t generated_len = 0; |
| size_t inputlen = 0; |
| |
| memset(pad, 0, drbg_blocklen(drbg)); |
| memset(iv, 0, drbg_blocklen(drbg)); |
| memset(temp, 0, drbg_statelen(drbg)); |
| |
| /* 10.4.2 step 1 is implicit as we work byte-wise */ |
| |
| /* 10.4.2 step 2 */ |
| if ((512/8) < bytes_to_return) |
| return -EINVAL; |
| |
| /* 10.4.2 step 2 -- calculate the entire length of all input data */ |
| for (; NULL != tempstr; tempstr = tempstr->next) |
| inputlen += tempstr->len; |
| drbg_int2byte(&L_N[0], inputlen, 4); |
| |
| /* 10.4.2 step 3 */ |
| drbg_int2byte(&L_N[4], bytes_to_return, 4); |
| |
| /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */ |
| padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg)); |
| /* wrap the padlen appropriately */ |
| if (padlen) |
| padlen = drbg_blocklen(drbg) - padlen; |
| /* |
| * pad / padlen contains the 0x80 byte and the following zero bytes. |
| * As the calculated padlen value only covers the number of zero |
| * bytes, this value has to be incremented by one for the 0x80 byte. |
| */ |
| padlen++; |
| pad[0] = 0x80; |
| |
| /* 10.4.2 step 4 -- first fill the linked list and then order it */ |
| drbg_string_fill(&S1, iv, drbg_blocklen(drbg)); |
| drbg_string_fill(&S2, L_N, sizeof(L_N)); |
| drbg_string_fill(&S4, pad, padlen); |
| S1.next = &S2; |
| S2.next = addtl; |
| |
| /* |
| * Splice in addtl between S2 and S4 -- we place S4 at the end |
| * of the input data chain. As this code is only triggered when |
| * addtl is not NULL, no NULL checks are necessary. |
| */ |
| tempstr = addtl; |
| while (tempstr->next) |
| tempstr = tempstr->next; |
| tempstr->next = &S4; |
| |
| /* 10.4.2 step 9 */ |
| while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) { |
| /* |
| * 10.4.2 step 9.1 - the padding is implicit as the buffer |
| * holds zeros after allocation -- even the increment of i |
| * is irrelevant as the increment remains within length of i |
| */ |
| drbg_int2byte(iv, i, 4); |
| /* 10.4.2 step 9.2 -- BCC and concatenation with temp */ |
| ret = drbg_ctr_bcc(drbg, temp + templen, K, &S1); |
| if (ret) |
| goto out; |
| /* 10.4.2 step 9.3 */ |
| i++; |
| templen += drbg_blocklen(drbg); |
| } |
| |
| /* 10.4.2 step 11 */ |
| X = temp + (drbg_keylen(drbg)); |
| drbg_string_fill(&cipherin, X, drbg_blocklen(drbg)); |
| |
| /* 10.4.2 step 12: overwriting of outval is implemented in next step */ |
| |
| /* 10.4.2 step 13 */ |
| while (generated_len < bytes_to_return) { |
| short blocklen = 0; |
| /* |
| * 10.4.2 step 13.1: the truncation of the key length is |
| * implicit as the key is only drbg_blocklen in size based on |
| * the implementation of the cipher function callback |
| */ |
| ret = drbg_kcapi_sym(drbg, temp, X, &cipherin); |
| if (ret) |
| goto out; |
| blocklen = (drbg_blocklen(drbg) < |
| (bytes_to_return - generated_len)) ? |
| drbg_blocklen(drbg) : |
| (bytes_to_return - generated_len); |
| /* 10.4.2 step 13.2 and 14 */ |
| memcpy(df_data + generated_len, X, blocklen); |
| generated_len += blocklen; |
| } |
| |
| ret = 0; |
| |
| out: |
| memset(iv, 0, drbg_blocklen(drbg)); |
| memset(temp, 0, drbg_statelen(drbg)); |
| memset(pad, 0, drbg_blocklen(drbg)); |
| return ret; |
| } |
| |
| /* update function of CTR DRBG as defined in 10.2.1.2 */ |
| static int drbg_ctr_update(struct drbg_state *drbg, |
| struct drbg_string *addtl, int reseed) |
| { |
| int ret = -EFAULT; |
| /* 10.2.1.2 step 1 */ |
| unsigned char *temp = drbg->scratchpad; |
| unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) + |
| drbg_blocklen(drbg); |
| unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */ |
| unsigned int len = 0; |
| struct drbg_string cipherin; |
| unsigned char prefix = DRBG_PREFIX1; |
| |
| memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg)); |
| memset(df_data, 0, drbg_statelen(drbg)); |
| |
| /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */ |
| if (addtl && 0 < addtl->len) { |
| ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), |
| addtl); |
| if (ret) |
| goto out; |
| } |
| |
| drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg)); |
| /* |
| * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation |
| * zeroizes all memory during initialization |
| */ |
| while (len < (drbg_statelen(drbg))) { |
| /* 10.2.1.2 step 2.1 */ |
| drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); |
| /* |
| * 10.2.1.2 step 2.2 */ |
| ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin); |
| if (ret) |
| goto out; |
| /* 10.2.1.2 step 2.3 and 3 */ |
| len += drbg_blocklen(drbg); |
| } |
| |
| /* 10.2.1.2 step 4 */ |
| temp_p = temp; |
| df_data_p = df_data; |
| for (len = 0; len < drbg_statelen(drbg); len++) { |
| *temp_p ^= *df_data_p; |
| df_data_p++; temp_p++; |
| } |
| |
| /* 10.2.1.2 step 5 */ |
| memcpy(drbg->C, temp, drbg_keylen(drbg)); |
| /* 10.2.1.2 step 6 */ |
| memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg)); |
| ret = 0; |
| |
| out: |
| memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg)); |
| memset(df_data, 0, drbg_statelen(drbg)); |
| return ret; |
| } |
| |
| /* |
| * scratchpad use: drbg_ctr_update is called independently from |
| * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused |
| */ |
| /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */ |
| static int drbg_ctr_generate(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct drbg_string *addtl) |
| { |
| int len = 0; |
| int ret = 0; |
| struct drbg_string data; |
| unsigned char prefix = DRBG_PREFIX1; |
| |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| |
| /* 10.2.1.5.2 step 2 */ |
| if (addtl && 0 < addtl->len) { |
| addtl->next = NULL; |
| ret = drbg_ctr_update(drbg, addtl, 1); |
| if (ret) |
| return 0; |
| } |
| |
| /* 10.2.1.5.2 step 4.1 */ |
| drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); |
| drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg)); |
| while (len < buflen) { |
| int outlen = 0; |
| /* 10.2.1.5.2 step 4.2 */ |
| ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data); |
| if (ret) { |
| len = ret; |
| goto out; |
| } |
| outlen = (drbg_blocklen(drbg) < (buflen - len)) ? |
| drbg_blocklen(drbg) : (buflen - len); |
| if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) { |
| /* 10.2.1.5.2 step 6 */ |
| drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); |
| continue; |
| } |
| /* 10.2.1.5.2 step 4.3 */ |
| memcpy(buf + len, drbg->scratchpad, outlen); |
| len += outlen; |
| /* 10.2.1.5.2 step 6 */ |
| if (len < buflen) |
| drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); |
| } |
| |
| /* 10.2.1.5.2 step 6 */ |
| if (addtl) |
| addtl->next = NULL; |
| /* |
| * The following call invokes the DF function again which could be |
| * optimized. In step 2, the "additional_input" after step 2 is the |
| * output of the DF function. If this result would be saved, the DF |
| * function would not need to be invoked again at this point. |
| */ |
| ret = drbg_ctr_update(drbg, addtl, 1); |
| if (ret) |
| len = ret; |
| |
| out: |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| return len; |
| } |
| |
| static struct drbg_state_ops drbg_ctr_ops = { |
| .update = drbg_ctr_update, |
| .generate = drbg_ctr_generate, |
| .crypto_init = drbg_init_sym_kernel, |
| .crypto_fini = drbg_fini_sym_kernel, |
| }; |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| |
| /****************************************************************** |
| * HMAC DRBG callback functions |
| ******************************************************************/ |
| |
| #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC) |
| static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key, |
| unsigned char *outval, const struct drbg_string *in); |
| static int drbg_init_hash_kernel(struct drbg_state *drbg); |
| static int drbg_fini_hash_kernel(struct drbg_state *drbg); |
| #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_HMAC |
| /* update function of HMAC DRBG as defined in 10.1.2.2 */ |
| static int drbg_hmac_update(struct drbg_state *drbg, |
| struct drbg_string *seed, int reseed) |
| { |
| int ret = -EFAULT; |
| int i = 0; |
| struct drbg_string seed1, seed2, cipherin; |
| |
| if (!reseed) { |
| /* 10.1.2.3 step 2 */ |
| memset(drbg->C, 0, drbg_statelen(drbg)); |
| memset(drbg->V, 1, drbg_statelen(drbg)); |
| } |
| |
| drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg)); |
| /* buffer of seed2 will be filled in for loop below with one byte */ |
| drbg_string_fill(&seed2, NULL, 1); |
| seed1.next = &seed2; |
| /* input data of seed is allowed to be NULL at this point */ |
| seed2.next = seed; |
| |
| drbg_string_fill(&cipherin, drbg->V, drbg_statelen(drbg)); |
| for (i = 2; 0 < i; i--) { |
| /* first round uses 0x0, second 0x1 */ |
| unsigned char prefix = DRBG_PREFIX0; |
| if (1 == i) |
| prefix = DRBG_PREFIX1; |
| /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */ |
| seed2.buf = &prefix; |
| ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seed1); |
| if (ret) |
| return ret; |
| |
| /* 10.1.2.2 step 2 and 5 -- HMAC for V */ |
| ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &cipherin); |
| if (ret) |
| return ret; |
| |
| /* 10.1.2.2 step 3 */ |
| if (!seed || 0 == seed->len) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* generate function of HMAC DRBG as defined in 10.1.2.5 */ |
| static int drbg_hmac_generate(struct drbg_state *drbg, |
| unsigned char *buf, |
| unsigned int buflen, |
| struct drbg_string *addtl) |
| { |
| int len = 0; |
| int ret = 0; |
| struct drbg_string data; |
| |
| /* 10.1.2.5 step 2 */ |
| if (addtl && 0 < addtl->len) { |
| addtl->next = NULL; |
| ret = drbg_hmac_update(drbg, addtl, 1); |
| if (ret) |
| return ret; |
| } |
| |
| drbg_string_fill(&data, drbg->V, drbg_statelen(drbg)); |
| while (len < buflen) { |
| unsigned int outlen = 0; |
| /* 10.1.2.5 step 4.1 */ |
| ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &data); |
| if (ret) |
| return ret; |
| outlen = (drbg_blocklen(drbg) < (buflen - len)) ? |
| drbg_blocklen(drbg) : (buflen - len); |
| if (!drbg_fips_continuous_test(drbg, drbg->V)) |
| continue; |
| |
| /* 10.1.2.5 step 4.2 */ |
| memcpy(buf + len, drbg->V, outlen); |
| len += outlen; |
| } |
| |
| /* 10.1.2.5 step 6 */ |
| if (addtl) |
| addtl->next = NULL; |
| ret = drbg_hmac_update(drbg, addtl, 1); |
| if (ret) |
| return ret; |
| |
| return len; |
| } |
| |
| static struct drbg_state_ops drbg_hmac_ops = { |
| .update = drbg_hmac_update, |
| .generate = drbg_hmac_generate, |
| .crypto_init = drbg_init_hash_kernel, |
| .crypto_fini = drbg_fini_hash_kernel, |
| |
| }; |
| #endif /* CONFIG_CRYPTO_DRBG_HMAC */ |
| |
| /****************************************************************** |
| * Hash DRBG callback functions |
| ******************************************************************/ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_HASH |
| /* |
| * scratchpad usage: as drbg_hash_update and drbg_hash_df are used |
| * interlinked, the scratchpad is used as follows: |
| * drbg_hash_update |
| * start: drbg->scratchpad |
| * length: drbg_statelen(drbg) |
| * drbg_hash_df: |
| * start: drbg->scratchpad + drbg_statelen(drbg) |
| * length: drbg_blocklen(drbg) |
| * |
| * drbg_hash_process_addtl uses the scratchpad, but fully completes |
| * before either of the functions mentioned before are invoked. Therefore, |
| * drbg_hash_process_addtl does not need to be specifically considered. |
| */ |
| |
| /* Derivation Function for Hash DRBG as defined in 10.4.1 */ |
| static int drbg_hash_df(struct drbg_state *drbg, |
| unsigned char *outval, size_t outlen, |
| struct drbg_string *entropy) |
| { |
| int ret = 0; |
| size_t len = 0; |
| unsigned char input[5]; |
| unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg); |
| struct drbg_string data1; |
| |
| memset(tmp, 0, drbg_blocklen(drbg)); |
| |
| /* 10.4.1 step 3 */ |
| input[0] = 1; |
| drbg_int2byte(&input[1], (outlen * 8), 4); |
| |
| /* 10.4.1 step 4.1 -- concatenation of data for input into hash */ |
| drbg_string_fill(&data1, input, 5); |
| data1.next = entropy; |
| |
| /* 10.4.1 step 4 */ |
| while (len < outlen) { |
| short blocklen = 0; |
| /* 10.4.1 step 4.1 */ |
| ret = drbg_kcapi_hash(drbg, NULL, tmp, &data1); |
| if (ret) |
| goto out; |
| /* 10.4.1 step 4.2 */ |
| input[0]++; |
| blocklen = (drbg_blocklen(drbg) < (outlen - len)) ? |
| drbg_blocklen(drbg) : (outlen - len); |
| memcpy(outval + len, tmp, blocklen); |
| len += blocklen; |
| } |
| |
| out: |
| memset(tmp, 0, drbg_blocklen(drbg)); |
| return ret; |
| } |
| |
| /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */ |
| static int drbg_hash_update(struct drbg_state *drbg, struct drbg_string *seed, |
| int reseed) |
| { |
| int ret = 0; |
| struct drbg_string data1, data2; |
| unsigned char *V = drbg->scratchpad; |
| unsigned char prefix = DRBG_PREFIX1; |
| |
| memset(drbg->scratchpad, 0, drbg_statelen(drbg)); |
| if (!seed) |
| return -EINVAL; |
| |
| if (reseed) { |
| /* 10.1.1.3 step 1 */ |
| memcpy(V, drbg->V, drbg_statelen(drbg)); |
| drbg_string_fill(&data1, &prefix, 1); |
| drbg_string_fill(&data2, V, drbg_statelen(drbg)); |
| data1.next = &data2; |
| data2.next = seed; |
| } else { |
| drbg_string_fill(&data1, seed->buf, seed->len); |
| data1.next = seed->next; |
| } |
| |
| /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */ |
| ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &data1); |
| if (ret) |
| goto out; |
| |
| /* 10.1.1.2 / 10.1.1.3 step 4 */ |
| prefix = DRBG_PREFIX0; |
| drbg_string_fill(&data1, &prefix, 1); |
| drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg)); |
| data1.next = &data2; |
| /* 10.1.1.2 / 10.1.1.3 step 4 */ |
| ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &data1); |
| |
| out: |
| memset(drbg->scratchpad, 0, drbg_statelen(drbg)); |
| return ret; |
| } |
| |
| /* processing of additional information string for Hash DRBG */ |
| static int drbg_hash_process_addtl(struct drbg_state *drbg, |
| struct drbg_string *addtl) |
| { |
| int ret = 0; |
| struct drbg_string data1, data2; |
| struct drbg_string *data3; |
| unsigned char prefix = DRBG_PREFIX2; |
| |
| /* this is value w as per documentation */ |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| |
| /* 10.1.1.4 step 2 */ |
| if (!addtl || 0 == addtl->len) |
| return 0; |
| |
| /* 10.1.1.4 step 2a */ |
| drbg_string_fill(&data1, &prefix, 1); |
| drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg)); |
| data3 = addtl; |
| data1.next = &data2; |
| data2.next = data3; |
| data3->next = NULL; |
| ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &data1); |
| if (ret) |
| goto out; |
| |
| /* 10.1.1.4 step 2b */ |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), |
| drbg->scratchpad, drbg_blocklen(drbg)); |
| |
| out: |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| return ret; |
| } |
| |
| /* Hashgen defined in 10.1.1.4 */ |
| static int drbg_hash_hashgen(struct drbg_state *drbg, |
| unsigned char *buf, |
| unsigned int buflen) |
| { |
| int len = 0; |
| int ret = 0; |
| unsigned char *src = drbg->scratchpad; |
| unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg); |
| struct drbg_string data; |
| unsigned char prefix = DRBG_PREFIX1; |
| |
| memset(src, 0, drbg_statelen(drbg)); |
| memset(dst, 0, drbg_blocklen(drbg)); |
| |
| /* 10.1.1.4 step hashgen 2 */ |
| memcpy(src, drbg->V, drbg_statelen(drbg)); |
| |
| drbg_string_fill(&data, src, drbg_statelen(drbg)); |
| while (len < buflen) { |
| unsigned int outlen = 0; |
| /* 10.1.1.4 step hashgen 4.1 */ |
| ret = drbg_kcapi_hash(drbg, NULL, dst, &data); |
| if (ret) { |
| len = ret; |
| goto out; |
| } |
| outlen = (drbg_blocklen(drbg) < (buflen - len)) ? |
| drbg_blocklen(drbg) : (buflen - len); |
| if (!drbg_fips_continuous_test(drbg, dst)) { |
| drbg_add_buf(src, drbg_statelen(drbg), &prefix, 1); |
| continue; |
| } |
| /* 10.1.1.4 step hashgen 4.2 */ |
| memcpy(buf + len, dst, outlen); |
| len += outlen; |
| /* 10.1.1.4 hashgen step 4.3 */ |
| if (len < buflen) |
| drbg_add_buf(src, drbg_statelen(drbg), &prefix, 1); |
| } |
| |
| out: |
| memset(drbg->scratchpad, 0, |
| (drbg_statelen(drbg) + drbg_blocklen(drbg))); |
| return len; |
| } |
| |
| /* generate function for Hash DRBG as defined in 10.1.1.4 */ |
| static int drbg_hash_generate(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct drbg_string *addtl) |
| { |
| int len = 0; |
| int ret = 0; |
| unsigned char req[8]; |
| unsigned char prefix = DRBG_PREFIX3; |
| struct drbg_string data1, data2; |
| |
| /* 10.1.1.4 step 2 */ |
| ret = drbg_hash_process_addtl(drbg, addtl); |
| if (ret) |
| return ret; |
| /* 10.1.1.4 step 3 */ |
| len = drbg_hash_hashgen(drbg, buf, buflen); |
| |
| /* this is the value H as documented in 10.1.1.4 */ |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| /* 10.1.1.4 step 4 */ |
| drbg_string_fill(&data1, &prefix, 1); |
| drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg)); |
| data1.next = &data2; |
| ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &data1); |
| if (ret) { |
| len = ret; |
| goto out; |
| } |
| |
| /* 10.1.1.4 step 5 */ |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), |
| drbg->scratchpad, drbg_blocklen(drbg)); |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), |
| drbg->C, drbg_statelen(drbg)); |
| drbg_int2byte(req, drbg->reseed_ctr, sizeof(req)); |
| drbg_add_buf(drbg->V, drbg_statelen(drbg), req, 8); |
| |
| out: |
| memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); |
| return len; |
| } |
| |
| /* |
| * scratchpad usage: as update and generate are used isolated, both |
| * can use the scratchpad |
| */ |
| static struct drbg_state_ops drbg_hash_ops = { |
| .update = drbg_hash_update, |
| .generate = drbg_hash_generate, |
| .crypto_init = drbg_init_hash_kernel, |
| .crypto_fini = drbg_fini_hash_kernel, |
| }; |
| #endif /* CONFIG_CRYPTO_DRBG_HASH */ |
| |
| /****************************************************************** |
| * Functions common for DRBG implementations |
| ******************************************************************/ |
| |
| /* |
| * Seeding or reseeding of the DRBG |
| * |
| * @drbg: DRBG state struct |
| * @pers: personalization / additional information buffer |
| * @reseed: 0 for initial seed process, 1 for reseeding |
| * |
| * return: |
| * 0 on success |
| * error value otherwise |
| */ |
| static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers, |
| bool reseed) |
| { |
| int ret = 0; |
| unsigned char *entropy = NULL; |
| size_t entropylen = 0; |
| struct drbg_string data1; |
| |
| /* 9.1 / 9.2 / 9.3.1 step 3 */ |
| if (pers && pers->len > (drbg_max_addtl(drbg))) { |
| pr_devel("DRBG: personalization string too long %lu\n", |
| pers->len); |
| return -EINVAL; |
| } |
| |
| if (drbg->test_data && drbg->test_data->testentropy) { |
| drbg_string_fill(&data1, drbg->test_data->testentropy->buf, |
| drbg->test_data->testentropy->len); |
| pr_devel("DRBG: using test entropy\n"); |
| } else { |
| /* |
| * Gather entropy equal to the security strength of the DRBG. |
| * With a derivation function, a nonce is required in addition |
| * to the entropy. A nonce must be at least 1/2 of the security |
| * strength of the DRBG in size. Thus, entropy * nonce is 3/2 |
| * of the strength. The consideration of a nonce is only |
| * applicable during initial seeding. |
| */ |
| entropylen = drbg_sec_strength(drbg->core->flags); |
| if (!entropylen) |
| return -EFAULT; |
| if (!reseed) |
| entropylen = ((entropylen + 1) / 2) * 3; |
| pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n", |
| entropylen); |
| entropy = kzalloc(entropylen, GFP_KERNEL); |
| if (!entropy) |
| return -ENOMEM; |
| get_random_bytes(entropy, entropylen); |
| drbg_string_fill(&data1, entropy, entropylen); |
| } |
| |
| /* |
| * concatenation of entropy with personalization str / addtl input) |
| * the variable pers is directly handed in by the caller, so check its |
| * contents whether it is appropriate |
| */ |
| if (pers && pers->buf && 0 < pers->len && NULL == pers->next) { |
| data1.next = pers; |
| pr_devel("DRBG: using personalization string\n"); |
| } |
| |
| ret = drbg->d_ops->update(drbg, &data1, reseed); |
| if (ret) |
| goto out; |
| |
| drbg->seeded = true; |
| /* 10.1.1.2 / 10.1.1.3 step 5 */ |
| drbg->reseed_ctr = 1; |
| |
| out: |
| if (entropy) |
| kzfree(entropy); |
| return ret; |
| } |
| |
| /* Free all substructures in a DRBG state without the DRBG state structure */ |
| static inline void drbg_dealloc_state(struct drbg_state *drbg) |
| { |
| if (!drbg) |
| return; |
| if (drbg->V) |
| kzfree(drbg->V); |
| drbg->V = NULL; |
| if (drbg->C) |
| kzfree(drbg->C); |
| drbg->C = NULL; |
| if (drbg->scratchpad) |
| kzfree(drbg->scratchpad); |
| drbg->scratchpad = NULL; |
| drbg->reseed_ctr = 0; |
| #ifdef CONFIG_CRYPTO_FIPS |
| if (drbg->prev) |
| kzfree(drbg->prev); |
| drbg->prev = NULL; |
| drbg->fips_primed = false; |
| #endif |
| } |
| |
| /* |
| * Allocate all sub-structures for a DRBG state. |
| * The DRBG state structure must already be allocated. |
| */ |
| static inline int drbg_alloc_state(struct drbg_state *drbg) |
| { |
| int ret = -ENOMEM; |
| unsigned int sb_size = 0; |
| |
| if (!drbg) |
| return -EINVAL; |
| |
| drbg->V = kzalloc(drbg_statelen(drbg), GFP_KERNEL); |
| if (!drbg->V) |
| goto err; |
| drbg->C = kzalloc(drbg_statelen(drbg), GFP_KERNEL); |
| if (!drbg->C) |
| goto err; |
| #ifdef CONFIG_CRYPTO_FIPS |
| drbg->prev = kzalloc(drbg_blocklen(drbg), GFP_KERNEL); |
| if (!drbg->prev) |
| goto err; |
| drbg->fips_primed = false; |
| #endif |
| /* scratchpad is only generated for CTR and Hash */ |
| if (drbg->core->flags & DRBG_HMAC) |
| sb_size = 0; |
| else if (drbg->core->flags & DRBG_CTR) |
| sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */ |
| drbg_statelen(drbg) + /* df_data */ |
| drbg_blocklen(drbg) + /* pad */ |
| drbg_blocklen(drbg) + /* iv */ |
| drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */ |
| else |
| sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg); |
| |
| if (0 < sb_size) { |
| drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL); |
| if (!drbg->scratchpad) |
| goto err; |
| } |
| spin_lock_init(&drbg->drbg_lock); |
| return 0; |
| |
| err: |
| drbg_dealloc_state(drbg); |
| return ret; |
| } |
| |
| /* |
| * Strategy to avoid holding long term locks: generate a shadow copy of DRBG |
| * and perform all operations on this shadow copy. After finishing, restore |
| * the updated state of the shadow copy into original drbg state. This way, |
| * only the read and write operations of the original drbg state must be |
| * locked |
| */ |
| static inline void drbg_copy_drbg(struct drbg_state *src, |
| struct drbg_state *dst) |
| { |
| if (!src || !dst) |
| return; |
| memcpy(dst->V, src->V, drbg_statelen(src)); |
| memcpy(dst->C, src->C, drbg_statelen(src)); |
| dst->reseed_ctr = src->reseed_ctr; |
| dst->seeded = src->seeded; |
| dst->pr = src->pr; |
| #ifdef CONFIG_CRYPTO_FIPS |
| dst->fips_primed = src->fips_primed; |
| memcpy(dst->prev, src->prev, drbg_blocklen(src)); |
| #endif |
| /* |
| * Not copied: |
| * scratchpad is initialized drbg_alloc_state; |
| * priv_data is initialized with call to crypto_init; |
| * d_ops and core are set outside, as these parameters are const; |
| * test_data is set outside to prevent it being copied back. |
| */ |
| } |
| |
| static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow) |
| { |
| int ret = -ENOMEM; |
| struct drbg_state *tmp = NULL; |
| |
| if (!drbg || !drbg->core || !drbg->V || !drbg->C) { |
| pr_devel("DRBG: attempt to generate shadow copy for " |
| "uninitialized DRBG state rejected\n"); |
| return -EINVAL; |
| } |
| /* HMAC does not have a scratchpad */ |
| if (!(drbg->core->flags & DRBG_HMAC) && NULL == drbg->scratchpad) |
| return -EINVAL; |
| |
| tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL); |
| if (!tmp) |
| return -ENOMEM; |
| |
| /* read-only data as they are defined as const, no lock needed */ |
| tmp->core = drbg->core; |
| tmp->d_ops = drbg->d_ops; |
| |
| ret = drbg_alloc_state(tmp); |
| if (ret) |
| goto err; |
| |
| spin_lock_bh(&drbg->drbg_lock); |
| drbg_copy_drbg(drbg, tmp); |
| /* only make a link to the test buffer, as we only read that data */ |
| tmp->test_data = drbg->test_data; |
| spin_unlock_bh(&drbg->drbg_lock); |
| *shadow = tmp; |
| return 0; |
| |
| err: |
| if (tmp) |
| kzfree(tmp); |
| return ret; |
| } |
| |
| static void drbg_restore_shadow(struct drbg_state *drbg, |
| struct drbg_state **shadow) |
| { |
| struct drbg_state *tmp = *shadow; |
| |
| spin_lock_bh(&drbg->drbg_lock); |
| drbg_copy_drbg(tmp, drbg); |
| spin_unlock_bh(&drbg->drbg_lock); |
| drbg_dealloc_state(tmp); |
| kzfree(tmp); |
| *shadow = NULL; |
| } |
| |
| /************************************************************************* |
| * DRBG interface functions |
| *************************************************************************/ |
| |
| /* |
| * DRBG generate function as required by SP800-90A - this function |
| * generates random numbers |
| * |
| * @drbg DRBG state handle |
| * @buf Buffer where to store the random numbers -- the buffer must already |
| * be pre-allocated by caller |
| * @buflen Length of output buffer - this value defines the number of random |
| * bytes pulled from DRBG |
| * @addtl Additional input that is mixed into state, may be NULL -- note |
| * the entropy is pulled by the DRBG internally unconditionally |
| * as defined in SP800-90A. The additional input is mixed into |
| * the state in addition to the pulled entropy. |
| * |
| * return: generated number of bytes |
| */ |
| static int drbg_generate(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct drbg_string *addtl) |
| { |
| int len = 0; |
| struct drbg_state *shadow = NULL; |
| |
| if (0 == buflen || !buf) { |
| pr_devel("DRBG: no output buffer provided\n"); |
| return -EINVAL; |
| } |
| if (addtl && NULL == addtl->buf && 0 < addtl->len) { |
| pr_devel("DRBG: wrong format of additional information\n"); |
| return -EINVAL; |
| } |
| |
| len = drbg_make_shadow(drbg, &shadow); |
| if (len) { |
| pr_devel("DRBG: shadow copy cannot be generated\n"); |
| return len; |
| } |
| |
| /* 9.3.1 step 2 */ |
| len = -EINVAL; |
| if (buflen > (drbg_max_request_bytes(shadow))) { |
| pr_devel("DRBG: requested random numbers too large %u\n", |
| buflen); |
| goto err; |
| } |
| |
| /* 9.3.1 step 3 is implicit with the chosen DRBG */ |
| |
| /* 9.3.1 step 4 */ |
| if (addtl && addtl->len > (drbg_max_addtl(shadow))) { |
| pr_devel("DRBG: additional information string too long %zu\n", |
| addtl->len); |
| goto err; |
| } |
| /* 9.3.1 step 5 is implicit with the chosen DRBG */ |
| |
| /* |
| * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented |
| * here. The spec is a bit convoluted here, we make it simpler. |
| */ |
| if ((drbg_max_requests(shadow)) < shadow->reseed_ctr) |
| shadow->seeded = false; |
| |
| /* allocate cipher handle */ |
| if (shadow->d_ops->crypto_init) { |
| len = shadow->d_ops->crypto_init(shadow); |
| if (len) |
| goto err; |
| } |
| |
| if (shadow->pr || !shadow->seeded) { |
| pr_devel("DRBG: reseeding before generation (prediction " |
| "resistance: %s, state %s)\n", |
| drbg->pr ? "true" : "false", |
| drbg->seeded ? "seeded" : "unseeded"); |
| /* 9.3.1 steps 7.1 through 7.3 */ |
| len = drbg_seed(shadow, addtl, true); |
| if (len) |
| goto err; |
| /* 9.3.1 step 7.4 */ |
| addtl = NULL; |
| } |
| /* 9.3.1 step 8 and 10 */ |
| len = shadow->d_ops->generate(shadow, buf, buflen, addtl); |
| |
| /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */ |
| shadow->reseed_ctr++; |
| if (0 >= len) |
| goto err; |
| |
| /* |
| * Section 11.3.3 requires to re-perform self tests after some |
| * generated random numbers. The chosen value after which self |
| * test is performed is arbitrary, but it should be reasonable. |
| * However, we do not perform the self tests because of the following |
| * reasons: it is mathematically impossible that the initial self tests |
| * were successfully and the following are not. If the initial would |
| * pass and the following would not, the kernel integrity is violated. |
| * In this case, the entire kernel operation is questionable and it |
| * is unlikely that the integrity violation only affects the |
| * correct operation of the DRBG. |
| * |
| * Albeit the following code is commented out, it is provided in |
| * case somebody has a need to implement the test of 11.3.3. |
| */ |
| #if 0 |
| if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) { |
| int err = 0; |
| pr_devel("DRBG: start to perform self test\n"); |
| if (drbg->core->flags & DRBG_HMAC) |
| err = alg_test("drbg_pr_hmac_sha256", |
| "drbg_pr_hmac_sha256", 0, 0); |
| else if (drbg->core->flags & DRBG_CTR) |
| err = alg_test("drbg_pr_ctr_aes128", |
| "drbg_pr_ctr_aes128", 0, 0); |
| else |
| err = alg_test("drbg_pr_sha256", |
| "drbg_pr_sha256", 0, 0); |
| if (err) { |
| pr_err("DRBG: periodical self test failed\n"); |
| /* |
| * uninstantiate implies that from now on, only errors |
| * are returned when reusing this DRBG cipher handle |
| */ |
| drbg_uninstantiate(drbg); |
| drbg_dealloc_state(shadow); |
| kzfree(shadow); |
| return 0; |
| } else { |
| pr_devel("DRBG: self test successful\n"); |
| } |
| } |
| #endif |
| |
| err: |
| if (shadow->d_ops->crypto_fini) |
| shadow->d_ops->crypto_fini(shadow); |
| drbg_restore_shadow(drbg, &shadow); |
| return len; |
| } |
| |
| /* |
| * Wrapper around drbg_generate which can pull arbitrary long strings |
| * from the DRBG without hitting the maximum request limitation. |
| * |
| * Parameters: see drbg_generate |
| * Return codes: see drbg_generate -- if one drbg_generate request fails, |
| * the entire drbg_generate_long request fails |
| */ |
| static int drbg_generate_long(struct drbg_state *drbg, |
| unsigned char *buf, unsigned int buflen, |
| struct drbg_string *addtl) |
| { |
| int len = 0; |
| unsigned int slice = 0; |
| do { |
| int tmplen = 0; |
| unsigned int chunk = 0; |
| slice = ((buflen - len) / drbg_max_request_bytes(drbg)); |
| chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len); |
| tmplen = drbg_generate(drbg, buf + len, chunk, addtl); |
| if (0 >= tmplen) |
| return tmplen; |
| len += tmplen; |
| } while (slice > 0); |
| return len; |
| } |
| |
| /* |
| * DRBG instantiation function as required by SP800-90A - this function |
| * sets up the DRBG handle, performs the initial seeding and all sanity |
| * checks required by SP800-90A |
| * |
| * @drbg memory of state -- if NULL, new memory is allocated |
| * @pers Personalization string that is mixed into state, may be NULL -- note |
| * the entropy is pulled by the DRBG internally unconditionally |
| * as defined in SP800-90A. The additional input is mixed into |
| * the state in addition to the pulled entropy. |
| * @coreref reference to core |
| * @pr prediction resistance enabled |
| * |
| * return |
| * 0 on success |
| * error value otherwise |
| */ |
| static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers, |
| int coreref, bool pr) |
| { |
| int ret = -ENOMEM; |
| |
| pr_devel("DRBG: Initializing DRBG core %d with prediction resistance " |
| "%s\n", coreref, pr ? "enabled" : "disabled"); |
| drbg->core = &drbg_cores[coreref]; |
| drbg->pr = pr; |
| drbg->seeded = false; |
| switch (drbg->core->flags & DRBG_TYPE_MASK) { |
| #ifdef CONFIG_CRYPTO_DRBG_HMAC |
| case DRBG_HMAC: |
| drbg->d_ops = &drbg_hmac_ops; |
| break; |
| #endif /* CONFIG_CRYPTO_DRBG_HMAC */ |
| #ifdef CONFIG_CRYPTO_DRBG_HASH |
| case DRBG_HASH: |
| drbg->d_ops = &drbg_hash_ops; |
| break; |
| #endif /* CONFIG_CRYPTO_DRBG_HASH */ |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| case DRBG_CTR: |
| drbg->d_ops = &drbg_ctr_ops; |
| break; |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| /* 9.1 step 1 is implicit with the selected DRBG type */ |
| |
| /* |
| * 9.1 step 2 is implicit as caller can select prediction resistance |
| * and the flag is copied into drbg->flags -- |
| * all DRBG types support prediction resistance |
| */ |
| |
| /* 9.1 step 4 is implicit in drbg_sec_strength */ |
| |
| ret = drbg_alloc_state(drbg); |
| if (ret) |
| return ret; |
| |
| ret = -EFAULT; |
| if (drbg->d_ops->crypto_init && drbg->d_ops->crypto_init(drbg)) |
| goto err; |
| ret = drbg_seed(drbg, pers, false); |
| if (drbg->d_ops->crypto_fini) |
| drbg->d_ops->crypto_fini(drbg); |
| if (ret) |
| goto err; |
| |
| return 0; |
| |
| err: |
| drbg_dealloc_state(drbg); |
| return ret; |
| } |
| |
| /* |
| * DRBG uninstantiate function as required by SP800-90A - this function |
| * frees all buffers and the DRBG handle |
| * |
| * @drbg DRBG state handle |
| * |
| * return |
| * 0 on success |
| */ |
| static int drbg_uninstantiate(struct drbg_state *drbg) |
| { |
| spin_lock_bh(&drbg->drbg_lock); |
| drbg_dealloc_state(drbg); |
| /* no scrubbing of test_data -- this shall survive an uninstantiate */ |
| spin_unlock_bh(&drbg->drbg_lock); |
| return 0; |
| } |
| |
| /* |
| * Helper function for setting the test data in the DRBG |
| * |
| * @drbg DRBG state handle |
| * @test_data test data to sets |
| */ |
| static inline void drbg_set_testdata(struct drbg_state *drbg, |
| struct drbg_test_data *test_data) |
| { |
| if (!test_data || !test_data->testentropy) |
| return; |
| spin_lock_bh(&drbg->drbg_lock); |
| drbg->test_data = test_data; |
| spin_unlock_bh(&drbg->drbg_lock); |
| } |
| |
| /*************************************************************** |
| * Kernel crypto API cipher invocations requested by DRBG |
| ***************************************************************/ |
| |
| #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC) |
| struct sdesc { |
| struct shash_desc shash; |
| char ctx[]; |
| }; |
| |
| static int drbg_init_hash_kernel(struct drbg_state *drbg) |
| { |
| struct sdesc *sdesc; |
| struct crypto_shash *tfm; |
| |
| tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| pr_info("DRBG: could not allocate digest TFM handle\n"); |
| return PTR_ERR(tfm); |
| } |
| BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm)); |
| sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm), |
| GFP_KERNEL); |
| if (!sdesc) { |
| crypto_free_shash(tfm); |
| return -ENOMEM; |
| } |
| |
| sdesc->shash.tfm = tfm; |
| sdesc->shash.flags = 0; |
| drbg->priv_data = sdesc; |
| return 0; |
| } |
| |
| static int drbg_fini_hash_kernel(struct drbg_state *drbg) |
| { |
| struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; |
| if (sdesc) { |
| crypto_free_shash(sdesc->shash.tfm); |
| kzfree(sdesc); |
| } |
| drbg->priv_data = NULL; |
| return 0; |
| } |
| |
| static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key, |
| unsigned char *outval, const struct drbg_string *in) |
| { |
| struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; |
| |
| if (key) |
| crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg)); |
| crypto_shash_init(&sdesc->shash); |
| for (; NULL != in; in = in->next) |
| crypto_shash_update(&sdesc->shash, in->buf, in->len); |
| return crypto_shash_final(&sdesc->shash, outval); |
| } |
| #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */ |
| |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| static int drbg_init_sym_kernel(struct drbg_state *drbg) |
| { |
| int ret = 0; |
| struct crypto_blkcipher *tfm; |
| |
| tfm = crypto_alloc_blkcipher(drbg->core->backend_cra_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| pr_info("DRBG: could not allocate cipher TFM handle\n"); |
| return PTR_ERR(tfm); |
| } |
| BUG_ON(drbg_blocklen(drbg) != crypto_blkcipher_blocksize(tfm)); |
| drbg->priv_data = tfm; |
| return ret; |
| } |
| |
| static int drbg_fini_sym_kernel(struct drbg_state *drbg) |
| { |
| struct crypto_blkcipher *tfm = |
| (struct crypto_blkcipher *)drbg->priv_data; |
| if (tfm) |
| crypto_free_blkcipher(tfm); |
| drbg->priv_data = NULL; |
| return 0; |
| } |
| |
| static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key, |
| unsigned char *outval, const struct drbg_string *in) |
| { |
| int ret = 0; |
| struct scatterlist sg_in, sg_out; |
| struct blkcipher_desc desc; |
| struct crypto_blkcipher *tfm = |
| (struct crypto_blkcipher *)drbg->priv_data; |
| |
| desc.tfm = tfm; |
| desc.flags = 0; |
| crypto_blkcipher_setkey(tfm, key, (drbg_keylen(drbg))); |
| /* there is only component in *in */ |
| sg_init_one(&sg_in, in->buf, in->len); |
| sg_init_one(&sg_out, outval, drbg_blocklen(drbg)); |
| ret = crypto_blkcipher_encrypt(&desc, &sg_out, &sg_in, in->len); |
| |
| return ret; |
| } |
| #endif /* CONFIG_CRYPTO_DRBG_CTR */ |
| |
| /*************************************************************** |
| * Kernel crypto API interface to register DRBG |
| ***************************************************************/ |
| |
| /* |
| * Look up the DRBG flags by given kernel crypto API cra_name |
| * The code uses the drbg_cores definition to do this |
| * |
| * @cra_name kernel crypto API cra_name |
| * @coreref reference to integer which is filled with the pointer to |
| * the applicable core |
| * @pr reference for setting prediction resistance |
| * |
| * return: flags |
| */ |
| static inline void drbg_convert_tfm_core(const char *cra_driver_name, |
| int *coreref, bool *pr) |
| { |
| int i = 0; |
| size_t start = 0; |
| int len = 0; |
| |
| *pr = true; |
| /* disassemble the names */ |
| if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) { |
| start = 10; |
| *pr = false; |
| } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) { |
| start = 8; |
| } else { |
| return; |
| } |
| |
| /* remove the first part */ |
| len = strlen(cra_driver_name) - start; |
| for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) { |
| if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name, |
| len)) { |
| *coreref = i; |
| return; |
| } |
| } |
| } |
| |
| static int drbg_kcapi_init(struct crypto_tfm *tfm) |
| { |
| struct drbg_state *drbg = crypto_tfm_ctx(tfm); |
| bool pr = false; |
| int coreref = 0; |
| |
| drbg_convert_tfm_core(crypto_tfm_alg_name(tfm), &coreref, &pr); |
| /* |
| * when personalization string is needed, the caller must call reset |
| * and provide the personalization string as seed information |
| */ |
| return drbg_instantiate(drbg, NULL, coreref, pr); |
| } |
| |
| static void drbg_kcapi_cleanup(struct crypto_tfm *tfm) |
| { |
| drbg_uninstantiate(crypto_tfm_ctx(tfm)); |
| } |
| |
| /* |
| * Generate random numbers invoked by the kernel crypto API: |
| * The API of the kernel crypto API is extended as follows: |
| * |
| * If dlen is larger than zero, rdata is interpreted as the output buffer |
| * where random data is to be stored. |
| * |
| * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen |
| * which holds the additional information string that is used for the |
| * DRBG generation process. The output buffer that is to be used to store |
| * data is also pointed to by struct drbg_gen. |
| */ |
| static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata, |
| unsigned int dlen) |
| { |
| struct drbg_state *drbg = crypto_rng_ctx(tfm); |
| if (0 < dlen) { |
| return drbg_generate_long(drbg, rdata, dlen, NULL); |
| } else { |
| struct drbg_gen *data = (struct drbg_gen *)rdata; |
| /* catch NULL pointer */ |
| if (!data) |
| return 0; |
| drbg_set_testdata(drbg, data->test_data); |
| return drbg_generate_long(drbg, data->outbuf, data->outlen, |
| data->addtl); |
| } |
| } |
| |
| /* |
| * Reset the DRBG invoked by the kernel crypto API |
| * The reset implies a full re-initialization of the DRBG. Similar to the |
| * generate function of drbg_kcapi_random, this function extends the |
| * kernel crypto API interface with struct drbg_gen |
| */ |
| static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) |
| { |
| struct drbg_state *drbg = crypto_rng_ctx(tfm); |
| struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm); |
| bool pr = false; |
| struct drbg_string seed_string; |
| int coreref = 0; |
| |
| drbg_uninstantiate(drbg); |
| drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref, |
| &pr); |
| if (0 < slen) { |
| drbg_string_fill(&seed_string, seed, slen); |
| return drbg_instantiate(drbg, &seed_string, coreref, pr); |
| } else { |
| struct drbg_gen *data = (struct drbg_gen *)seed; |
| /* allow invocation of API call with NULL, 0 */ |
| if (!data) |
| return drbg_instantiate(drbg, NULL, coreref, pr); |
| drbg_set_testdata(drbg, data->test_data); |
| return drbg_instantiate(drbg, data->addtl, coreref, pr); |
| } |
| } |
| |
| /*************************************************************** |
| * Kernel module: code to load the module |
| ***************************************************************/ |
| |
| /* |
| * Tests as defined in 11.3.2 in addition to the cipher tests: testing |
| * of the error handling. |
| * |
| * Note: testing of failing seed source as defined in 11.3.2 is not applicable |
| * as seed source of get_random_bytes does not fail. |
| * |
| * Note 2: There is no sensible way of testing the reseed counter |
| * enforcement, so skip it. |
| */ |
| static inline int __init drbg_healthcheck_sanity(void) |
| { |
| #ifdef CONFIG_CRYPTO_FIPS |
| int len = 0; |
| #define OUTBUFLEN 16 |
| unsigned char buf[OUTBUFLEN]; |
| struct drbg_state *drbg = NULL; |
| int ret = -EFAULT; |
| int rc = -EFAULT; |
| bool pr = false; |
| int coreref = 0; |
| struct drbg_string addtl; |
| size_t max_addtllen, max_request_bytes; |
| |
| /* only perform test in FIPS mode */ |
| if (!fips_enabled) |
| return 0; |
| |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr); |
| #elif CONFIG_CRYPTO_DRBG_HASH |
| drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr); |
| #else |
| drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr); |
| #endif |
| |
| drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL); |
| if (!drbg) |
| return -ENOMEM; |
| |
| /* |
| * if the following tests fail, it is likely that there is a buffer |
| * overflow as buf is much smaller than the requested or provided |
| * string lengths -- in case the error handling does not succeed |
| * we may get an OOPS. And we want to get an OOPS as this is a |
| * grave bug. |
| */ |
| |
| /* get a valid instance of DRBG for following tests */ |
| ret = drbg_instantiate(drbg, NULL, coreref, pr); |
| if (ret) { |
| rc = ret; |
| goto outbuf; |
| } |
| max_addtllen = drbg_max_addtl(drbg); |
| max_request_bytes = drbg_max_request_bytes(drbg); |
| drbg_string_fill(&addtl, buf, max_addtllen + 1); |
| /* overflow addtllen with additonal info string */ |
| len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl); |
| BUG_ON(0 < len); |
| /* overflow max_bits */ |
| len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL); |
| BUG_ON(0 < len); |
| drbg_uninstantiate(drbg); |
| |
| /* overflow max addtllen with personalization string */ |
| ret = drbg_instantiate(drbg, &addtl, coreref, pr); |
| BUG_ON(0 == ret); |
| /* test uninstantated DRBG */ |
| len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL); |
| BUG_ON(0 < len); |
| /* all tests passed */ |
| rc = 0; |
| |
| pr_devel("DRBG: Sanity tests for failure code paths successfully " |
| "completed\n"); |
| |
| drbg_uninstantiate(drbg); |
| outbuf: |
| kzfree(drbg); |
| return rc; |
| #else /* CONFIG_CRYPTO_FIPS */ |
| return 0; |
| #endif /* CONFIG_CRYPTO_FIPS */ |
| } |
| |
| static struct crypto_alg drbg_algs[22]; |
| |
| /* |
| * Fill the array drbg_algs used to register the different DRBGs |
| * with the kernel crypto API. To fill the array, the information |
| * from drbg_cores[] is used. |
| */ |
| static inline void __init drbg_fill_array(struct crypto_alg *alg, |
| const struct drbg_core *core, int pr) |
| { |
| int pos = 0; |
| static int priority = 100; |
| |
| memset(alg, 0, sizeof(struct crypto_alg)); |
| memcpy(alg->cra_name, "stdrng", 6); |
| if (pr) { |
| memcpy(alg->cra_driver_name, "drbg_pr_", 8); |
| pos = 8; |
| } else { |
| memcpy(alg->cra_driver_name, "drbg_nopr_", 10); |
| pos = 10; |
| } |
| memcpy(alg->cra_driver_name + pos, core->cra_name, |
| strlen(core->cra_name)); |
| |
| alg->cra_priority = priority; |
| priority++; |
| /* |
| * If FIPS mode enabled, the selected DRBG shall have the |
| * highest cra_priority over other stdrng instances to ensure |
| * it is selected. |
| */ |
| if (fips_enabled) |
| alg->cra_priority += 200; |
| |
| alg->cra_flags = CRYPTO_ALG_TYPE_RNG; |
| alg->cra_ctxsize = sizeof(struct drbg_state); |
| alg->cra_type = &crypto_rng_type; |
| alg->cra_module = THIS_MODULE; |
| alg->cra_init = drbg_kcapi_init; |
| alg->cra_exit = drbg_kcapi_cleanup; |
| alg->cra_u.rng.rng_make_random = drbg_kcapi_random; |
| alg->cra_u.rng.rng_reset = drbg_kcapi_reset; |
| alg->cra_u.rng.seedsize = 0; |
| } |
| |
| static int __init drbg_init(void) |
| { |
| unsigned int i = 0; /* pointer to drbg_algs */ |
| unsigned int j = 0; /* pointer to drbg_cores */ |
| int ret = -EFAULT; |
| |
| ret = drbg_healthcheck_sanity(); |
| if (ret) |
| return ret; |
| |
| if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) { |
| pr_info("DRBG: Cannot register all DRBG types" |
| "(slots needed: %lu, slots available: %lu)\n", |
| ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs)); |
| return ret; |
| } |
| |
| /* |
| * each DRBG definition can be used with PR and without PR, thus |
| * we instantiate each DRBG in drbg_cores[] twice. |
| * |
| * As the order of placing them into the drbg_algs array matters |
| * (the later DRBGs receive a higher cra_priority) we register the |
| * prediction resistance DRBGs first as the should not be too |
| * interesting. |
| */ |
| for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++) |
| drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1); |
| for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++) |
| drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0); |
| return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2)); |
| } |
| |
| void __exit drbg_exit(void) |
| { |
| crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2)); |
| } |
| |
| module_init(drbg_init); |
| module_exit(drbg_exit); |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); |
| MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) using following cores:" |
| #ifdef CONFIG_CRYPTO_DRBG_HMAC |
| "HMAC " |
| #endif |
| #ifdef CONFIG_CRYPTO_DRBG_HASH |
| "Hash " |
| #endif |
| #ifdef CONFIG_CRYPTO_DRBG_CTR |
| "CTR" |
| #endif |
| ); |