| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* Kerberos-based RxRPC security |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <crypto/skcipher.h> |
| #include <linux/module.h> |
| #include <linux/net.h> |
| #include <linux/skbuff.h> |
| #include <linux/udp.h> |
| #include <linux/scatterlist.h> |
| #include <linux/ctype.h> |
| #include <linux/slab.h> |
| #include <linux/key-type.h> |
| #include <net/sock.h> |
| #include <net/af_rxrpc.h> |
| #include <keys/rxrpc-type.h> |
| #include "ar-internal.h" |
| |
| #define RXKAD_VERSION 2 |
| #define MAXKRB5TICKETLEN 1024 |
| #define RXKAD_TKT_TYPE_KERBEROS_V5 256 |
| #define ANAME_SZ 40 /* size of authentication name */ |
| #define INST_SZ 40 /* size of principal's instance */ |
| #define REALM_SZ 40 /* size of principal's auth domain */ |
| #define SNAME_SZ 40 /* size of service name */ |
| #define RXKAD_ALIGN 8 |
| |
| struct rxkad_level1_hdr { |
| __be32 data_size; /* true data size (excluding padding) */ |
| }; |
| |
| struct rxkad_level2_hdr { |
| __be32 data_size; /* true data size (excluding padding) */ |
| __be32 checksum; /* decrypted data checksum */ |
| }; |
| |
| static int rxkad_prime_packet_security(struct rxrpc_connection *conn, |
| struct crypto_sync_skcipher *ci); |
| |
| /* |
| * this holds a pinned cipher so that keventd doesn't get called by the cipher |
| * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE |
| * packets |
| */ |
| static struct crypto_sync_skcipher *rxkad_ci; |
| static struct skcipher_request *rxkad_ci_req; |
| static DEFINE_MUTEX(rxkad_ci_mutex); |
| |
| /* |
| * Parse the information from a server key |
| * |
| * The data should be the 8-byte secret key. |
| */ |
| static int rxkad_preparse_server_key(struct key_preparsed_payload *prep) |
| { |
| struct crypto_skcipher *ci; |
| |
| if (prep->datalen != 8) |
| return -EINVAL; |
| |
| memcpy(&prep->payload.data[2], prep->data, 8); |
| |
| ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(ci)) { |
| _leave(" = %ld", PTR_ERR(ci)); |
| return PTR_ERR(ci); |
| } |
| |
| if (crypto_skcipher_setkey(ci, prep->data, 8) < 0) |
| BUG(); |
| |
| prep->payload.data[0] = ci; |
| _leave(" = 0"); |
| return 0; |
| } |
| |
| static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep) |
| { |
| |
| if (prep->payload.data[0]) |
| crypto_free_skcipher(prep->payload.data[0]); |
| } |
| |
| static void rxkad_destroy_server_key(struct key *key) |
| { |
| if (key->payload.data[0]) { |
| crypto_free_skcipher(key->payload.data[0]); |
| key->payload.data[0] = NULL; |
| } |
| } |
| |
| /* |
| * initialise connection security |
| */ |
| static int rxkad_init_connection_security(struct rxrpc_connection *conn, |
| struct rxrpc_key_token *token) |
| { |
| struct crypto_sync_skcipher *ci; |
| int ret; |
| |
| _enter("{%d},{%x}", conn->debug_id, key_serial(conn->key)); |
| |
| conn->security_ix = token->security_index; |
| |
| ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0); |
| if (IS_ERR(ci)) { |
| _debug("no cipher"); |
| ret = PTR_ERR(ci); |
| goto error; |
| } |
| |
| if (crypto_sync_skcipher_setkey(ci, token->kad->session_key, |
| sizeof(token->kad->session_key)) < 0) |
| BUG(); |
| |
| switch (conn->security_level) { |
| case RXRPC_SECURITY_PLAIN: |
| case RXRPC_SECURITY_AUTH: |
| case RXRPC_SECURITY_ENCRYPT: |
| break; |
| default: |
| ret = -EKEYREJECTED; |
| goto error; |
| } |
| |
| ret = rxkad_prime_packet_security(conn, ci); |
| if (ret < 0) |
| goto error_ci; |
| |
| conn->rxkad.cipher = ci; |
| return 0; |
| |
| error_ci: |
| crypto_free_sync_skcipher(ci); |
| error: |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * Work out how much data we can put in a packet. |
| */ |
| static struct rxrpc_txbuf *rxkad_alloc_txbuf(struct rxrpc_call *call, size_t remain, gfp_t gfp) |
| { |
| struct rxrpc_txbuf *txb; |
| size_t shdr, space; |
| |
| remain = min(remain, 65535 - sizeof(struct rxrpc_wire_header)); |
| |
| switch (call->conn->security_level) { |
| default: |
| space = min_t(size_t, remain, RXRPC_JUMBO_DATALEN); |
| return rxrpc_alloc_data_txbuf(call, space, 1, gfp); |
| case RXRPC_SECURITY_AUTH: |
| shdr = sizeof(struct rxkad_level1_hdr); |
| break; |
| case RXRPC_SECURITY_ENCRYPT: |
| shdr = sizeof(struct rxkad_level2_hdr); |
| break; |
| } |
| |
| space = min_t(size_t, round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN), remain + shdr); |
| space = round_up(space, RXKAD_ALIGN); |
| |
| txb = rxrpc_alloc_data_txbuf(call, space, RXKAD_ALIGN, gfp); |
| if (!txb) |
| return NULL; |
| |
| txb->offset += shdr; |
| txb->space -= shdr; |
| return txb; |
| } |
| |
| /* |
| * prime the encryption state with the invariant parts of a connection's |
| * description |
| */ |
| static int rxkad_prime_packet_security(struct rxrpc_connection *conn, |
| struct crypto_sync_skcipher *ci) |
| { |
| struct skcipher_request *req; |
| struct rxrpc_key_token *token; |
| struct scatterlist sg; |
| struct rxrpc_crypt iv; |
| __be32 *tmpbuf; |
| size_t tmpsize = 4 * sizeof(__be32); |
| |
| _enter(""); |
| |
| if (!conn->key) |
| return 0; |
| |
| tmpbuf = kmalloc(tmpsize, GFP_KERNEL); |
| if (!tmpbuf) |
| return -ENOMEM; |
| |
| req = skcipher_request_alloc(&ci->base, GFP_NOFS); |
| if (!req) { |
| kfree(tmpbuf); |
| return -ENOMEM; |
| } |
| |
| token = conn->key->payload.data[0]; |
| memcpy(&iv, token->kad->session_key, sizeof(iv)); |
| |
| tmpbuf[0] = htonl(conn->proto.epoch); |
| tmpbuf[1] = htonl(conn->proto.cid); |
| tmpbuf[2] = 0; |
| tmpbuf[3] = htonl(conn->security_ix); |
| |
| sg_init_one(&sg, tmpbuf, tmpsize); |
| skcipher_request_set_sync_tfm(req, ci); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x); |
| crypto_skcipher_encrypt(req); |
| skcipher_request_free(req); |
| |
| memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv)); |
| kfree(tmpbuf); |
| _leave(" = 0"); |
| return 0; |
| } |
| |
| /* |
| * Allocate and prepare the crypto request on a call. For any particular call, |
| * this is called serially for the packets, so no lock should be necessary. |
| */ |
| static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call) |
| { |
| struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base; |
| |
| return skcipher_request_alloc(tfm, GFP_NOFS); |
| } |
| |
| /* |
| * Clean up the crypto on a call. |
| */ |
| static void rxkad_free_call_crypto(struct rxrpc_call *call) |
| { |
| } |
| |
| /* |
| * partially encrypt a packet (level 1 security) |
| */ |
| static int rxkad_secure_packet_auth(const struct rxrpc_call *call, |
| struct rxrpc_txbuf *txb, |
| struct skcipher_request *req) |
| { |
| struct rxrpc_wire_header *whdr = txb->kvec[0].iov_base; |
| struct rxkad_level1_hdr *hdr = (void *)(whdr + 1); |
| struct rxrpc_crypt iv; |
| struct scatterlist sg; |
| size_t pad; |
| u16 check; |
| |
| _enter(""); |
| |
| check = txb->seq ^ call->call_id; |
| hdr->data_size = htonl((u32)check << 16 | txb->len); |
| |
| txb->len += sizeof(struct rxkad_level1_hdr); |
| pad = txb->len; |
| pad = RXKAD_ALIGN - pad; |
| pad &= RXKAD_ALIGN - 1; |
| if (pad) { |
| memset(txb->kvec[0].iov_base + txb->offset, 0, pad); |
| txb->len += pad; |
| } |
| |
| /* start the encryption afresh */ |
| memset(&iv, 0, sizeof(iv)); |
| |
| sg_init_one(&sg, hdr, 8); |
| skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); |
| crypto_skcipher_encrypt(req); |
| skcipher_request_zero(req); |
| |
| _leave(" = 0"); |
| return 0; |
| } |
| |
| /* |
| * wholly encrypt a packet (level 2 security) |
| */ |
| static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call, |
| struct rxrpc_txbuf *txb, |
| struct skcipher_request *req) |
| { |
| const struct rxrpc_key_token *token; |
| struct rxrpc_wire_header *whdr = txb->kvec[0].iov_base; |
| struct rxkad_level2_hdr *rxkhdr = (void *)(whdr + 1); |
| struct rxrpc_crypt iv; |
| struct scatterlist sg; |
| size_t pad; |
| u16 check; |
| int ret; |
| |
| _enter(""); |
| |
| check = txb->seq ^ call->call_id; |
| |
| rxkhdr->data_size = htonl(txb->len | (u32)check << 16); |
| rxkhdr->checksum = 0; |
| |
| txb->len += sizeof(struct rxkad_level2_hdr); |
| pad = txb->len; |
| pad = RXKAD_ALIGN - pad; |
| pad &= RXKAD_ALIGN - 1; |
| if (pad) { |
| memset(txb->kvec[0].iov_base + txb->offset, 0, pad); |
| txb->len += pad; |
| } |
| |
| /* encrypt from the session key */ |
| token = call->conn->key->payload.data[0]; |
| memcpy(&iv, token->kad->session_key, sizeof(iv)); |
| |
| sg_init_one(&sg, rxkhdr, txb->len); |
| skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, &sg, &sg, txb->len, iv.x); |
| ret = crypto_skcipher_encrypt(req); |
| skcipher_request_zero(req); |
| return ret; |
| } |
| |
| /* |
| * checksum an RxRPC packet header |
| */ |
| static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb) |
| { |
| struct skcipher_request *req; |
| struct rxrpc_crypt iv; |
| struct scatterlist sg; |
| union { |
| __be32 buf[2]; |
| } crypto __aligned(8); |
| u32 x, y; |
| int ret; |
| |
| _enter("{%d{%x}},{#%u},%u,", |
| call->debug_id, key_serial(call->conn->key), |
| txb->seq, txb->len); |
| |
| if (!call->conn->rxkad.cipher) |
| return 0; |
| |
| ret = key_validate(call->conn->key); |
| if (ret < 0) |
| return ret; |
| |
| req = rxkad_get_call_crypto(call); |
| if (!req) |
| return -ENOMEM; |
| |
| /* continue encrypting from where we left off */ |
| memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv)); |
| |
| /* calculate the security checksum */ |
| x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT); |
| x |= txb->seq & 0x3fffffff; |
| crypto.buf[0] = htonl(call->call_id); |
| crypto.buf[1] = htonl(x); |
| |
| sg_init_one(&sg, crypto.buf, 8); |
| skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); |
| crypto_skcipher_encrypt(req); |
| skcipher_request_zero(req); |
| |
| y = ntohl(crypto.buf[1]); |
| y = (y >> 16) & 0xffff; |
| if (y == 0) |
| y = 1; /* zero checksums are not permitted */ |
| txb->cksum = htons(y); |
| |
| switch (call->conn->security_level) { |
| case RXRPC_SECURITY_PLAIN: |
| ret = 0; |
| break; |
| case RXRPC_SECURITY_AUTH: |
| ret = rxkad_secure_packet_auth(call, txb, req); |
| break; |
| case RXRPC_SECURITY_ENCRYPT: |
| ret = rxkad_secure_packet_encrypt(call, txb, req); |
| break; |
| default: |
| ret = -EPERM; |
| break; |
| } |
| |
| skcipher_request_free(req); |
| _leave(" = %d [set %x]", ret, y); |
| return ret; |
| } |
| |
| /* |
| * decrypt partial encryption on a packet (level 1 security) |
| */ |
| static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb, |
| rxrpc_seq_t seq, |
| struct skcipher_request *req) |
| { |
| struct rxkad_level1_hdr sechdr; |
| struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| struct rxrpc_crypt iv; |
| struct scatterlist sg[16]; |
| u32 data_size, buf; |
| u16 check; |
| int ret; |
| |
| _enter(""); |
| |
| if (sp->len < 8) |
| return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| rxkad_abort_1_short_header); |
| |
| /* Decrypt the skbuff in-place. TODO: We really want to decrypt |
| * directly into the target buffer. |
| */ |
| sg_init_table(sg, ARRAY_SIZE(sg)); |
| ret = skb_to_sgvec(skb, sg, sp->offset, 8); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| /* start the decryption afresh */ |
| memset(&iv, 0, sizeof(iv)); |
| |
| skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, 8, iv.x); |
| crypto_skcipher_decrypt(req); |
| skcipher_request_zero(req); |
| |
| /* Extract the decrypted packet length */ |
| if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) |
| return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| rxkad_abort_1_short_encdata); |
| sp->offset += sizeof(sechdr); |
| sp->len -= sizeof(sechdr); |
| |
| buf = ntohl(sechdr.data_size); |
| data_size = buf & 0xffff; |
| |
| check = buf >> 16; |
| check ^= seq ^ call->call_id; |
| check &= 0xffff; |
| if (check != 0) |
| return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| rxkad_abort_1_short_check); |
| if (data_size > sp->len) |
| return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| rxkad_abort_1_short_data); |
| sp->len = data_size; |
| |
| _leave(" = 0 [dlen=%x]", data_size); |
| return 0; |
| } |
| |
| /* |
| * wholly decrypt a packet (level 2 security) |
| */ |
| static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb, |
| rxrpc_seq_t seq, |
| struct skcipher_request *req) |
| { |
| const struct rxrpc_key_token *token; |
| struct rxkad_level2_hdr sechdr; |
| struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| struct rxrpc_crypt iv; |
| struct scatterlist _sg[4], *sg; |
| u32 data_size, buf; |
| u16 check; |
| int nsg, ret; |
| |
| _enter(",{%d}", sp->len); |
| |
| if (sp->len < 8) |
| return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| rxkad_abort_2_short_header); |
| |
| /* Decrypt the skbuff in-place. TODO: We really want to decrypt |
| * directly into the target buffer. |
| */ |
| sg = _sg; |
| nsg = skb_shinfo(skb)->nr_frags + 1; |
| if (nsg <= 4) { |
| nsg = 4; |
| } else { |
| sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO); |
| if (!sg) |
| return -ENOMEM; |
| } |
| |
| sg_init_table(sg, nsg); |
| ret = skb_to_sgvec(skb, sg, sp->offset, sp->len); |
| if (unlikely(ret < 0)) { |
| if (sg != _sg) |
| kfree(sg); |
| return ret; |
| } |
| |
| /* decrypt from the session key */ |
| token = call->conn->key->payload.data[0]; |
| memcpy(&iv, token->kad->session_key, sizeof(iv)); |
| |
| skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x); |
| crypto_skcipher_decrypt(req); |
| skcipher_request_zero(req); |
| if (sg != _sg) |
| kfree(sg); |
| |
| /* Extract the decrypted packet length */ |
| if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) |
| return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| rxkad_abort_2_short_len); |
| sp->offset += sizeof(sechdr); |
| sp->len -= sizeof(sechdr); |
| |
| buf = ntohl(sechdr.data_size); |
| data_size = buf & 0xffff; |
| |
| check = buf >> 16; |
| check ^= seq ^ call->call_id; |
| check &= 0xffff; |
| if (check != 0) |
| return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| rxkad_abort_2_short_check); |
| |
| if (data_size > sp->len) |
| return rxrpc_abort_eproto(call, skb, RXKADDATALEN, |
| rxkad_abort_2_short_data); |
| |
| sp->len = data_size; |
| _leave(" = 0 [dlen=%x]", data_size); |
| return 0; |
| } |
| |
| /* |
| * Verify the security on a received packet and the subpackets therein. |
| */ |
| static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb) |
| { |
| struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| struct skcipher_request *req; |
| struct rxrpc_crypt iv; |
| struct scatterlist sg; |
| union { |
| __be32 buf[2]; |
| } crypto __aligned(8); |
| rxrpc_seq_t seq = sp->hdr.seq; |
| int ret; |
| u16 cksum; |
| u32 x, y; |
| |
| _enter("{%d{%x}},{#%u}", |
| call->debug_id, key_serial(call->conn->key), seq); |
| |
| if (!call->conn->rxkad.cipher) |
| return 0; |
| |
| req = rxkad_get_call_crypto(call); |
| if (!req) |
| return -ENOMEM; |
| |
| /* continue encrypting from where we left off */ |
| memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv)); |
| |
| /* validate the security checksum */ |
| x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT); |
| x |= seq & 0x3fffffff; |
| crypto.buf[0] = htonl(call->call_id); |
| crypto.buf[1] = htonl(x); |
| |
| sg_init_one(&sg, crypto.buf, 8); |
| skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x); |
| crypto_skcipher_encrypt(req); |
| skcipher_request_zero(req); |
| |
| y = ntohl(crypto.buf[1]); |
| cksum = (y >> 16) & 0xffff; |
| if (cksum == 0) |
| cksum = 1; /* zero checksums are not permitted */ |
| |
| if (cksum != sp->hdr.cksum) { |
| ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON, |
| rxkad_abort_bad_checksum); |
| goto out; |
| } |
| |
| switch (call->conn->security_level) { |
| case RXRPC_SECURITY_PLAIN: |
| ret = 0; |
| break; |
| case RXRPC_SECURITY_AUTH: |
| ret = rxkad_verify_packet_1(call, skb, seq, req); |
| break; |
| case RXRPC_SECURITY_ENCRYPT: |
| ret = rxkad_verify_packet_2(call, skb, seq, req); |
| break; |
| default: |
| ret = -ENOANO; |
| break; |
| } |
| |
| out: |
| skcipher_request_free(req); |
| return ret; |
| } |
| |
| /* |
| * issue a challenge |
| */ |
| static int rxkad_issue_challenge(struct rxrpc_connection *conn) |
| { |
| struct rxkad_challenge challenge; |
| struct rxrpc_wire_header whdr; |
| struct msghdr msg; |
| struct kvec iov[2]; |
| size_t len; |
| u32 serial; |
| int ret; |
| |
| _enter("{%d}", conn->debug_id); |
| |
| get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce)); |
| |
| challenge.version = htonl(2); |
| challenge.nonce = htonl(conn->rxkad.nonce); |
| challenge.min_level = htonl(0); |
| challenge.__padding = 0; |
| |
| msg.msg_name = &conn->peer->srx.transport; |
| msg.msg_namelen = conn->peer->srx.transport_len; |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = 0; |
| |
| whdr.epoch = htonl(conn->proto.epoch); |
| whdr.cid = htonl(conn->proto.cid); |
| whdr.callNumber = 0; |
| whdr.seq = 0; |
| whdr.type = RXRPC_PACKET_TYPE_CHALLENGE; |
| whdr.flags = conn->out_clientflag; |
| whdr.userStatus = 0; |
| whdr.securityIndex = conn->security_ix; |
| whdr._rsvd = 0; |
| whdr.serviceId = htons(conn->service_id); |
| |
| iov[0].iov_base = &whdr; |
| iov[0].iov_len = sizeof(whdr); |
| iov[1].iov_base = &challenge; |
| iov[1].iov_len = sizeof(challenge); |
| |
| len = iov[0].iov_len + iov[1].iov_len; |
| |
| serial = rxrpc_get_next_serial(conn); |
| whdr.serial = htonl(serial); |
| |
| ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len); |
| if (ret < 0) { |
| trace_rxrpc_tx_fail(conn->debug_id, serial, ret, |
| rxrpc_tx_point_rxkad_challenge); |
| return -EAGAIN; |
| } |
| |
| conn->peer->last_tx_at = ktime_get_seconds(); |
| trace_rxrpc_tx_packet(conn->debug_id, &whdr, |
| rxrpc_tx_point_rxkad_challenge); |
| _leave(" = 0"); |
| return 0; |
| } |
| |
| /* |
| * send a Kerberos security response |
| */ |
| static int rxkad_send_response(struct rxrpc_connection *conn, |
| struct rxrpc_host_header *hdr, |
| struct rxkad_response *resp, |
| const struct rxkad_key *s2) |
| { |
| struct rxrpc_wire_header whdr; |
| struct msghdr msg; |
| struct kvec iov[3]; |
| size_t len; |
| u32 serial; |
| int ret; |
| |
| _enter(""); |
| |
| msg.msg_name = &conn->peer->srx.transport; |
| msg.msg_namelen = conn->peer->srx.transport_len; |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = 0; |
| |
| memset(&whdr, 0, sizeof(whdr)); |
| whdr.epoch = htonl(hdr->epoch); |
| whdr.cid = htonl(hdr->cid); |
| whdr.type = RXRPC_PACKET_TYPE_RESPONSE; |
| whdr.flags = conn->out_clientflag; |
| whdr.securityIndex = hdr->securityIndex; |
| whdr.serviceId = htons(hdr->serviceId); |
| |
| iov[0].iov_base = &whdr; |
| iov[0].iov_len = sizeof(whdr); |
| iov[1].iov_base = resp; |
| iov[1].iov_len = sizeof(*resp); |
| iov[2].iov_base = (void *)s2->ticket; |
| iov[2].iov_len = s2->ticket_len; |
| |
| len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len; |
| |
| serial = rxrpc_get_next_serial(conn); |
| whdr.serial = htonl(serial); |
| |
| rxrpc_local_dont_fragment(conn->local, false); |
| ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len); |
| if (ret < 0) { |
| trace_rxrpc_tx_fail(conn->debug_id, serial, ret, |
| rxrpc_tx_point_rxkad_response); |
| return -EAGAIN; |
| } |
| |
| conn->peer->last_tx_at = ktime_get_seconds(); |
| _leave(" = 0"); |
| return 0; |
| } |
| |
| /* |
| * calculate the response checksum |
| */ |
| static void rxkad_calc_response_checksum(struct rxkad_response *response) |
| { |
| u32 csum = 1000003; |
| int loop; |
| u8 *p = (u8 *) response; |
| |
| for (loop = sizeof(*response); loop > 0; loop--) |
| csum = csum * 0x10204081 + *p++; |
| |
| response->encrypted.checksum = htonl(csum); |
| } |
| |
| /* |
| * encrypt the response packet |
| */ |
| static int rxkad_encrypt_response(struct rxrpc_connection *conn, |
| struct rxkad_response *resp, |
| const struct rxkad_key *s2) |
| { |
| struct skcipher_request *req; |
| struct rxrpc_crypt iv; |
| struct scatterlist sg[1]; |
| |
| req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS); |
| if (!req) |
| return -ENOMEM; |
| |
| /* continue encrypting from where we left off */ |
| memcpy(&iv, s2->session_key, sizeof(iv)); |
| |
| sg_init_table(sg, 1); |
| sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted)); |
| skcipher_request_set_sync_tfm(req, conn->rxkad.cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x); |
| crypto_skcipher_encrypt(req); |
| skcipher_request_free(req); |
| return 0; |
| } |
| |
| /* |
| * respond to a challenge packet |
| */ |
| static int rxkad_respond_to_challenge(struct rxrpc_connection *conn, |
| struct sk_buff *skb) |
| { |
| const struct rxrpc_key_token *token; |
| struct rxkad_challenge challenge; |
| struct rxkad_response *resp; |
| struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| u32 version, nonce, min_level; |
| int ret = -EPROTO; |
| |
| _enter("{%d,%x}", conn->debug_id, key_serial(conn->key)); |
| |
| if (!conn->key) |
| return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO, |
| rxkad_abort_chall_no_key); |
| |
| ret = key_validate(conn->key); |
| if (ret < 0) |
| return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret, |
| rxkad_abort_chall_key_expired); |
| |
| if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), |
| &challenge, sizeof(challenge)) < 0) |
| return rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, |
| rxkad_abort_chall_short); |
| |
| version = ntohl(challenge.version); |
| nonce = ntohl(challenge.nonce); |
| min_level = ntohl(challenge.min_level); |
| |
| trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level); |
| |
| if (version != RXKAD_VERSION) |
| return rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO, |
| rxkad_abort_chall_version); |
| |
| if (conn->security_level < min_level) |
| return rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES, |
| rxkad_abort_chall_level); |
| |
| token = conn->key->payload.data[0]; |
| |
| /* build the response packet */ |
| resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS); |
| if (!resp) |
| return -ENOMEM; |
| |
| resp->version = htonl(RXKAD_VERSION); |
| resp->encrypted.epoch = htonl(conn->proto.epoch); |
| resp->encrypted.cid = htonl(conn->proto.cid); |
| resp->encrypted.securityIndex = htonl(conn->security_ix); |
| resp->encrypted.inc_nonce = htonl(nonce + 1); |
| resp->encrypted.level = htonl(conn->security_level); |
| resp->kvno = htonl(token->kad->kvno); |
| resp->ticket_len = htonl(token->kad->ticket_len); |
| resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter); |
| resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter); |
| resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter); |
| resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter); |
| |
| /* calculate the response checksum and then do the encryption */ |
| rxkad_calc_response_checksum(resp); |
| ret = rxkad_encrypt_response(conn, resp, token->kad); |
| if (ret == 0) |
| ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad); |
| kfree(resp); |
| return ret; |
| } |
| |
| /* |
| * decrypt the kerberos IV ticket in the response |
| */ |
| static int rxkad_decrypt_ticket(struct rxrpc_connection *conn, |
| struct key *server_key, |
| struct sk_buff *skb, |
| void *ticket, size_t ticket_len, |
| struct rxrpc_crypt *_session_key, |
| time64_t *_expiry) |
| { |
| struct skcipher_request *req; |
| struct rxrpc_crypt iv, key; |
| struct scatterlist sg[1]; |
| struct in_addr addr; |
| unsigned int life; |
| time64_t issue, now; |
| bool little_endian; |
| u8 *p, *q, *name, *end; |
| |
| _enter("{%d},{%x}", conn->debug_id, key_serial(server_key)); |
| |
| *_expiry = 0; |
| |
| ASSERT(server_key->payload.data[0] != NULL); |
| ASSERTCMP((unsigned long) ticket & 7UL, ==, 0); |
| |
| memcpy(&iv, &server_key->payload.data[2], sizeof(iv)); |
| |
| req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS); |
| if (!req) |
| return -ENOMEM; |
| |
| sg_init_one(&sg[0], ticket, ticket_len); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x); |
| crypto_skcipher_decrypt(req); |
| skcipher_request_free(req); |
| |
| p = ticket; |
| end = p + ticket_len; |
| |
| #define Z(field, fieldl) \ |
| ({ \ |
| u8 *__str = p; \ |
| q = memchr(p, 0, end - p); \ |
| if (!q || q - p > field##_SZ) \ |
| return rxrpc_abort_conn( \ |
| conn, skb, RXKADBADTICKET, -EPROTO, \ |
| rxkad_abort_resp_tkt_##fieldl); \ |
| for (; p < q; p++) \ |
| if (!isprint(*p)) \ |
| return rxrpc_abort_conn( \ |
| conn, skb, RXKADBADTICKET, -EPROTO, \ |
| rxkad_abort_resp_tkt_##fieldl); \ |
| p++; \ |
| __str; \ |
| }) |
| |
| /* extract the ticket flags */ |
| _debug("KIV FLAGS: %x", *p); |
| little_endian = *p & 1; |
| p++; |
| |
| /* extract the authentication name */ |
| name = Z(ANAME, aname); |
| _debug("KIV ANAME: %s", name); |
| |
| /* extract the principal's instance */ |
| name = Z(INST, inst); |
| _debug("KIV INST : %s", name); |
| |
| /* extract the principal's authentication domain */ |
| name = Z(REALM, realm); |
| _debug("KIV REALM: %s", name); |
| |
| if (end - p < 4 + 8 + 4 + 2) |
| return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO, |
| rxkad_abort_resp_tkt_short); |
| |
| /* get the IPv4 address of the entity that requested the ticket */ |
| memcpy(&addr, p, sizeof(addr)); |
| p += 4; |
| _debug("KIV ADDR : %pI4", &addr); |
| |
| /* get the session key from the ticket */ |
| memcpy(&key, p, sizeof(key)); |
| p += 8; |
| _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1])); |
| memcpy(_session_key, &key, sizeof(key)); |
| |
| /* get the ticket's lifetime */ |
| life = *p++ * 5 * 60; |
| _debug("KIV LIFE : %u", life); |
| |
| /* get the issue time of the ticket */ |
| if (little_endian) { |
| __le32 stamp; |
| memcpy(&stamp, p, 4); |
| issue = rxrpc_u32_to_time64(le32_to_cpu(stamp)); |
| } else { |
| __be32 stamp; |
| memcpy(&stamp, p, 4); |
| issue = rxrpc_u32_to_time64(be32_to_cpu(stamp)); |
| } |
| p += 4; |
| now = ktime_get_real_seconds(); |
| _debug("KIV ISSUE: %llx [%llx]", issue, now); |
| |
| /* check the ticket is in date */ |
| if (issue > now) |
| return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED, |
| rxkad_abort_resp_tkt_future); |
| if (issue < now - life) |
| return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED, |
| rxkad_abort_resp_tkt_expired); |
| |
| *_expiry = issue + life; |
| |
| /* get the service name */ |
| name = Z(SNAME, sname); |
| _debug("KIV SNAME: %s", name); |
| |
| /* get the service instance name */ |
| name = Z(INST, sinst); |
| _debug("KIV SINST: %s", name); |
| return 0; |
| } |
| |
| /* |
| * decrypt the response packet |
| */ |
| static void rxkad_decrypt_response(struct rxrpc_connection *conn, |
| struct rxkad_response *resp, |
| const struct rxrpc_crypt *session_key) |
| { |
| struct skcipher_request *req = rxkad_ci_req; |
| struct scatterlist sg[1]; |
| struct rxrpc_crypt iv; |
| |
| _enter(",,%08x%08x", |
| ntohl(session_key->n[0]), ntohl(session_key->n[1])); |
| |
| mutex_lock(&rxkad_ci_mutex); |
| if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x, |
| sizeof(*session_key)) < 0) |
| BUG(); |
| |
| memcpy(&iv, session_key, sizeof(iv)); |
| |
| sg_init_table(sg, 1); |
| sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted)); |
| skcipher_request_set_sync_tfm(req, rxkad_ci); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x); |
| crypto_skcipher_decrypt(req); |
| skcipher_request_zero(req); |
| |
| mutex_unlock(&rxkad_ci_mutex); |
| |
| _leave(""); |
| } |
| |
| /* |
| * verify a response |
| */ |
| static int rxkad_verify_response(struct rxrpc_connection *conn, |
| struct sk_buff *skb) |
| { |
| struct rxkad_response *response; |
| struct rxrpc_skb_priv *sp = rxrpc_skb(skb); |
| struct rxrpc_crypt session_key; |
| struct key *server_key; |
| time64_t expiry; |
| void *ticket; |
| u32 version, kvno, ticket_len, level; |
| __be32 csum; |
| int ret, i; |
| |
| _enter("{%d}", conn->debug_id); |
| |
| server_key = rxrpc_look_up_server_security(conn, skb, 0, 0); |
| if (IS_ERR(server_key)) { |
| ret = PTR_ERR(server_key); |
| switch (ret) { |
| case -ENOKEY: |
| return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret, |
| rxkad_abort_resp_nokey); |
| case -EKEYEXPIRED: |
| return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret, |
| rxkad_abort_resp_key_expired); |
| default: |
| return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret, |
| rxkad_abort_resp_key_rejected); |
| } |
| } |
| |
| ret = -ENOMEM; |
| response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS); |
| if (!response) |
| goto temporary_error; |
| |
| if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), |
| response, sizeof(*response)) < 0) { |
| rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, |
| rxkad_abort_resp_short); |
| goto protocol_error; |
| } |
| |
| version = ntohl(response->version); |
| ticket_len = ntohl(response->ticket_len); |
| kvno = ntohl(response->kvno); |
| |
| trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len); |
| |
| if (version != RXKAD_VERSION) { |
| rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO, |
| rxkad_abort_resp_version); |
| goto protocol_error; |
| } |
| |
| if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) { |
| rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO, |
| rxkad_abort_resp_tkt_len); |
| goto protocol_error; |
| } |
| |
| if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) { |
| rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO, |
| rxkad_abort_resp_unknown_tkt); |
| goto protocol_error; |
| } |
| |
| /* extract the kerberos ticket and decrypt and decode it */ |
| ret = -ENOMEM; |
| ticket = kmalloc(ticket_len, GFP_NOFS); |
| if (!ticket) |
| goto temporary_error_free_resp; |
| |
| if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response), |
| ticket, ticket_len) < 0) { |
| rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO, |
| rxkad_abort_resp_short_tkt); |
| goto protocol_error; |
| } |
| |
| ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len, |
| &session_key, &expiry); |
| if (ret < 0) |
| goto temporary_error_free_ticket; |
| |
| /* use the session key from inside the ticket to decrypt the |
| * response */ |
| rxkad_decrypt_response(conn, response, &session_key); |
| |
| if (ntohl(response->encrypted.epoch) != conn->proto.epoch || |
| ntohl(response->encrypted.cid) != conn->proto.cid || |
| ntohl(response->encrypted.securityIndex) != conn->security_ix) { |
| rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| rxkad_abort_resp_bad_param); |
| goto protocol_error_free; |
| } |
| |
| csum = response->encrypted.checksum; |
| response->encrypted.checksum = 0; |
| rxkad_calc_response_checksum(response); |
| if (response->encrypted.checksum != csum) { |
| rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| rxkad_abort_resp_bad_checksum); |
| goto protocol_error_free; |
| } |
| |
| for (i = 0; i < RXRPC_MAXCALLS; i++) { |
| u32 call_id = ntohl(response->encrypted.call_id[i]); |
| u32 counter = READ_ONCE(conn->channels[i].call_counter); |
| |
| if (call_id > INT_MAX) { |
| rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| rxkad_abort_resp_bad_callid); |
| goto protocol_error_free; |
| } |
| |
| if (call_id < counter) { |
| rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| rxkad_abort_resp_call_ctr); |
| goto protocol_error_free; |
| } |
| |
| if (call_id > counter) { |
| if (conn->channels[i].call) { |
| rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO, |
| rxkad_abort_resp_call_state); |
| goto protocol_error_free; |
| } |
| conn->channels[i].call_counter = call_id; |
| } |
| } |
| |
| if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) { |
| rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO, |
| rxkad_abort_resp_ooseq); |
| goto protocol_error_free; |
| } |
| |
| level = ntohl(response->encrypted.level); |
| if (level > RXRPC_SECURITY_ENCRYPT) { |
| rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO, |
| rxkad_abort_resp_level); |
| goto protocol_error_free; |
| } |
| conn->security_level = level; |
| |
| /* create a key to hold the security data and expiration time - after |
| * this the connection security can be handled in exactly the same way |
| * as for a client connection */ |
| ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno); |
| if (ret < 0) |
| goto temporary_error_free_ticket; |
| |
| kfree(ticket); |
| kfree(response); |
| _leave(" = 0"); |
| return 0; |
| |
| protocol_error_free: |
| kfree(ticket); |
| protocol_error: |
| kfree(response); |
| key_put(server_key); |
| return -EPROTO; |
| |
| temporary_error_free_ticket: |
| kfree(ticket); |
| temporary_error_free_resp: |
| kfree(response); |
| temporary_error: |
| /* Ignore the response packet if we got a temporary error such as |
| * ENOMEM. We just want to send the challenge again. Note that we |
| * also come out this way if the ticket decryption fails. |
| */ |
| key_put(server_key); |
| return ret; |
| } |
| |
| /* |
| * clear the connection security |
| */ |
| static void rxkad_clear(struct rxrpc_connection *conn) |
| { |
| _enter(""); |
| |
| if (conn->rxkad.cipher) |
| crypto_free_sync_skcipher(conn->rxkad.cipher); |
| } |
| |
| /* |
| * Initialise the rxkad security service. |
| */ |
| static int rxkad_init(void) |
| { |
| struct crypto_sync_skcipher *tfm; |
| struct skcipher_request *req; |
| |
| /* pin the cipher we need so that the crypto layer doesn't invoke |
| * keventd to go get it */ |
| tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| req = skcipher_request_alloc(&tfm->base, GFP_KERNEL); |
| if (!req) |
| goto nomem_tfm; |
| |
| rxkad_ci_req = req; |
| rxkad_ci = tfm; |
| return 0; |
| |
| nomem_tfm: |
| crypto_free_sync_skcipher(tfm); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Clean up the rxkad security service. |
| */ |
| static void rxkad_exit(void) |
| { |
| crypto_free_sync_skcipher(rxkad_ci); |
| skcipher_request_free(rxkad_ci_req); |
| } |
| |
| /* |
| * RxRPC Kerberos-based security |
| */ |
| const struct rxrpc_security rxkad = { |
| .name = "rxkad", |
| .security_index = RXRPC_SECURITY_RXKAD, |
| .no_key_abort = RXKADUNKNOWNKEY, |
| .init = rxkad_init, |
| .exit = rxkad_exit, |
| .preparse_server_key = rxkad_preparse_server_key, |
| .free_preparse_server_key = rxkad_free_preparse_server_key, |
| .destroy_server_key = rxkad_destroy_server_key, |
| .init_connection_security = rxkad_init_connection_security, |
| .alloc_txbuf = rxkad_alloc_txbuf, |
| .secure_packet = rxkad_secure_packet, |
| .verify_packet = rxkad_verify_packet, |
| .free_call_crypto = rxkad_free_call_crypto, |
| .issue_challenge = rxkad_issue_challenge, |
| .respond_to_challenge = rxkad_respond_to_challenge, |
| .verify_response = rxkad_verify_response, |
| .clear = rxkad_clear, |
| }; |