| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> |
| * Copyright © 2004 Micron Technology Inc. |
| * Copyright © 2004 David Brownell |
| */ |
| |
| #include <linux/platform_device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/delay.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/jiffies.h> |
| #include <linux/sched.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/omap-dma.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| |
| #include <linux/mtd/nand_bch.h> |
| #include <linux/platform_data/elm.h> |
| |
| #include <linux/omap-gpmc.h> |
| #include <linux/platform_data/mtd-nand-omap2.h> |
| |
| #define DRIVER_NAME "omap2-nand" |
| #define OMAP_NAND_TIMEOUT_MS 5000 |
| |
| #define NAND_Ecc_P1e (1 << 0) |
| #define NAND_Ecc_P2e (1 << 1) |
| #define NAND_Ecc_P4e (1 << 2) |
| #define NAND_Ecc_P8e (1 << 3) |
| #define NAND_Ecc_P16e (1 << 4) |
| #define NAND_Ecc_P32e (1 << 5) |
| #define NAND_Ecc_P64e (1 << 6) |
| #define NAND_Ecc_P128e (1 << 7) |
| #define NAND_Ecc_P256e (1 << 8) |
| #define NAND_Ecc_P512e (1 << 9) |
| #define NAND_Ecc_P1024e (1 << 10) |
| #define NAND_Ecc_P2048e (1 << 11) |
| |
| #define NAND_Ecc_P1o (1 << 16) |
| #define NAND_Ecc_P2o (1 << 17) |
| #define NAND_Ecc_P4o (1 << 18) |
| #define NAND_Ecc_P8o (1 << 19) |
| #define NAND_Ecc_P16o (1 << 20) |
| #define NAND_Ecc_P32o (1 << 21) |
| #define NAND_Ecc_P64o (1 << 22) |
| #define NAND_Ecc_P128o (1 << 23) |
| #define NAND_Ecc_P256o (1 << 24) |
| #define NAND_Ecc_P512o (1 << 25) |
| #define NAND_Ecc_P1024o (1 << 26) |
| #define NAND_Ecc_P2048o (1 << 27) |
| |
| #define TF(value) (value ? 1 : 0) |
| |
| #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) |
| #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) |
| #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) |
| #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) |
| #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) |
| #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) |
| #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) |
| #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) |
| |
| #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) |
| #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) |
| #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) |
| #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) |
| #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) |
| #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) |
| #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) |
| #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) |
| |
| #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) |
| #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) |
| #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) |
| #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) |
| #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) |
| #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) |
| #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) |
| #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) |
| |
| #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) |
| #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) |
| #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) |
| #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) |
| #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) |
| #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) |
| #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) |
| #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) |
| |
| #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) |
| #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) |
| |
| #define PREFETCH_CONFIG1_CS_SHIFT 24 |
| #define ECC_CONFIG_CS_SHIFT 1 |
| #define CS_MASK 0x7 |
| #define ENABLE_PREFETCH (0x1 << 7) |
| #define DMA_MPU_MODE_SHIFT 2 |
| #define ECCSIZE0_SHIFT 12 |
| #define ECCSIZE1_SHIFT 22 |
| #define ECC1RESULTSIZE 0x1 |
| #define ECCCLEAR 0x100 |
| #define ECC1 0x1 |
| #define PREFETCH_FIFOTHRESHOLD_MAX 0x40 |
| #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) |
| #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) |
| #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) |
| #define STATUS_BUFF_EMPTY 0x00000001 |
| |
| #define SECTOR_BYTES 512 |
| /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ |
| #define BCH4_BIT_PAD 4 |
| |
| /* GPMC ecc engine settings for read */ |
| #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ |
| #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ |
| #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ |
| #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ |
| #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ |
| |
| /* GPMC ecc engine settings for write */ |
| #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ |
| #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ |
| #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ |
| |
| #define BADBLOCK_MARKER_LENGTH 2 |
| |
| static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, |
| 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, |
| 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, |
| 0x07, 0x0e}; |
| static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, |
| 0xac, 0x6b, 0xff, 0x99, 0x7b}; |
| static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; |
| |
| struct omap_nand_info { |
| struct nand_chip nand; |
| struct platform_device *pdev; |
| |
| int gpmc_cs; |
| bool dev_ready; |
| enum nand_io xfer_type; |
| int devsize; |
| enum omap_ecc ecc_opt; |
| struct device_node *elm_of_node; |
| |
| unsigned long phys_base; |
| struct completion comp; |
| struct dma_chan *dma; |
| int gpmc_irq_fifo; |
| int gpmc_irq_count; |
| enum { |
| OMAP_NAND_IO_READ = 0, /* read */ |
| OMAP_NAND_IO_WRITE, /* write */ |
| } iomode; |
| u_char *buf; |
| int buf_len; |
| /* Interface to GPMC */ |
| struct gpmc_nand_regs reg; |
| struct gpmc_nand_ops *ops; |
| bool flash_bbt; |
| /* fields specific for BCHx_HW ECC scheme */ |
| struct device *elm_dev; |
| /* NAND ready gpio */ |
| struct gpio_desc *ready_gpiod; |
| }; |
| |
| static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) |
| { |
| return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); |
| } |
| |
| /** |
| * omap_prefetch_enable - configures and starts prefetch transfer |
| * @cs: cs (chip select) number |
| * @fifo_th: fifo threshold to be used for read/ write |
| * @dma_mode: dma mode enable (1) or disable (0) |
| * @u32_count: number of bytes to be transferred |
| * @is_write: prefetch read(0) or write post(1) mode |
| */ |
| static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, |
| unsigned int u32_count, int is_write, struct omap_nand_info *info) |
| { |
| u32 val; |
| |
| if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) |
| return -1; |
| |
| if (readl(info->reg.gpmc_prefetch_control)) |
| return -EBUSY; |
| |
| /* Set the amount of bytes to be prefetched */ |
| writel(u32_count, info->reg.gpmc_prefetch_config2); |
| |
| /* Set dma/mpu mode, the prefetch read / post write and |
| * enable the engine. Set which cs is has requested for. |
| */ |
| val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | |
| PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | |
| (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); |
| writel(val, info->reg.gpmc_prefetch_config1); |
| |
| /* Start the prefetch engine */ |
| writel(0x1, info->reg.gpmc_prefetch_control); |
| |
| return 0; |
| } |
| |
| /** |
| * omap_prefetch_reset - disables and stops the prefetch engine |
| */ |
| static int omap_prefetch_reset(int cs, struct omap_nand_info *info) |
| { |
| u32 config1; |
| |
| /* check if the same module/cs is trying to reset */ |
| config1 = readl(info->reg.gpmc_prefetch_config1); |
| if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) |
| return -EINVAL; |
| |
| /* Stop the PFPW engine */ |
| writel(0x0, info->reg.gpmc_prefetch_control); |
| |
| /* Reset/disable the PFPW engine */ |
| writel(0x0, info->reg.gpmc_prefetch_config1); |
| |
| return 0; |
| } |
| |
| /** |
| * omap_hwcontrol - hardware specific access to control-lines |
| * @chip: NAND chip object |
| * @cmd: command to device |
| * @ctrl: |
| * NAND_NCE: bit 0 -> don't care |
| * NAND_CLE: bit 1 -> Command Latch |
| * NAND_ALE: bit 2 -> Address Latch |
| * |
| * NOTE: boards may use different bits for these!! |
| */ |
| static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl) |
| { |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); |
| |
| if (cmd != NAND_CMD_NONE) { |
| if (ctrl & NAND_CLE) |
| writeb(cmd, info->reg.gpmc_nand_command); |
| |
| else if (ctrl & NAND_ALE) |
| writeb(cmd, info->reg.gpmc_nand_address); |
| |
| else /* NAND_NCE */ |
| writeb(cmd, info->reg.gpmc_nand_data); |
| } |
| } |
| |
| /** |
| * omap_read_buf8 - read data from NAND controller into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| |
| ioread8_rep(nand->legacy.IO_ADDR_R, buf, len); |
| } |
| |
| /** |
| * omap_write_buf8 - write buffer to NAND controller |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| u_char *p = (u_char *)buf; |
| bool status; |
| |
| while (len--) { |
| iowrite8(*p++, info->nand.legacy.IO_ADDR_W); |
| /* wait until buffer is available for write */ |
| do { |
| status = info->ops->nand_writebuffer_empty(); |
| } while (!status); |
| } |
| } |
| |
| /** |
| * omap_read_buf16 - read data from NAND controller into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| |
| ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2); |
| } |
| |
| /** |
| * omap_write_buf16 - write buffer to NAND controller |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) |
| { |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| u16 *p = (u16 *) buf; |
| bool status; |
| /* FIXME try bursts of writesw() or DMA ... */ |
| len >>= 1; |
| |
| while (len--) { |
| iowrite16(*p++, info->nand.legacy.IO_ADDR_W); |
| /* wait until buffer is available for write */ |
| do { |
| status = info->ops->nand_writebuffer_empty(); |
| } while (!status); |
| } |
| } |
| |
| /** |
| * omap_read_buf_pref - read data from NAND controller into buffer |
| * @chip: NAND chip object |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| uint32_t r_count = 0; |
| int ret = 0; |
| u32 *p = (u32 *)buf; |
| |
| /* take care of subpage reads */ |
| if (len % 4) { |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_read_buf16(mtd, buf, len % 4); |
| else |
| omap_read_buf8(mtd, buf, len % 4); |
| p = (u32 *) (buf + len % 4); |
| len -= len % 4; |
| } |
| |
| /* configure and start prefetch transfer */ |
| ret = omap_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); |
| if (ret) { |
| /* PFPW engine is busy, use cpu copy method */ |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_read_buf16(mtd, (u_char *)p, len); |
| else |
| omap_read_buf8(mtd, (u_char *)p, len); |
| } else { |
| do { |
| r_count = readl(info->reg.gpmc_prefetch_status); |
| r_count = PREFETCH_STATUS_FIFO_CNT(r_count); |
| r_count = r_count >> 2; |
| ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count); |
| p += r_count; |
| len -= r_count << 2; |
| } while (len); |
| /* disable and stop the PFPW engine */ |
| omap_prefetch_reset(info->gpmc_cs, info); |
| } |
| } |
| |
| /** |
| * omap_write_buf_pref - write buffer to NAND controller |
| * @chip: NAND chip object |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf, |
| int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| uint32_t w_count = 0; |
| int i = 0, ret = 0; |
| u16 *p = (u16 *)buf; |
| unsigned long tim, limit; |
| u32 val; |
| |
| /* take care of subpage writes */ |
| if (len % 2 != 0) { |
| writeb(*buf, info->nand.legacy.IO_ADDR_W); |
| p = (u16 *)(buf + 1); |
| len--; |
| } |
| |
| /* configure and start prefetch transfer */ |
| ret = omap_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); |
| if (ret) { |
| /* PFPW engine is busy, use cpu copy method */ |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_write_buf16(mtd, (u_char *)p, len); |
| else |
| omap_write_buf8(mtd, (u_char *)p, len); |
| } else { |
| while (len) { |
| w_count = readl(info->reg.gpmc_prefetch_status); |
| w_count = PREFETCH_STATUS_FIFO_CNT(w_count); |
| w_count = w_count >> 1; |
| for (i = 0; (i < w_count) && len; i++, len -= 2) |
| iowrite16(*p++, info->nand.legacy.IO_ADDR_W); |
| } |
| /* wait for data to flushed-out before reset the prefetch */ |
| tim = 0; |
| limit = (loops_per_jiffy * |
| msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); |
| do { |
| cpu_relax(); |
| val = readl(info->reg.gpmc_prefetch_status); |
| val = PREFETCH_STATUS_COUNT(val); |
| } while (val && (tim++ < limit)); |
| |
| /* disable and stop the PFPW engine */ |
| omap_prefetch_reset(info->gpmc_cs, info); |
| } |
| } |
| |
| /* |
| * omap_nand_dma_callback: callback on the completion of dma transfer |
| * @data: pointer to completion data structure |
| */ |
| static void omap_nand_dma_callback(void *data) |
| { |
| complete((struct completion *) data); |
| } |
| |
| /* |
| * omap_nand_dma_transfer: configure and start dma transfer |
| * @mtd: MTD device structure |
| * @addr: virtual address in RAM of source/destination |
| * @len: number of data bytes to be transferred |
| * @is_write: flag for read/write operation |
| */ |
| static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, |
| unsigned int len, int is_write) |
| { |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| struct dma_async_tx_descriptor *tx; |
| enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : |
| DMA_FROM_DEVICE; |
| struct scatterlist sg; |
| unsigned long tim, limit; |
| unsigned n; |
| int ret; |
| u32 val; |
| |
| if (!virt_addr_valid(addr)) |
| goto out_copy; |
| |
| sg_init_one(&sg, addr, len); |
| n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); |
| if (n == 0) { |
| dev_err(&info->pdev->dev, |
| "Couldn't DMA map a %d byte buffer\n", len); |
| goto out_copy; |
| } |
| |
| tx = dmaengine_prep_slave_sg(info->dma, &sg, n, |
| is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!tx) |
| goto out_copy_unmap; |
| |
| tx->callback = omap_nand_dma_callback; |
| tx->callback_param = &info->comp; |
| dmaengine_submit(tx); |
| |
| init_completion(&info->comp); |
| |
| /* setup and start DMA using dma_addr */ |
| dma_async_issue_pending(info->dma); |
| |
| /* configure and start prefetch transfer */ |
| ret = omap_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); |
| if (ret) |
| /* PFPW engine is busy, use cpu copy method */ |
| goto out_copy_unmap; |
| |
| wait_for_completion(&info->comp); |
| tim = 0; |
| limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); |
| |
| do { |
| cpu_relax(); |
| val = readl(info->reg.gpmc_prefetch_status); |
| val = PREFETCH_STATUS_COUNT(val); |
| } while (val && (tim++ < limit)); |
| |
| /* disable and stop the PFPW engine */ |
| omap_prefetch_reset(info->gpmc_cs, info); |
| |
| dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); |
| return 0; |
| |
| out_copy_unmap: |
| dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); |
| out_copy: |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) |
| : omap_write_buf16(mtd, (u_char *) addr, len); |
| else |
| is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) |
| : omap_write_buf8(mtd, (u_char *) addr, len); |
| return 0; |
| } |
| |
| /** |
| * omap_read_buf_dma_pref - read data from NAND controller into buffer |
| * @chip: NAND chip object |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf, |
| int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (len <= mtd->oobsize) |
| omap_read_buf_pref(chip, buf, len); |
| else |
| /* start transfer in DMA mode */ |
| omap_nand_dma_transfer(mtd, buf, len, 0x0); |
| } |
| |
| /** |
| * omap_write_buf_dma_pref - write buffer to NAND controller |
| * @chip: NAND chip object |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf, |
| int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (len <= mtd->oobsize) |
| omap_write_buf_pref(chip, buf, len); |
| else |
| /* start transfer in DMA mode */ |
| omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1); |
| } |
| |
| /* |
| * omap_nand_irq - GPMC irq handler |
| * @this_irq: gpmc irq number |
| * @dev: omap_nand_info structure pointer is passed here |
| */ |
| static irqreturn_t omap_nand_irq(int this_irq, void *dev) |
| { |
| struct omap_nand_info *info = (struct omap_nand_info *) dev; |
| u32 bytes; |
| |
| bytes = readl(info->reg.gpmc_prefetch_status); |
| bytes = PREFETCH_STATUS_FIFO_CNT(bytes); |
| bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ |
| if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ |
| if (this_irq == info->gpmc_irq_count) |
| goto done; |
| |
| if (info->buf_len && (info->buf_len < bytes)) |
| bytes = info->buf_len; |
| else if (!info->buf_len) |
| bytes = 0; |
| iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf, |
| bytes >> 2); |
| info->buf = info->buf + bytes; |
| info->buf_len -= bytes; |
| |
| } else { |
| ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf, |
| bytes >> 2); |
| info->buf = info->buf + bytes; |
| |
| if (this_irq == info->gpmc_irq_count) |
| goto done; |
| } |
| |
| return IRQ_HANDLED; |
| |
| done: |
| complete(&info->comp); |
| |
| disable_irq_nosync(info->gpmc_irq_fifo); |
| disable_irq_nosync(info->gpmc_irq_count); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * omap_read_buf_irq_pref - read data from NAND controller into buffer |
| * @chip: NAND chip object |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf, |
| int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| int ret = 0; |
| |
| if (len <= mtd->oobsize) { |
| omap_read_buf_pref(chip, buf, len); |
| return; |
| } |
| |
| info->iomode = OMAP_NAND_IO_READ; |
| info->buf = buf; |
| init_completion(&info->comp); |
| |
| /* configure and start prefetch transfer */ |
| ret = omap_prefetch_enable(info->gpmc_cs, |
| PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); |
| if (ret) |
| /* PFPW engine is busy, use cpu copy method */ |
| goto out_copy; |
| |
| info->buf_len = len; |
| |
| enable_irq(info->gpmc_irq_count); |
| enable_irq(info->gpmc_irq_fifo); |
| |
| /* waiting for read to complete */ |
| wait_for_completion(&info->comp); |
| |
| /* disable and stop the PFPW engine */ |
| omap_prefetch_reset(info->gpmc_cs, info); |
| return; |
| |
| out_copy: |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_read_buf16(mtd, buf, len); |
| else |
| omap_read_buf8(mtd, buf, len); |
| } |
| |
| /* |
| * omap_write_buf_irq_pref - write buffer to NAND controller |
| * @chip: NAND chip object |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf, |
| int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| int ret = 0; |
| unsigned long tim, limit; |
| u32 val; |
| |
| if (len <= mtd->oobsize) { |
| omap_write_buf_pref(chip, buf, len); |
| return; |
| } |
| |
| info->iomode = OMAP_NAND_IO_WRITE; |
| info->buf = (u_char *) buf; |
| init_completion(&info->comp); |
| |
| /* configure and start prefetch transfer : size=24 */ |
| ret = omap_prefetch_enable(info->gpmc_cs, |
| (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); |
| if (ret) |
| /* PFPW engine is busy, use cpu copy method */ |
| goto out_copy; |
| |
| info->buf_len = len; |
| |
| enable_irq(info->gpmc_irq_count); |
| enable_irq(info->gpmc_irq_fifo); |
| |
| /* waiting for write to complete */ |
| wait_for_completion(&info->comp); |
| |
| /* wait for data to flushed-out before reset the prefetch */ |
| tim = 0; |
| limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); |
| do { |
| val = readl(info->reg.gpmc_prefetch_status); |
| val = PREFETCH_STATUS_COUNT(val); |
| cpu_relax(); |
| } while (val && (tim++ < limit)); |
| |
| /* disable and stop the PFPW engine */ |
| omap_prefetch_reset(info->gpmc_cs, info); |
| return; |
| |
| out_copy: |
| if (info->nand.options & NAND_BUSWIDTH_16) |
| omap_write_buf16(mtd, buf, len); |
| else |
| omap_write_buf8(mtd, buf, len); |
| } |
| |
| /** |
| * gen_true_ecc - This function will generate true ECC value |
| * @ecc_buf: buffer to store ecc code |
| * |
| * This generated true ECC value can be used when correcting |
| * data read from NAND flash memory core |
| */ |
| static void gen_true_ecc(u8 *ecc_buf) |
| { |
| u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | |
| ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); |
| |
| ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | |
| P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); |
| ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | |
| P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); |
| ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | |
| P1e(tmp) | P2048o(tmp) | P2048e(tmp)); |
| } |
| |
| /** |
| * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data |
| * @ecc_data1: ecc code from nand spare area |
| * @ecc_data2: ecc code from hardware register obtained from hardware ecc |
| * @page_data: page data |
| * |
| * This function compares two ECC's and indicates if there is an error. |
| * If the error can be corrected it will be corrected to the buffer. |
| * If there is no error, %0 is returned. If there is an error but it |
| * was corrected, %1 is returned. Otherwise, %-1 is returned. |
| */ |
| static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ |
| u8 *ecc_data2, /* read from register */ |
| u8 *page_data) |
| { |
| uint i; |
| u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; |
| u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; |
| u8 ecc_bit[24]; |
| u8 ecc_sum = 0; |
| u8 find_bit = 0; |
| uint find_byte = 0; |
| int isEccFF; |
| |
| isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); |
| |
| gen_true_ecc(ecc_data1); |
| gen_true_ecc(ecc_data2); |
| |
| for (i = 0; i <= 2; i++) { |
| *(ecc_data1 + i) = ~(*(ecc_data1 + i)); |
| *(ecc_data2 + i) = ~(*(ecc_data2 + i)); |
| } |
| |
| for (i = 0; i < 8; i++) { |
| tmp0_bit[i] = *ecc_data1 % 2; |
| *ecc_data1 = *ecc_data1 / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| tmp1_bit[i] = *(ecc_data1 + 1) % 2; |
| *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| tmp2_bit[i] = *(ecc_data1 + 2) % 2; |
| *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| comp0_bit[i] = *ecc_data2 % 2; |
| *ecc_data2 = *ecc_data2 / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| comp1_bit[i] = *(ecc_data2 + 1) % 2; |
| *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| comp2_bit[i] = *(ecc_data2 + 2) % 2; |
| *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; |
| } |
| |
| for (i = 0; i < 6; i++) |
| ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; |
| |
| for (i = 0; i < 8; i++) |
| ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; |
| |
| for (i = 0; i < 8; i++) |
| ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; |
| |
| ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; |
| ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; |
| |
| for (i = 0; i < 24; i++) |
| ecc_sum += ecc_bit[i]; |
| |
| switch (ecc_sum) { |
| case 0: |
| /* Not reached because this function is not called if |
| * ECC values are equal |
| */ |
| return 0; |
| |
| case 1: |
| /* Uncorrectable error */ |
| pr_debug("ECC UNCORRECTED_ERROR 1\n"); |
| return -EBADMSG; |
| |
| case 11: |
| /* UN-Correctable error */ |
| pr_debug("ECC UNCORRECTED_ERROR B\n"); |
| return -EBADMSG; |
| |
| case 12: |
| /* Correctable error */ |
| find_byte = (ecc_bit[23] << 8) + |
| (ecc_bit[21] << 7) + |
| (ecc_bit[19] << 6) + |
| (ecc_bit[17] << 5) + |
| (ecc_bit[15] << 4) + |
| (ecc_bit[13] << 3) + |
| (ecc_bit[11] << 2) + |
| (ecc_bit[9] << 1) + |
| ecc_bit[7]; |
| |
| find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; |
| |
| pr_debug("Correcting single bit ECC error at offset: " |
| "%d, bit: %d\n", find_byte, find_bit); |
| |
| page_data[find_byte] ^= (1 << find_bit); |
| |
| return 1; |
| default: |
| if (isEccFF) { |
| if (ecc_data2[0] == 0 && |
| ecc_data2[1] == 0 && |
| ecc_data2[2] == 0) |
| return 0; |
| } |
| pr_debug("UNCORRECTED_ERROR default\n"); |
| return -EBADMSG; |
| } |
| } |
| |
| /** |
| * omap_correct_data - Compares the ECC read with HW generated ECC |
| * @chip: NAND chip object |
| * @dat: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from HW ECC registers |
| * |
| * Compares the ecc read from nand spare area with ECC registers values |
| * and if ECC's mismatched, it will call 'omap_compare_ecc' for error |
| * detection and correction. If there are no errors, %0 is returned. If |
| * there were errors and all of the errors were corrected, the number of |
| * corrected errors is returned. If uncorrectable errors exist, %-1 is |
| * returned. |
| */ |
| static int omap_correct_data(struct nand_chip *chip, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); |
| int blockCnt = 0, i = 0, ret = 0; |
| int stat = 0; |
| |
| /* Ex NAND_ECC_HW12_2048 */ |
| if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && |
| info->nand.ecc.size == 2048) |
| blockCnt = 4; |
| else |
| blockCnt = 1; |
| |
| for (i = 0; i < blockCnt; i++) { |
| if (memcmp(read_ecc, calc_ecc, 3) != 0) { |
| ret = omap_compare_ecc(read_ecc, calc_ecc, dat); |
| if (ret < 0) |
| return ret; |
| /* keep track of the number of corrected errors */ |
| stat += ret; |
| } |
| read_ecc += 3; |
| calc_ecc += 3; |
| dat += 512; |
| } |
| return stat; |
| } |
| |
| /** |
| * omap_calcuate_ecc - Generate non-inverted ECC bytes. |
| * @chip: NAND chip object |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * |
| * Using noninverted ECC can be considered ugly since writing a blank |
| * page ie. padding will clear the ECC bytes. This is no problem as long |
| * nobody is trying to write data on the seemingly unused page. Reading |
| * an erased page will produce an ECC mismatch between generated and read |
| * ECC bytes that has to be dealt with separately. |
| */ |
| static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat, |
| u_char *ecc_code) |
| { |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); |
| u32 val; |
| |
| val = readl(info->reg.gpmc_ecc_config); |
| if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) |
| return -EINVAL; |
| |
| /* read ecc result */ |
| val = readl(info->reg.gpmc_ecc1_result); |
| *ecc_code++ = val; /* P128e, ..., P1e */ |
| *ecc_code++ = val >> 16; /* P128o, ..., P1o */ |
| /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ |
| *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); |
| |
| return 0; |
| } |
| |
| /** |
| * omap_enable_hwecc - This function enables the hardware ecc functionality |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| static void omap_enable_hwecc(struct nand_chip *chip, int mode) |
| { |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); |
| unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| u32 val; |
| |
| /* clear ecc and enable bits */ |
| val = ECCCLEAR | ECC1; |
| writel(val, info->reg.gpmc_ecc_control); |
| |
| /* program ecc and result sizes */ |
| val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | |
| ECC1RESULTSIZE); |
| writel(val, info->reg.gpmc_ecc_size_config); |
| |
| switch (mode) { |
| case NAND_ECC_READ: |
| case NAND_ECC_WRITE: |
| writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); |
| break; |
| case NAND_ECC_READSYN: |
| writel(ECCCLEAR, info->reg.gpmc_ecc_control); |
| break; |
| default: |
| dev_info(&info->pdev->dev, |
| "error: unrecognized Mode[%d]!\n", mode); |
| break; |
| } |
| |
| /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); |
| writel(val, info->reg.gpmc_ecc_config); |
| } |
| |
| /** |
| * omap_wait - wait until the command is done |
| * @this: NAND Chip structure |
| * |
| * Wait function is called during Program and erase operations and |
| * the way it is called from MTD layer, we should wait till the NAND |
| * chip is ready after the programming/erase operation has completed. |
| * |
| * Erase can take up to 400ms and program up to 20ms according to |
| * general NAND and SmartMedia specs |
| */ |
| static int omap_wait(struct nand_chip *this) |
| { |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this)); |
| unsigned long timeo = jiffies; |
| int status; |
| |
| timeo += msecs_to_jiffies(400); |
| |
| writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); |
| while (time_before(jiffies, timeo)) { |
| status = readb(info->reg.gpmc_nand_data); |
| if (status & NAND_STATUS_READY) |
| break; |
| cond_resched(); |
| } |
| |
| status = readb(info->reg.gpmc_nand_data); |
| return status; |
| } |
| |
| /** |
| * omap_dev_ready - checks the NAND Ready GPIO line |
| * @mtd: MTD device structure |
| * |
| * Returns true if ready and false if busy. |
| */ |
| static int omap_dev_ready(struct nand_chip *chip) |
| { |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); |
| |
| return gpiod_get_value(info->ready_gpiod); |
| } |
| |
| /** |
| * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| * |
| * When using BCH with SW correction (i.e. no ELM), sector size is set |
| * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode |
| * for both reading and writing with: |
| * eccsize0 = 0 (no additional protected byte in spare area) |
| * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) |
| */ |
| static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip, |
| int mode) |
| { |
| unsigned int bch_type; |
| unsigned int dev_width, nsectors; |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); |
| enum omap_ecc ecc_opt = info->ecc_opt; |
| u32 val, wr_mode; |
| unsigned int ecc_size1, ecc_size0; |
| |
| /* GPMC configurations for calculating ECC */ |
| switch (ecc_opt) { |
| case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: |
| bch_type = 0; |
| nsectors = 1; |
| wr_mode = BCH_WRAPMODE_6; |
| ecc_size0 = BCH_ECC_SIZE0; |
| ecc_size1 = BCH_ECC_SIZE1; |
| break; |
| case OMAP_ECC_BCH4_CODE_HW: |
| bch_type = 0; |
| nsectors = chip->ecc.steps; |
| if (mode == NAND_ECC_READ) { |
| wr_mode = BCH_WRAPMODE_1; |
| ecc_size0 = BCH4R_ECC_SIZE0; |
| ecc_size1 = BCH4R_ECC_SIZE1; |
| } else { |
| wr_mode = BCH_WRAPMODE_6; |
| ecc_size0 = BCH_ECC_SIZE0; |
| ecc_size1 = BCH_ECC_SIZE1; |
| } |
| break; |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| bch_type = 1; |
| nsectors = 1; |
| wr_mode = BCH_WRAPMODE_6; |
| ecc_size0 = BCH_ECC_SIZE0; |
| ecc_size1 = BCH_ECC_SIZE1; |
| break; |
| case OMAP_ECC_BCH8_CODE_HW: |
| bch_type = 1; |
| nsectors = chip->ecc.steps; |
| if (mode == NAND_ECC_READ) { |
| wr_mode = BCH_WRAPMODE_1; |
| ecc_size0 = BCH8R_ECC_SIZE0; |
| ecc_size1 = BCH8R_ECC_SIZE1; |
| } else { |
| wr_mode = BCH_WRAPMODE_6; |
| ecc_size0 = BCH_ECC_SIZE0; |
| ecc_size1 = BCH_ECC_SIZE1; |
| } |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| bch_type = 0x2; |
| nsectors = chip->ecc.steps; |
| if (mode == NAND_ECC_READ) { |
| wr_mode = 0x01; |
| ecc_size0 = 52; /* ECC bits in nibbles per sector */ |
| ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ |
| } else { |
| wr_mode = 0x01; |
| ecc_size0 = 0; /* extra bits in nibbles per sector */ |
| ecc_size1 = 52; /* OOB bits in nibbles per sector */ |
| } |
| break; |
| default: |
| return; |
| } |
| |
| writel(ECC1, info->reg.gpmc_ecc_control); |
| |
| /* Configure ecc size for BCH */ |
| val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); |
| writel(val, info->reg.gpmc_ecc_size_config); |
| |
| dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| |
| /* BCH configuration */ |
| val = ((1 << 16) | /* enable BCH */ |
| (bch_type << 12) | /* BCH4/BCH8/BCH16 */ |
| (wr_mode << 8) | /* wrap mode */ |
| (dev_width << 7) | /* bus width */ |
| (((nsectors-1) & 0x7) << 4) | /* number of sectors */ |
| (info->gpmc_cs << 1) | /* ECC CS */ |
| (0x1)); /* enable ECC */ |
| |
| writel(val, info->reg.gpmc_ecc_config); |
| |
| /* Clear ecc and enable bits */ |
| writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); |
| } |
| |
| static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; |
| static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, |
| 0x97, 0x79, 0xe5, 0x24, 0xb5}; |
| |
| /** |
| * _omap_calculate_ecc_bch - Generate ECC bytes for one sector |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * @i: The sector number (for a multi sector page) |
| * |
| * Support calculating of BCH4/8/16 ECC vectors for one sector |
| * within a page. Sector number is in @i. |
| */ |
| static int _omap_calculate_ecc_bch(struct mtd_info *mtd, |
| const u_char *dat, u_char *ecc_calc, int i) |
| { |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| int eccbytes = info->nand.ecc.bytes; |
| struct gpmc_nand_regs *gpmc_regs = &info->reg; |
| u8 *ecc_code; |
| unsigned long bch_val1, bch_val2, bch_val3, bch_val4; |
| u32 val; |
| int j; |
| |
| ecc_code = ecc_calc; |
| switch (info->ecc_opt) { |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| case OMAP_ECC_BCH8_CODE_HW: |
| bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); |
| bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); |
| bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); |
| bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); |
| *ecc_code++ = (bch_val4 & 0xFF); |
| *ecc_code++ = ((bch_val3 >> 24) & 0xFF); |
| *ecc_code++ = ((bch_val3 >> 16) & 0xFF); |
| *ecc_code++ = ((bch_val3 >> 8) & 0xFF); |
| *ecc_code++ = (bch_val3 & 0xFF); |
| *ecc_code++ = ((bch_val2 >> 24) & 0xFF); |
| *ecc_code++ = ((bch_val2 >> 16) & 0xFF); |
| *ecc_code++ = ((bch_val2 >> 8) & 0xFF); |
| *ecc_code++ = (bch_val2 & 0xFF); |
| *ecc_code++ = ((bch_val1 >> 24) & 0xFF); |
| *ecc_code++ = ((bch_val1 >> 16) & 0xFF); |
| *ecc_code++ = ((bch_val1 >> 8) & 0xFF); |
| *ecc_code++ = (bch_val1 & 0xFF); |
| break; |
| case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: |
| case OMAP_ECC_BCH4_CODE_HW: |
| bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); |
| bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); |
| *ecc_code++ = ((bch_val2 >> 12) & 0xFF); |
| *ecc_code++ = ((bch_val2 >> 4) & 0xFF); |
| *ecc_code++ = ((bch_val2 & 0xF) << 4) | |
| ((bch_val1 >> 28) & 0xF); |
| *ecc_code++ = ((bch_val1 >> 20) & 0xFF); |
| *ecc_code++ = ((bch_val1 >> 12) & 0xFF); |
| *ecc_code++ = ((bch_val1 >> 4) & 0xFF); |
| *ecc_code++ = ((bch_val1 & 0xF) << 4); |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| val = readl(gpmc_regs->gpmc_bch_result6[i]); |
| ecc_code[0] = ((val >> 8) & 0xFF); |
| ecc_code[1] = ((val >> 0) & 0xFF); |
| val = readl(gpmc_regs->gpmc_bch_result5[i]); |
| ecc_code[2] = ((val >> 24) & 0xFF); |
| ecc_code[3] = ((val >> 16) & 0xFF); |
| ecc_code[4] = ((val >> 8) & 0xFF); |
| ecc_code[5] = ((val >> 0) & 0xFF); |
| val = readl(gpmc_regs->gpmc_bch_result4[i]); |
| ecc_code[6] = ((val >> 24) & 0xFF); |
| ecc_code[7] = ((val >> 16) & 0xFF); |
| ecc_code[8] = ((val >> 8) & 0xFF); |
| ecc_code[9] = ((val >> 0) & 0xFF); |
| val = readl(gpmc_regs->gpmc_bch_result3[i]); |
| ecc_code[10] = ((val >> 24) & 0xFF); |
| ecc_code[11] = ((val >> 16) & 0xFF); |
| ecc_code[12] = ((val >> 8) & 0xFF); |
| ecc_code[13] = ((val >> 0) & 0xFF); |
| val = readl(gpmc_regs->gpmc_bch_result2[i]); |
| ecc_code[14] = ((val >> 24) & 0xFF); |
| ecc_code[15] = ((val >> 16) & 0xFF); |
| ecc_code[16] = ((val >> 8) & 0xFF); |
| ecc_code[17] = ((val >> 0) & 0xFF); |
| val = readl(gpmc_regs->gpmc_bch_result1[i]); |
| ecc_code[18] = ((val >> 24) & 0xFF); |
| ecc_code[19] = ((val >> 16) & 0xFF); |
| ecc_code[20] = ((val >> 8) & 0xFF); |
| ecc_code[21] = ((val >> 0) & 0xFF); |
| val = readl(gpmc_regs->gpmc_bch_result0[i]); |
| ecc_code[22] = ((val >> 24) & 0xFF); |
| ecc_code[23] = ((val >> 16) & 0xFF); |
| ecc_code[24] = ((val >> 8) & 0xFF); |
| ecc_code[25] = ((val >> 0) & 0xFF); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* ECC scheme specific syndrome customizations */ |
| switch (info->ecc_opt) { |
| case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: |
| /* Add constant polynomial to remainder, so that |
| * ECC of blank pages results in 0x0 on reading back |
| */ |
| for (j = 0; j < eccbytes; j++) |
| ecc_calc[j] ^= bch4_polynomial[j]; |
| break; |
| case OMAP_ECC_BCH4_CODE_HW: |
| /* Set 8th ECC byte as 0x0 for ROM compatibility */ |
| ecc_calc[eccbytes - 1] = 0x0; |
| break; |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| /* Add constant polynomial to remainder, so that |
| * ECC of blank pages results in 0x0 on reading back |
| */ |
| for (j = 0; j < eccbytes; j++) |
| ecc_calc[j] ^= bch8_polynomial[j]; |
| break; |
| case OMAP_ECC_BCH8_CODE_HW: |
| /* Set 14th ECC byte as 0x0 for ROM compatibility */ |
| ecc_calc[eccbytes - 1] = 0x0; |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction |
| * @chip: NAND chip object |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * |
| * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used |
| * when SW based correction is required as ECC is required for one sector |
| * at a time. |
| */ |
| static int omap_calculate_ecc_bch_sw(struct nand_chip *chip, |
| const u_char *dat, u_char *ecc_calc) |
| { |
| return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0); |
| } |
| |
| /** |
| * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * |
| * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. |
| */ |
| static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, |
| const u_char *dat, u_char *ecc_calc) |
| { |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| int eccbytes = info->nand.ecc.bytes; |
| unsigned long nsectors; |
| int i, ret; |
| |
| nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; |
| for (i = 0; i < nsectors; i++) { |
| ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); |
| if (ret) |
| return ret; |
| |
| ecc_calc += eccbytes; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * erased_sector_bitflips - count bit flips |
| * @data: data sector buffer |
| * @oob: oob buffer |
| * @info: omap_nand_info |
| * |
| * Check the bit flips in erased page falls below correctable level. |
| * If falls below, report the page as erased with correctable bit |
| * flip, else report as uncorrectable page. |
| */ |
| static int erased_sector_bitflips(u_char *data, u_char *oob, |
| struct omap_nand_info *info) |
| { |
| int flip_bits = 0, i; |
| |
| for (i = 0; i < info->nand.ecc.size; i++) { |
| flip_bits += hweight8(~data[i]); |
| if (flip_bits > info->nand.ecc.strength) |
| return 0; |
| } |
| |
| for (i = 0; i < info->nand.ecc.bytes - 1; i++) { |
| flip_bits += hweight8(~oob[i]); |
| if (flip_bits > info->nand.ecc.strength) |
| return 0; |
| } |
| |
| /* |
| * Bit flips falls in correctable level. |
| * Fill data area with 0xFF |
| */ |
| if (flip_bits) { |
| memset(data, 0xFF, info->nand.ecc.size); |
| memset(oob, 0xFF, info->nand.ecc.bytes); |
| } |
| |
| return flip_bits; |
| } |
| |
| /** |
| * omap_elm_correct_data - corrects page data area in case error reported |
| * @chip: NAND chip object |
| * @data: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from HW ECC registers |
| * |
| * Calculated ecc vector reported as zero in case of non-error pages. |
| * In case of non-zero ecc vector, first filter out erased-pages, and |
| * then process data via ELM to detect bit-flips. |
| */ |
| static int omap_elm_correct_data(struct nand_chip *chip, u_char *data, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); |
| struct nand_ecc_ctrl *ecc = &info->nand.ecc; |
| int eccsteps = info->nand.ecc.steps; |
| int i , j, stat = 0; |
| int eccflag, actual_eccbytes; |
| struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; |
| u_char *ecc_vec = calc_ecc; |
| u_char *spare_ecc = read_ecc; |
| u_char *erased_ecc_vec; |
| u_char *buf; |
| int bitflip_count; |
| bool is_error_reported = false; |
| u32 bit_pos, byte_pos, error_max, pos; |
| int err; |
| |
| switch (info->ecc_opt) { |
| case OMAP_ECC_BCH4_CODE_HW: |
| /* omit 7th ECC byte reserved for ROM code compatibility */ |
| actual_eccbytes = ecc->bytes - 1; |
| erased_ecc_vec = bch4_vector; |
| break; |
| case OMAP_ECC_BCH8_CODE_HW: |
| /* omit 14th ECC byte reserved for ROM code compatibility */ |
| actual_eccbytes = ecc->bytes - 1; |
| erased_ecc_vec = bch8_vector; |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| actual_eccbytes = ecc->bytes; |
| erased_ecc_vec = bch16_vector; |
| break; |
| default: |
| dev_err(&info->pdev->dev, "invalid driver configuration\n"); |
| return -EINVAL; |
| } |
| |
| /* Initialize elm error vector to zero */ |
| memset(err_vec, 0, sizeof(err_vec)); |
| |
| for (i = 0; i < eccsteps ; i++) { |
| eccflag = 0; /* initialize eccflag */ |
| |
| /* |
| * Check any error reported, |
| * In case of error, non zero ecc reported. |
| */ |
| for (j = 0; j < actual_eccbytes; j++) { |
| if (calc_ecc[j] != 0) { |
| eccflag = 1; /* non zero ecc, error present */ |
| break; |
| } |
| } |
| |
| if (eccflag == 1) { |
| if (memcmp(calc_ecc, erased_ecc_vec, |
| actual_eccbytes) == 0) { |
| /* |
| * calc_ecc[] matches pattern for ECC(all 0xff) |
| * so this is definitely an erased-page |
| */ |
| } else { |
| buf = &data[info->nand.ecc.size * i]; |
| /* |
| * count number of 0-bits in read_buf. |
| * This check can be removed once a similar |
| * check is introduced in generic NAND driver |
| */ |
| bitflip_count = erased_sector_bitflips( |
| buf, read_ecc, info); |
| if (bitflip_count) { |
| /* |
| * number of 0-bits within ECC limits |
| * So this may be an erased-page |
| */ |
| stat += bitflip_count; |
| } else { |
| /* |
| * Too many 0-bits. It may be a |
| * - programmed-page, OR |
| * - erased-page with many bit-flips |
| * So this page requires check by ELM |
| */ |
| err_vec[i].error_reported = true; |
| is_error_reported = true; |
| } |
| } |
| } |
| |
| /* Update the ecc vector */ |
| calc_ecc += ecc->bytes; |
| read_ecc += ecc->bytes; |
| } |
| |
| /* Check if any error reported */ |
| if (!is_error_reported) |
| return stat; |
| |
| /* Decode BCH error using ELM module */ |
| elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); |
| |
| err = 0; |
| for (i = 0; i < eccsteps; i++) { |
| if (err_vec[i].error_uncorrectable) { |
| dev_err(&info->pdev->dev, |
| "uncorrectable bit-flips found\n"); |
| err = -EBADMSG; |
| } else if (err_vec[i].error_reported) { |
| for (j = 0; j < err_vec[i].error_count; j++) { |
| switch (info->ecc_opt) { |
| case OMAP_ECC_BCH4_CODE_HW: |
| /* Add 4 bits to take care of padding */ |
| pos = err_vec[i].error_loc[j] + |
| BCH4_BIT_PAD; |
| break; |
| case OMAP_ECC_BCH8_CODE_HW: |
| case OMAP_ECC_BCH16_CODE_HW: |
| pos = err_vec[i].error_loc[j]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| error_max = (ecc->size + actual_eccbytes) * 8; |
| /* Calculate bit position of error */ |
| bit_pos = pos % 8; |
| |
| /* Calculate byte position of error */ |
| byte_pos = (error_max - pos - 1) / 8; |
| |
| if (pos < error_max) { |
| if (byte_pos < 512) { |
| pr_debug("bitflip@dat[%d]=%x\n", |
| byte_pos, data[byte_pos]); |
| data[byte_pos] ^= 1 << bit_pos; |
| } else { |
| pr_debug("bitflip@oob[%d]=%x\n", |
| (byte_pos - 512), |
| spare_ecc[byte_pos - 512]); |
| spare_ecc[byte_pos - 512] ^= |
| 1 << bit_pos; |
| } |
| } else { |
| dev_err(&info->pdev->dev, |
| "invalid bit-flip @ %d:%d\n", |
| byte_pos, bit_pos); |
| err = -EBADMSG; |
| } |
| } |
| } |
| |
| /* Update number of correctable errors */ |
| stat = max_t(unsigned int, stat, err_vec[i].error_count); |
| |
| /* Update page data with sector size */ |
| data += ecc->size; |
| spare_ecc += ecc->bytes; |
| } |
| |
| return (err) ? err : stat; |
| } |
| |
| /** |
| * omap_write_page_bch - BCH ecc based write page function for entire page |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page |
| * |
| * Custom write page method evolved to support multi sector writing in one shot |
| */ |
| static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| uint8_t *ecc_calc = chip->ecc.calc_buf; |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| /* Enable GPMC ecc engine */ |
| chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| |
| /* Write data */ |
| chip->legacy.write_buf(chip, buf, mtd->writesize); |
| |
| /* Update ecc vector from GPMC result registers */ |
| omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]); |
| |
| ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| /* Write ecc vector to OOB area */ |
| chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /** |
| * omap_write_subpage_bch - BCH hardware ECC based subpage write |
| * @chip: nand chip info structure |
| * @offset: column address of subpage within the page |
| * @data_len: data length |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * OMAP optimized subpage write method. |
| */ |
| static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset, |
| u32 data_len, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 *ecc_calc = chip->ecc.calc_buf; |
| int ecc_size = chip->ecc.size; |
| int ecc_bytes = chip->ecc.bytes; |
| int ecc_steps = chip->ecc.steps; |
| u32 start_step = offset / ecc_size; |
| u32 end_step = (offset + data_len - 1) / ecc_size; |
| int step, ret = 0; |
| |
| /* |
| * Write entire page at one go as it would be optimal |
| * as ECC is calculated by hardware. |
| * ECC is calculated for all subpages but we choose |
| * only what we want. |
| */ |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| /* Enable GPMC ECC engine */ |
| chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| |
| /* Write data */ |
| chip->legacy.write_buf(chip, buf, mtd->writesize); |
| |
| for (step = 0; step < ecc_steps; step++) { |
| /* mask ECC of un-touched subpages by padding 0xFF */ |
| if (step < start_step || step > end_step) |
| memset(ecc_calc, 0xff, ecc_bytes); |
| else |
| ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step); |
| |
| if (ret) |
| return ret; |
| |
| buf += ecc_size; |
| ecc_calc += ecc_bytes; |
| } |
| |
| /* copy calculated ECC for whole page to chip->buffer->oob */ |
| /* this include masked-value(0xFF) for unwritten subpages */ |
| ecc_calc = chip->ecc.calc_buf; |
| ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| /* write OOB buffer to NAND device */ |
| chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /** |
| * omap_read_page_bch - BCH ecc based page read function for entire page |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module |
| * used for error correction. |
| * Custom method evolved to support ELM error correction & multi sector |
| * reading. On reading page data area is read along with OOB data with |
| * ecc engine enabled. ecc vector updated after read of OOB data. |
| * For non error pages ecc vector reported as zero. |
| */ |
| static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| uint8_t *ecc_calc = chip->ecc.calc_buf; |
| uint8_t *ecc_code = chip->ecc.code_buf; |
| int stat, ret; |
| unsigned int max_bitflips = 0; |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| |
| /* Enable GPMC ecc engine */ |
| chip->ecc.hwctl(chip, NAND_ECC_READ); |
| |
| /* Read data */ |
| chip->legacy.read_buf(chip, buf, mtd->writesize); |
| |
| /* Read oob bytes */ |
| nand_change_read_column_op(chip, |
| mtd->writesize + BADBLOCK_MARKER_LENGTH, |
| chip->oob_poi + BADBLOCK_MARKER_LENGTH, |
| chip->ecc.total, false); |
| |
| /* Calculate ecc bytes */ |
| omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); |
| |
| ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc); |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| |
| return max_bitflips; |
| } |
| |
| /** |
| * is_elm_present - checks for presence of ELM module by scanning DT nodes |
| * @omap_nand_info: NAND device structure containing platform data |
| */ |
| static bool is_elm_present(struct omap_nand_info *info, |
| struct device_node *elm_node) |
| { |
| struct platform_device *pdev; |
| |
| /* check whether elm-id is passed via DT */ |
| if (!elm_node) { |
| dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); |
| return false; |
| } |
| pdev = of_find_device_by_node(elm_node); |
| /* check whether ELM device is registered */ |
| if (!pdev) { |
| dev_err(&info->pdev->dev, "ELM device not found\n"); |
| return false; |
| } |
| /* ELM module available, now configure it */ |
| info->elm_dev = &pdev->dev; |
| return true; |
| } |
| |
| static bool omap2_nand_ecc_check(struct omap_nand_info *info) |
| { |
| bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; |
| |
| switch (info->ecc_opt) { |
| case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| ecc_needs_omap_bch = false; |
| ecc_needs_bch = true; |
| ecc_needs_elm = false; |
| break; |
| case OMAP_ECC_BCH4_CODE_HW: |
| case OMAP_ECC_BCH8_CODE_HW: |
| case OMAP_ECC_BCH16_CODE_HW: |
| ecc_needs_omap_bch = true; |
| ecc_needs_bch = false; |
| ecc_needs_elm = true; |
| break; |
| default: |
| ecc_needs_omap_bch = false; |
| ecc_needs_bch = false; |
| ecc_needs_elm = false; |
| break; |
| } |
| |
| if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { |
| dev_err(&info->pdev->dev, |
| "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); |
| return false; |
| } |
| if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { |
| dev_err(&info->pdev->dev, |
| "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); |
| return false; |
| } |
| if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { |
| dev_err(&info->pdev->dev, "ELM not available\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static const char * const nand_xfer_types[] = { |
| [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", |
| [NAND_OMAP_POLLED] = "polled", |
| [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", |
| [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", |
| }; |
| |
| static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) |
| { |
| struct device_node *child = dev->of_node; |
| int i; |
| const char *s; |
| u32 cs; |
| |
| if (of_property_read_u32(child, "reg", &cs) < 0) { |
| dev_err(dev, "reg not found in DT\n"); |
| return -EINVAL; |
| } |
| |
| info->gpmc_cs = cs; |
| |
| /* detect availability of ELM module. Won't be present pre-OMAP4 */ |
| info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); |
| if (!info->elm_of_node) { |
| info->elm_of_node = of_parse_phandle(child, "elm_id", 0); |
| if (!info->elm_of_node) |
| dev_dbg(dev, "ti,elm-id not in DT\n"); |
| } |
| |
| /* select ecc-scheme for NAND */ |
| if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { |
| dev_err(dev, "ti,nand-ecc-opt not found\n"); |
| return -EINVAL; |
| } |
| |
| if (!strcmp(s, "sw")) { |
| info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; |
| } else if (!strcmp(s, "ham1") || |
| !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { |
| info->ecc_opt = OMAP_ECC_HAM1_CODE_HW; |
| } else if (!strcmp(s, "bch4")) { |
| if (info->elm_of_node) |
| info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; |
| else |
| info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; |
| } else if (!strcmp(s, "bch8")) { |
| if (info->elm_of_node) |
| info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; |
| else |
| info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; |
| } else if (!strcmp(s, "bch16")) { |
| info->ecc_opt = OMAP_ECC_BCH16_CODE_HW; |
| } else { |
| dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); |
| return -EINVAL; |
| } |
| |
| /* select data transfer mode */ |
| if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { |
| for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { |
| if (!strcasecmp(s, nand_xfer_types[i])) { |
| info->xfer_type = i; |
| return 0; |
| } |
| } |
| |
| dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| struct nand_chip *chip = &info->nand; |
| int off = BADBLOCK_MARKER_LENGTH; |
| |
| if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && |
| !(chip->options & NAND_BUSWIDTH_16)) |
| off = 1; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = off; |
| oobregion->length = chip->ecc.total; |
| |
| return 0; |
| } |
| |
| static int omap_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| struct nand_chip *chip = &info->nand; |
| int off = BADBLOCK_MARKER_LENGTH; |
| |
| if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && |
| !(chip->options & NAND_BUSWIDTH_16)) |
| off = 1; |
| |
| if (section) |
| return -ERANGE; |
| |
| off += chip->ecc.total; |
| if (off >= mtd->oobsize) |
| return -ERANGE; |
| |
| oobregion->offset = off; |
| oobregion->length = mtd->oobsize - off; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops omap_ooblayout_ops = { |
| .ecc = omap_ooblayout_ecc, |
| .free = omap_ooblayout_free, |
| }; |
| |
| static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int off = BADBLOCK_MARKER_LENGTH; |
| |
| if (section >= chip->ecc.steps) |
| return -ERANGE; |
| |
| /* |
| * When SW correction is employed, one OMAP specific marker byte is |
| * reserved after each ECC step. |
| */ |
| oobregion->offset = off + (section * (chip->ecc.bytes + 1)); |
| oobregion->length = chip->ecc.bytes; |
| |
| return 0; |
| } |
| |
| static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int off = BADBLOCK_MARKER_LENGTH; |
| |
| if (section) |
| return -ERANGE; |
| |
| /* |
| * When SW correction is employed, one OMAP specific marker byte is |
| * reserved after each ECC step. |
| */ |
| off += ((chip->ecc.bytes + 1) * chip->ecc.steps); |
| if (off >= mtd->oobsize) |
| return -ERANGE; |
| |
| oobregion->offset = off; |
| oobregion->length = mtd->oobsize - off; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { |
| .ecc = omap_sw_ooblayout_ecc, |
| .free = omap_sw_ooblayout_free, |
| }; |
| |
| static int omap_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| struct device *dev = &info->pdev->dev; |
| int min_oobbytes = BADBLOCK_MARKER_LENGTH; |
| int oobbytes_per_step; |
| dma_cap_mask_t mask; |
| int err; |
| |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| else |
| chip->options |= NAND_SKIP_BBTSCAN; |
| |
| /* Re-populate low-level callbacks based on xfer modes */ |
| switch (info->xfer_type) { |
| case NAND_OMAP_PREFETCH_POLLED: |
| chip->legacy.read_buf = omap_read_buf_pref; |
| chip->legacy.write_buf = omap_write_buf_pref; |
| break; |
| |
| case NAND_OMAP_POLLED: |
| /* Use nand_base defaults for {read,write}_buf */ |
| break; |
| |
| case NAND_OMAP_PREFETCH_DMA: |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| info->dma = dma_request_chan(dev->parent, "rxtx"); |
| |
| if (IS_ERR(info->dma)) { |
| dev_err(dev, "DMA engine request failed\n"); |
| return PTR_ERR(info->dma); |
| } else { |
| struct dma_slave_config cfg; |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.src_addr = info->phys_base; |
| cfg.dst_addr = info->phys_base; |
| cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| cfg.src_maxburst = 16; |
| cfg.dst_maxburst = 16; |
| err = dmaengine_slave_config(info->dma, &cfg); |
| if (err) { |
| dev_err(dev, |
| "DMA engine slave config failed: %d\n", |
| err); |
| return err; |
| } |
| chip->legacy.read_buf = omap_read_buf_dma_pref; |
| chip->legacy.write_buf = omap_write_buf_dma_pref; |
| } |
| break; |
| |
| case NAND_OMAP_PREFETCH_IRQ: |
| info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0); |
| if (info->gpmc_irq_fifo <= 0) |
| return -ENODEV; |
| err = devm_request_irq(dev, info->gpmc_irq_fifo, |
| omap_nand_irq, IRQF_SHARED, |
| "gpmc-nand-fifo", info); |
| if (err) { |
| dev_err(dev, "Requesting IRQ %d, error %d\n", |
| info->gpmc_irq_fifo, err); |
| info->gpmc_irq_fifo = 0; |
| return err; |
| } |
| |
| info->gpmc_irq_count = platform_get_irq(info->pdev, 1); |
| if (info->gpmc_irq_count <= 0) |
| return -ENODEV; |
| err = devm_request_irq(dev, info->gpmc_irq_count, |
| omap_nand_irq, IRQF_SHARED, |
| "gpmc-nand-count", info); |
| if (err) { |
| dev_err(dev, "Requesting IRQ %d, error %d\n", |
| info->gpmc_irq_count, err); |
| info->gpmc_irq_count = 0; |
| return err; |
| } |
| |
| chip->legacy.read_buf = omap_read_buf_irq_pref; |
| chip->legacy.write_buf = omap_write_buf_irq_pref; |
| |
| break; |
| |
| default: |
| dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type); |
| return -EINVAL; |
| } |
| |
| if (!omap2_nand_ecc_check(info)) |
| return -EINVAL; |
| |
| /* |
| * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own |
| * ooblayout instead of using ours. |
| */ |
| if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
| chip->ecc.algo = NAND_ECC_ALGO_HAMMING; |
| return 0; |
| } |
| |
| /* Populate MTD interface based on ECC scheme */ |
| switch (info->ecc_opt) { |
| case OMAP_ECC_HAM1_CODE_HW: |
| dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n"); |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->ecc.bytes = 3; |
| chip->ecc.size = 512; |
| chip->ecc.strength = 1; |
| chip->ecc.calculate = omap_calculate_ecc; |
| chip->ecc.hwctl = omap_enable_hwecc; |
| chip->ecc.correct = omap_correct_data; |
| mtd_set_ooblayout(mtd, &omap_ooblayout_ops); |
| oobbytes_per_step = chip->ecc.bytes; |
| |
| if (!(chip->options & NAND_BUSWIDTH_16)) |
| min_oobbytes = 1; |
| |
| break; |
| |
| case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: |
| pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->ecc.size = 512; |
| chip->ecc.bytes = 7; |
| chip->ecc.strength = 4; |
| chip->ecc.hwctl = omap_enable_hwecc_bch; |
| chip->ecc.correct = nand_bch_correct_data; |
| chip->ecc.calculate = omap_calculate_ecc_bch_sw; |
| mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); |
| /* Reserve one byte for the OMAP marker */ |
| oobbytes_per_step = chip->ecc.bytes + 1; |
| /* Software BCH library is used for locating errors */ |
| chip->ecc.priv = nand_bch_init(mtd); |
| if (!chip->ecc.priv) { |
| dev_err(dev, "Unable to use BCH library\n"); |
| return -EINVAL; |
| } |
| break; |
| |
| case OMAP_ECC_BCH4_CODE_HW: |
| pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->ecc.size = 512; |
| /* 14th bit is kept reserved for ROM-code compatibility */ |
| chip->ecc.bytes = 7 + 1; |
| chip->ecc.strength = 4; |
| chip->ecc.hwctl = omap_enable_hwecc_bch; |
| chip->ecc.correct = omap_elm_correct_data; |
| chip->ecc.read_page = omap_read_page_bch; |
| chip->ecc.write_page = omap_write_page_bch; |
| chip->ecc.write_subpage = omap_write_subpage_bch; |
| mtd_set_ooblayout(mtd, &omap_ooblayout_ops); |
| oobbytes_per_step = chip->ecc.bytes; |
| |
| err = elm_config(info->elm_dev, BCH4_ECC, |
| mtd->writesize / chip->ecc.size, |
| chip->ecc.size, chip->ecc.bytes); |
| if (err < 0) |
| return err; |
| break; |
| |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->ecc.size = 512; |
| chip->ecc.bytes = 13; |
| chip->ecc.strength = 8; |
| chip->ecc.hwctl = omap_enable_hwecc_bch; |
| chip->ecc.correct = nand_bch_correct_data; |
| chip->ecc.calculate = omap_calculate_ecc_bch_sw; |
| mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); |
| /* Reserve one byte for the OMAP marker */ |
| oobbytes_per_step = chip->ecc.bytes + 1; |
| /* Software BCH library is used for locating errors */ |
| chip->ecc.priv = nand_bch_init(mtd); |
| if (!chip->ecc.priv) { |
| dev_err(dev, "unable to use BCH library\n"); |
| return -EINVAL; |
| } |
| break; |
| |
| case OMAP_ECC_BCH8_CODE_HW: |
| pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->ecc.size = 512; |
| /* 14th bit is kept reserved for ROM-code compatibility */ |
| chip->ecc.bytes = 13 + 1; |
| chip->ecc.strength = 8; |
| chip->ecc.hwctl = omap_enable_hwecc_bch; |
| chip->ecc.correct = omap_elm_correct_data; |
| chip->ecc.read_page = omap_read_page_bch; |
| chip->ecc.write_page = omap_write_page_bch; |
| chip->ecc.write_subpage = omap_write_subpage_bch; |
| mtd_set_ooblayout(mtd, &omap_ooblayout_ops); |
| oobbytes_per_step = chip->ecc.bytes; |
| |
| err = elm_config(info->elm_dev, BCH8_ECC, |
| mtd->writesize / chip->ecc.size, |
| chip->ecc.size, chip->ecc.bytes); |
| if (err < 0) |
| return err; |
| |
| break; |
| |
| case OMAP_ECC_BCH16_CODE_HW: |
| pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->ecc.size = 512; |
| chip->ecc.bytes = 26; |
| chip->ecc.strength = 16; |
| chip->ecc.hwctl = omap_enable_hwecc_bch; |
| chip->ecc.correct = omap_elm_correct_data; |
| chip->ecc.read_page = omap_read_page_bch; |
| chip->ecc.write_page = omap_write_page_bch; |
| chip->ecc.write_subpage = omap_write_subpage_bch; |
| mtd_set_ooblayout(mtd, &omap_ooblayout_ops); |
| oobbytes_per_step = chip->ecc.bytes; |
| |
| err = elm_config(info->elm_dev, BCH16_ECC, |
| mtd->writesize / chip->ecc.size, |
| chip->ecc.size, chip->ecc.bytes); |
| if (err < 0) |
| return err; |
| |
| break; |
| default: |
| dev_err(dev, "Invalid or unsupported ECC scheme\n"); |
| return -EINVAL; |
| } |
| |
| /* Check if NAND device's OOB is enough to store ECC signatures */ |
| min_oobbytes += (oobbytes_per_step * |
| (mtd->writesize / chip->ecc.size)); |
| if (mtd->oobsize < min_oobbytes) { |
| dev_err(dev, |
| "Not enough OOB bytes: required = %d, available=%d\n", |
| min_oobbytes, mtd->oobsize); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops omap_nand_controller_ops = { |
| .attach_chip = omap_nand_attach_chip, |
| }; |
| |
| /* Shared among all NAND instances to synchronize access to the ECC Engine */ |
| static struct nand_controller omap_gpmc_controller; |
| static bool omap_gpmc_controller_initialized; |
| |
| static int omap_nand_probe(struct platform_device *pdev) |
| { |
| struct omap_nand_info *info; |
| struct mtd_info *mtd; |
| struct nand_chip *nand_chip; |
| int err; |
| struct resource *res; |
| struct device *dev = &pdev->dev; |
| |
| info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), |
| GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| info->pdev = pdev; |
| |
| err = omap_get_dt_info(dev, info); |
| if (err) |
| return err; |
| |
| info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); |
| if (!info->ops) { |
| dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); |
| return -ENODEV; |
| } |
| |
| nand_chip = &info->nand; |
| mtd = nand_to_mtd(nand_chip); |
| mtd->dev.parent = &pdev->dev; |
| nand_chip->ecc.priv = NULL; |
| nand_set_flash_node(nand_chip, dev->of_node); |
| |
| if (!mtd->name) { |
| mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, |
| "omap2-nand.%d", info->gpmc_cs); |
| if (!mtd->name) { |
| dev_err(&pdev->dev, "Failed to set MTD name\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(nand_chip->legacy.IO_ADDR_R)) |
| return PTR_ERR(nand_chip->legacy.IO_ADDR_R); |
| |
| info->phys_base = res->start; |
| |
| if (!omap_gpmc_controller_initialized) { |
| omap_gpmc_controller.ops = &omap_nand_controller_ops; |
| nand_controller_init(&omap_gpmc_controller); |
| omap_gpmc_controller_initialized = true; |
| } |
| |
| nand_chip->controller = &omap_gpmc_controller; |
| |
| nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R; |
| nand_chip->legacy.cmd_ctrl = omap_hwcontrol; |
| |
| info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", |
| GPIOD_IN); |
| if (IS_ERR(info->ready_gpiod)) { |
| dev_err(dev, "failed to get ready gpio\n"); |
| return PTR_ERR(info->ready_gpiod); |
| } |
| |
| /* |
| * If RDY/BSY line is connected to OMAP then use the omap ready |
| * function and the generic nand_wait function which reads the status |
| * register after monitoring the RDY/BSY line. Otherwise use a standard |
| * chip delay which is slightly more than tR (AC Timing) of the NAND |
| * device and read status register until you get a failure or success |
| */ |
| if (info->ready_gpiod) { |
| nand_chip->legacy.dev_ready = omap_dev_ready; |
| nand_chip->legacy.chip_delay = 0; |
| } else { |
| nand_chip->legacy.waitfunc = omap_wait; |
| nand_chip->legacy.chip_delay = 50; |
| } |
| |
| if (info->flash_bbt) |
| nand_chip->bbt_options |= NAND_BBT_USE_FLASH; |
| |
| /* scan NAND device connected to chip controller */ |
| nand_chip->options |= info->devsize & NAND_BUSWIDTH_16; |
| |
| err = nand_scan(nand_chip, 1); |
| if (err) |
| goto return_error; |
| |
| err = mtd_device_register(mtd, NULL, 0); |
| if (err) |
| goto cleanup_nand; |
| |
| platform_set_drvdata(pdev, mtd); |
| |
| return 0; |
| |
| cleanup_nand: |
| nand_cleanup(nand_chip); |
| |
| return_error: |
| if (!IS_ERR_OR_NULL(info->dma)) |
| dma_release_channel(info->dma); |
| if (nand_chip->ecc.priv) { |
| nand_bch_free(nand_chip->ecc.priv); |
| nand_chip->ecc.priv = NULL; |
| } |
| return err; |
| } |
| |
| static int omap_nand_remove(struct platform_device *pdev) |
| { |
| struct mtd_info *mtd = platform_get_drvdata(pdev); |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct omap_nand_info *info = mtd_to_omap(mtd); |
| int ret; |
| |
| if (nand_chip->ecc.priv) { |
| nand_bch_free(nand_chip->ecc.priv); |
| nand_chip->ecc.priv = NULL; |
| } |
| if (info->dma) |
| dma_release_channel(info->dma); |
| ret = mtd_device_unregister(mtd); |
| WARN_ON(ret); |
| nand_cleanup(nand_chip); |
| return ret; |
| } |
| |
| static const struct of_device_id omap_nand_ids[] = { |
| { .compatible = "ti,omap2-nand", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, omap_nand_ids); |
| |
| static struct platform_driver omap_nand_driver = { |
| .probe = omap_nand_probe, |
| .remove = omap_nand_remove, |
| .driver = { |
| .name = DRIVER_NAME, |
| .of_match_table = of_match_ptr(omap_nand_ids), |
| }, |
| }; |
| |
| module_platform_driver(omap_nand_driver); |
| |
| MODULE_ALIAS("platform:" DRIVER_NAME); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |