| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ |
| #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ |
| |
| #include <asm-generic/pgtable-nop4d.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/mmdebug.h> |
| #include <linux/bug.h> |
| #include <linux/sizes.h> |
| #endif |
| |
| /* |
| * Common bits between hash and Radix page table |
| */ |
| |
| #define _PAGE_EXEC 0x00001 /* execute permission */ |
| #define _PAGE_WRITE 0x00002 /* write access allowed */ |
| #define _PAGE_READ 0x00004 /* read access allowed */ |
| #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ |
| #define _PAGE_SAO 0x00010 /* Strong access order */ |
| #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ |
| #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ |
| #define _PAGE_DIRTY 0x00080 /* C: page changed */ |
| #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ |
| /* |
| * Software bits |
| */ |
| #define _RPAGE_SW0 0x2000000000000000UL |
| #define _RPAGE_SW1 0x00800 |
| #define _RPAGE_SW2 0x00400 |
| #define _RPAGE_SW3 0x00200 |
| #define _RPAGE_RSV1 0x00040UL |
| |
| #define _RPAGE_PKEY_BIT4 0x1000000000000000UL |
| #define _RPAGE_PKEY_BIT3 0x0800000000000000UL |
| #define _RPAGE_PKEY_BIT2 0x0400000000000000UL |
| #define _RPAGE_PKEY_BIT1 0x0200000000000000UL |
| #define _RPAGE_PKEY_BIT0 0x0100000000000000UL |
| |
| #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */ |
| #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */ |
| /* |
| * We need to mark a pmd pte invalid while splitting. We can do that by clearing |
| * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to |
| * differentiate between two use a SW field when invalidating. |
| * |
| * We do that temporary invalidate for regular pte entry in ptep_set_access_flags |
| * |
| * This is used only when _PAGE_PRESENT is cleared. |
| */ |
| #define _PAGE_INVALID _RPAGE_SW0 |
| |
| /* |
| * Top and bottom bits of RPN which can be used by hash |
| * translation mode, because we expect them to be zero |
| * otherwise. |
| */ |
| #define _RPAGE_RPN0 0x01000 |
| #define _RPAGE_RPN1 0x02000 |
| #define _RPAGE_RPN43 0x0080000000000000UL |
| #define _RPAGE_RPN42 0x0040000000000000UL |
| #define _RPAGE_RPN41 0x0020000000000000UL |
| |
| /* Max physical address bit as per radix table */ |
| #define _RPAGE_PA_MAX 56 |
| |
| /* |
| * Max physical address bit we will use for now. |
| * |
| * This is mostly a hardware limitation and for now Power9 has |
| * a 51 bit limit. |
| * |
| * This is different from the number of physical bit required to address |
| * the last byte of memory. That is defined by MAX_PHYSMEM_BITS. |
| * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum |
| * number of sections we can support (SECTIONS_SHIFT). |
| * |
| * This is different from Radix page table limitation above and |
| * should always be less than that. The limit is done such that |
| * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX |
| * for hash linux page table specific bits. |
| * |
| * In order to be compatible with future hardware generations we keep |
| * some offsets and limit this for now to 53 |
| */ |
| #define _PAGE_PA_MAX 53 |
| |
| #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ |
| #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ |
| #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */ |
| |
| /* |
| * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE |
| * Instead of fixing all of them, add an alternate define which |
| * maps CI pte mapping. |
| */ |
| #define _PAGE_NO_CACHE _PAGE_TOLERANT |
| /* |
| * We support _RPAGE_PA_MAX bit real address in pte. On the linux side |
| * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX |
| * and every thing below PAGE_SHIFT; |
| */ |
| #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK)) |
| #define PTE_RPN_SHIFT PAGE_SHIFT |
| /* |
| * set of bits not changed in pmd_modify. Even though we have hash specific bits |
| * in here, on radix we expect them to be zero. |
| */ |
| #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ |
| _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ |
| _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) |
| /* |
| * user access blocked by key |
| */ |
| #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) |
| #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) |
| #define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC) |
| #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC) |
| /* |
| * _PAGE_CHG_MASK masks of bits that are to be preserved across |
| * pgprot changes |
| */ |
| #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ |
| _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ |
| _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) |
| |
| /* |
| * We define 2 sets of base prot bits, one for basic pages (ie, |
| * cacheable kernel and user pages) and one for non cacheable |
| * pages. We always set _PAGE_COHERENT when SMP is enabled or |
| * the processor might need it for DMA coherency. |
| */ |
| #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) |
| #define _PAGE_BASE (_PAGE_BASE_NC) |
| |
| #include <asm/pgtable-masks.h> |
| |
| /* Permission masks used for kernel mappings */ |
| #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) |
| #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT) |
| #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT) |
| #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) |
| #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * page table defines |
| */ |
| extern unsigned long __pte_index_size; |
| extern unsigned long __pmd_index_size; |
| extern unsigned long __pud_index_size; |
| extern unsigned long __pgd_index_size; |
| extern unsigned long __pud_cache_index; |
| #define PTE_INDEX_SIZE __pte_index_size |
| #define PMD_INDEX_SIZE __pmd_index_size |
| #define PUD_INDEX_SIZE __pud_index_size |
| #define PGD_INDEX_SIZE __pgd_index_size |
| /* pmd table use page table fragments */ |
| #define PMD_CACHE_INDEX 0 |
| #define PUD_CACHE_INDEX __pud_cache_index |
| /* |
| * Because of use of pte fragments and THP, size of page table |
| * are not always derived out of index size above. |
| */ |
| extern unsigned long __pte_table_size; |
| extern unsigned long __pmd_table_size; |
| extern unsigned long __pud_table_size; |
| extern unsigned long __pgd_table_size; |
| #define PTE_TABLE_SIZE __pte_table_size |
| #define PMD_TABLE_SIZE __pmd_table_size |
| #define PUD_TABLE_SIZE __pud_table_size |
| #define PGD_TABLE_SIZE __pgd_table_size |
| |
| extern unsigned long __pmd_val_bits; |
| extern unsigned long __pud_val_bits; |
| extern unsigned long __pgd_val_bits; |
| #define PMD_VAL_BITS __pmd_val_bits |
| #define PUD_VAL_BITS __pud_val_bits |
| #define PGD_VAL_BITS __pgd_val_bits |
| |
| extern unsigned long __pte_frag_nr; |
| #define PTE_FRAG_NR __pte_frag_nr |
| extern unsigned long __pte_frag_size_shift; |
| #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift |
| #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) |
| |
| extern unsigned long __pmd_frag_nr; |
| #define PMD_FRAG_NR __pmd_frag_nr |
| extern unsigned long __pmd_frag_size_shift; |
| #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift |
| #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT) |
| |
| #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) |
| #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) |
| #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) |
| #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) |
| |
| #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE) |
| #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD) |
| #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD) |
| #define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \ |
| H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE)) |
| |
| /* PMD_SHIFT determines what a second-level page table entry can map */ |
| #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| |
| /* PUD_SHIFT determines what a third-level page table entry can map */ |
| #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) |
| #define PUD_SIZE (1UL << PUD_SHIFT) |
| #define PUD_MASK (~(PUD_SIZE-1)) |
| |
| /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ |
| #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* Bits to mask out from a PMD to get to the PTE page */ |
| #define PMD_MASKED_BITS 0xc0000000000000ffUL |
| /* Bits to mask out from a PUD to get to the PMD page */ |
| #define PUD_MASKED_BITS 0xc0000000000000ffUL |
| /* Bits to mask out from a PGD to get to the PUD page */ |
| #define P4D_MASKED_BITS 0xc0000000000000ffUL |
| |
| /* |
| * Used as an indicator for rcu callback functions |
| */ |
| enum pgtable_index { |
| PTE_INDEX = 0, |
| PMD_INDEX, |
| PUD_INDEX, |
| PGD_INDEX, |
| /* |
| * Below are used with 4k page size and hugetlb |
| */ |
| HTLB_16M_INDEX, |
| HTLB_16G_INDEX, |
| }; |
| |
| extern unsigned long __vmalloc_start; |
| extern unsigned long __vmalloc_end; |
| #define VMALLOC_START __vmalloc_start |
| #define VMALLOC_END __vmalloc_end |
| |
| static inline unsigned int ioremap_max_order(void) |
| { |
| if (radix_enabled()) |
| return PUD_SHIFT; |
| return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */ |
| } |
| #define IOREMAP_MAX_ORDER ioremap_max_order() |
| |
| extern unsigned long __kernel_virt_start; |
| extern unsigned long __kernel_io_start; |
| extern unsigned long __kernel_io_end; |
| #define KERN_VIRT_START __kernel_virt_start |
| #define KERN_IO_START __kernel_io_start |
| #define KERN_IO_END __kernel_io_end |
| |
| extern struct page *vmemmap; |
| extern unsigned long pci_io_base; |
| #endif /* __ASSEMBLY__ */ |
| |
| #include <asm/book3s/64/hash.h> |
| #include <asm/book3s/64/radix.h> |
| |
| #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS |
| #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS |
| #else |
| #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS |
| #endif |
| |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| #include <asm/book3s/64/pgtable-64k.h> |
| #else |
| #include <asm/book3s/64/pgtable-4k.h> |
| #endif |
| |
| #include <asm/barrier.h> |
| /* |
| * IO space itself carved into the PIO region (ISA and PHB IO space) and |
| * the ioremap space |
| * |
| * ISA_IO_BASE = KERN_IO_START, 64K reserved area |
| * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces |
| * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE |
| */ |
| #define FULL_IO_SIZE 0x80000000ul |
| #define ISA_IO_BASE (KERN_IO_START) |
| #define ISA_IO_END (KERN_IO_START + 0x10000ul) |
| #define PHB_IO_BASE (ISA_IO_END) |
| #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) |
| #define IOREMAP_BASE (PHB_IO_END) |
| #define IOREMAP_START (ioremap_bot) |
| #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE) |
| #define FIXADDR_SIZE SZ_32M |
| #define FIXADDR_TOP (IOREMAP_END + FIXADDR_SIZE) |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * This is the default implementation of various PTE accessors, it's |
| * used in all cases except Book3S with 64K pages where we have a |
| * concept of sub-pages |
| */ |
| #ifndef __real_pte |
| |
| #define __real_pte(e, p, o) ((real_pte_t){(e)}) |
| #define __rpte_to_pte(r) ((r).pte) |
| #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) |
| |
| #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ |
| do { \ |
| index = 0; \ |
| shift = mmu_psize_defs[psize].shift; \ |
| |
| #define pte_iterate_hashed_end() } while(0) |
| |
| /* |
| * We expect this to be called only for user addresses or kernel virtual |
| * addresses other than the linear mapping. |
| */ |
| #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K |
| |
| #endif /* __real_pte */ |
| |
| static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, unsigned long clr, |
| unsigned long set, int huge) |
| { |
| if (radix_enabled()) |
| return radix__pte_update(mm, addr, ptep, clr, set, huge); |
| return hash__pte_update(mm, addr, ptep, clr, set, huge); |
| } |
| /* |
| * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. |
| * We currently remove entries from the hashtable regardless of whether |
| * the entry was young or dirty. |
| * |
| * We should be more intelligent about this but for the moment we override |
| * these functions and force a tlb flush unconditionally |
| * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same |
| * function for both hash and radix. |
| */ |
| static inline int __ptep_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| |
| if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) |
| return 0; |
| old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); |
| return (old & _PAGE_ACCESSED) != 0; |
| } |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| ({ \ |
| __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ |
| }) |
| |
| /* |
| * On Book3S CPUs, clearing the accessed bit without a TLB flush |
| * doesn't cause data corruption. [ It could cause incorrect |
| * page aging and the (mistaken) reclaim of hot pages, but the |
| * chance of that should be relatively low. ] |
| * |
| * So as a performance optimization don't flush the TLB when |
| * clearing the accessed bit, it will eventually be flushed by |
| * a context switch or a VM operation anyway. [ In the rare |
| * event of it not getting flushed for a long time the delay |
| * shouldn't really matter because there's no real memory |
| * pressure for swapout to react to. ] |
| * |
| * Note: this optimisation also exists in pte_needs_flush() and |
| * huge_pmd_needs_flush(). |
| */ |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| #define ptep_clear_flush_young ptep_test_and_clear_young |
| |
| #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH |
| #define pmdp_clear_flush_young pmdp_test_and_clear_young |
| |
| static inline int pte_write(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); |
| } |
| |
| static inline int pte_read(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| if (pte_write(*ptep)) |
| pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); |
| } |
| |
| #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT |
| static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| if (pte_write(*ptep)) |
| pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); |
| } |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); |
| return __pte(old); |
| } |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, int full) |
| { |
| if (full && radix_enabled()) { |
| /* |
| * We know that this is a full mm pte clear and |
| * hence can be sure there is no parallel set_pte. |
| */ |
| return radix__ptep_get_and_clear_full(mm, addr, ptep, full); |
| } |
| return ptep_get_and_clear(mm, addr, ptep); |
| } |
| |
| |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t * ptep) |
| { |
| pte_update(mm, addr, ptep, ~0UL, 0, 0); |
| } |
| |
| static inline int pte_dirty(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); |
| } |
| |
| static inline int pte_young(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); |
| } |
| |
| static inline int pte_special(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); |
| } |
| |
| static inline bool pte_exec(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC)); |
| } |
| |
| |
| #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
| static inline bool pte_soft_dirty(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); |
| } |
| |
| static inline pte_t pte_mksoft_dirty(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY)); |
| } |
| |
| static inline pte_t pte_clear_soft_dirty(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY)); |
| } |
| #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| static inline int pte_protnone(pte_t pte) |
| { |
| return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) == |
| cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| static inline bool pte_hw_valid(pte_t pte) |
| { |
| return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) == |
| cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); |
| } |
| |
| static inline int pte_present(pte_t pte) |
| { |
| /* |
| * A pte is considerent present if _PAGE_PRESENT is set. |
| * We also need to consider the pte present which is marked |
| * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID |
| * if we find _PAGE_PRESENT cleared. |
| */ |
| |
| if (pte_hw_valid(pte)) |
| return true; |
| return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) == |
| cpu_to_be64(_PAGE_INVALID | _PAGE_PTE); |
| } |
| |
| #ifdef CONFIG_PPC_MEM_KEYS |
| extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute); |
| #else |
| static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute) |
| { |
| return true; |
| } |
| #endif /* CONFIG_PPC_MEM_KEYS */ |
| |
| static inline bool pte_user(pte_t pte) |
| { |
| return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); |
| } |
| |
| #define pte_access_permitted pte_access_permitted |
| static inline bool pte_access_permitted(pte_t pte, bool write) |
| { |
| /* |
| * _PAGE_READ is needed for any access and will be cleared for |
| * PROT_NONE. Execute-only mapping via PROT_EXEC also returns false. |
| */ |
| if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) |
| return false; |
| |
| if (write && !pte_write(pte)) |
| return false; |
| |
| return arch_pte_access_permitted(pte_val(pte), write, 0); |
| } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| * |
| * Even if PTEs can be unsigned long long, a PFN is always an unsigned |
| * long for now. |
| */ |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) |
| { |
| VM_BUG_ON(pfn >> (64 - PAGE_SHIFT)); |
| VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK); |
| |
| return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE); |
| } |
| |
| /* Generic modifiers for PTE bits */ |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE)); |
| } |
| |
| static inline pte_t pte_exprotect(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC)); |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY)); |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED)); |
| } |
| |
| static inline pte_t pte_mkexec(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC)); |
| } |
| |
| static inline pte_t pte_mkwrite_novma(pte_t pte) |
| { |
| /* |
| * write implies read, hence set both |
| */ |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW)); |
| } |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED)); |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL)); |
| } |
| |
| static inline pte_t pte_mkhuge(pte_t pte) |
| { |
| return pte; |
| } |
| |
| static inline pte_t pte_mkdevmap(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP)); |
| } |
| |
| /* |
| * This is potentially called with a pmd as the argument, in which case it's not |
| * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set. |
| * That's because the bit we use for _PAGE_DEVMAP is not reserved for software |
| * use in page directory entries (ie. non-ptes). |
| */ |
| static inline int pte_devmap(pte_t pte) |
| { |
| __be64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE); |
| |
| return (pte_raw(pte) & mask) == mask; |
| } |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| /* FIXME!! check whether this need to be a conditional */ |
| return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) | |
| cpu_to_be64(pgprot_val(newprot))); |
| } |
| |
| /* Encode and de-code a swap entry */ |
| #define MAX_SWAPFILES_CHECK() do { \ |
| BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ |
| /* \ |
| * Don't have overlapping bits with _PAGE_HPTEFLAGS \ |
| * We filter HPTEFLAGS on set_pte. \ |
| */ \ |
| BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \ |
| BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ |
| BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \ |
| } while (0) |
| |
| #define SWP_TYPE_BITS 5 |
| #define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1) |
| #define __swp_type(x) ((x).val & SWP_TYPE_MASK) |
| #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) |
| #define __swp_entry(type, offset) ((swp_entry_t) { \ |
| (type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) |
| /* |
| * swp_entry_t must be independent of pte bits. We build a swp_entry_t from |
| * swap type and offset we get from swap and convert that to pte to find a |
| * matching pte in linux page table. |
| * Clear bits not found in swap entries here. |
| */ |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) |
| #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) |
| #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd))) |
| #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x))) |
| |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| #define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY |
| #else |
| #define _PAGE_SWP_SOFT_DIRTY 0UL |
| #endif /* CONFIG_MEM_SOFT_DIRTY */ |
| |
| #define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT |
| |
| #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
| static inline pte_t pte_swp_mksoft_dirty(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); |
| } |
| |
| static inline bool pte_swp_soft_dirty(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); |
| } |
| |
| static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY)); |
| } |
| #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ |
| |
| static inline pte_t pte_swp_mkexclusive(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); |
| } |
| |
| static inline int pte_swp_exclusive(pte_t pte) |
| { |
| return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); |
| } |
| |
| static inline pte_t pte_swp_clear_exclusive(pte_t pte) |
| { |
| return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE)); |
| } |
| |
| static inline bool check_pte_access(unsigned long access, unsigned long ptev) |
| { |
| /* |
| * This check for _PAGE_RWX and _PAGE_PRESENT bits |
| */ |
| if (access & ~ptev) |
| return false; |
| /* |
| * This check for access to privilege space |
| */ |
| if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) |
| return false; |
| |
| return true; |
| } |
| /* |
| * Generic functions with hash/radix callbacks |
| */ |
| |
| static inline void __ptep_set_access_flags(struct vm_area_struct *vma, |
| pte_t *ptep, pte_t entry, |
| unsigned long address, |
| int psize) |
| { |
| if (radix_enabled()) |
| return radix__ptep_set_access_flags(vma, ptep, entry, |
| address, psize); |
| return hash__ptep_set_access_flags(ptep, entry); |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| static inline int pte_same(pte_t pte_a, pte_t pte_b) |
| { |
| if (radix_enabled()) |
| return radix__pte_same(pte_a, pte_b); |
| return hash__pte_same(pte_a, pte_b); |
| } |
| |
| static inline int pte_none(pte_t pte) |
| { |
| if (radix_enabled()) |
| return radix__pte_none(pte); |
| return hash__pte_none(pte); |
| } |
| |
| static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte, int percpu) |
| { |
| |
| VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE))); |
| /* |
| * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE |
| * in all the callers. |
| */ |
| pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE)); |
| |
| if (radix_enabled()) |
| return radix__set_pte_at(mm, addr, ptep, pte, percpu); |
| return hash__set_pte_at(mm, addr, ptep, pte, percpu); |
| } |
| |
| #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) |
| |
| #define pgprot_noncached pgprot_noncached |
| static inline pgprot_t pgprot_noncached(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| _PAGE_NON_IDEMPOTENT); |
| } |
| |
| #define pgprot_noncached_wc pgprot_noncached_wc |
| static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| _PAGE_TOLERANT); |
| } |
| |
| #define pgprot_cached pgprot_cached |
| static inline pgprot_t pgprot_cached(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); |
| } |
| |
| #define pgprot_writecombine pgprot_writecombine |
| static inline pgprot_t pgprot_writecombine(pgprot_t prot) |
| { |
| return pgprot_noncached_wc(prot); |
| } |
| /* |
| * check a pte mapping have cache inhibited property |
| */ |
| static inline bool pte_ci(pte_t pte) |
| { |
| __be64 pte_v = pte_raw(pte); |
| |
| if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) || |
| ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT))) |
| return true; |
| return false; |
| } |
| |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { |
| /* |
| * Don't use this if we can possibly have a hash page table |
| * entry mapping this. |
| */ |
| WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); |
| } |
| *pmdp = __pmd(0); |
| } |
| |
| static inline int pmd_none(pmd_t pmd) |
| { |
| return !pmd_raw(pmd); |
| } |
| |
| static inline int pmd_present(pmd_t pmd) |
| { |
| /* |
| * A pmd is considerent present if _PAGE_PRESENT is set. |
| * We also need to consider the pmd present which is marked |
| * invalid during a split. Hence we look for _PAGE_INVALID |
| * if we find _PAGE_PRESENT cleared. |
| */ |
| if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) |
| return true; |
| |
| return false; |
| } |
| |
| static inline int pmd_is_serializing(pmd_t pmd) |
| { |
| /* |
| * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear |
| * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate). |
| * |
| * This condition may also occur when flushing a pmd while flushing |
| * it (see ptep_modify_prot_start), so callers must ensure this |
| * case is fine as well. |
| */ |
| if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) == |
| cpu_to_be64(_PAGE_INVALID)) |
| return true; |
| |
| return false; |
| } |
| |
| static inline int pmd_bad(pmd_t pmd) |
| { |
| if (radix_enabled()) |
| return radix__pmd_bad(pmd); |
| return hash__pmd_bad(pmd); |
| } |
| |
| static inline void pud_clear(pud_t *pudp) |
| { |
| if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { |
| /* |
| * Don't use this if we can possibly have a hash page table |
| * entry mapping this. |
| */ |
| WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); |
| } |
| *pudp = __pud(0); |
| } |
| |
| static inline int pud_none(pud_t pud) |
| { |
| return !pud_raw(pud); |
| } |
| |
| static inline int pud_present(pud_t pud) |
| { |
| return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT)); |
| } |
| |
| extern struct page *pud_page(pud_t pud); |
| extern struct page *pmd_page(pmd_t pmd); |
| static inline pte_t pud_pte(pud_t pud) |
| { |
| return __pte_raw(pud_raw(pud)); |
| } |
| |
| static inline pud_t pte_pud(pte_t pte) |
| { |
| return __pud_raw(pte_raw(pte)); |
| } |
| |
| static inline pte_t *pudp_ptep(pud_t *pud) |
| { |
| return (pte_t *)pud; |
| } |
| |
| #define pud_pfn(pud) pte_pfn(pud_pte(pud)) |
| #define pud_dirty(pud) pte_dirty(pud_pte(pud)) |
| #define pud_young(pud) pte_young(pud_pte(pud)) |
| #define pud_mkold(pud) pte_pud(pte_mkold(pud_pte(pud))) |
| #define pud_wrprotect(pud) pte_pud(pte_wrprotect(pud_pte(pud))) |
| #define pud_mkdirty(pud) pte_pud(pte_mkdirty(pud_pte(pud))) |
| #define pud_mkclean(pud) pte_pud(pte_mkclean(pud_pte(pud))) |
| #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) |
| #define pud_mkwrite(pud) pte_pud(pte_mkwrite_novma(pud_pte(pud))) |
| #define pud_write(pud) pte_write(pud_pte(pud)) |
| |
| #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
| #define pud_soft_dirty(pmd) pte_soft_dirty(pud_pte(pud)) |
| #define pud_mksoft_dirty(pmd) pte_pud(pte_mksoft_dirty(pud_pte(pud))) |
| #define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud))) |
| #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ |
| |
| static inline int pud_bad(pud_t pud) |
| { |
| if (radix_enabled()) |
| return radix__pud_bad(pud); |
| return hash__pud_bad(pud); |
| } |
| |
| #define pud_access_permitted pud_access_permitted |
| static inline bool pud_access_permitted(pud_t pud, bool write) |
| { |
| return pte_access_permitted(pud_pte(pud), write); |
| } |
| |
| #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) }) |
| static inline __be64 p4d_raw(p4d_t x) |
| { |
| return pgd_raw(x.pgd); |
| } |
| |
| #define p4d_write(p4d) pte_write(p4d_pte(p4d)) |
| |
| static inline void p4d_clear(p4d_t *p4dp) |
| { |
| *p4dp = __p4d(0); |
| } |
| |
| static inline int p4d_none(p4d_t p4d) |
| { |
| return !p4d_raw(p4d); |
| } |
| |
| static inline int p4d_present(p4d_t p4d) |
| { |
| return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT)); |
| } |
| |
| static inline pte_t p4d_pte(p4d_t p4d) |
| { |
| return __pte_raw(p4d_raw(p4d)); |
| } |
| |
| static inline p4d_t pte_p4d(pte_t pte) |
| { |
| return __p4d_raw(pte_raw(pte)); |
| } |
| |
| static inline int p4d_bad(p4d_t p4d) |
| { |
| if (radix_enabled()) |
| return radix__p4d_bad(p4d); |
| return hash__p4d_bad(p4d); |
| } |
| |
| #define p4d_access_permitted p4d_access_permitted |
| static inline bool p4d_access_permitted(p4d_t p4d, bool write) |
| { |
| return pte_access_permitted(p4d_pte(p4d), write); |
| } |
| |
| extern struct page *p4d_page(p4d_t p4d); |
| |
| /* Pointers in the page table tree are physical addresses */ |
| #define __pgtable_ptr_val(ptr) __pa(ptr) |
| |
| static inline pud_t *p4d_pgtable(p4d_t p4d) |
| { |
| return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS); |
| } |
| |
| static inline pmd_t *pud_pgtable(pud_t pud) |
| { |
| return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS); |
| } |
| |
| #define pmd_ERROR(e) \ |
| pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| #define pud_ERROR(e) \ |
| pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot) |
| { |
| if (radix_enabled()) { |
| #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) |
| unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; |
| WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); |
| #endif |
| return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE); |
| } |
| return hash__map_kernel_page(ea, pa, prot); |
| } |
| |
| void unmap_kernel_page(unsigned long va); |
| |
| static inline int __meminit vmemmap_create_mapping(unsigned long start, |
| unsigned long page_size, |
| unsigned long phys) |
| { |
| if (radix_enabled()) |
| return radix__vmemmap_create_mapping(start, page_size, phys); |
| return hash__vmemmap_create_mapping(start, page_size, phys); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static inline void vmemmap_remove_mapping(unsigned long start, |
| unsigned long page_size) |
| { |
| if (radix_enabled()) |
| return radix__vmemmap_remove_mapping(start, page_size); |
| return hash__vmemmap_remove_mapping(start, page_size); |
| } |
| #endif |
| |
| #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE) |
| static inline void __kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| if (radix_enabled()) |
| radix__kernel_map_pages(page, numpages, enable); |
| else |
| hash__kernel_map_pages(page, numpages, enable); |
| } |
| #endif |
| |
| static inline pte_t pmd_pte(pmd_t pmd) |
| { |
| return __pte_raw(pmd_raw(pmd)); |
| } |
| |
| static inline pmd_t pte_pmd(pte_t pte) |
| { |
| return __pmd_raw(pte_raw(pte)); |
| } |
| |
| static inline pte_t *pmdp_ptep(pmd_t *pmd) |
| { |
| return (pte_t *)pmd; |
| } |
| #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) |
| #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) |
| #define pmd_young(pmd) pte_young(pmd_pte(pmd)) |
| #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) |
| #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) |
| #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) |
| #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) |
| #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) |
| #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) |
| |
| #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
| #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) |
| #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) |
| #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) |
| |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd))) |
| #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd)) |
| #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd))) |
| #endif |
| #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| static inline int pmd_protnone(pmd_t pmd) |
| { |
| return pte_protnone(pmd_pte(pmd)); |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #define pmd_write(pmd) pte_write(pmd_pte(pmd)) |
| |
| #define pmd_access_permitted pmd_access_permitted |
| static inline bool pmd_access_permitted(pmd_t pmd, bool write) |
| { |
| /* |
| * pmdp_invalidate sets this combination (which is not caught by |
| * !pte_present() check in pte_access_permitted), to prevent |
| * lock-free lookups, as part of the serialize_against_pte_lookup() |
| * synchronisation. |
| * |
| * This also catches the case where the PTE's hardware PRESENT bit is |
| * cleared while TLB is flushed, which is suboptimal but should not |
| * be frequent. |
| */ |
| if (pmd_is_serializing(pmd)) |
| return false; |
| |
| return pte_access_permitted(pmd_pte(pmd), write); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); |
| extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot); |
| extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); |
| extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); |
| extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, pmd_t pmd); |
| extern void set_pud_at(struct mm_struct *mm, unsigned long addr, |
| pud_t *pudp, pud_t pud); |
| |
| static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t *pmd) |
| { |
| } |
| |
| static inline void update_mmu_cache_pud(struct vm_area_struct *vma, |
| unsigned long addr, pud_t *pud) |
| { |
| } |
| |
| extern int hash__has_transparent_hugepage(void); |
| static inline int has_transparent_hugepage(void) |
| { |
| if (radix_enabled()) |
| return radix__has_transparent_hugepage(); |
| return hash__has_transparent_hugepage(); |
| } |
| #define has_transparent_hugepage has_transparent_hugepage |
| |
| static inline int has_transparent_pud_hugepage(void) |
| { |
| if (radix_enabled()) |
| return radix__has_transparent_pud_hugepage(); |
| return 0; |
| } |
| #define has_transparent_pud_hugepage has_transparent_pud_hugepage |
| |
| static inline unsigned long |
| pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, |
| unsigned long clr, unsigned long set) |
| { |
| if (radix_enabled()) |
| return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); |
| return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); |
| } |
| |
| static inline unsigned long |
| pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp, |
| unsigned long clr, unsigned long set) |
| { |
| if (radix_enabled()) |
| return radix__pud_hugepage_update(mm, addr, pudp, clr, set); |
| BUG(); |
| return pud_val(*pudp); |
| } |
| |
| /* |
| * For radix we should always find H_PAGE_HASHPTE zero. Hence |
| * the below will work for radix too |
| */ |
| static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| unsigned long old; |
| |
| if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) |
| return 0; |
| old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); |
| return ((old & _PAGE_ACCESSED) != 0); |
| } |
| |
| static inline int __pudp_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pud_t *pudp) |
| { |
| unsigned long old; |
| |
| if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) |
| return 0; |
| old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0); |
| return ((old & _PAGE_ACCESSED) != 0); |
| } |
| |
| #define __HAVE_ARCH_PMDP_SET_WRPROTECT |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp) |
| { |
| if (pmd_write(*pmdp)) |
| pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); |
| } |
| |
| #define __HAVE_ARCH_PUDP_SET_WRPROTECT |
| static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pud_t *pudp) |
| { |
| if (pud_write(*pudp)) |
| pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0); |
| } |
| |
| /* |
| * Only returns true for a THP. False for pmd migration entry. |
| * We also need to return true when we come across a pte that |
| * in between a thp split. While splitting THP, we mark the pmd |
| * invalid (pmdp_invalidate()) before we set it with pte page |
| * address. A pmd_trans_huge() check against a pmd entry during that time |
| * should return true. |
| * We should not call this on a hugetlb entry. We should check for HugeTLB |
| * entry using vma->vm_flags |
| * The page table walk rule is explained in Documentation/mm/transhuge.rst |
| */ |
| static inline int pmd_trans_huge(pmd_t pmd) |
| { |
| if (!pmd_present(pmd)) |
| return false; |
| |
| if (radix_enabled()) |
| return radix__pmd_trans_huge(pmd); |
| return hash__pmd_trans_huge(pmd); |
| } |
| |
| static inline int pud_trans_huge(pud_t pud) |
| { |
| if (!pud_present(pud)) |
| return false; |
| |
| if (radix_enabled()) |
| return radix__pud_trans_huge(pud); |
| return 0; |
| } |
| |
| |
| #define __HAVE_ARCH_PMD_SAME |
| static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| { |
| if (radix_enabled()) |
| return radix__pmd_same(pmd_a, pmd_b); |
| return hash__pmd_same(pmd_a, pmd_b); |
| } |
| |
| #define pud_same pud_same |
| static inline int pud_same(pud_t pud_a, pud_t pud_b) |
| { |
| if (radix_enabled()) |
| return radix__pud_same(pud_a, pud_b); |
| return hash__pud_same(pud_a, pud_b); |
| } |
| |
| |
| static inline pmd_t __pmd_mkhuge(pmd_t pmd) |
| { |
| if (radix_enabled()) |
| return radix__pmd_mkhuge(pmd); |
| return hash__pmd_mkhuge(pmd); |
| } |
| |
| static inline pud_t __pud_mkhuge(pud_t pud) |
| { |
| if (radix_enabled()) |
| return radix__pud_mkhuge(pud); |
| BUG(); |
| return pud; |
| } |
| |
| /* |
| * pfn_pmd return a pmd_t that can be used as pmd pte entry. |
| */ |
| static inline pmd_t pmd_mkhuge(pmd_t pmd) |
| { |
| #ifdef CONFIG_DEBUG_VM |
| if (radix_enabled()) |
| WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0); |
| else |
| WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) != |
| cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)); |
| #endif |
| return pmd; |
| } |
| |
| static inline pud_t pud_mkhuge(pud_t pud) |
| { |
| #ifdef CONFIG_DEBUG_VM |
| if (radix_enabled()) |
| WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0); |
| else |
| WARN_ON(1); |
| #endif |
| return pud; |
| } |
| |
| |
| #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty); |
| #define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS |
| extern int pudp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pud_t *pudp, |
| pud_t entry, int dirty); |
| |
| #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| #define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG |
| extern int pudp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, pud_t *pudp); |
| |
| |
| #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| if (radix_enabled()) |
| return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); |
| return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); |
| } |
| |
| #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR |
| static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pud_t *pudp) |
| { |
| if (radix_enabled()) |
| return radix__pudp_huge_get_and_clear(mm, addr, pudp); |
| BUG(); |
| return *pudp; |
| } |
| |
| static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| if (radix_enabled()) |
| return radix__pmdp_collapse_flush(vma, address, pmdp); |
| return hash__pmdp_collapse_flush(vma, address, pmdp); |
| } |
| #define pmdp_collapse_flush pmdp_collapse_flush |
| |
| #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL |
| pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| unsigned long addr, |
| pmd_t *pmdp, int full); |
| |
| #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL |
| pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| unsigned long addr, |
| pud_t *pudp, int full); |
| |
| #define __HAVE_ARCH_PGTABLE_DEPOSIT |
| static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, |
| pmd_t *pmdp, pgtable_t pgtable) |
| { |
| if (radix_enabled()) |
| return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); |
| return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); |
| } |
| |
| #define __HAVE_ARCH_PGTABLE_WITHDRAW |
| static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, |
| pmd_t *pmdp) |
| { |
| if (radix_enabled()) |
| return radix__pgtable_trans_huge_withdraw(mm, pmdp); |
| return hash__pgtable_trans_huge_withdraw(mm, pmdp); |
| } |
| |
| #define __HAVE_ARCH_PMDP_INVALIDATE |
| extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp); |
| |
| #define pmd_move_must_withdraw pmd_move_must_withdraw |
| struct spinlock; |
| extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, |
| struct spinlock *old_pmd_ptl, |
| struct vm_area_struct *vma); |
| /* |
| * Hash translation mode use the deposited table to store hash pte |
| * slot information. |
| */ |
| #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit |
| static inline bool arch_needs_pgtable_deposit(void) |
| { |
| if (radix_enabled()) |
| return false; |
| return true; |
| } |
| extern void serialize_against_pte_lookup(struct mm_struct *mm); |
| |
| |
| static inline pmd_t pmd_mkdevmap(pmd_t pmd) |
| { |
| if (radix_enabled()) |
| return radix__pmd_mkdevmap(pmd); |
| return hash__pmd_mkdevmap(pmd); |
| } |
| |
| static inline pud_t pud_mkdevmap(pud_t pud) |
| { |
| if (radix_enabled()) |
| return radix__pud_mkdevmap(pud); |
| BUG(); |
| return pud; |
| } |
| |
| static inline int pmd_devmap(pmd_t pmd) |
| { |
| return pte_devmap(pmd_pte(pmd)); |
| } |
| |
| static inline int pud_devmap(pud_t pud) |
| { |
| return pte_devmap(pud_pte(pud)); |
| } |
| |
| static inline int pgd_devmap(pgd_t pgd) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION |
| pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); |
| void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, |
| pte_t *, pte_t, pte_t); |
| |
| /* |
| * Returns true for a R -> RW upgrade of pte |
| */ |
| static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val) |
| { |
| if (!(old_val & _PAGE_READ)) |
| return false; |
| |
| if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Like pmd_huge(), but works regardless of config options |
| */ |
| #define pmd_leaf pmd_leaf |
| static inline bool pmd_leaf(pmd_t pmd) |
| { |
| return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); |
| } |
| |
| #define pud_leaf pud_leaf |
| static inline bool pud_leaf(pud_t pud) |
| { |
| return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE)); |
| } |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */ |