| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Page table handling routines for radix page table. |
| * |
| * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. |
| */ |
| |
| #define pr_fmt(fmt) "radix-mmu: " fmt |
| |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/mm.h> |
| #include <linux/memblock.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/string_helpers.h> |
| #include <linux/memory.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/mmu_context.h> |
| #include <asm/dma.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu.h> |
| #include <asm/firmware.h> |
| #include <asm/powernv.h> |
| #include <asm/sections.h> |
| #include <asm/smp.h> |
| #include <asm/trace.h> |
| #include <asm/uaccess.h> |
| #include <asm/ultravisor.h> |
| #include <asm/set_memory.h> |
| |
| #include <trace/events/thp.h> |
| |
| #include <mm/mmu_decl.h> |
| |
| unsigned int mmu_base_pid; |
| |
| static __ref void *early_alloc_pgtable(unsigned long size, int nid, |
| unsigned long region_start, unsigned long region_end) |
| { |
| phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT; |
| phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE; |
| void *ptr; |
| |
| if (region_start) |
| min_addr = region_start; |
| if (region_end) |
| max_addr = region_end; |
| |
| ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid); |
| |
| if (!ptr) |
| panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n", |
| __func__, size, size, nid, &min_addr, &max_addr); |
| |
| return ptr; |
| } |
| |
| /* |
| * When allocating pud or pmd pointers, we allocate a complete page |
| * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This |
| * is to ensure that the page obtained from the memblock allocator |
| * can be completely used as page table page and can be freed |
| * correctly when the page table entries are removed. |
| */ |
| static int early_map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, |
| unsigned int map_page_size, |
| int nid, |
| unsigned long region_start, unsigned long region_end) |
| { |
| unsigned long pfn = pa >> PAGE_SHIFT; |
| pgd_t *pgdp; |
| p4d_t *p4dp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| pgdp = pgd_offset_k(ea); |
| p4dp = p4d_offset(pgdp, ea); |
| if (p4d_none(*p4dp)) { |
| pudp = early_alloc_pgtable(PAGE_SIZE, nid, |
| region_start, region_end); |
| p4d_populate(&init_mm, p4dp, pudp); |
| } |
| pudp = pud_offset(p4dp, ea); |
| if (map_page_size == PUD_SIZE) { |
| ptep = (pte_t *)pudp; |
| goto set_the_pte; |
| } |
| if (pud_none(*pudp)) { |
| pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start, |
| region_end); |
| pud_populate(&init_mm, pudp, pmdp); |
| } |
| pmdp = pmd_offset(pudp, ea); |
| if (map_page_size == PMD_SIZE) { |
| ptep = pmdp_ptep(pmdp); |
| goto set_the_pte; |
| } |
| if (!pmd_present(*pmdp)) { |
| ptep = early_alloc_pgtable(PAGE_SIZE, nid, |
| region_start, region_end); |
| pmd_populate_kernel(&init_mm, pmdp, ptep); |
| } |
| ptep = pte_offset_kernel(pmdp, ea); |
| |
| set_the_pte: |
| set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); |
| asm volatile("ptesync": : :"memory"); |
| return 0; |
| } |
| |
| /* |
| * nid, region_start, and region_end are hints to try to place the page |
| * table memory in the same node or region. |
| */ |
| static int __map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, |
| unsigned int map_page_size, |
| int nid, |
| unsigned long region_start, unsigned long region_end) |
| { |
| unsigned long pfn = pa >> PAGE_SHIFT; |
| pgd_t *pgdp; |
| p4d_t *p4dp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| /* |
| * Make sure task size is correct as per the max adddr |
| */ |
| BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT)); |
| #endif |
| |
| if (unlikely(!slab_is_available())) |
| return early_map_kernel_page(ea, pa, flags, map_page_size, |
| nid, region_start, region_end); |
| |
| /* |
| * Should make page table allocation functions be able to take a |
| * node, so we can place kernel page tables on the right nodes after |
| * boot. |
| */ |
| pgdp = pgd_offset_k(ea); |
| p4dp = p4d_offset(pgdp, ea); |
| pudp = pud_alloc(&init_mm, p4dp, ea); |
| if (!pudp) |
| return -ENOMEM; |
| if (map_page_size == PUD_SIZE) { |
| ptep = (pte_t *)pudp; |
| goto set_the_pte; |
| } |
| pmdp = pmd_alloc(&init_mm, pudp, ea); |
| if (!pmdp) |
| return -ENOMEM; |
| if (map_page_size == PMD_SIZE) { |
| ptep = pmdp_ptep(pmdp); |
| goto set_the_pte; |
| } |
| ptep = pte_alloc_kernel(pmdp, ea); |
| if (!ptep) |
| return -ENOMEM; |
| |
| set_the_pte: |
| set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); |
| asm volatile("ptesync": : :"memory"); |
| return 0; |
| } |
| |
| int radix__map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, |
| unsigned int map_page_size) |
| { |
| return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0); |
| } |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| static void radix__change_memory_range(unsigned long start, unsigned long end, |
| unsigned long clear) |
| { |
| unsigned long idx; |
| pgd_t *pgdp; |
| p4d_t *p4dp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| start = ALIGN_DOWN(start, PAGE_SIZE); |
| end = PAGE_ALIGN(end); // aligns up |
| |
| pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", |
| start, end, clear); |
| |
| for (idx = start; idx < end; idx += PAGE_SIZE) { |
| pgdp = pgd_offset_k(idx); |
| p4dp = p4d_offset(pgdp, idx); |
| pudp = pud_alloc(&init_mm, p4dp, idx); |
| if (!pudp) |
| continue; |
| if (pud_leaf(*pudp)) { |
| ptep = (pte_t *)pudp; |
| goto update_the_pte; |
| } |
| pmdp = pmd_alloc(&init_mm, pudp, idx); |
| if (!pmdp) |
| continue; |
| if (pmd_leaf(*pmdp)) { |
| ptep = pmdp_ptep(pmdp); |
| goto update_the_pte; |
| } |
| ptep = pte_alloc_kernel(pmdp, idx); |
| if (!ptep) |
| continue; |
| update_the_pte: |
| radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); |
| } |
| |
| radix__flush_tlb_kernel_range(start, end); |
| } |
| |
| void radix__mark_rodata_ro(void) |
| { |
| unsigned long start, end; |
| |
| start = (unsigned long)_stext; |
| end = (unsigned long)__end_rodata; |
| |
| radix__change_memory_range(start, end, _PAGE_WRITE); |
| |
| for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) { |
| end = start + PAGE_SIZE; |
| if (overlaps_interrupt_vector_text(start, end)) |
| radix__change_memory_range(start, end, _PAGE_WRITE); |
| else |
| break; |
| } |
| } |
| |
| void radix__mark_initmem_nx(void) |
| { |
| unsigned long start = (unsigned long)__init_begin; |
| unsigned long end = (unsigned long)__init_end; |
| |
| radix__change_memory_range(start, end, _PAGE_EXEC); |
| } |
| #endif /* CONFIG_STRICT_KERNEL_RWX */ |
| |
| static inline void __meminit |
| print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec) |
| { |
| char buf[10]; |
| |
| if (end <= start) |
| return; |
| |
| string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf)); |
| |
| pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf, |
| exec ? " (exec)" : ""); |
| } |
| |
| static unsigned long next_boundary(unsigned long addr, unsigned long end) |
| { |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| unsigned long stext_phys; |
| |
| stext_phys = __pa_symbol(_stext); |
| |
| // Relocatable kernel running at non-zero real address |
| if (stext_phys != 0) { |
| // The end of interrupts code at zero is a rodata boundary |
| unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys; |
| if (addr < end_intr) |
| return end_intr; |
| |
| // Start of relocated kernel text is a rodata boundary |
| if (addr < stext_phys) |
| return stext_phys; |
| } |
| |
| if (addr < __pa_symbol(__srwx_boundary)) |
| return __pa_symbol(__srwx_boundary); |
| #endif |
| return end; |
| } |
| |
| static int __meminit create_physical_mapping(unsigned long start, |
| unsigned long end, |
| int nid, pgprot_t _prot) |
| { |
| unsigned long vaddr, addr, mapping_size = 0; |
| bool prev_exec, exec = false; |
| pgprot_t prot; |
| int psize; |
| unsigned long max_mapping_size = memory_block_size; |
| |
| if (debug_pagealloc_enabled_or_kfence()) |
| max_mapping_size = PAGE_SIZE; |
| |
| start = ALIGN(start, PAGE_SIZE); |
| end = ALIGN_DOWN(end, PAGE_SIZE); |
| for (addr = start; addr < end; addr += mapping_size) { |
| unsigned long gap, previous_size; |
| int rc; |
| |
| gap = next_boundary(addr, end) - addr; |
| if (gap > max_mapping_size) |
| gap = max_mapping_size; |
| previous_size = mapping_size; |
| prev_exec = exec; |
| |
| if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && |
| mmu_psize_defs[MMU_PAGE_1G].shift) { |
| mapping_size = PUD_SIZE; |
| psize = MMU_PAGE_1G; |
| } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && |
| mmu_psize_defs[MMU_PAGE_2M].shift) { |
| mapping_size = PMD_SIZE; |
| psize = MMU_PAGE_2M; |
| } else { |
| mapping_size = PAGE_SIZE; |
| psize = mmu_virtual_psize; |
| } |
| |
| vaddr = (unsigned long)__va(addr); |
| |
| if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || |
| overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) { |
| prot = PAGE_KERNEL_X; |
| exec = true; |
| } else { |
| prot = _prot; |
| exec = false; |
| } |
| |
| if (mapping_size != previous_size || exec != prev_exec) { |
| print_mapping(start, addr, previous_size, prev_exec); |
| start = addr; |
| } |
| |
| rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end); |
| if (rc) |
| return rc; |
| |
| update_page_count(psize, 1); |
| } |
| |
| print_mapping(start, addr, mapping_size, exec); |
| return 0; |
| } |
| |
| static void __init radix_init_pgtable(void) |
| { |
| unsigned long rts_field; |
| phys_addr_t start, end; |
| u64 i; |
| |
| /* We don't support slb for radix */ |
| slb_set_size(0); |
| |
| /* |
| * Create the linear mapping |
| */ |
| for_each_mem_range(i, &start, &end) { |
| /* |
| * The memblock allocator is up at this point, so the |
| * page tables will be allocated within the range. No |
| * need or a node (which we don't have yet). |
| */ |
| |
| if (end >= RADIX_VMALLOC_START) { |
| pr_warn("Outside the supported range\n"); |
| continue; |
| } |
| |
| WARN_ON(create_physical_mapping(start, end, |
| -1, PAGE_KERNEL)); |
| } |
| |
| if (!cpu_has_feature(CPU_FTR_HVMODE) && |
| cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { |
| /* |
| * Older versions of KVM on these machines prefer if the |
| * guest only uses the low 19 PID bits. |
| */ |
| mmu_pid_bits = 19; |
| } |
| mmu_base_pid = 1; |
| |
| /* |
| * Allocate Partition table and process table for the |
| * host. |
| */ |
| BUG_ON(PRTB_SIZE_SHIFT > 36); |
| process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0); |
| /* |
| * Fill in the process table. |
| */ |
| rts_field = radix__get_tree_size(); |
| process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); |
| |
| /* |
| * The init_mm context is given the first available (non-zero) PID, |
| * which is the "guard PID" and contains no page table. PIDR should |
| * never be set to zero because that duplicates the kernel address |
| * space at the 0x0... offset (quadrant 0)! |
| * |
| * An arbitrary PID that may later be allocated by the PID allocator |
| * for userspace processes must not be used either, because that |
| * would cause stale user mappings for that PID on CPUs outside of |
| * the TLB invalidation scheme (because it won't be in mm_cpumask). |
| * |
| * So permanently carve out one PID for the purpose of a guard PID. |
| */ |
| init_mm.context.id = mmu_base_pid; |
| mmu_base_pid++; |
| } |
| |
| static void __init radix_init_partition_table(void) |
| { |
| unsigned long rts_field, dw0, dw1; |
| |
| mmu_partition_table_init(); |
| rts_field = radix__get_tree_size(); |
| dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; |
| dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR; |
| mmu_partition_table_set_entry(0, dw0, dw1, false); |
| |
| pr_info("Initializing Radix MMU\n"); |
| } |
| |
| static int __init get_idx_from_shift(unsigned int shift) |
| { |
| int idx = -1; |
| |
| switch (shift) { |
| case 0xc: |
| idx = MMU_PAGE_4K; |
| break; |
| case 0x10: |
| idx = MMU_PAGE_64K; |
| break; |
| case 0x15: |
| idx = MMU_PAGE_2M; |
| break; |
| case 0x1e: |
| idx = MMU_PAGE_1G; |
| break; |
| } |
| return idx; |
| } |
| |
| static int __init radix_dt_scan_page_sizes(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| int size = 0; |
| int shift, idx; |
| unsigned int ap; |
| const __be32 *prop; |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* Grab page size encodings */ |
| prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); |
| if (!prop) |
| return 0; |
| |
| pr_info("Page sizes from device-tree:\n"); |
| for (; size >= 4; size -= 4, ++prop) { |
| |
| struct mmu_psize_def *def; |
| |
| /* top 3 bit is AP encoding */ |
| shift = be32_to_cpu(prop[0]) & ~(0xe << 28); |
| ap = be32_to_cpu(prop[0]) >> 29; |
| pr_info("Page size shift = %d AP=0x%x\n", shift, ap); |
| |
| idx = get_idx_from_shift(shift); |
| if (idx < 0) |
| continue; |
| |
| def = &mmu_psize_defs[idx]; |
| def->shift = shift; |
| def->ap = ap; |
| def->h_rpt_pgsize = psize_to_rpti_pgsize(idx); |
| } |
| |
| /* needed ? */ |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; |
| return 1; |
| } |
| |
| void __init radix__early_init_devtree(void) |
| { |
| int rc; |
| |
| /* |
| * Try to find the available page sizes in the device-tree |
| */ |
| rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); |
| if (!rc) { |
| /* |
| * No page size details found in device tree. |
| * Let's assume we have page 4k and 64k support |
| */ |
| mmu_psize_defs[MMU_PAGE_4K].shift = 12; |
| mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; |
| mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize = |
| psize_to_rpti_pgsize(MMU_PAGE_4K); |
| |
| mmu_psize_defs[MMU_PAGE_64K].shift = 16; |
| mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; |
| mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize = |
| psize_to_rpti_pgsize(MMU_PAGE_64K); |
| } |
| return; |
| } |
| |
| void __init radix__early_init_mmu(void) |
| { |
| unsigned long lpcr; |
| |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* PAGE_SIZE mappings */ |
| mmu_virtual_psize = MMU_PAGE_64K; |
| #else |
| mmu_virtual_psize = MMU_PAGE_4K; |
| #endif |
| #endif |
| /* |
| * initialize page table size |
| */ |
| __pte_index_size = RADIX_PTE_INDEX_SIZE; |
| __pmd_index_size = RADIX_PMD_INDEX_SIZE; |
| __pud_index_size = RADIX_PUD_INDEX_SIZE; |
| __pgd_index_size = RADIX_PGD_INDEX_SIZE; |
| __pud_cache_index = RADIX_PUD_INDEX_SIZE; |
| __pte_table_size = RADIX_PTE_TABLE_SIZE; |
| __pmd_table_size = RADIX_PMD_TABLE_SIZE; |
| __pud_table_size = RADIX_PUD_TABLE_SIZE; |
| __pgd_table_size = RADIX_PGD_TABLE_SIZE; |
| |
| __pmd_val_bits = RADIX_PMD_VAL_BITS; |
| __pud_val_bits = RADIX_PUD_VAL_BITS; |
| __pgd_val_bits = RADIX_PGD_VAL_BITS; |
| |
| __kernel_virt_start = RADIX_KERN_VIRT_START; |
| __vmalloc_start = RADIX_VMALLOC_START; |
| __vmalloc_end = RADIX_VMALLOC_END; |
| __kernel_io_start = RADIX_KERN_IO_START; |
| __kernel_io_end = RADIX_KERN_IO_END; |
| vmemmap = (struct page *)RADIX_VMEMMAP_START; |
| ioremap_bot = IOREMAP_BASE; |
| |
| #ifdef CONFIG_PCI |
| pci_io_base = ISA_IO_BASE; |
| #endif |
| __pte_frag_nr = RADIX_PTE_FRAG_NR; |
| __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT; |
| __pmd_frag_nr = RADIX_PMD_FRAG_NR; |
| __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT; |
| |
| radix_init_pgtable(); |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); |
| radix_init_partition_table(); |
| } else { |
| radix_init_pseries(); |
| } |
| |
| memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); |
| |
| /* Switch to the guard PID before turning on MMU */ |
| radix__switch_mmu_context(NULL, &init_mm); |
| tlbiel_all(); |
| } |
| |
| void radix__early_init_mmu_secondary(void) |
| { |
| unsigned long lpcr; |
| /* |
| * update partition table control register and UPRT |
| */ |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); |
| |
| set_ptcr_when_no_uv(__pa(partition_tb) | |
| (PATB_SIZE_SHIFT - 12)); |
| } |
| |
| radix__switch_mmu_context(NULL, &init_mm); |
| tlbiel_all(); |
| |
| /* Make sure userspace can't change the AMR */ |
| mtspr(SPRN_UAMOR, 0); |
| } |
| |
| /* Called during kexec sequence with MMU off */ |
| notrace void radix__mmu_cleanup_all(void) |
| { |
| unsigned long lpcr; |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); |
| set_ptcr_when_no_uv(0); |
| powernv_set_nmmu_ptcr(0); |
| radix__flush_tlb_all(); |
| } |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static void free_pte_table(pte_t *pte_start, pmd_t *pmd) |
| { |
| pte_t *pte; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PTE; i++) { |
| pte = pte_start + i; |
| if (!pte_none(*pte)) |
| return; |
| } |
| |
| pte_free_kernel(&init_mm, pte_start); |
| pmd_clear(pmd); |
| } |
| |
| static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) |
| { |
| pmd_t *pmd; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PMD; i++) { |
| pmd = pmd_start + i; |
| if (!pmd_none(*pmd)) |
| return; |
| } |
| |
| pmd_free(&init_mm, pmd_start); |
| pud_clear(pud); |
| } |
| |
| static void free_pud_table(pud_t *pud_start, p4d_t *p4d) |
| { |
| pud_t *pud; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PUD; i++) { |
| pud = pud_start + i; |
| if (!pud_none(*pud)) |
| return; |
| } |
| |
| pud_free(&init_mm, pud_start); |
| p4d_clear(p4d); |
| } |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end) |
| { |
| unsigned long start = ALIGN_DOWN(addr, PMD_SIZE); |
| |
| return !vmemmap_populated(start, PMD_SIZE); |
| } |
| |
| static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end) |
| { |
| unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE); |
| |
| return !vmemmap_populated(start, PAGE_SIZE); |
| |
| } |
| #endif |
| |
| static void __meminit free_vmemmap_pages(struct page *page, |
| struct vmem_altmap *altmap, |
| int order) |
| { |
| unsigned int nr_pages = 1 << order; |
| |
| if (altmap) { |
| unsigned long alt_start, alt_end; |
| unsigned long base_pfn = page_to_pfn(page); |
| |
| /* |
| * with 2M vmemmap mmaping we can have things setup |
| * such that even though atlmap is specified we never |
| * used altmap. |
| */ |
| alt_start = altmap->base_pfn; |
| alt_end = altmap->base_pfn + altmap->reserve + altmap->free; |
| |
| if (base_pfn >= alt_start && base_pfn < alt_end) { |
| vmem_altmap_free(altmap, nr_pages); |
| return; |
| } |
| } |
| |
| if (PageReserved(page)) { |
| /* allocated from memblock */ |
| while (nr_pages--) |
| free_reserved_page(page++); |
| } else |
| free_pages((unsigned long)page_address(page), order); |
| } |
| |
| static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr, |
| unsigned long end, bool direct, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long next, pages = 0; |
| pte_t *pte; |
| |
| pte = pte_start + pte_index(addr); |
| for (; addr < end; addr = next, pte++) { |
| next = (addr + PAGE_SIZE) & PAGE_MASK; |
| if (next > end) |
| next = end; |
| |
| if (!pte_present(*pte)) |
| continue; |
| |
| if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) { |
| if (!direct) |
| free_vmemmap_pages(pte_page(*pte), altmap, 0); |
| pte_clear(&init_mm, addr, pte); |
| pages++; |
| } |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| else if (!direct && vmemmap_page_is_unused(addr, next)) { |
| free_vmemmap_pages(pte_page(*pte), altmap, 0); |
| pte_clear(&init_mm, addr, pte); |
| } |
| #endif |
| } |
| if (direct) |
| update_page_count(mmu_virtual_psize, -pages); |
| } |
| |
| static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr, |
| unsigned long end, bool direct, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long next, pages = 0; |
| pte_t *pte_base; |
| pmd_t *pmd; |
| |
| pmd = pmd_start + pmd_index(addr); |
| for (; addr < end; addr = next, pmd++) { |
| next = pmd_addr_end(addr, end); |
| |
| if (!pmd_present(*pmd)) |
| continue; |
| |
| if (pmd_leaf(*pmd)) { |
| if (IS_ALIGNED(addr, PMD_SIZE) && |
| IS_ALIGNED(next, PMD_SIZE)) { |
| if (!direct) |
| free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE)); |
| pte_clear(&init_mm, addr, (pte_t *)pmd); |
| pages++; |
| } |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| else if (!direct && vmemmap_pmd_is_unused(addr, next)) { |
| free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE)); |
| pte_clear(&init_mm, addr, (pte_t *)pmd); |
| } |
| #endif |
| continue; |
| } |
| |
| pte_base = (pte_t *)pmd_page_vaddr(*pmd); |
| remove_pte_table(pte_base, addr, next, direct, altmap); |
| free_pte_table(pte_base, pmd); |
| } |
| if (direct) |
| update_page_count(MMU_PAGE_2M, -pages); |
| } |
| |
| static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr, |
| unsigned long end, bool direct, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long next, pages = 0; |
| pmd_t *pmd_base; |
| pud_t *pud; |
| |
| pud = pud_start + pud_index(addr); |
| for (; addr < end; addr = next, pud++) { |
| next = pud_addr_end(addr, end); |
| |
| if (!pud_present(*pud)) |
| continue; |
| |
| if (pud_leaf(*pud)) { |
| if (!IS_ALIGNED(addr, PUD_SIZE) || |
| !IS_ALIGNED(next, PUD_SIZE)) { |
| WARN_ONCE(1, "%s: unaligned range\n", __func__); |
| continue; |
| } |
| pte_clear(&init_mm, addr, (pte_t *)pud); |
| pages++; |
| continue; |
| } |
| |
| pmd_base = pud_pgtable(*pud); |
| remove_pmd_table(pmd_base, addr, next, direct, altmap); |
| free_pmd_table(pmd_base, pud); |
| } |
| if (direct) |
| update_page_count(MMU_PAGE_1G, -pages); |
| } |
| |
| static void __meminit |
| remove_pagetable(unsigned long start, unsigned long end, bool direct, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long addr, next; |
| pud_t *pud_base; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| |
| spin_lock(&init_mm.page_table_lock); |
| |
| for (addr = start; addr < end; addr = next) { |
| next = pgd_addr_end(addr, end); |
| |
| pgd = pgd_offset_k(addr); |
| p4d = p4d_offset(pgd, addr); |
| if (!p4d_present(*p4d)) |
| continue; |
| |
| if (p4d_leaf(*p4d)) { |
| if (!IS_ALIGNED(addr, P4D_SIZE) || |
| !IS_ALIGNED(next, P4D_SIZE)) { |
| WARN_ONCE(1, "%s: unaligned range\n", __func__); |
| continue; |
| } |
| |
| pte_clear(&init_mm, addr, (pte_t *)pgd); |
| continue; |
| } |
| |
| pud_base = p4d_pgtable(*p4d); |
| remove_pud_table(pud_base, addr, next, direct, altmap); |
| free_pud_table(pud_base, p4d); |
| } |
| |
| spin_unlock(&init_mm.page_table_lock); |
| radix__flush_tlb_kernel_range(start, end); |
| } |
| |
| int __meminit radix__create_section_mapping(unsigned long start, |
| unsigned long end, int nid, |
| pgprot_t prot) |
| { |
| if (end >= RADIX_VMALLOC_START) { |
| pr_warn("Outside the supported range\n"); |
| return -1; |
| } |
| |
| return create_physical_mapping(__pa(start), __pa(end), |
| nid, prot); |
| } |
| |
| int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end) |
| { |
| remove_pagetable(start, end, true, NULL); |
| return 0; |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| static int __map_kernel_page_nid(unsigned long ea, unsigned long pa, |
| pgprot_t flags, unsigned int map_page_size, |
| int nid) |
| { |
| return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0); |
| } |
| |
| int __meminit radix__vmemmap_create_mapping(unsigned long start, |
| unsigned long page_size, |
| unsigned long phys) |
| { |
| /* Create a PTE encoding */ |
| int nid = early_pfn_to_nid(phys >> PAGE_SHIFT); |
| int ret; |
| |
| if ((start + page_size) >= RADIX_VMEMMAP_END) { |
| pr_warn("Outside the supported range\n"); |
| return -1; |
| } |
| |
| ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid); |
| BUG_ON(ret); |
| |
| return 0; |
| } |
| |
| |
| bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap) |
| { |
| if (radix_enabled()) |
| return __vmemmap_can_optimize(altmap, pgmap); |
| |
| return false; |
| } |
| |
| int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, |
| unsigned long addr, unsigned long next) |
| { |
| int large = pmd_leaf(*pmdp); |
| |
| if (large) |
| vmemmap_verify(pmdp_ptep(pmdp), node, addr, next); |
| |
| return large; |
| } |
| |
| void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node, |
| unsigned long addr, unsigned long next) |
| { |
| pte_t entry; |
| pte_t *ptep = pmdp_ptep(pmdp); |
| |
| VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE)); |
| entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); |
| set_pte_at(&init_mm, addr, ptep, entry); |
| asm volatile("ptesync": : :"memory"); |
| |
| vmemmap_verify(ptep, node, addr, next); |
| } |
| |
| static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr, |
| int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| pte_t *pte = pte_offset_kernel(pmdp, addr); |
| |
| if (pte_none(*pte)) { |
| pte_t entry; |
| void *p; |
| |
| if (!reuse) { |
| /* |
| * make sure we don't create altmap mappings |
| * covering things outside the device. |
| */ |
| if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE)) |
| altmap = NULL; |
| |
| p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); |
| if (!p && altmap) |
| p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL); |
| if (!p) |
| return NULL; |
| pr_debug("PAGE_SIZE vmemmap mapping\n"); |
| } else { |
| /* |
| * When a PTE/PMD entry is freed from the init_mm |
| * there's a free_pages() call to this page allocated |
| * above. Thus this get_page() is paired with the |
| * put_page_testzero() on the freeing path. |
| * This can only called by certain ZONE_DEVICE path, |
| * and through vmemmap_populate_compound_pages() when |
| * slab is available. |
| */ |
| get_page(reuse); |
| p = page_to_virt(reuse); |
| pr_debug("Tail page reuse vmemmap mapping\n"); |
| } |
| |
| VM_BUG_ON(!PAGE_ALIGNED(addr)); |
| entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); |
| set_pte_at(&init_mm, addr, pte, entry); |
| asm volatile("ptesync": : :"memory"); |
| } |
| return pte; |
| } |
| |
| static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node, |
| unsigned long address) |
| { |
| pud_t *pud; |
| |
| /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ |
| if (unlikely(p4d_none(*p4dp))) { |
| if (unlikely(!slab_is_available())) { |
| pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); |
| p4d_populate(&init_mm, p4dp, pud); |
| /* go to the pud_offset */ |
| } else |
| return pud_alloc(&init_mm, p4dp, address); |
| } |
| return pud_offset(p4dp, address); |
| } |
| |
| static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node, |
| unsigned long address) |
| { |
| pmd_t *pmd; |
| |
| /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ |
| if (unlikely(pud_none(*pudp))) { |
| if (unlikely(!slab_is_available())) { |
| pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); |
| pud_populate(&init_mm, pudp, pmd); |
| } else |
| return pmd_alloc(&init_mm, pudp, address); |
| } |
| return pmd_offset(pudp, address); |
| } |
| |
| static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node, |
| unsigned long address) |
| { |
| pte_t *pte; |
| |
| /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */ |
| if (unlikely(pmd_none(*pmdp))) { |
| if (unlikely(!slab_is_available())) { |
| pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0); |
| pmd_populate(&init_mm, pmdp, pte); |
| } else |
| return pte_alloc_kernel(pmdp, address); |
| } |
| return pte_offset_kernel(pmdp, address); |
| } |
| |
| |
| |
| int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long addr; |
| unsigned long next; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| for (addr = start; addr < end; addr = next) { |
| next = pmd_addr_end(addr, end); |
| |
| pgd = pgd_offset_k(addr); |
| p4d = p4d_offset(pgd, addr); |
| pud = vmemmap_pud_alloc(p4d, node, addr); |
| if (!pud) |
| return -ENOMEM; |
| pmd = vmemmap_pmd_alloc(pud, node, addr); |
| if (!pmd) |
| return -ENOMEM; |
| |
| if (pmd_none(READ_ONCE(*pmd))) { |
| void *p; |
| |
| /* |
| * keep it simple by checking addr PMD_SIZE alignment |
| * and verifying the device boundary condition. |
| * For us to use a pmd mapping, both addr and pfn should |
| * be aligned. We skip if addr is not aligned and for |
| * pfn we hope we have extra area in the altmap that |
| * can help to find an aligned block. This can result |
| * in altmap block allocation failures, in which case |
| * we fallback to RAM for vmemmap allocation. |
| */ |
| if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) || |
| altmap_cross_boundary(altmap, addr, PMD_SIZE))) { |
| /* |
| * make sure we don't create altmap mappings |
| * covering things outside the device. |
| */ |
| goto base_mapping; |
| } |
| |
| p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); |
| if (p) { |
| vmemmap_set_pmd(pmd, p, node, addr, next); |
| pr_debug("PMD_SIZE vmemmap mapping\n"); |
| continue; |
| } else if (altmap) { |
| /* |
| * A vmemmap block allocation can fail due to |
| * alignment requirements and we trying to align |
| * things aggressively there by running out of |
| * space. Try base mapping on failure. |
| */ |
| goto base_mapping; |
| } |
| } else if (vmemmap_check_pmd(pmd, node, addr, next)) { |
| /* |
| * If a huge mapping exist due to early call to |
| * vmemmap_populate, let's try to use that. |
| */ |
| continue; |
| } |
| base_mapping: |
| /* |
| * Not able allocate higher order memory to back memmap |
| * or we found a pointer to pte page. Allocate base page |
| * size vmemmap |
| */ |
| pte = vmemmap_pte_alloc(pmd, node, addr); |
| if (!pte) |
| return -ENOMEM; |
| |
| pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL); |
| if (!pte) |
| return -ENOMEM; |
| |
| vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| next = addr + PAGE_SIZE; |
| } |
| return 0; |
| } |
| |
| static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = pgd_offset_k(addr); |
| p4d = p4d_offset(pgd, addr); |
| pud = vmemmap_pud_alloc(p4d, node, addr); |
| if (!pud) |
| return NULL; |
| pmd = vmemmap_pmd_alloc(pud, node, addr); |
| if (!pmd) |
| return NULL; |
| if (pmd_leaf(*pmd)) |
| /* |
| * The second page is mapped as a hugepage due to a nearby request. |
| * Force our mapping to page size without deduplication |
| */ |
| return NULL; |
| pte = vmemmap_pte_alloc(pmd, node, addr); |
| if (!pte) |
| return NULL; |
| radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); |
| vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| |
| return pte; |
| } |
| |
| static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr, |
| unsigned long pfn_offset, int node) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| unsigned long map_addr; |
| |
| /* the second vmemmap page which we use for duplication */ |
| map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE; |
| pgd = pgd_offset_k(map_addr); |
| p4d = p4d_offset(pgd, map_addr); |
| pud = vmemmap_pud_alloc(p4d, node, map_addr); |
| if (!pud) |
| return NULL; |
| pmd = vmemmap_pmd_alloc(pud, node, map_addr); |
| if (!pmd) |
| return NULL; |
| if (pmd_leaf(*pmd)) |
| /* |
| * The second page is mapped as a hugepage due to a nearby request. |
| * Force our mapping to page size without deduplication |
| */ |
| return NULL; |
| pte = vmemmap_pte_alloc(pmd, node, map_addr); |
| if (!pte) |
| return NULL; |
| /* |
| * Check if there exist a mapping to the left |
| */ |
| if (pte_none(*pte)) { |
| /* |
| * Populate the head page vmemmap page. |
| * It can fall in different pmd, hence |
| * vmemmap_populate_address() |
| */ |
| pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL); |
| if (!pte) |
| return NULL; |
| /* |
| * Populate the tail pages vmemmap page |
| */ |
| pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL); |
| if (!pte) |
| return NULL; |
| vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE); |
| return pte; |
| } |
| return pte; |
| } |
| |
| int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, |
| unsigned long start, |
| unsigned long end, int node, |
| struct dev_pagemap *pgmap) |
| { |
| /* |
| * we want to map things as base page size mapping so that |
| * we can save space in vmemmap. We could have huge mapping |
| * covering out both edges. |
| */ |
| unsigned long addr; |
| unsigned long addr_pfn = start_pfn; |
| unsigned long next; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| for (addr = start; addr < end; addr = next) { |
| |
| pgd = pgd_offset_k(addr); |
| p4d = p4d_offset(pgd, addr); |
| pud = vmemmap_pud_alloc(p4d, node, addr); |
| if (!pud) |
| return -ENOMEM; |
| pmd = vmemmap_pmd_alloc(pud, node, addr); |
| if (!pmd) |
| return -ENOMEM; |
| |
| if (pmd_leaf(READ_ONCE(*pmd))) { |
| /* existing huge mapping. Skip the range */ |
| addr_pfn += (PMD_SIZE >> PAGE_SHIFT); |
| next = pmd_addr_end(addr, end); |
| continue; |
| } |
| pte = vmemmap_pte_alloc(pmd, node, addr); |
| if (!pte) |
| return -ENOMEM; |
| if (!pte_none(*pte)) { |
| /* |
| * This could be because we already have a compound |
| * page whose VMEMMAP_RESERVE_NR pages were mapped and |
| * this request fall in those pages. |
| */ |
| addr_pfn += 1; |
| next = addr + PAGE_SIZE; |
| continue; |
| } else { |
| unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); |
| unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages); |
| pte_t *tail_page_pte; |
| |
| /* |
| * if the address is aligned to huge page size it is the |
| * head mapping. |
| */ |
| if (pfn_offset == 0) { |
| /* Populate the head page vmemmap page */ |
| pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); |
| if (!pte) |
| return -ENOMEM; |
| vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| |
| /* |
| * Populate the tail pages vmemmap page |
| * It can fall in different pmd, hence |
| * vmemmap_populate_address() |
| */ |
| pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL); |
| if (!pte) |
| return -ENOMEM; |
| |
| addr_pfn += 2; |
| next = addr + 2 * PAGE_SIZE; |
| continue; |
| } |
| /* |
| * get the 2nd mapping details |
| * Also create it if that doesn't exist |
| */ |
| tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node); |
| if (!tail_page_pte) { |
| |
| pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL); |
| if (!pte) |
| return -ENOMEM; |
| vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| |
| addr_pfn += 1; |
| next = addr + PAGE_SIZE; |
| continue; |
| } |
| |
| pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte)); |
| if (!pte) |
| return -ENOMEM; |
| vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| |
| addr_pfn += 1; |
| next = addr + PAGE_SIZE; |
| continue; |
| } |
| } |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) |
| { |
| remove_pagetable(start, start + page_size, true, NULL); |
| } |
| |
| void __ref radix__vmemmap_free(unsigned long start, unsigned long end, |
| struct vmem_altmap *altmap) |
| { |
| remove_pagetable(start, end, false, altmap); |
| } |
| #endif |
| #endif |
| |
| #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE) |
| void radix__kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| unsigned long addr; |
| |
| addr = (unsigned long)page_address(page); |
| |
| if (enable) |
| set_memory_p(addr, numpages); |
| else |
| set_memory_np(addr, numpages); |
| } |
| #endif |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| |
| unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, unsigned long clr, |
| unsigned long set) |
| { |
| unsigned long old; |
| |
| #ifdef CONFIG_DEBUG_VM |
| WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| #endif |
| |
| old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1); |
| trace_hugepage_update_pmd(addr, old, clr, set); |
| |
| return old; |
| } |
| |
| unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr, |
| pud_t *pudp, unsigned long clr, |
| unsigned long set) |
| { |
| unsigned long old; |
| |
| #ifdef CONFIG_DEBUG_VM |
| WARN_ON(!pud_devmap(*pudp)); |
| assert_spin_locked(pud_lockptr(mm, pudp)); |
| #endif |
| |
| old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1); |
| trace_hugepage_update_pud(addr, old, clr, set); |
| |
| return old; |
| } |
| |
| pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp) |
| |
| { |
| pmd_t pmd; |
| |
| VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
| VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); |
| VM_BUG_ON(pmd_devmap(*pmdp)); |
| /* |
| * khugepaged calls this for normal pmd |
| */ |
| pmd = *pmdp; |
| pmd_clear(pmdp); |
| |
| radix__flush_tlb_collapsed_pmd(vma->vm_mm, address); |
| |
| return pmd; |
| } |
| |
| /* |
| * For us pgtable_t is pte_t *. Inorder to save the deposisted |
| * page table, we consider the allocated page table as a list |
| * head. On withdraw we need to make sure we zero out the used |
| * list_head memory area. |
| */ |
| void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable) |
| { |
| struct list_head *lh = (struct list_head *) pgtable; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| if (!pmd_huge_pte(mm, pmdp)) |
| INIT_LIST_HEAD(lh); |
| else |
| list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); |
| pmd_huge_pte(mm, pmdp) = pgtable; |
| } |
| |
| pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) |
| { |
| pte_t *ptep; |
| pgtable_t pgtable; |
| struct list_head *lh; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| pgtable = pmd_huge_pte(mm, pmdp); |
| lh = (struct list_head *) pgtable; |
| if (list_empty(lh)) |
| pmd_huge_pte(mm, pmdp) = NULL; |
| else { |
| pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; |
| list_del(lh); |
| } |
| ptep = (pte_t *) pgtable; |
| *ptep = __pte(0); |
| ptep++; |
| *ptep = __pte(0); |
| return pgtable; |
| } |
| |
| pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| pmd_t old_pmd; |
| unsigned long old; |
| |
| old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); |
| old_pmd = __pmd(old); |
| return old_pmd; |
| } |
| |
| pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pud_t *pudp) |
| { |
| pud_t old_pud; |
| unsigned long old; |
| |
| old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0); |
| old_pud = __pud(old); |
| return old_pud; |
| } |
| |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, |
| pte_t entry, unsigned long address, int psize) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY | |
| _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); |
| |
| unsigned long change = pte_val(entry) ^ pte_val(*ptep); |
| /* |
| * On POWER9, the NMMU is not able to relax PTE access permissions |
| * for a translation with a TLB. The PTE must be invalidated, TLB |
| * flushed before the new PTE is installed. |
| * |
| * This only needs to be done for radix, because hash translation does |
| * flush when updating the linux pte (and we don't support NMMU |
| * accelerators on HPT on POWER9 anyway XXX: do we?). |
| * |
| * POWER10 (and P9P) NMMU does behave as per ISA. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) && |
| atomic_read(&mm->context.copros) > 0) { |
| unsigned long old_pte, new_pte; |
| |
| old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID); |
| new_pte = old_pte | set; |
| radix__flush_tlb_page_psize(mm, address, psize); |
| __radix_pte_update(ptep, _PAGE_INVALID, new_pte); |
| } else { |
| __radix_pte_update(ptep, 0, set); |
| /* |
| * Book3S does not require a TLB flush when relaxing access |
| * restrictions when the address space (modulo the POWER9 nest |
| * MMU issue above) because the MMU will reload the PTE after |
| * taking an access fault, as defined by the architecture. See |
| * "Setting a Reference or Change Bit or Upgrading Access |
| * Authority (PTE Subject to Atomic Hardware Updates)" in |
| * Power ISA Version 3.1B. |
| */ |
| } |
| /* See ptesync comment in radix__set_pte_at */ |
| } |
| |
| void radix__ptep_modify_prot_commit(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep, |
| pte_t old_pte, pte_t pte) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| /* |
| * POWER9 NMMU must flush the TLB after clearing the PTE before |
| * installing a PTE with more relaxed access permissions, see |
| * radix__ptep_set_access_flags. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_31) && |
| is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) && |
| (atomic_read(&mm->context.copros) > 0)) |
| radix__flush_tlb_page(vma, addr); |
| |
| set_pte_at(mm, addr, ptep, pte); |
| } |
| |
| int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) |
| { |
| pte_t *ptep = (pte_t *)pud; |
| pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot); |
| |
| if (!radix_enabled()) |
| return 0; |
| |
| set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud); |
| |
| return 1; |
| } |
| |
| int pud_clear_huge(pud_t *pud) |
| { |
| if (pud_leaf(*pud)) { |
| pud_clear(pud); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int pud_free_pmd_page(pud_t *pud, unsigned long addr) |
| { |
| pmd_t *pmd; |
| int i; |
| |
| pmd = pud_pgtable(*pud); |
| pud_clear(pud); |
| |
| flush_tlb_kernel_range(addr, addr + PUD_SIZE); |
| |
| for (i = 0; i < PTRS_PER_PMD; i++) { |
| if (!pmd_none(pmd[i])) { |
| pte_t *pte; |
| pte = (pte_t *)pmd_page_vaddr(pmd[i]); |
| |
| pte_free_kernel(&init_mm, pte); |
| } |
| } |
| |
| pmd_free(&init_mm, pmd); |
| |
| return 1; |
| } |
| |
| int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) |
| { |
| pte_t *ptep = (pte_t *)pmd; |
| pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot); |
| |
| if (!radix_enabled()) |
| return 0; |
| |
| set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd); |
| |
| return 1; |
| } |
| |
| int pmd_clear_huge(pmd_t *pmd) |
| { |
| if (pmd_leaf(*pmd)) { |
| pmd_clear(pmd); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) |
| { |
| pte_t *pte; |
| |
| pte = (pte_t *)pmd_page_vaddr(*pmd); |
| pmd_clear(pmd); |
| |
| flush_tlb_kernel_range(addr, addr + PMD_SIZE); |
| |
| pte_free_kernel(&init_mm, pte); |
| |
| return 1; |
| } |