blob: c8ebf738cb2b2ca35f405cadc1cdc38d6cf80d1a [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "wifi.h"
#include "rc.h"
#include "base.h"
#include "efuse.h"
#include "cam.h"
#include "ps.h"
#include "regd.h"
#include "pci.h"
#include <linux/ip.h>
#include <linux/module.h>
#include <linux/udp.h>
/*
*NOTICE!!!: This file will be very big, we should
*keep it clear under following roles:
*
*This file include following parts, so, if you add new
*functions into this file, please check which part it
*should includes. or check if you should add new part
*for this file:
*
*1) mac80211 init functions
*2) tx information functions
*3) functions called by core.c
*4) wq & timer callback functions
*5) frame process functions
*6) IOT functions
*7) sysfs functions
*8) vif functions
*9) ...
*/
/*********************************************************
*
* mac80211 init functions
*
*********************************************************/
static struct ieee80211_channel rtl_channeltable_2g[] = {
{.center_freq = 2412, .hw_value = 1,},
{.center_freq = 2417, .hw_value = 2,},
{.center_freq = 2422, .hw_value = 3,},
{.center_freq = 2427, .hw_value = 4,},
{.center_freq = 2432, .hw_value = 5,},
{.center_freq = 2437, .hw_value = 6,},
{.center_freq = 2442, .hw_value = 7,},
{.center_freq = 2447, .hw_value = 8,},
{.center_freq = 2452, .hw_value = 9,},
{.center_freq = 2457, .hw_value = 10,},
{.center_freq = 2462, .hw_value = 11,},
{.center_freq = 2467, .hw_value = 12,},
{.center_freq = 2472, .hw_value = 13,},
{.center_freq = 2484, .hw_value = 14,},
};
static struct ieee80211_channel rtl_channeltable_5g[] = {
{.center_freq = 5180, .hw_value = 36,},
{.center_freq = 5200, .hw_value = 40,},
{.center_freq = 5220, .hw_value = 44,},
{.center_freq = 5240, .hw_value = 48,},
{.center_freq = 5260, .hw_value = 52,},
{.center_freq = 5280, .hw_value = 56,},
{.center_freq = 5300, .hw_value = 60,},
{.center_freq = 5320, .hw_value = 64,},
{.center_freq = 5500, .hw_value = 100,},
{.center_freq = 5520, .hw_value = 104,},
{.center_freq = 5540, .hw_value = 108,},
{.center_freq = 5560, .hw_value = 112,},
{.center_freq = 5580, .hw_value = 116,},
{.center_freq = 5600, .hw_value = 120,},
{.center_freq = 5620, .hw_value = 124,},
{.center_freq = 5640, .hw_value = 128,},
{.center_freq = 5660, .hw_value = 132,},
{.center_freq = 5680, .hw_value = 136,},
{.center_freq = 5700, .hw_value = 140,},
{.center_freq = 5745, .hw_value = 149,},
{.center_freq = 5765, .hw_value = 153,},
{.center_freq = 5785, .hw_value = 157,},
{.center_freq = 5805, .hw_value = 161,},
{.center_freq = 5825, .hw_value = 165,},
};
static struct ieee80211_rate rtl_ratetable_2g[] = {
{.bitrate = 10, .hw_value = 0x00,},
{.bitrate = 20, .hw_value = 0x01,},
{.bitrate = 55, .hw_value = 0x02,},
{.bitrate = 110, .hw_value = 0x03,},
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static struct ieee80211_rate rtl_ratetable_5g[] = {
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static const struct ieee80211_supported_band rtl_band_2ghz = {
.band = NL80211_BAND_2GHZ,
.channels = rtl_channeltable_2g,
.n_channels = ARRAY_SIZE(rtl_channeltable_2g),
.bitrates = rtl_ratetable_2g,
.n_bitrates = ARRAY_SIZE(rtl_ratetable_2g),
.ht_cap = {0},
};
static struct ieee80211_supported_band rtl_band_5ghz = {
.band = NL80211_BAND_5GHZ,
.channels = rtl_channeltable_5g,
.n_channels = ARRAY_SIZE(rtl_channeltable_5g),
.bitrates = rtl_ratetable_5g,
.n_bitrates = ARRAY_SIZE(rtl_ratetable_5g),
.ht_cap = {0},
};
static const u8 tid_to_ac[] = {
2, /* IEEE80211_AC_BE */
3, /* IEEE80211_AC_BK */
3, /* IEEE80211_AC_BK */
2, /* IEEE80211_AC_BE */
1, /* IEEE80211_AC_VI */
1, /* IEEE80211_AC_VI */
0, /* IEEE80211_AC_VO */
0, /* IEEE80211_AC_VO */
};
u8 rtl_tid_to_ac(u8 tid)
{
return tid_to_ac[tid];
}
EXPORT_SYMBOL_GPL(rtl_tid_to_ac);
static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw,
struct ieee80211_sta_ht_cap *ht_cap)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
ht_cap->ht_supported = true;
ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU;
if (rtlpriv->rtlhal.disable_amsdu_8k)
ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU;
/*
*Maximum length of AMPDU that the STA can receive.
*Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
*/
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
/*Minimum MPDU start spacing , */
ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
/*hw->wiphy->bands[NL80211_BAND_2GHZ]
*base on ant_num
*rx_mask: RX mask
*if rx_ant = 1 rx_mask[0]= 0xff;==>MCS0-MCS7
*if rx_ant = 2 rx_mask[1]= 0xff;==>MCS8-MCS15
*if rx_ant >= 3 rx_mask[2]= 0xff;
*if BW_40 rx_mask[4]= 0x01;
*highest supported RX rate
*/
if (rtlpriv->dm.supp_phymode_switch) {
pr_info("Support phy mode switch\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15);
} else {
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_2T2R) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"1T2R or 2T2R\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest =
cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15);
} else if (get_rf_type(rtlphy) == RF_1T1R) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T1R\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0x00;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest =
cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS7);
}
}
}
static void _rtl_init_hw_vht_capab(struct ieee80211_hw *hw,
struct ieee80211_sta_vht_cap *vht_cap)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
u16 mcs_map;
vht_cap->vht_supported = true;
vht_cap->cap =
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_TXSTBC |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_HTC_VHT |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN |
IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN |
0;
mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.rx_highest =
cpu_to_le16(MAX_BIT_RATE_SHORT_GI_2NSS_80MHZ_MCS9);
vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.tx_highest =
cpu_to_le16(MAX_BIT_RATE_SHORT_GI_2NSS_80MHZ_MCS9);
} else if (rtlhal->hw_type == HARDWARE_TYPE_RTL8821AE) {
u16 mcs_map;
vht_cap->vht_supported = true;
vht_cap->cap =
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_TXSTBC |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_HTC_VHT |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN |
IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN |
0;
mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 2 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.rx_highest =
cpu_to_le16(MAX_BIT_RATE_SHORT_GI_1NSS_80MHZ_MCS9);
vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.tx_highest =
cpu_to_le16(MAX_BIT_RATE_SHORT_GI_1NSS_80MHZ_MCS9);
}
}
static void _rtl_init_mac80211(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct ieee80211_supported_band *sband;
if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
rtlhal->bandset == BAND_ON_BOTH) {
/* 1: 2.4 G bands */
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[NL80211_BAND_2GHZ]);
/* <2> set hw->wiphy->bands[NL80211_BAND_2GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[NL80211_BAND_2GHZ]), &rtl_band_2ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
/* 2: 5 G bands */
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[NL80211_BAND_5GHZ]);
/* <2> set hw->wiphy->bands[NL80211_BAND_5GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[NL80211_BAND_5GHZ]), &rtl_band_5ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
_rtl_init_hw_vht_capab(hw, &sband->vht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
} else {
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[NL80211_BAND_2GHZ]);
/* <2> set hw->wiphy->bands[NL80211_BAND_2GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[NL80211_BAND_2GHZ]),
&rtl_band_2ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
} else if (rtlhal->current_bandtype == BAND_ON_5G) {
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[NL80211_BAND_5GHZ]);
/* <2> set hw->wiphy->bands[NL80211_BAND_5GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[NL80211_BAND_5GHZ]),
&rtl_band_5ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
_rtl_init_hw_vht_capab(hw, &sband->vht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
} else {
pr_err("Err BAND %d\n",
rtlhal->current_bandtype);
}
}
/* <5> set hw caps */
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, RX_INCLUDES_FCS);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, CONNECTION_MONITOR);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
/* swlps or hwlps has been set in diff chip in init_sw_vars */
if (rtlpriv->psc.swctrl_lps) {
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
}
if (rtlpriv->psc.fwctrl_lps) {
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
}
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
hw->wiphy->rts_threshold = 2347;
hw->queues = AC_MAX;
hw->extra_tx_headroom = RTL_TX_HEADER_SIZE;
/* TODO: Correct this value for our hw */
hw->max_listen_interval = MAX_LISTEN_INTERVAL;
hw->max_rate_tries = MAX_RATE_TRIES;
/* hw->max_rates = 1; */
hw->sta_data_size = sizeof(struct rtl_sta_info);
/* wowlan is not supported by kernel if CONFIG_PM is not defined */
#ifdef CONFIG_PM
if (rtlpriv->psc.wo_wlan_mode) {
if (rtlpriv->psc.wo_wlan_mode & WAKE_ON_MAGIC_PACKET)
rtlpriv->wowlan.flags = WIPHY_WOWLAN_MAGIC_PKT;
if (rtlpriv->psc.wo_wlan_mode & WAKE_ON_PATTERN_MATCH) {
rtlpriv->wowlan.n_patterns =
MAX_SUPPORT_WOL_PATTERN_NUM;
rtlpriv->wowlan.pattern_min_len = MIN_WOL_PATTERN_SIZE;
rtlpriv->wowlan.pattern_max_len = MAX_WOL_PATTERN_SIZE;
}
hw->wiphy->wowlan = &rtlpriv->wowlan;
}
#endif
/* <6> mac address */
if (is_valid_ether_addr(rtlefuse->dev_addr)) {
SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr);
} else {
u8 rtlmac1[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 };
get_random_bytes((rtlmac1 + (ETH_ALEN - 1)), 1);
SET_IEEE80211_PERM_ADDR(hw, rtlmac1);
}
}
static void _rtl_init_deferred_work(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* <1> timer */
timer_setup(&rtlpriv->works.watchdog_timer,
rtl_watch_dog_timer_callback, 0);
timer_setup(&rtlpriv->works.dualmac_easyconcurrent_retrytimer,
rtl_easy_concurrent_retrytimer_callback, 0);
/* <2> work queue */
rtlpriv->works.hw = hw;
rtlpriv->works.rtl_wq = alloc_workqueue("%s", 0, 0, rtlpriv->cfg->name);
INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq,
(void *)rtl_watchdog_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq,
(void *)rtl_ips_nic_off_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ps_work,
(void *)rtl_swlps_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq,
(void *)rtl_swlps_rfon_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.fwevt_wq,
(void *)rtl_fwevt_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.c2hcmd_wq,
(void *)rtl_c2hcmd_wq_callback);
}
void rtl_deinit_deferred_work(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
del_timer_sync(&rtlpriv->works.watchdog_timer);
cancel_delayed_work(&rtlpriv->works.watchdog_wq);
cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq);
cancel_delayed_work(&rtlpriv->works.ps_work);
cancel_delayed_work(&rtlpriv->works.ps_rfon_wq);
cancel_delayed_work(&rtlpriv->works.fwevt_wq);
cancel_delayed_work(&rtlpriv->works.c2hcmd_wq);
}
EXPORT_SYMBOL_GPL(rtl_deinit_deferred_work);
void rtl_init_rfkill(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool radio_state;
bool blocked;
u8 valid = 0;
/*set init state to on */
rtlpriv->rfkill.rfkill_state = true;
wiphy_rfkill_set_hw_state(hw->wiphy, 0);
radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid);
if (valid) {
pr_info("rtlwifi: wireless switch is %s\n",
rtlpriv->rfkill.rfkill_state ? "on" : "off");
rtlpriv->rfkill.rfkill_state = radio_state;
blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1;
wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
}
wiphy_rfkill_start_polling(hw->wiphy);
}
EXPORT_SYMBOL(rtl_init_rfkill);
void rtl_deinit_rfkill(struct ieee80211_hw *hw)
{
wiphy_rfkill_stop_polling(hw->wiphy);
}
EXPORT_SYMBOL_GPL(rtl_deinit_rfkill);
int rtl_init_core(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
/* <1> init mac80211 */
_rtl_init_mac80211(hw);
rtlmac->hw = hw;
/* <2> rate control register */
hw->rate_control_algorithm = "rtl_rc";
/*
* <3> init CRDA must come after init
* mac80211 hw in _rtl_init_mac80211.
*/
if (rtl_regd_init(hw, rtl_reg_notifier)) {
pr_err("REGD init failed\n");
return 1;
}
/* <4> locks */
mutex_init(&rtlpriv->locks.conf_mutex);
mutex_init(&rtlpriv->locks.ips_mutex);
mutex_init(&rtlpriv->locks.lps_mutex);
spin_lock_init(&rtlpriv->locks.irq_th_lock);
spin_lock_init(&rtlpriv->locks.h2c_lock);
spin_lock_init(&rtlpriv->locks.rf_ps_lock);
spin_lock_init(&rtlpriv->locks.rf_lock);
spin_lock_init(&rtlpriv->locks.waitq_lock);
spin_lock_init(&rtlpriv->locks.entry_list_lock);
spin_lock_init(&rtlpriv->locks.c2hcmd_lock);
spin_lock_init(&rtlpriv->locks.scan_list_lock);
spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock);
spin_lock_init(&rtlpriv->locks.fw_ps_lock);
spin_lock_init(&rtlpriv->locks.iqk_lock);
/* <5> init list */
INIT_LIST_HEAD(&rtlpriv->entry_list);
INIT_LIST_HEAD(&rtlpriv->c2hcmd_list);
INIT_LIST_HEAD(&rtlpriv->scan_list.list);
rtlmac->link_state = MAC80211_NOLINK;
/* <6> init deferred work */
_rtl_init_deferred_work(hw);
return 0;
}
EXPORT_SYMBOL_GPL(rtl_init_core);
static void rtl_free_entries_from_scan_list(struct ieee80211_hw *hw);
void rtl_deinit_core(struct ieee80211_hw *hw)
{
rtl_c2hcmd_launcher(hw, 0);
rtl_free_entries_from_scan_list(hw);
}
EXPORT_SYMBOL_GPL(rtl_deinit_core);
void rtl_init_rx_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf));
}
EXPORT_SYMBOL_GPL(rtl_init_rx_config);
/*********************************************************
*
* tx information functions
*
*********************************************************/
static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 rate_flag = info->control.rates[0].flags;
tcb_desc->use_shortpreamble = false;
/* 1M can only use Long Preamble. 11B spec */
if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M])
return;
else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
tcb_desc->use_shortpreamble = true;
return;
}
static void _rtl_query_shortgi(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u8 rate_flag = info->control.rates[0].flags;
u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0;
u8 sgi_80 = 0, bw_80 = 0;
tcb_desc->use_shortgi = false;
if (sta == NULL)
return;
sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
sgi_20 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20;
sgi_80 = sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80;
if ((!sta->ht_cap.ht_supported) && (!sta->vht_cap.vht_supported))
return;
if (!sgi_40 && !sgi_20)
return;
if (mac->opmode == NL80211_IFTYPE_STATION) {
bw_40 = mac->bw_40;
bw_80 = mac->bw_80;
} else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
bw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
bw_80 = sta->vht_cap.vht_supported;
}
if (bw_80) {
if (sgi_80)
tcb_desc->use_shortgi = true;
else
tcb_desc->use_shortgi = false;
} else {
if (bw_40 && sgi_40)
tcb_desc->use_shortgi = true;
else if (!bw_40 && sgi_20)
tcb_desc->use_shortgi = true;
}
if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI))
tcb_desc->use_shortgi = false;
}
static void _rtl_query_protection_mode(struct ieee80211_hw *hw,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 rate_flag = info->control.rates[0].flags;
/* Common Settings */
tcb_desc->rts_stbc = false;
tcb_desc->cts_enable = false;
tcb_desc->rts_sc = 0;
tcb_desc->rts_bw = false;
tcb_desc->rts_use_shortpreamble = false;
tcb_desc->rts_use_shortgi = false;
if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) {
/* Use CTS-to-SELF in protection mode. */
tcb_desc->rts_enable = true;
tcb_desc->cts_enable = true;
tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
} else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) {
/* Use RTS-CTS in protection mode. */
tcb_desc->rts_enable = true;
tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
}
}
static void _rtl_txrate_selectmode(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u8 ratr_index = 7;
if (sta) {
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
ratr_index = sta_entry->ratr_index;
}
if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) {
if (mac->opmode == NL80211_IFTYPE_STATION) {
tcb_desc->ratr_index = 0;
} else if (mac->opmode == NL80211_IFTYPE_ADHOC ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
if (tcb_desc->multicast || tcb_desc->broadcast) {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M];
tcb_desc->use_driver_rate = 1;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
} else {
tcb_desc->ratr_index = ratr_index;
}
} else if (mac->opmode == NL80211_IFTYPE_AP) {
tcb_desc->ratr_index = ratr_index;
}
}
if (rtlpriv->dm.useramask) {
tcb_desc->ratr_index = ratr_index;
/* TODO we will differentiate adhoc and station future */
if (mac->opmode == NL80211_IFTYPE_STATION ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
tcb_desc->mac_id = 0;
if (mac->mode == WIRELESS_MODE_AC_5G)
tcb_desc->ratr_index =
RATR_INX_WIRELESS_AC_5N;
else if (mac->mode == WIRELESS_MODE_AC_24G)
tcb_desc->ratr_index =
RATR_INX_WIRELESS_AC_24N;
else if (mac->mode == WIRELESS_MODE_N_24G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB;
else if (mac->mode == WIRELESS_MODE_N_5G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_NG;
else if (mac->mode & WIRELESS_MODE_G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_GB;
else if (mac->mode & WIRELESS_MODE_B)
tcb_desc->ratr_index = RATR_INX_WIRELESS_B;
else if (mac->mode & WIRELESS_MODE_A)
tcb_desc->ratr_index = RATR_INX_WIRELESS_G;
} else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC) {
if (NULL != sta) {
if (sta->aid > 0)
tcb_desc->mac_id = sta->aid + 1;
else
tcb_desc->mac_id = 1;
} else {
tcb_desc->mac_id = 0;
}
}
}
}
static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
tcb_desc->packet_bw = false;
if (!sta)
return;
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
if (!(sta->ht_cap.ht_supported) ||
!(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40))
return;
} else if (mac->opmode == NL80211_IFTYPE_STATION) {
if (!mac->bw_40 || !(sta->ht_cap.ht_supported))
return;
}
if (tcb_desc->multicast || tcb_desc->broadcast)
return;
/*use legency rate, shall use 20MHz */
if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M])
return;
tcb_desc->packet_bw = HT_CHANNEL_WIDTH_20_40;
if (rtlpriv->rtlhal.hw_type == HARDWARE_TYPE_RTL8812AE ||
rtlpriv->rtlhal.hw_type == HARDWARE_TYPE_RTL8821AE) {
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
if (!(sta->vht_cap.vht_supported))
return;
} else if (mac->opmode == NL80211_IFTYPE_STATION) {
if (!mac->bw_80 ||
!(sta->vht_cap.vht_supported))
return;
}
if (tcb_desc->hw_rate <=
rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15])
return;
tcb_desc->packet_bw = HT_CHANNEL_WIDTH_80;
}
}
static u8 _rtl_get_vht_highest_n_rate(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 hw_rate;
u16 tx_mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.tx_mcs_map);
if ((get_rf_type(rtlphy) == RF_2T2R) &&
(tx_mcs_map & 0x000c) != 0x000c) {
if ((tx_mcs_map & 0x000c) >> 2 ==
IEEE80211_VHT_MCS_SUPPORT_0_7)
hw_rate =
rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS7];
else if ((tx_mcs_map & 0x000c) >> 2 ==
IEEE80211_VHT_MCS_SUPPORT_0_8)
hw_rate =
rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS8];
else
hw_rate =
rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS9];
} else {
if ((tx_mcs_map & 0x0003) ==
IEEE80211_VHT_MCS_SUPPORT_0_7)
hw_rate =
rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS7];
else if ((tx_mcs_map & 0x0003) ==
IEEE80211_VHT_MCS_SUPPORT_0_8)
hw_rate =
rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS8];
else
hw_rate =
rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS9];
}
return hw_rate;
}
static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 hw_rate;
if (get_rf_type(rtlphy) == RF_2T2R &&
sta->ht_cap.mcs.rx_mask[1] != 0)
hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15];
else
hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7];
return hw_rate;
}
/* mac80211's rate_idx is like this:
*
* 2.4G band:rx_status->band == NL80211_BAND_2GHZ
*
* B/G rate:
* (rx_status->flag & RX_FLAG_HT) = 0,
* DESC_RATE1M-->DESC_RATE54M ==> idx is 0-->11,
*
* N rate:
* (rx_status->flag & RX_FLAG_HT) = 1,
* DESC_RATEMCS0-->DESC_RATEMCS15 ==> idx is 0-->15
*
* 5G band:rx_status->band == NL80211_BAND_5GHZ
* A rate:
* (rx_status->flag & RX_FLAG_HT) = 0,
* DESC_RATE6M-->DESC_RATE54M ==> idx is 0-->7,
*
* N rate:
* (rx_status->flag & RX_FLAG_HT) = 1,
* DESC_RATEMCS0-->DESC_RATEMCS15 ==> idx is 0-->15
*
* VHT rates:
* DESC_RATEVHT1SS_MCS0-->DESC_RATEVHT1SS_MCS9 ==> idx is 0-->9
* DESC_RATEVHT2SS_MCS0-->DESC_RATEVHT2SS_MCS9 ==> idx is 0-->9
*/
int rtlwifi_rate_mapping(struct ieee80211_hw *hw, bool isht, bool isvht,
u8 desc_rate)
{
int rate_idx;
if (isvht) {
switch (desc_rate) {
case DESC_RATEVHT1SS_MCS0:
rate_idx = 0;
break;
case DESC_RATEVHT1SS_MCS1:
rate_idx = 1;
break;
case DESC_RATEVHT1SS_MCS2:
rate_idx = 2;
break;
case DESC_RATEVHT1SS_MCS3:
rate_idx = 3;
break;
case DESC_RATEVHT1SS_MCS4:
rate_idx = 4;
break;
case DESC_RATEVHT1SS_MCS5:
rate_idx = 5;
break;
case DESC_RATEVHT1SS_MCS6:
rate_idx = 6;
break;
case DESC_RATEVHT1SS_MCS7:
rate_idx = 7;
break;
case DESC_RATEVHT1SS_MCS8:
rate_idx = 8;
break;
case DESC_RATEVHT1SS_MCS9:
rate_idx = 9;
break;
case DESC_RATEVHT2SS_MCS0:
rate_idx = 0;
break;
case DESC_RATEVHT2SS_MCS1:
rate_idx = 1;
break;
case DESC_RATEVHT2SS_MCS2:
rate_idx = 2;
break;
case DESC_RATEVHT2SS_MCS3:
rate_idx = 3;
break;
case DESC_RATEVHT2SS_MCS4:
rate_idx = 4;
break;
case DESC_RATEVHT2SS_MCS5:
rate_idx = 5;
break;
case DESC_RATEVHT2SS_MCS6:
rate_idx = 6;
break;
case DESC_RATEVHT2SS_MCS7:
rate_idx = 7;
break;
case DESC_RATEVHT2SS_MCS8:
rate_idx = 8;
break;
case DESC_RATEVHT2SS_MCS9:
rate_idx = 9;
break;
default:
rate_idx = 0;
break;
}
return rate_idx;
}
if (false == isht) {
if (NL80211_BAND_2GHZ == hw->conf.chandef.chan->band) {
switch (desc_rate) {
case DESC_RATE1M:
rate_idx = 0;
break;
case DESC_RATE2M:
rate_idx = 1;
break;
case DESC_RATE5_5M:
rate_idx = 2;
break;
case DESC_RATE11M:
rate_idx = 3;
break;
case DESC_RATE6M:
rate_idx = 4;
break;
case DESC_RATE9M:
rate_idx = 5;
break;
case DESC_RATE12M:
rate_idx = 6;
break;
case DESC_RATE18M:
rate_idx = 7;
break;
case DESC_RATE24M:
rate_idx = 8;
break;
case DESC_RATE36M:
rate_idx = 9;
break;
case DESC_RATE48M:
rate_idx = 10;
break;
case DESC_RATE54M:
rate_idx = 11;
break;
default:
rate_idx = 0;
break;
}
} else {
switch (desc_rate) {
case DESC_RATE6M:
rate_idx = 0;
break;
case DESC_RATE9M:
rate_idx = 1;
break;
case DESC_RATE12M:
rate_idx = 2;
break;
case DESC_RATE18M:
rate_idx = 3;
break;
case DESC_RATE24M:
rate_idx = 4;
break;
case DESC_RATE36M:
rate_idx = 5;
break;
case DESC_RATE48M:
rate_idx = 6;
break;
case DESC_RATE54M:
rate_idx = 7;
break;
default:
rate_idx = 0;
break;
}
}
} else {
switch (desc_rate) {
case DESC_RATEMCS0:
rate_idx = 0;
break;
case DESC_RATEMCS1:
rate_idx = 1;
break;
case DESC_RATEMCS2:
rate_idx = 2;
break;
case DESC_RATEMCS3:
rate_idx = 3;
break;
case DESC_RATEMCS4:
rate_idx = 4;
break;
case DESC_RATEMCS5:
rate_idx = 5;
break;
case DESC_RATEMCS6:
rate_idx = 6;
break;
case DESC_RATEMCS7:
rate_idx = 7;
break;
case DESC_RATEMCS8:
rate_idx = 8;
break;
case DESC_RATEMCS9:
rate_idx = 9;
break;
case DESC_RATEMCS10:
rate_idx = 10;
break;
case DESC_RATEMCS11:
rate_idx = 11;
break;
case DESC_RATEMCS12:
rate_idx = 12;
break;
case DESC_RATEMCS13:
rate_idx = 13;
break;
case DESC_RATEMCS14:
rate_idx = 14;
break;
case DESC_RATEMCS15:
rate_idx = 15;
break;
default:
rate_idx = 0;
break;
}
}
return rate_idx;
}
EXPORT_SYMBOL(rtlwifi_rate_mapping);
static u8 _rtl_get_tx_hw_rate(struct ieee80211_hw *hw,
struct ieee80211_tx_info *info)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_tx_rate *r = &info->status.rates[0];
struct ieee80211_rate *txrate;
u8 hw_value = 0x0;
if (r->flags & IEEE80211_TX_RC_MCS) {
/* HT MCS0-15 */
hw_value = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15] - 15 +
r->idx;
} else if (r->flags & IEEE80211_TX_RC_VHT_MCS) {
/* VHT MCS0-9, NSS */
if (ieee80211_rate_get_vht_nss(r) == 2)
hw_value = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS9];
else
hw_value = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS9];
hw_value = hw_value - 9 + ieee80211_rate_get_vht_mcs(r);
} else {
/* legacy */
txrate = ieee80211_get_tx_rate(hw, info);
if (txrate)
hw_value = txrate->hw_value;
}
/* check 5G band */
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G &&
hw_value < rtlpriv->cfg->maps[RTL_RC_OFDM_RATE6M])
hw_value = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE6M];
return hw_value;
}
void rtl_get_tcb_desc(struct ieee80211_hw *hw,
struct ieee80211_tx_info *info,
struct ieee80211_sta *sta,
struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
__le16 fc = rtl_get_fc(skb);
tcb_desc->hw_rate = _rtl_get_tx_hw_rate(hw, info);
if (rtl_is_tx_report_skb(hw, skb))
tcb_desc->use_spe_rpt = 1;
if (ieee80211_is_data(fc)) {
/*
*we set data rate INX 0
*in rtl_rc.c if skb is special data or
*mgt which need low data rate.
*/
/*
*So tcb_desc->hw_rate is just used for
*special data and mgt frames
*/
if (info->control.rates[0].idx == 0 ||
ieee80211_is_nullfunc(fc)) {
tcb_desc->use_driver_rate = true;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
tcb_desc->disable_ratefallback = 1;
} else {
/*
*because hw will nerver use hw_rate
*when tcb_desc->use_driver_rate = false
*so we never set highest N rate here,
*and N rate will all be controlled by FW
*when tcb_desc->use_driver_rate = false
*/
if (sta && sta->vht_cap.vht_supported) {
tcb_desc->hw_rate =
_rtl_get_vht_highest_n_rate(hw, sta);
} else {
if (sta && sta->ht_cap.ht_supported) {
tcb_desc->hw_rate =
_rtl_get_highest_n_rate(hw, sta);
} else {
if (rtlmac->mode == WIRELESS_MODE_B) {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M];
} else {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M];
}
}
}
}
if (is_multicast_ether_addr(hdr->addr1))
tcb_desc->multicast = 1;
else if (is_broadcast_ether_addr(hdr->addr1))
tcb_desc->broadcast = 1;
_rtl_txrate_selectmode(hw, sta, tcb_desc);
_rtl_query_bandwidth_mode(hw, sta, tcb_desc);
_rtl_qurey_shortpreamble_mode(hw, tcb_desc, info);
_rtl_query_shortgi(hw, sta, tcb_desc, info);
_rtl_query_protection_mode(hw, tcb_desc, info);
} else {
tcb_desc->use_driver_rate = true;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
tcb_desc->disable_ratefallback = 1;
tcb_desc->mac_id = 0;
tcb_desc->packet_bw = false;
}
}
EXPORT_SYMBOL(rtl_get_tcb_desc);
bool rtl_tx_mgmt_proc(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
__le16 fc = rtl_get_fc(skb);
if (rtlpriv->dm.supp_phymode_switch &&
mac->link_state < MAC80211_LINKED &&
(ieee80211_is_auth(fc) || ieee80211_is_probe_req(fc))) {
if (rtlpriv->cfg->ops->chk_switch_dmdp)
rtlpriv->cfg->ops->chk_switch_dmdp(hw);
}
if (ieee80211_is_auth(fc)) {
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "MAC80211_LINKING\n");
mac->link_state = MAC80211_LINKING;
/* Dul mac */
rtlpriv->phy.need_iqk = true;
}
return true;
}
EXPORT_SYMBOL_GPL(rtl_tx_mgmt_proc);
struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw, u8 *sa,
u8 *bssid, u16 tid);
static void process_agg_start(struct ieee80211_hw *hw,
struct ieee80211_hdr *hdr, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_rx_status rx_status = { 0 };
struct sk_buff *skb_delba = NULL;
skb_delba = rtl_make_del_ba(hw, hdr->addr2, hdr->addr3, tid);
if (skb_delba) {
rx_status.freq = hw->conf.chandef.chan->center_freq;
rx_status.band = hw->conf.chandef.chan->band;
rx_status.flag |= RX_FLAG_DECRYPTED;
rx_status.flag |= RX_FLAG_MACTIME_START;
rx_status.rate_idx = 0;
rx_status.signal = 50 + 10;
memcpy(IEEE80211_SKB_RXCB(skb_delba),
&rx_status, sizeof(rx_status));
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG,
"fake del\n",
skb_delba->data,
skb_delba->len);
ieee80211_rx_irqsafe(hw, skb_delba);
}
}
bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
struct rtl_priv *rtlpriv = rtl_priv(hw);
__le16 fc = rtl_get_fc(skb);
u8 *act = (u8 *)(((u8 *)skb->data + MAC80211_3ADDR_LEN));
u8 category;
if (!ieee80211_is_action(fc))
return true;
category = *act;
act++;
switch (category) {
case ACT_CAT_BA:
switch (*act) {
case ACT_ADDBAREQ:
if (mac->act_scanning)
return false;
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"%s ACT_ADDBAREQ From :%pM\n",
is_tx ? "Tx" : "Rx", hdr->addr2);
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "req\n",
skb->data, skb->len);
if (!is_tx) {
struct ieee80211_sta *sta = NULL;
struct rtl_sta_info *sta_entry = NULL;
struct rtl_tid_data *tid_data;
struct ieee80211_mgmt *mgmt = (void *)skb->data;
u16 capab = 0, tid = 0;
rcu_read_lock();
sta = rtl_find_sta(hw, hdr->addr3);
if (sta == NULL) {
RT_TRACE(rtlpriv, COMP_SEND | COMP_RECV,
DBG_DMESG, "sta is NULL\n");
rcu_read_unlock();
return true;
}
sta_entry =
(struct rtl_sta_info *)sta->drv_priv;
if (!sta_entry) {
rcu_read_unlock();
return true;
}
capab =
le16_to_cpu(mgmt->u.action.u.addba_req.capab);
tid = (capab &
IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
if (tid >= MAX_TID_COUNT) {
rcu_read_unlock();
return true;
}
tid_data = &sta_entry->tids[tid];
if (tid_data->agg.rx_agg_state ==
RTL_RX_AGG_START)
process_agg_start(hw, hdr, tid);
rcu_read_unlock();
}
break;
case ACT_ADDBARSP:
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"%s ACT_ADDBARSP From :%pM\n",
is_tx ? "Tx" : "Rx", hdr->addr2);
break;
case ACT_DELBA:
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"ACT_ADDBADEL From :%pM\n", hdr->addr2);
break;
}
break;
default:
break;
}
return true;
}
EXPORT_SYMBOL_GPL(rtl_action_proc);
static void setup_special_tx(struct rtl_priv *rtlpriv, struct rtl_ps_ctl *ppsc,
int type)
{
struct ieee80211_hw *hw = rtlpriv->hw;
rtlpriv->ra.is_special_data = true;
if (rtlpriv->cfg->ops->get_btc_status())
rtlpriv->btcoexist.btc_ops->btc_special_packet_notify(
rtlpriv, type);
rtl_lps_leave(hw);
ppsc->last_delaylps_stamp_jiffies = jiffies;
}
static const u8 *rtl_skb_ether_type_ptr(struct ieee80211_hw *hw,
struct sk_buff *skb, bool is_enc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb);
u8 encrypt_header_len = 0;
u8 offset;
switch (rtlpriv->sec.pairwise_enc_algorithm) {
case WEP40_ENCRYPTION:
case WEP104_ENCRYPTION:
encrypt_header_len = 4;/*WEP_IV_LEN*/
break;
case TKIP_ENCRYPTION:
encrypt_header_len = 8;/*TKIP_IV_LEN*/
break;
case AESCCMP_ENCRYPTION:
encrypt_header_len = 8;/*CCMP_HDR_LEN;*/
break;
default:
break;
}
offset = mac_hdr_len + SNAP_SIZE;
if (is_enc)
offset += encrypt_header_len;
return skb->data + offset;
}
/*should call before software enc*/
u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx,
bool is_enc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
__le16 fc = rtl_get_fc(skb);
u16 ether_type;
const u8 *ether_type_ptr;
const struct iphdr *ip;
if (!ieee80211_is_data(fc))
goto end;
ether_type_ptr = rtl_skb_ether_type_ptr(hw, skb, is_enc);
ether_type = be16_to_cpup((__be16 *)ether_type_ptr);
if (ETH_P_IP == ether_type) {
ip = (struct iphdr *)((u8 *)ether_type_ptr +
PROTOC_TYPE_SIZE);
if (IPPROTO_UDP == ip->protocol) {
struct udphdr *udp = (struct udphdr *)((u8 *)ip +
(ip->ihl << 2));
if (((((u8 *)udp)[1] == 68) &&
(((u8 *)udp)[3] == 67)) ||
((((u8 *)udp)[1] == 67) &&
(((u8 *)udp)[3] == 68))) {
/* 68 : UDP BOOTP client
* 67 : UDP BOOTP server
*/
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV),
DBG_DMESG, "dhcp %s !!\n",
(is_tx) ? "Tx" : "Rx");
if (is_tx)
setup_special_tx(rtlpriv, ppsc,
PACKET_DHCP);
return true;
}
}
} else if (ETH_P_ARP == ether_type) {
if (is_tx)
setup_special_tx(rtlpriv, ppsc, PACKET_ARP);
return true;
} else if (ETH_P_PAE == ether_type) {
/* EAPOL is seens as in-4way */
rtlpriv->btcoexist.btc_info.in_4way = true;
rtlpriv->btcoexist.btc_info.in_4way_ts = jiffies;
rtlpriv->btcoexist.btc_info.in_4way_ts = jiffies;
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"802.1X %s EAPOL pkt!!\n", (is_tx) ? "Tx" : "Rx");
if (is_tx) {
rtlpriv->ra.is_special_data = true;
rtl_lps_leave(hw);
ppsc->last_delaylps_stamp_jiffies = jiffies;
setup_special_tx(rtlpriv, ppsc, PACKET_EAPOL);
}
return true;
} else if (ETH_P_IPV6 == ether_type) {
/* TODO: Handle any IPv6 cases that need special handling.
* For now, always return false
*/
goto end;
}
end:
rtlpriv->ra.is_special_data = false;
return false;
}
EXPORT_SYMBOL_GPL(rtl_is_special_data);
bool rtl_is_tx_report_skb(struct ieee80211_hw *hw, struct sk_buff *skb)
{
u16 ether_type;
const u8 *ether_type_ptr;
ether_type_ptr = rtl_skb_ether_type_ptr(hw, skb, true);
ether_type = be16_to_cpup((__be16 *)ether_type_ptr);
/* EAPOL */
if (ether_type == ETH_P_PAE)
return true;
return false;
}
static u16 rtl_get_tx_report_sn(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tx_report *tx_report = &rtlpriv->tx_report;
u16 sn;
sn = atomic_inc_return(&tx_report->sn) & 0x0FFF;
tx_report->last_sent_sn = sn;
tx_report->last_sent_time = jiffies;
RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_DMESG,
"Send TX-Report sn=0x%X\n", sn);
return sn;
}
void rtl_get_tx_report(struct rtl_tcb_desc *ptcb_desc, u8 *pdesc,
struct ieee80211_hw *hw)
{
if (ptcb_desc->use_spe_rpt) {
u16 sn = rtl_get_tx_report_sn(hw);
SET_TX_DESC_SPE_RPT(pdesc, 1);
SET_TX_DESC_SW_DEFINE(pdesc, sn);
}
}
EXPORT_SYMBOL_GPL(rtl_get_tx_report);
void rtl_tx_report_handler(struct ieee80211_hw *hw, u8 *tmp_buf, u8 c2h_cmd_len)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tx_report *tx_report = &rtlpriv->tx_report;
u16 sn;
sn = ((tmp_buf[7] & 0x0F) << 8) | tmp_buf[6];
tx_report->last_recv_sn = sn;
RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_DMESG,
"Recv TX-Report st=0x%02X sn=0x%X retry=0x%X\n",
tmp_buf[0], sn, tmp_buf[2]);
}
EXPORT_SYMBOL_GPL(rtl_tx_report_handler);
bool rtl_check_tx_report_acked(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tx_report *tx_report = &rtlpriv->tx_report;
if (tx_report->last_sent_sn == tx_report->last_recv_sn)
return true;
if (time_before(tx_report->last_sent_time + 3 * HZ, jiffies)) {
RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_WARNING,
"Check TX-Report timeout!!\n");
return true; /* 3 sec. (timeout) seen as acked */
}
return false;
}
void rtl_wait_tx_report_acked(struct ieee80211_hw *hw, u32 wait_ms)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int i;
for (i = 0; i < wait_ms; i++) {
if (rtl_check_tx_report_acked(hw))
break;
usleep_range(1000, 2000);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"Wait 1ms (%d/%d) to disable key.\n", i, wait_ms);
}
}
u32 rtl_get_hal_edca_param(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum wireless_mode wirelessmode,
struct ieee80211_tx_queue_params *param)
{
u32 reg = 0;
u8 sifstime = 10;
u8 slottime = 20;
/* AIFS = AIFSN * slot time + SIFS */
switch (wirelessmode) {
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
case WIRELESS_MODE_AC_5G:
case WIRELESS_MODE_AC_24G:
sifstime = 16;
slottime = 9;
break;
case WIRELESS_MODE_G:
slottime = (vif->bss_conf.use_short_slot ? 9 : 20);
break;
default:
break;
}
reg |= (param->txop & 0x7FF) << 16;
reg |= (fls(param->cw_max) & 0xF) << 12;
reg |= (fls(param->cw_min) & 0xF) << 8;
reg |= (param->aifs & 0x0F) * slottime + sifstime;
return reg;
}
EXPORT_SYMBOL_GPL(rtl_get_hal_edca_param);
/*********************************************************
*
* functions called by core.c
*
*********************************************************/
int rtl_tx_agg_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta, u16 tid, u16 *ssn)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tid_data *tid_data;
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
if (!sta_entry)
return -ENXIO;
tid_data = &sta_entry->tids[tid];
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG,
"on ra = %pM tid = %d seq:%d\n", sta->addr, tid,
*ssn);
tid_data->agg.agg_state = RTL_AGG_START;
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
return 0;
}
int rtl_tx_agg_stop(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG,
"on ra = %pM tid = %d\n", sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP;
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
return 0;
}
int rtl_rx_agg_start(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tid_data *tid_data;
struct rtl_sta_info *sta_entry = NULL;
u8 reject_agg;
if (sta == NULL)
return -EINVAL;
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
if (rtlpriv->cfg->ops->get_btc_status()) {
rtlpriv->btcoexist.btc_ops->btc_get_ampdu_cfg(rtlpriv,
&reject_agg,
NULL, NULL);
if (reject_agg)
return -EINVAL;
}
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
if (!sta_entry)
return -ENXIO;
tid_data = &sta_entry->tids[tid];
RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
"on ra = %pM tid = %d\n", sta->addr, tid);
tid_data->agg.rx_agg_state = RTL_RX_AGG_START;
return 0;
}
int rtl_rx_agg_stop(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG,
"on ra = %pM tid = %d\n", sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.rx_agg_state = RTL_RX_AGG_STOP;
return 0;
}
int rtl_tx_agg_oper(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG,
"on ra = %pM tid = %d\n", sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL;
return 0;
}
void rtl_rx_ampdu_apply(struct rtl_priv *rtlpriv)
{
struct rtl_btc_ops *btc_ops = rtlpriv->btcoexist.btc_ops;
u8 reject_agg = 0, ctrl_agg_size = 0, agg_size = 0;
if (rtlpriv->cfg->ops->get_btc_status())
btc_ops->btc_get_ampdu_cfg(rtlpriv, &reject_agg,
&ctrl_agg_size, &agg_size);
RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_DMESG,
"Set RX AMPDU: coex - reject=%d, ctrl_agg_size=%d, size=%d",
reject_agg, ctrl_agg_size, agg_size);
rtlpriv->hw->max_rx_aggregation_subframes =
(ctrl_agg_size ? agg_size : IEEE80211_MAX_AMPDU_BUF);
}
EXPORT_SYMBOL(rtl_rx_ampdu_apply);
/*********************************************************
*
* wq & timer callback functions
*
*********************************************************/
/* this function is used for roaming */
void rtl_beacon_statistic(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (rtlpriv->mac80211.opmode != NL80211_IFTYPE_STATION)
return;
if (rtlpriv->mac80211.link_state < MAC80211_LINKED)
return;
/* check if this really is a beacon */
if (!ieee80211_is_beacon(hdr->frame_control) &&
!ieee80211_is_probe_resp(hdr->frame_control))
return;
/* min. beacon length + FCS_LEN */
if (skb->len <= 40 + FCS_LEN)
return;
/* and only beacons from the associated BSSID, please */
if (!ether_addr_equal(hdr->addr3, rtlpriv->mac80211.bssid))
return;
rtlpriv->link_info.bcn_rx_inperiod++;
}
EXPORT_SYMBOL_GPL(rtl_beacon_statistic);
static void rtl_free_entries_from_scan_list(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_bssid_entry *entry, *next;
list_for_each_entry_safe(entry, next, &rtlpriv->scan_list.list, list) {
list_del(&entry->list);
kfree(entry);
rtlpriv->scan_list.num--;
}
}
void rtl_scan_list_expire(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_bssid_entry *entry, *next;
unsigned long flags;
spin_lock_irqsave(&rtlpriv->locks.scan_list_lock, flags);
list_for_each_entry_safe(entry, next, &rtlpriv->scan_list.list, list) {
/* 180 seconds */
if (jiffies_to_msecs(jiffies - entry->age) < 180000)
continue;
list_del(&entry->list);
rtlpriv->scan_list.num--;
RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
"BSSID=%pM is expire in scan list (total=%d)\n",
entry->bssid, rtlpriv->scan_list.num);
kfree(entry);
}
spin_unlock_irqrestore(&rtlpriv->locks.scan_list_lock, flags);
rtlpriv->btcoexist.btc_info.ap_num = rtlpriv->scan_list.num;
}
void rtl_collect_scan_list(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
unsigned long flags;
struct rtl_bssid_entry *entry;
bool entry_found = false;
/* check if it is scanning */
if (!mac->act_scanning)
return;
/* check if this really is a beacon */
if (!ieee80211_is_beacon(hdr->frame_control) &&
!ieee80211_is_probe_resp(hdr->frame_control))
return;
spin_lock_irqsave(&rtlpriv->locks.scan_list_lock, flags);
list_for_each_entry(entry, &rtlpriv->scan_list.list, list) {
if (memcmp(entry->bssid, hdr->addr3, ETH_ALEN) == 0) {
list_del_init(&entry->list);
entry_found = true;
RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
"Update BSSID=%pM to scan list (total=%d)\n",
hdr->addr3, rtlpriv->scan_list.num);
break;
}
}
if (!entry_found) {
entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (!entry)
goto label_err;
memcpy(entry->bssid, hdr->addr3, ETH_ALEN);
rtlpriv->scan_list.num++;
RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
"Add BSSID=%pM to scan list (total=%d)\n",
hdr->addr3, rtlpriv->scan_list.num);
}
entry->age = jiffies;
list_add_tail(&entry->list, &rtlpriv->scan_list.list);
label_err:
spin_unlock_irqrestore(&rtlpriv->locks.scan_list_lock, flags);
}
EXPORT_SYMBOL(rtl_collect_scan_list);
void rtl_watchdog_wq_callback(void *data)
{
struct rtl_works *rtlworks = container_of_dwork_rtl(data,
struct rtl_works,
watchdog_wq);
struct ieee80211_hw *hw = rtlworks->hw;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
bool busytraffic = false;
bool tx_busy_traffic = false;
bool rx_busy_traffic = false;
bool higher_busytraffic = false;
bool higher_busyrxtraffic = false;
u8 idx, tid;
u32 rx_cnt_inp4eriod = 0;
u32 tx_cnt_inp4eriod = 0;
u32 aver_rx_cnt_inperiod = 0;
u32 aver_tx_cnt_inperiod = 0;
u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0};
u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0};
if (is_hal_stop(rtlhal))
return;
/* <1> Determine if action frame is allowed */
if (mac->link_state > MAC80211_NOLINK) {
if (mac->cnt_after_linked < 20)
mac->cnt_after_linked++;
} else {
mac->cnt_after_linked = 0;
}
/* <2> to check if traffic busy, if
* busytraffic we don't change channel
*/
if (mac->link_state >= MAC80211_LINKED) {
/* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */
for (idx = 0; idx <= 2; idx++) {
rtlpriv->link_info.num_rx_in4period[idx] =
rtlpriv->link_info.num_rx_in4period[idx + 1];
rtlpriv->link_info.num_tx_in4period[idx] =
rtlpriv->link_info.num_tx_in4period[idx + 1];
}
rtlpriv->link_info.num_rx_in4period[3] =
rtlpriv->link_info.num_rx_inperiod;
rtlpriv->link_info.num_tx_in4period[3] =
rtlpriv->link_info.num_tx_inperiod;
for (idx = 0; idx <= 3; idx++) {
rx_cnt_inp4eriod +=
rtlpriv->link_info.num_rx_in4period[idx];
tx_cnt_inp4eriod +=
rtlpriv->link_info.num_tx_in4period[idx];
}
aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4;
aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4;
/* (2) check traffic busy */
if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100) {
busytraffic = true;
if (aver_rx_cnt_inperiod > aver_tx_cnt_inperiod)
rx_busy_traffic = true;
else
tx_busy_traffic = false;
}
/* Higher Tx/Rx data. */
if (aver_rx_cnt_inperiod > 4000 ||
aver_tx_cnt_inperiod > 4000) {
higher_busytraffic = true;
/* Extremely high Rx data. */
if (aver_rx_cnt_inperiod > 5000)
higher_busyrxtraffic = true;
}
/* check every tid's tx traffic */
for (tid = 0; tid <= 7; tid++) {
for (idx = 0; idx <= 2; idx++)
rtlpriv->link_info.tidtx_in4period[tid][idx] =
rtlpriv->link_info.tidtx_in4period[tid]
[idx + 1];
rtlpriv->link_info.tidtx_in4period[tid][3] =
rtlpriv->link_info.tidtx_inperiod[tid];
for (idx = 0; idx <= 3; idx++)
tidtx_inp4eriod[tid] +=
rtlpriv->link_info.tidtx_in4period[tid][idx];
aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4;
if (aver_tidtx_inperiod[tid] > 5000)
rtlpriv->link_info.higher_busytxtraffic[tid] =
true;
else
rtlpriv->link_info.higher_busytxtraffic[tid] =
false;
}
/* PS is controlled by coex. */
if (rtlpriv->cfg->ops->get_btc_status() &&
rtlpriv->btcoexist.btc_ops->btc_is_bt_ctrl_lps(rtlpriv))
goto label_lps_done;
if (rtlpriv->link_info.num_rx_inperiod +
rtlpriv->link_info.num_tx_inperiod > 8 ||
rtlpriv->link_info.num_rx_inperiod > 2)
rtl_lps_leave(hw);
else
rtl_lps_enter(hw);
label_lps_done:
;
}
rtlpriv->link_info.num_rx_inperiod = 0;
rtlpriv->link_info.num_tx_inperiod = 0;
for (tid = 0; tid <= 7; tid++)
rtlpriv->link_info.tidtx_inperiod[tid] = 0;
rtlpriv->link_info.busytraffic = busytraffic;
rtlpriv->link_info.higher_busytraffic = higher_busytraffic;
rtlpriv->link_info.rx_busy_traffic = rx_busy_traffic;
rtlpriv->link_info.tx_busy_traffic = tx_busy_traffic;
rtlpriv->link_info.higher_busyrxtraffic = higher_busyrxtraffic;
rtlpriv->stats.txbytesunicast_inperiod =
rtlpriv->stats.txbytesunicast -
rtlpriv->stats.txbytesunicast_last;
rtlpriv->stats.rxbytesunicast_inperiod =
rtlpriv->stats.rxbytesunicast -
rtlpriv->stats.rxbytesunicast_last;
rtlpriv->stats.txbytesunicast_last = rtlpriv->stats.txbytesunicast;
rtlpriv->stats.rxbytesunicast_last = rtlpriv->stats.rxbytesunicast;
rtlpriv->stats.txbytesunicast_inperiod_tp =
(u32)(rtlpriv->stats.txbytesunicast_inperiod * 8 / 2 /
1024 / 1024);
rtlpriv->stats.rxbytesunicast_inperiod_tp =
(u32)(rtlpriv->stats.rxbytesunicast_inperiod * 8 / 2 /
1024 / 1024);
/* <3> DM */
if (!rtlpriv->cfg->mod_params->disable_watchdog)
rtlpriv->cfg->ops->dm_watchdog(hw);
/* <4> roaming */
if (mac->link_state == MAC80211_LINKED &&
mac->opmode == NL80211_IFTYPE_STATION) {
if ((rtlpriv->link_info.bcn_rx_inperiod +
rtlpriv->link_info.num_rx_inperiod) == 0) {
rtlpriv->link_info.roam_times++;
RT_TRACE(rtlpriv, COMP_ERR, DBG_DMESG,
"AP off for %d s\n",
(rtlpriv->link_info.roam_times * 2));
/* if we can't recv beacon for 10s,
* we should reconnect this AP
*/
if (rtlpriv->link_info.roam_times >= 5) {
pr_err("AP off, try to reconnect now\n");
rtlpriv->link_info.roam_times = 0;
ieee80211_connection_loss(
rtlpriv->mac80211.vif);
}
} else {
rtlpriv->link_info.roam_times = 0;
}
}
if (rtlpriv->cfg->ops->get_btc_status())
rtlpriv->btcoexist.btc_ops->btc_periodical(rtlpriv);
if (rtlpriv->btcoexist.btc_info.in_4way) {
if (time_after(jiffies, rtlpriv->btcoexist.btc_info.in_4way_ts +
msecs_to_jiffies(IN_4WAY_TIMEOUT_TIME)))
rtlpriv->btcoexist.btc_info.in_4way = false;
}
rtlpriv->link_info.bcn_rx_inperiod = 0;
/* <6> scan list */
rtl_scan_list_expire(hw);
}
void rtl_watch_dog_timer_callback(struct timer_list *t)
{
struct rtl_priv *rtlpriv = from_timer(rtlpriv, t, works.watchdog_timer);
queue_delayed_work(rtlpriv->works.rtl_wq,
&rtlpriv->works.watchdog_wq, 0);
mod_timer(&rtlpriv->works.watchdog_timer,
jiffies + MSECS(RTL_WATCH_DOG_TIME));
}
void rtl_fwevt_wq_callback(void *data)
{
struct rtl_works *rtlworks =
container_of_dwork_rtl(data, struct rtl_works, fwevt_wq);
struct ieee80211_hw *hw = rtlworks->hw;
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->cfg->ops->c2h_command_handle(hw);
}
void rtl_c2hcmd_enqueue(struct ieee80211_hw *hw, u8 tag, u8 len, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned long flags;
struct rtl_c2hcmd *c2hcmd;
c2hcmd = kmalloc(sizeof(*c2hcmd),
in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
if (!c2hcmd)
goto label_err;
c2hcmd->val = kmalloc(len,
in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
if (!c2hcmd->val)
goto label_err2;
/* fill data */
c2hcmd->tag = tag;
c2hcmd->len = len;
memcpy(c2hcmd->val, val, len);
/* enqueue */
spin_lock_irqsave(&rtlpriv->locks.c2hcmd_lock, flags);
list_add_tail(&c2hcmd->list, &rtlpriv->c2hcmd_list);
spin_unlock_irqrestore(&rtlpriv->locks.c2hcmd_lock, flags);
/* wake up wq */
queue_delayed_work(rtlpriv->works.rtl_wq, &rtlpriv->works.c2hcmd_wq, 0);
return;
label_err2:
kfree(c2hcmd);
label_err:
RT_TRACE(rtlpriv, COMP_CMD, DBG_WARNING,
"C2H cmd enqueue fail.\n");
}
EXPORT_SYMBOL(rtl_c2hcmd_enqueue);
void rtl_c2hcmd_launcher(struct ieee80211_hw *hw, int exec)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned long flags;
struct rtl_c2hcmd *c2hcmd;
int i;
for (i = 0; i < 200; i++) {
/* dequeue a task */
spin_lock_irqsave(&rtlpriv->locks.c2hcmd_lock, flags);
c2hcmd = list_first_entry_or_null(&rtlpriv->c2hcmd_list,
struct rtl_c2hcmd, list);
if (c2hcmd)
list_del(&c2hcmd->list);
spin_unlock_irqrestore(&rtlpriv->locks.c2hcmd_lock, flags);
/* do it */
if (!c2hcmd)
break;
if (rtlpriv->cfg->ops->c2h_content_parsing && exec)
rtlpriv->cfg->ops->c2h_content_parsing(hw,
c2hcmd->tag, c2hcmd->len, c2hcmd->val);
/* free */
kfree(c2hcmd->val);
kfree(c2hcmd);
}
}
void rtl_c2hcmd_wq_callback(void *data)
{
struct rtl_works *rtlworks = container_of_dwork_rtl(data,
struct rtl_works,
c2hcmd_wq);
struct ieee80211_hw *hw = rtlworks->hw;
rtl_c2hcmd_launcher(hw, 1);
}
void rtl_easy_concurrent_retrytimer_callback(struct timer_list *t)
{
struct rtl_priv *rtlpriv =
from_timer(rtlpriv, t, works.dualmac_easyconcurrent_retrytimer);
struct ieee80211_hw *hw = rtlpriv->hw;
struct rtl_priv *buddy_priv = rtlpriv->buddy_priv;
if (buddy_priv == NULL)
return;
rtlpriv->cfg->ops->dualmac_easy_concurrent(hw);
}
/*********************************************************
*
* frame process functions
*
*********************************************************/
u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie)
{
struct ieee80211_mgmt *mgmt = (void *)data;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos + 2 + pos[1] > end)
return NULL;
if (pos[0] == ie)
return pos;
pos += 2 + pos[1];
}
return NULL;
}
/* when we use 2 rx ants we send IEEE80211_SMPS_OFF */
/* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */
static struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw,
enum ieee80211_smps_mode smps,
u8 *da, u8 *bssid)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct sk_buff *skb;
struct ieee80211_mgmt *action_frame;
/* 27 = header + category + action + smps mode */
skb = dev_alloc_skb(27 + hw->extra_tx_headroom);
if (!skb)
return NULL;
skb_reserve(skb, hw->extra_tx_headroom);
action_frame = skb_put_zero(skb, 27);
memcpy(action_frame->da, da, ETH_ALEN);
memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN);
memcpy(action_frame->bssid, bssid, ETH_ALEN);
action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
action_frame->u.action.category = WLAN_CATEGORY_HT;
action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS;
switch (smps) {
case IEEE80211_SMPS_AUTOMATIC:/* 0 */
case IEEE80211_SMPS_NUM_MODES:/* 4 */
WARN_ON(1);
/* fall through */
case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_DISABLED;/* 0 */
break;
case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_STATIC;/* 1 */
break;
case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_DYNAMIC;/* 3 */
break;
}
return skb;
}
int rtl_send_smps_action(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
enum ieee80211_smps_mode smps)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct sk_buff *skb = NULL;
struct rtl_tcb_desc tcb_desc;
u8 bssid[ETH_ALEN] = {0};
memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
if (rtlpriv->mac80211.act_scanning)
goto err_free;
if (!sta)
goto err_free;
if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON))
goto err_free;
if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status))
goto err_free;
if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP)
memcpy(bssid, rtlpriv->efuse.dev_addr, ETH_ALEN);
else
memcpy(bssid, rtlpriv->mac80211.bssid, ETH_ALEN);
skb = rtl_make_smps_action(hw, smps, sta->addr, bssid);
/* this is a type = mgmt * stype = action frame */
if (skb) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct rtl_sta_info *sta_entry =
(struct rtl_sta_info *) sta->drv_priv;
sta_entry->mimo_ps = smps;
/* rtlpriv->cfg->ops->update_rate_tbl(hw, sta, 0, true); */
info->control.rates[0].idx = 0;
info->band = hw->conf.chandef.chan->band;
rtlpriv->intf_ops->adapter_tx(hw, sta, skb, &tcb_desc);
}
return 1;
err_free:
return 0;
}
EXPORT_SYMBOL(rtl_send_smps_action);
void rtl_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
enum io_type iotype;
if (!is_hal_stop(rtlhal)) {
switch (operation) {
case SCAN_OPT_BACKUP:
iotype = IO_CMD_PAUSE_DM_BY_SCAN;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_IO_CMD,
(u8 *)&iotype);
break;
case SCAN_OPT_RESTORE:
iotype = IO_CMD_RESUME_DM_BY_SCAN;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_IO_CMD,
(u8 *)&iotype);
break;
default:
pr_err("Unknown Scan Backup operation.\n");
break;
}
}
}
EXPORT_SYMBOL(rtl_phy_scan_operation_backup);
/* because mac80211 have issues when can receive del ba
* so here we just make a fake del_ba if we receive a ba_req
* but rx_agg was opened to let mac80211 release some ba
* related resources, so please this del_ba for tx
*/
struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw,
u8 *sa, u8 *bssid, u16 tid)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct sk_buff *skb;
struct ieee80211_mgmt *action_frame;
u16 params;
/* 27 = header + category + action + smps mode */
skb = dev_alloc_skb(34 + hw->extra_tx_headroom);
if (!skb)
return NULL;
skb_reserve(skb, hw->extra_tx_headroom);
action_frame = skb_put_zero(skb, 34);
memcpy(action_frame->sa, sa, ETH_ALEN);
memcpy(action_frame->da, rtlefuse->dev_addr, ETH_ALEN);
memcpy(action_frame->bssid, bssid, ETH_ALEN);
action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
action_frame->u.action.category = WLAN_CATEGORY_BACK;
action_frame->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
params = (u16)(1 << 11); /* bit 11 initiator */
params |= (u16)(tid << 12); /* bit 15:12 TID number */
action_frame->u.action.u.delba.params = cpu_to_le16(params);
action_frame->u.action.u.delba.reason_code =
cpu_to_le16(WLAN_REASON_QSTA_TIMEOUT);
return skb;
}
/*********************************************************
*
* IOT functions
*
*********************************************************/
static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw,
struct octet_string vendor_ie)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool matched = false;
static u8 athcap_1[] = { 0x00, 0x03, 0x7F };
static u8 athcap_2[] = { 0x00, 0x13, 0x74 };
static u8 broadcap_1[] = { 0x00, 0x10, 0x18 };
static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 };
static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 };
static u8 racap[] = { 0x00, 0x0c, 0x43 };
static u8 ciscocap[] = { 0x00, 0x40, 0x96 };
static u8 marvcap[] = { 0x00, 0x50, 0x43 };
if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 ||
memcmp(vendor_ie.octet, athcap_2, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_ATH;
matched = true;
} else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 ||
memcmp(vendor_ie.octet, broadcap_2, 3) == 0 ||
memcmp(vendor_ie.octet, broadcap_3, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_BROAD;
matched = true;
} else if (memcmp(vendor_ie.octet, racap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_RAL;
matched = true;
} else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_CISCO;
matched = true;
} else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_MARV;
matched = true;
}
return matched;
}
static bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data,
unsigned int len)
{
struct ieee80211_mgmt *mgmt = (void *)data;
struct octet_string vendor_ie;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos[0] == 221) {
vendor_ie.length = pos[1];
vendor_ie.octet = &pos[2];
if (rtl_chk_vendor_ouisub(hw, vendor_ie))
return true;
}
if (pos + 2 + pos[1] > end)
return false;
pos += 2 + pos[1];
}
return false;
}
void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = (void *)data;
u32 vendor = PEER_UNKNOWN;
static u8 ap3_1[3] = { 0x00, 0x14, 0xbf };
static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 };
static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e };
static u8 ap4_1[3] = { 0x00, 0x90, 0xcc };
static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e };
static u8 ap4_3[3] = { 0x00, 0x18, 0x02 };
static u8 ap4_4[3] = { 0x00, 0x17, 0x3f };
static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf };
static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 };
static u8 ap5_2[3] = { 0x00, 0x21, 0x91 };
static u8 ap5_3[3] = { 0x00, 0x24, 0x01 };
static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 };
static u8 ap5_5[3] = { 0x00, 0x17, 0x9A };
static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 };
static u8 ap6_1[3] = { 0x00, 0x17, 0x94 };
static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 };
if (mac->opmode != NL80211_IFTYPE_STATION)
return;
if (mac->link_state == MAC80211_NOLINK) {
mac->vendor = PEER_UNKNOWN;
return;
}
if (mac->cnt_after_linked > 2)
return;
/* check if this really is a beacon */
if (!ieee80211_is_beacon(hdr->frame_control))
return;
/* min. beacon length + FCS_LEN */
if (len <= 40 + FCS_LEN)
return;
/* and only beacons from the associated BSSID, please */
if (!ether_addr_equal_64bits(hdr->addr3, rtlpriv->mac80211.bssid))
return;
if (rtl_find_221_ie(hw, data, len))
vendor = mac->vendor;
if ((memcmp(mac->bssid, ap5_1, 3) == 0) ||
(memcmp(mac->bssid, ap5_2, 3) == 0) ||
(memcmp(mac->bssid, ap5_3, 3) == 0) ||
(memcmp(mac->bssid, ap5_4, 3) == 0) ||
(memcmp(mac->bssid, ap5_5, 3) == 0) ||
(memcmp(mac->bssid, ap5_6, 3) == 0) ||
vendor == PEER_ATH) {
vendor = PEER_ATH;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ath find\n");
} else if ((memcmp(mac->bssid, ap4_4, 3) == 0) ||
(memcmp(mac->bssid, ap4_5, 3) == 0) ||
(memcmp(mac->bssid, ap4_1, 3) == 0) ||
(memcmp(mac->bssid, ap4_2, 3) == 0) ||
(memcmp(mac->bssid, ap4_3, 3) == 0) ||
vendor == PEER_RAL) {
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ral find\n");
vendor = PEER_RAL;
} else if (memcmp(mac->bssid, ap6_1, 3) == 0 ||
vendor == PEER_CISCO) {
vendor = PEER_CISCO;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>cisco find\n");
} else if ((memcmp(mac->bssid, ap3_1, 3) == 0) ||
(memcmp(mac->bssid, ap3_2, 3) == 0) ||
(memcmp(mac->bssid, ap3_3, 3) == 0) ||
vendor == PEER_BROAD) {
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>broad find\n");
vendor = PEER_BROAD;
} else if (memcmp(mac->bssid, ap7_1, 3) == 0 ||
vendor == PEER_MARV) {
vendor = PEER_MARV;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>marv find\n");
}
mac->vendor = vendor;
}
EXPORT_SYMBOL_GPL(rtl_recognize_peer);
MODULE_AUTHOR("lizhaoming <chaoming_li@realsil.com.cn>");
MODULE_AUTHOR("Realtek WlanFAE <wlanfae@realtek.com>");
MODULE_AUTHOR("Larry Finger <Larry.FInger@lwfinger.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core");
struct rtl_global_var rtl_global_var = {};
EXPORT_SYMBOL_GPL(rtl_global_var);
static int __init rtl_core_module_init(void)
{
if (rtl_rate_control_register())
pr_err("rtl: Unable to register rtl_rc, use default RC !!\n");
/* add debugfs */
rtl_debugfs_add_topdir();
/* init some global vars */
INIT_LIST_HEAD(&rtl_global_var.glb_priv_list);
spin_lock_init(&rtl_global_var.glb_list_lock);
return 0;
}
static void __exit rtl_core_module_exit(void)
{
/*RC*/
rtl_rate_control_unregister();
/* remove debugfs */
rtl_debugfs_remove_topdir();
}
module_init(rtl_core_module_init);
module_exit(rtl_core_module_exit);