| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> |
| * Copyright (C) 2014 Datera Inc. |
| */ |
| |
| #include "bcachefs.h" |
| #include "alloc_background.h" |
| #include "alloc_foreground.h" |
| #include "bkey_methods.h" |
| #include "btree_locking.h" |
| #include "btree_update_interior.h" |
| #include "btree_io.h" |
| #include "btree_gc.h" |
| #include "buckets.h" |
| #include "clock.h" |
| #include "debug.h" |
| #include "ec.h" |
| #include "error.h" |
| #include "extents.h" |
| #include "journal.h" |
| #include "journal_io.h" |
| #include "keylist.h" |
| #include "move.h" |
| #include "replicas.h" |
| #include "super-io.h" |
| #include "trace.h" |
| |
| #include <linux/slab.h> |
| #include <linux/bitops.h> |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include <linux/preempt.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched/task.h> |
| |
| static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) |
| { |
| preempt_disable(); |
| write_seqcount_begin(&c->gc_pos_lock); |
| c->gc_pos = new_pos; |
| write_seqcount_end(&c->gc_pos_lock); |
| preempt_enable(); |
| } |
| |
| static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) |
| { |
| BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); |
| __gc_pos_set(c, new_pos); |
| } |
| |
| /* range_checks - for validating min/max pos of each btree node: */ |
| |
| struct range_checks { |
| struct range_level { |
| struct bpos min; |
| struct bpos max; |
| } l[BTREE_MAX_DEPTH]; |
| unsigned depth; |
| }; |
| |
| static void btree_node_range_checks_init(struct range_checks *r, unsigned depth) |
| { |
| unsigned i; |
| |
| for (i = 0; i < BTREE_MAX_DEPTH; i++) |
| r->l[i].min = r->l[i].max = POS_MIN; |
| r->depth = depth; |
| } |
| |
| static void btree_node_range_checks(struct bch_fs *c, struct btree *b, |
| struct range_checks *r) |
| { |
| struct range_level *l = &r->l[b->level]; |
| |
| struct bpos expected_min = bkey_cmp(l->min, l->max) |
| ? btree_type_successor(b->btree_id, l->max) |
| : l->max; |
| |
| bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c, |
| "btree node has incorrect min key: %llu:%llu != %llu:%llu", |
| b->data->min_key.inode, |
| b->data->min_key.offset, |
| expected_min.inode, |
| expected_min.offset); |
| |
| l->max = b->data->max_key; |
| |
| if (b->level > r->depth) { |
| l = &r->l[b->level - 1]; |
| |
| bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c, |
| "btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu", |
| b->data->min_key.inode, |
| b->data->min_key.offset, |
| l->min.inode, |
| l->min.offset); |
| |
| bch2_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c, |
| "btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu", |
| b->data->max_key.inode, |
| b->data->max_key.offset, |
| l->max.inode, |
| l->max.offset); |
| |
| if (bkey_cmp(b->data->max_key, POS_MAX)) |
| l->min = l->max = |
| btree_type_successor(b->btree_id, |
| b->data->max_key); |
| } |
| } |
| |
| /* marking of btree keys/nodes: */ |
| |
| static int bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k, |
| u8 *max_stale, bool initial) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const struct bch_extent_ptr *ptr; |
| struct gc_pos pos = { 0 }; |
| unsigned flags = |
| BCH_BUCKET_MARK_GC| |
| (initial ? BCH_BUCKET_MARK_NOATOMIC : 0); |
| int ret = 0; |
| |
| if (initial) { |
| BUG_ON(journal_seq_verify(c) && |
| k.k->version.lo > journal_cur_seq(&c->journal)); |
| |
| if (k.k->version.lo > atomic64_read(&c->key_version)) |
| atomic64_set(&c->key_version, k.k->version.lo); |
| |
| if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) || |
| fsck_err_on(!bch2_bkey_replicas_marked(c, k, false), c, |
| "superblock not marked as containing replicas (type %u)", |
| k.k->type)) { |
| ret = bch2_mark_bkey_replicas(c, k); |
| if (ret) |
| return ret; |
| } |
| |
| bkey_for_each_ptr(ptrs, ptr) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); |
| size_t b = PTR_BUCKET_NR(ca, ptr); |
| struct bucket *g = PTR_BUCKET(ca, ptr); |
| |
| if (mustfix_fsck_err_on(!g->gen_valid, c, |
| "found ptr with missing gen in alloc btree,\n" |
| "type %u gen %u", |
| k.k->type, ptr->gen)) { |
| g->_mark.gen = ptr->gen; |
| g->gen_valid = 1; |
| set_bit(b, ca->buckets_dirty); |
| } |
| |
| if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c, |
| "%u ptr gen in the future: %u > %u", |
| k.k->type, ptr->gen, g->mark.gen)) { |
| g->_mark.gen = ptr->gen; |
| g->gen_valid = 1; |
| set_bit(b, ca->buckets_dirty); |
| set_bit(BCH_FS_FIXED_GENS, &c->flags); |
| } |
| } |
| } |
| |
| bkey_for_each_ptr(ptrs, ptr) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); |
| size_t b = PTR_BUCKET_NR(ca, ptr); |
| |
| if (gen_after(ca->oldest_gens[b], ptr->gen)) |
| ca->oldest_gens[b] = ptr->gen; |
| |
| *max_stale = max(*max_stale, ptr_stale(ca, ptr)); |
| } |
| |
| bch2_mark_key(c, k, true, k.k->size, pos, NULL, 0, flags); |
| fsck_err: |
| return ret; |
| } |
| |
| static int btree_gc_mark_node(struct bch_fs *c, struct btree *b, |
| u8 *max_stale, bool initial) |
| { |
| struct btree_node_iter iter; |
| struct bkey unpacked; |
| struct bkey_s_c k; |
| int ret = 0; |
| |
| *max_stale = 0; |
| |
| if (!btree_node_type_needs_gc(btree_node_type(b))) |
| return 0; |
| |
| for_each_btree_node_key_unpack(b, k, &iter, |
| &unpacked) { |
| bch2_bkey_debugcheck(c, b, k); |
| |
| ret = bch2_gc_mark_key(c, k, max_stale, initial); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id, |
| bool initial) |
| { |
| struct btree_iter iter; |
| struct btree *b; |
| struct range_checks r; |
| unsigned depth = btree_node_type_needs_gc(btree_id) ? 0 : 1; |
| u8 max_stale; |
| int ret = 0; |
| |
| gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0)); |
| |
| /* |
| * if expensive_debug_checks is on, run range_checks on all leaf nodes: |
| * |
| * and on startup, we have to read every btree node (XXX: only if it was |
| * an unclean shutdown) |
| */ |
| if (initial || expensive_debug_checks(c)) |
| depth = 0; |
| |
| btree_node_range_checks_init(&r, depth); |
| |
| __for_each_btree_node(&iter, c, btree_id, POS_MIN, |
| 0, depth, BTREE_ITER_PREFETCH, b) { |
| btree_node_range_checks(c, b, &r); |
| |
| bch2_verify_btree_nr_keys(b); |
| |
| ret = btree_gc_mark_node(c, b, &max_stale, initial); |
| if (ret) |
| break; |
| |
| gc_pos_set(c, gc_pos_btree_node(b)); |
| |
| if (!initial) { |
| if (max_stale > 64) |
| bch2_btree_node_rewrite(c, &iter, |
| b->data->keys.seq, |
| BTREE_INSERT_USE_RESERVE| |
| BTREE_INSERT_NOWAIT| |
| BTREE_INSERT_GC_LOCK_HELD); |
| else if (!btree_gc_rewrite_disabled(c) && |
| (btree_gc_always_rewrite(c) || max_stale > 16)) |
| bch2_btree_node_rewrite(c, &iter, |
| b->data->keys.seq, |
| BTREE_INSERT_NOWAIT| |
| BTREE_INSERT_GC_LOCK_HELD); |
| } |
| |
| bch2_btree_iter_cond_resched(&iter); |
| } |
| ret = bch2_btree_iter_unlock(&iter) ?: ret; |
| if (ret) |
| return ret; |
| |
| mutex_lock(&c->btree_root_lock); |
| |
| b = c->btree_roots[btree_id].b; |
| if (!btree_node_fake(b)) |
| bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key), |
| &max_stale, initial); |
| gc_pos_set(c, gc_pos_btree_root(b->btree_id)); |
| |
| mutex_unlock(&c->btree_root_lock); |
| return 0; |
| } |
| |
| static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) |
| { |
| return (int) btree_id_to_gc_phase(l) - |
| (int) btree_id_to_gc_phase(r); |
| } |
| |
| static int bch2_gc_btrees(struct bch_fs *c, struct list_head *journal, |
| bool initial) |
| { |
| enum btree_id ids[BTREE_ID_NR]; |
| u8 max_stale; |
| unsigned i; |
| |
| for (i = 0; i < BTREE_ID_NR; i++) |
| ids[i] = i; |
| bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); |
| |
| for (i = 0; i < BTREE_ID_NR; i++) { |
| enum btree_id id = ids[i]; |
| enum btree_node_type type = __btree_node_type(0, id); |
| |
| int ret = bch2_gc_btree(c, id, initial); |
| if (ret) |
| return ret; |
| |
| if (journal && btree_node_type_needs_gc(type)) { |
| struct bkey_i *k, *n; |
| struct jset_entry *j; |
| struct journal_replay *r; |
| int ret; |
| |
| list_for_each_entry(r, journal, list) |
| for_each_jset_key(k, n, j, &r->j) { |
| if (type == __btree_node_type(j->level, j->btree_id)) { |
| ret = bch2_gc_mark_key(c, |
| bkey_i_to_s_c(k), |
| &max_stale, initial); |
| if (ret) |
| return ret; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca, |
| u64 start, u64 end, |
| enum bch_data_type type, |
| unsigned flags) |
| { |
| u64 b = sector_to_bucket(ca, start); |
| |
| do { |
| unsigned sectors = |
| min_t(u64, bucket_to_sector(ca, b + 1), end) - start; |
| |
| bch2_mark_metadata_bucket(c, ca, b, type, sectors, |
| gc_phase(GC_PHASE_SB), flags); |
| b++; |
| start += sectors; |
| } while (start < end); |
| } |
| |
| void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca, |
| unsigned flags) |
| { |
| struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; |
| unsigned i; |
| u64 b; |
| |
| /* |
| * This conditional is kind of gross, but we may be called from the |
| * device add path, before the new device has actually been added to the |
| * running filesystem: |
| */ |
| if (c) { |
| lockdep_assert_held(&c->sb_lock); |
| percpu_down_read(&c->usage_lock); |
| } else { |
| preempt_disable(); |
| } |
| |
| for (i = 0; i < layout->nr_superblocks; i++) { |
| u64 offset = le64_to_cpu(layout->sb_offset[i]); |
| |
| if (offset == BCH_SB_SECTOR) |
| mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR, |
| BCH_DATA_SB, flags); |
| |
| mark_metadata_sectors(c, ca, offset, |
| offset + (1 << layout->sb_max_size_bits), |
| BCH_DATA_SB, flags); |
| } |
| |
| for (i = 0; i < ca->journal.nr; i++) { |
| b = ca->journal.buckets[i]; |
| bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_JOURNAL, |
| ca->mi.bucket_size, |
| gc_phase(GC_PHASE_SB), flags); |
| } |
| |
| if (c) { |
| percpu_up_read(&c->usage_lock); |
| } else { |
| preempt_enable(); |
| } |
| } |
| |
| static void bch2_mark_superblocks(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| |
| mutex_lock(&c->sb_lock); |
| gc_pos_set(c, gc_phase(GC_PHASE_SB)); |
| |
| for_each_online_member(ca, c, i) |
| bch2_mark_dev_superblock(c, ca, BCH_BUCKET_MARK_GC); |
| mutex_unlock(&c->sb_lock); |
| } |
| |
| /* Also see bch2_pending_btree_node_free_insert_done() */ |
| static void bch2_mark_pending_btree_node_frees(struct bch_fs *c) |
| { |
| struct gc_pos pos = { 0 }; |
| struct btree_update *as; |
| struct pending_btree_node_free *d; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); |
| |
| for_each_pending_btree_node_free(c, as, d) |
| if (d->index_update_done) |
| bch2_mark_key(c, bkey_i_to_s_c(&d->key), |
| true, 0, |
| pos, NULL, 0, |
| BCH_BUCKET_MARK_GC); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| static void bch2_mark_allocator_buckets(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| struct open_bucket *ob; |
| size_t i, j, iter; |
| unsigned ci; |
| |
| percpu_down_read(&c->usage_lock); |
| |
| spin_lock(&c->freelist_lock); |
| gc_pos_set(c, gc_pos_alloc(c, NULL)); |
| |
| for_each_member_device(ca, c, ci) { |
| fifo_for_each_entry(i, &ca->free_inc, iter) |
| bch2_mark_alloc_bucket(c, ca, i, true, |
| gc_pos_alloc(c, NULL), |
| BCH_BUCKET_MARK_GC); |
| |
| |
| |
| for (j = 0; j < RESERVE_NR; j++) |
| fifo_for_each_entry(i, &ca->free[j], iter) |
| bch2_mark_alloc_bucket(c, ca, i, true, |
| gc_pos_alloc(c, NULL), |
| BCH_BUCKET_MARK_GC); |
| } |
| |
| spin_unlock(&c->freelist_lock); |
| |
| for (ob = c->open_buckets; |
| ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); |
| ob++) { |
| spin_lock(&ob->lock); |
| if (ob->valid) { |
| gc_pos_set(c, gc_pos_alloc(c, ob)); |
| ca = bch_dev_bkey_exists(c, ob->ptr.dev); |
| bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true, |
| gc_pos_alloc(c, ob), |
| BCH_BUCKET_MARK_GC); |
| } |
| spin_unlock(&ob->lock); |
| } |
| |
| percpu_up_read(&c->usage_lock); |
| } |
| |
| static void bch2_gc_free(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| |
| genradix_free(&c->stripes[1]); |
| |
| for_each_member_device(ca, c, i) { |
| kvpfree(rcu_dereference_protected(ca->buckets[1], 1), |
| sizeof(struct bucket_array) + |
| ca->mi.nbuckets * sizeof(struct bucket)); |
| ca->buckets[1] = NULL; |
| |
| free_percpu(ca->usage[1]); |
| ca->usage[1] = NULL; |
| } |
| |
| free_percpu(c->usage[1]); |
| c->usage[1] = NULL; |
| } |
| |
| static void bch2_gc_done_nocheck(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| int cpu; |
| |
| { |
| struct genradix_iter dst_iter = genradix_iter_init(&c->stripes[0], 0); |
| struct genradix_iter src_iter = genradix_iter_init(&c->stripes[1], 0); |
| struct stripe *dst, *src; |
| |
| c->ec_stripes_heap.used = 0; |
| |
| while ((dst = genradix_iter_peek(&dst_iter, &c->stripes[0])) && |
| (src = genradix_iter_peek(&src_iter, &c->stripes[1]))) { |
| *dst = *src; |
| |
| if (dst->alive) |
| bch2_stripes_heap_insert(c, dst, dst_iter.pos); |
| |
| genradix_iter_advance(&dst_iter, &c->stripes[0]); |
| genradix_iter_advance(&src_iter, &c->stripes[1]); |
| } |
| } |
| |
| for_each_member_device(ca, c, i) { |
| struct bucket_array *src = __bucket_array(ca, 1); |
| |
| memcpy(__bucket_array(ca, 0), src, |
| sizeof(struct bucket_array) + |
| sizeof(struct bucket) * src->nbuckets); |
| }; |
| |
| for_each_member_device(ca, c, i) { |
| struct bch_dev_usage *p; |
| |
| for_each_possible_cpu(cpu) { |
| p = per_cpu_ptr(ca->usage[0], cpu); |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| preempt_disable(); |
| *this_cpu_ptr(ca->usage[0]) = __bch2_dev_usage_read(ca, 1); |
| preempt_enable(); |
| } |
| |
| { |
| struct bch_fs_usage src = __bch2_fs_usage_read(c, 1); |
| struct bch_fs_usage *p; |
| |
| for_each_possible_cpu(cpu) { |
| p = per_cpu_ptr(c->usage[0], cpu); |
| memset(p, 0, offsetof(typeof(*p), online_reserved)); |
| } |
| |
| preempt_disable(); |
| memcpy(this_cpu_ptr(c->usage[0]), |
| &src, |
| offsetof(typeof(*p), online_reserved)); |
| preempt_enable(); |
| } |
| |
| } |
| |
| static void bch2_gc_done(struct bch_fs *c, bool initial) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| int cpu; |
| |
| #define copy_field(_f, _msg, ...) \ |
| if (dst._f != src._f) { \ |
| bch_err(c, _msg ": got %llu, should be %llu, fixing"\ |
| , ##__VA_ARGS__, dst._f, src._f); \ |
| dst._f = src._f; \ |
| } |
| #define copy_stripe_field(_f, _msg, ...) \ |
| if (dst->_f != src->_f) { \ |
| bch_err_ratelimited(c, "stripe %zu has wrong "_msg \ |
| ": got %u, should be %u, fixing", \ |
| dst_iter.pos, ##__VA_ARGS__, \ |
| dst->_f, src->_f); \ |
| dst->_f = src->_f; \ |
| } |
| #define copy_bucket_field(_f) \ |
| if (dst->b[b].mark._f != src->b[b].mark._f) { \ |
| bch_err_ratelimited(c, "dev %u bucket %zu has wrong " #_f\ |
| ": got %u, should be %u, fixing", \ |
| i, b, dst->b[b].mark._f, src->b[b].mark._f); \ |
| dst->b[b]._mark._f = src->b[b].mark._f; \ |
| } |
| #define copy_dev_field(_f, _msg, ...) \ |
| copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__) |
| #define copy_fs_field(_f, _msg, ...) \ |
| copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__) |
| |
| percpu_down_write(&c->usage_lock); |
| |
| if (initial) { |
| bch2_gc_done_nocheck(c); |
| goto out; |
| } |
| |
| { |
| struct genradix_iter dst_iter = genradix_iter_init(&c->stripes[0], 0); |
| struct genradix_iter src_iter = genradix_iter_init(&c->stripes[1], 0); |
| struct stripe *dst, *src; |
| unsigned i; |
| |
| c->ec_stripes_heap.used = 0; |
| |
| while ((dst = genradix_iter_peek(&dst_iter, &c->stripes[0])) && |
| (src = genradix_iter_peek(&src_iter, &c->stripes[1]))) { |
| copy_stripe_field(alive, "alive"); |
| copy_stripe_field(sectors, "sectors"); |
| copy_stripe_field(algorithm, "algorithm"); |
| copy_stripe_field(nr_blocks, "nr_blocks"); |
| copy_stripe_field(nr_redundant, "nr_redundant"); |
| copy_stripe_field(blocks_nonempty.counter, |
| "blocks_nonempty"); |
| |
| for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++) |
| copy_stripe_field(block_sectors[i].counter, |
| "block_sectors[%u]", i); |
| |
| if (dst->alive) |
| bch2_stripes_heap_insert(c, dst, dst_iter.pos); |
| |
| genradix_iter_advance(&dst_iter, &c->stripes[0]); |
| genradix_iter_advance(&src_iter, &c->stripes[1]); |
| } |
| } |
| |
| for_each_member_device(ca, c, i) { |
| struct bucket_array *dst = __bucket_array(ca, 0); |
| struct bucket_array *src = __bucket_array(ca, 1); |
| size_t b; |
| |
| if (initial) { |
| memcpy(dst, src, |
| sizeof(struct bucket_array) + |
| sizeof(struct bucket) * dst->nbuckets); |
| } |
| |
| for (b = 0; b < src->nbuckets; b++) { |
| copy_bucket_field(gen); |
| copy_bucket_field(data_type); |
| copy_bucket_field(owned_by_allocator); |
| copy_bucket_field(stripe); |
| copy_bucket_field(dirty_sectors); |
| copy_bucket_field(cached_sectors); |
| } |
| }; |
| |
| for_each_member_device(ca, c, i) { |
| struct bch_dev_usage dst = __bch2_dev_usage_read(ca, 0); |
| struct bch_dev_usage src = __bch2_dev_usage_read(ca, 1); |
| struct bch_dev_usage *p; |
| unsigned b; |
| |
| for (b = 0; b < BCH_DATA_NR; b++) |
| copy_dev_field(buckets[b], |
| "buckets[%s]", bch2_data_types[b]); |
| copy_dev_field(buckets_alloc, "buckets_alloc"); |
| copy_dev_field(buckets_ec, "buckets_ec"); |
| |
| for (b = 0; b < BCH_DATA_NR; b++) |
| copy_dev_field(sectors[b], |
| "sectors[%s]", bch2_data_types[b]); |
| copy_dev_field(sectors_fragmented, |
| "sectors_fragmented"); |
| |
| for_each_possible_cpu(cpu) { |
| p = per_cpu_ptr(ca->usage[0], cpu); |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| preempt_disable(); |
| p = this_cpu_ptr(ca->usage[0]); |
| *p = dst; |
| preempt_enable(); |
| } |
| |
| { |
| struct bch_fs_usage dst = __bch2_fs_usage_read(c, 0); |
| struct bch_fs_usage src = __bch2_fs_usage_read(c, 1); |
| struct bch_fs_usage *p; |
| unsigned r, b; |
| |
| for (r = 0; r < BCH_REPLICAS_MAX; r++) { |
| for (b = 0; b < BCH_DATA_NR; b++) |
| copy_fs_field(replicas[r].data[b], |
| "replicas[%i].data[%s]", |
| r, bch2_data_types[b]); |
| copy_fs_field(replicas[r].ec_data, |
| "replicas[%i].ec_data", r); |
| copy_fs_field(replicas[r].persistent_reserved, |
| "replicas[%i].persistent_reserved", r); |
| } |
| |
| for (b = 0; b < BCH_DATA_NR; b++) |
| copy_fs_field(buckets[b], |
| "buckets[%s]", bch2_data_types[b]); |
| copy_fs_field(nr_inodes, "nr_inodes"); |
| |
| for_each_possible_cpu(cpu) { |
| p = per_cpu_ptr(c->usage[0], cpu); |
| memset(p, 0, offsetof(typeof(*p), online_reserved)); |
| } |
| |
| preempt_disable(); |
| p = this_cpu_ptr(c->usage[0]); |
| memcpy(p, &dst, offsetof(typeof(*p), online_reserved)); |
| preempt_enable(); |
| } |
| out: |
| percpu_up_write(&c->usage_lock); |
| |
| #undef copy_fs_field |
| #undef copy_dev_field |
| #undef copy_bucket_field |
| #undef copy_stripe_field |
| #undef copy_field |
| } |
| |
| static int bch2_gc_start(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned i; |
| |
| /* |
| * indicate to stripe code that we need to allocate for the gc stripes |
| * radix tree, too |
| */ |
| gc_pos_set(c, gc_phase(GC_PHASE_START)); |
| |
| BUG_ON(c->usage[1]); |
| |
| c->usage[1] = alloc_percpu(struct bch_fs_usage); |
| if (!c->usage[1]) |
| return -ENOMEM; |
| |
| for_each_member_device(ca, c, i) { |
| BUG_ON(ca->buckets[1]); |
| BUG_ON(ca->usage[1]); |
| |
| ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) + |
| ca->mi.nbuckets * sizeof(struct bucket), |
| GFP_KERNEL|__GFP_ZERO); |
| if (!ca->buckets[1]) { |
| percpu_ref_put(&ca->ref); |
| return -ENOMEM; |
| } |
| |
| ca->usage[1] = alloc_percpu(struct bch_dev_usage); |
| if (!ca->usage[1]) { |
| percpu_ref_put(&ca->ref); |
| return -ENOMEM; |
| } |
| } |
| |
| percpu_down_write(&c->usage_lock); |
| |
| for_each_member_device(ca, c, i) { |
| struct bucket_array *dst = __bucket_array(ca, 1); |
| struct bucket_array *src = __bucket_array(ca, 0); |
| size_t b; |
| |
| dst->first_bucket = src->first_bucket; |
| dst->nbuckets = src->nbuckets; |
| |
| for (b = 0; b < src->nbuckets; b++) |
| dst->b[b]._mark.gen = src->b[b].mark.gen; |
| }; |
| |
| percpu_up_write(&c->usage_lock); |
| |
| return bch2_ec_mem_alloc(c, true); |
| } |
| |
| /** |
| * bch2_gc - walk _all_ references to buckets, and recompute them: |
| * |
| * Order matters here: |
| * - Concurrent GC relies on the fact that we have a total ordering for |
| * everything that GC walks - see gc_will_visit_node(), |
| * gc_will_visit_root() |
| * |
| * - also, references move around in the course of index updates and |
| * various other crap: everything needs to agree on the ordering |
| * references are allowed to move around in - e.g., we're allowed to |
| * start with a reference owned by an open_bucket (the allocator) and |
| * move it to the btree, but not the reverse. |
| * |
| * This is necessary to ensure that gc doesn't miss references that |
| * move around - if references move backwards in the ordering GC |
| * uses, GC could skip past them |
| */ |
| int bch2_gc(struct bch_fs *c, struct list_head *journal, bool initial) |
| { |
| struct bch_dev *ca; |
| u64 start_time = local_clock(); |
| unsigned i, iter = 0; |
| int ret; |
| |
| trace_gc_start(c); |
| |
| down_write(&c->gc_lock); |
| again: |
| ret = bch2_gc_start(c); |
| if (ret) |
| goto out; |
| |
| bch2_mark_superblocks(c); |
| |
| ret = bch2_gc_btrees(c, journal, initial); |
| if (ret) |
| goto out; |
| |
| bch2_mark_pending_btree_node_frees(c); |
| bch2_mark_allocator_buckets(c); |
| |
| c->gc_count++; |
| out: |
| if (!ret && test_bit(BCH_FS_FIXED_GENS, &c->flags)) { |
| /* |
| * XXX: make sure gens we fixed got saved |
| */ |
| if (iter++ <= 2) { |
| bch_info(c, "Fixed gens, restarting mark and sweep:"); |
| clear_bit(BCH_FS_FIXED_GENS, &c->flags); |
| goto again; |
| } |
| |
| bch_info(c, "Unable to fix bucket gens, looping"); |
| ret = -EINVAL; |
| } |
| |
| if (!ret) |
| bch2_gc_done(c, initial); |
| |
| /* Indicates that gc is no longer in progress: */ |
| __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); |
| |
| bch2_gc_free(c); |
| up_write(&c->gc_lock); |
| |
| if (!ret && initial) |
| set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags); |
| |
| trace_gc_end(c); |
| bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); |
| |
| /* |
| * Wake up allocator in case it was waiting for buckets |
| * because of not being able to inc gens |
| */ |
| for_each_member_device(ca, c, i) |
| bch2_wake_allocator(ca); |
| |
| /* |
| * At startup, allocations can happen directly instead of via the |
| * allocator thread - issue wakeup in case they blocked on gc_lock: |
| */ |
| closure_wake_up(&c->freelist_wait); |
| return ret; |
| } |
| |
| /* Btree coalescing */ |
| |
| static void recalc_packed_keys(struct btree *b) |
| { |
| struct bset *i = btree_bset_first(b); |
| struct bkey_packed *k; |
| |
| memset(&b->nr, 0, sizeof(b->nr)); |
| |
| BUG_ON(b->nsets != 1); |
| |
| vstruct_for_each(i, k) |
| btree_keys_account_key_add(&b->nr, 0, k); |
| } |
| |
| static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter, |
| struct btree *old_nodes[GC_MERGE_NODES]) |
| { |
| struct btree *parent = btree_node_parent(iter, old_nodes[0]); |
| unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0; |
| unsigned blocks = btree_blocks(c) * 2 / 3; |
| struct btree *new_nodes[GC_MERGE_NODES]; |
| struct btree_update *as; |
| struct keylist keylist; |
| struct bkey_format_state format_state; |
| struct bkey_format new_format; |
| |
| memset(new_nodes, 0, sizeof(new_nodes)); |
| bch2_keylist_init(&keylist, NULL); |
| |
| /* Count keys that are not deleted */ |
| for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++) |
| u64s += old_nodes[i]->nr.live_u64s; |
| |
| nr_old_nodes = nr_new_nodes = i; |
| |
| /* Check if all keys in @old_nodes could fit in one fewer node */ |
| if (nr_old_nodes <= 1 || |
| __vstruct_blocks(struct btree_node, c->block_bits, |
| DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks) |
| return; |
| |
| /* Find a format that all keys in @old_nodes can pack into */ |
| bch2_bkey_format_init(&format_state); |
| |
| for (i = 0; i < nr_old_nodes; i++) |
| __bch2_btree_calc_format(&format_state, old_nodes[i]); |
| |
| new_format = bch2_bkey_format_done(&format_state); |
| |
| /* Check if repacking would make any nodes too big to fit */ |
| for (i = 0; i < nr_old_nodes; i++) |
| if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) { |
| trace_btree_gc_coalesce_fail(c, |
| BTREE_GC_COALESCE_FAIL_FORMAT_FITS); |
| return; |
| } |
| |
| if (bch2_keylist_realloc(&keylist, NULL, 0, |
| (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) { |
| trace_btree_gc_coalesce_fail(c, |
| BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC); |
| return; |
| } |
| |
| as = bch2_btree_update_start(c, iter->btree_id, |
| btree_update_reserve_required(c, parent) + nr_old_nodes, |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_USE_RESERVE, |
| NULL); |
| if (IS_ERR(as)) { |
| trace_btree_gc_coalesce_fail(c, |
| BTREE_GC_COALESCE_FAIL_RESERVE_GET); |
| bch2_keylist_free(&keylist, NULL); |
| return; |
| } |
| |
| trace_btree_gc_coalesce(c, old_nodes[0]); |
| |
| for (i = 0; i < nr_old_nodes; i++) |
| bch2_btree_interior_update_will_free_node(as, old_nodes[i]); |
| |
| /* Repack everything with @new_format and sort down to one bset */ |
| for (i = 0; i < nr_old_nodes; i++) |
| new_nodes[i] = |
| __bch2_btree_node_alloc_replacement(as, old_nodes[i], |
| new_format); |
| |
| /* |
| * Conceptually we concatenate the nodes together and slice them |
| * up at different boundaries. |
| */ |
| for (i = nr_new_nodes - 1; i > 0; --i) { |
| struct btree *n1 = new_nodes[i]; |
| struct btree *n2 = new_nodes[i - 1]; |
| |
| struct bset *s1 = btree_bset_first(n1); |
| struct bset *s2 = btree_bset_first(n2); |
| struct bkey_packed *k, *last = NULL; |
| |
| /* Calculate how many keys from @n2 we could fit inside @n1 */ |
| u64s = 0; |
| |
| for (k = s2->start; |
| k < vstruct_last(s2) && |
| vstruct_blocks_plus(n1->data, c->block_bits, |
| u64s + k->u64s) <= blocks; |
| k = bkey_next(k)) { |
| last = k; |
| u64s += k->u64s; |
| } |
| |
| if (u64s == le16_to_cpu(s2->u64s)) { |
| /* n2 fits entirely in n1 */ |
| n1->key.k.p = n1->data->max_key = n2->data->max_key; |
| |
| memcpy_u64s(vstruct_last(s1), |
| s2->start, |
| le16_to_cpu(s2->u64s)); |
| le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s)); |
| |
| set_btree_bset_end(n1, n1->set); |
| |
| six_unlock_write(&n2->lock); |
| bch2_btree_node_free_never_inserted(c, n2); |
| six_unlock_intent(&n2->lock); |
| |
| memmove(new_nodes + i - 1, |
| new_nodes + i, |
| sizeof(new_nodes[0]) * (nr_new_nodes - i)); |
| new_nodes[--nr_new_nodes] = NULL; |
| } else if (u64s) { |
| /* move part of n2 into n1 */ |
| n1->key.k.p = n1->data->max_key = |
| bkey_unpack_pos(n1, last); |
| |
| n2->data->min_key = |
| btree_type_successor(iter->btree_id, |
| n1->data->max_key); |
| |
| memcpy_u64s(vstruct_last(s1), |
| s2->start, u64s); |
| le16_add_cpu(&s1->u64s, u64s); |
| |
| memmove(s2->start, |
| vstruct_idx(s2, u64s), |
| (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64)); |
| s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s); |
| |
| set_btree_bset_end(n1, n1->set); |
| set_btree_bset_end(n2, n2->set); |
| } |
| } |
| |
| for (i = 0; i < nr_new_nodes; i++) { |
| struct btree *n = new_nodes[i]; |
| |
| recalc_packed_keys(n); |
| btree_node_reset_sib_u64s(n); |
| |
| bch2_btree_build_aux_trees(n); |
| six_unlock_write(&n->lock); |
| |
| bch2_btree_node_write(c, n, SIX_LOCK_intent); |
| } |
| |
| /* |
| * The keys for the old nodes get deleted. We don't want to insert keys |
| * that compare equal to the keys for the new nodes we'll also be |
| * inserting - we can't because keys on a keylist must be strictly |
| * greater than the previous keys, and we also don't need to since the |
| * key for the new node will serve the same purpose (overwriting the key |
| * for the old node). |
| */ |
| for (i = 0; i < nr_old_nodes; i++) { |
| struct bkey_i delete; |
| unsigned j; |
| |
| for (j = 0; j < nr_new_nodes; j++) |
| if (!bkey_cmp(old_nodes[i]->key.k.p, |
| new_nodes[j]->key.k.p)) |
| goto next; |
| |
| bkey_init(&delete.k); |
| delete.k.p = old_nodes[i]->key.k.p; |
| bch2_keylist_add_in_order(&keylist, &delete); |
| next: |
| i = i; |
| } |
| |
| /* |
| * Keys for the new nodes get inserted: bch2_btree_insert_keys() only |
| * does the lookup once and thus expects the keys to be in sorted order |
| * so we have to make sure the new keys are correctly ordered with |
| * respect to the deleted keys added in the previous loop |
| */ |
| for (i = 0; i < nr_new_nodes; i++) |
| bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key); |
| |
| /* Insert the newly coalesced nodes */ |
| bch2_btree_insert_node(as, parent, iter, &keylist, 0); |
| |
| BUG_ON(!bch2_keylist_empty(&keylist)); |
| |
| BUG_ON(iter->l[old_nodes[0]->level].b != old_nodes[0]); |
| |
| bch2_btree_iter_node_replace(iter, new_nodes[0]); |
| |
| for (i = 0; i < nr_new_nodes; i++) |
| bch2_open_buckets_put(c, &new_nodes[i]->ob); |
| |
| /* Free the old nodes and update our sliding window */ |
| for (i = 0; i < nr_old_nodes; i++) { |
| bch2_btree_node_free_inmem(c, old_nodes[i], iter); |
| |
| /* |
| * the index update might have triggered a split, in which case |
| * the nodes we coalesced - the new nodes we just created - |
| * might not be sibling nodes anymore - don't add them to the |
| * sliding window (except the first): |
| */ |
| if (!i) { |
| old_nodes[i] = new_nodes[i]; |
| } else { |
| old_nodes[i] = NULL; |
| if (new_nodes[i]) |
| six_unlock_intent(&new_nodes[i]->lock); |
| } |
| } |
| |
| bch2_btree_update_done(as); |
| bch2_keylist_free(&keylist, NULL); |
| } |
| |
| static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id) |
| { |
| struct btree_iter iter; |
| struct btree *b; |
| bool kthread = (current->flags & PF_KTHREAD) != 0; |
| unsigned i; |
| |
| /* Sliding window of adjacent btree nodes */ |
| struct btree *merge[GC_MERGE_NODES]; |
| u32 lock_seq[GC_MERGE_NODES]; |
| |
| /* |
| * XXX: We don't have a good way of positively matching on sibling nodes |
| * that have the same parent - this code works by handling the cases |
| * where they might not have the same parent, and is thus fragile. Ugh. |
| * |
| * Perhaps redo this to use multiple linked iterators? |
| */ |
| memset(merge, 0, sizeof(merge)); |
| |
| __for_each_btree_node(&iter, c, btree_id, POS_MIN, |
| BTREE_MAX_DEPTH, 0, |
| BTREE_ITER_PREFETCH, b) { |
| memmove(merge + 1, merge, |
| sizeof(merge) - sizeof(merge[0])); |
| memmove(lock_seq + 1, lock_seq, |
| sizeof(lock_seq) - sizeof(lock_seq[0])); |
| |
| merge[0] = b; |
| |
| for (i = 1; i < GC_MERGE_NODES; i++) { |
| if (!merge[i] || |
| !six_relock_intent(&merge[i]->lock, lock_seq[i])) |
| break; |
| |
| if (merge[i]->level != merge[0]->level) { |
| six_unlock_intent(&merge[i]->lock); |
| break; |
| } |
| } |
| memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0])); |
| |
| bch2_coalesce_nodes(c, &iter, merge); |
| |
| for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) { |
| lock_seq[i] = merge[i]->lock.state.seq; |
| six_unlock_intent(&merge[i]->lock); |
| } |
| |
| lock_seq[0] = merge[0]->lock.state.seq; |
| |
| if (kthread && kthread_should_stop()) { |
| bch2_btree_iter_unlock(&iter); |
| return -ESHUTDOWN; |
| } |
| |
| bch2_btree_iter_cond_resched(&iter); |
| |
| /* |
| * If the parent node wasn't relocked, it might have been split |
| * and the nodes in our sliding window might not have the same |
| * parent anymore - blow away the sliding window: |
| */ |
| if (btree_iter_node(&iter, iter.level + 1) && |
| !btree_node_intent_locked(&iter, iter.level + 1)) |
| memset(merge + 1, 0, |
| (GC_MERGE_NODES - 1) * sizeof(merge[0])); |
| } |
| return bch2_btree_iter_unlock(&iter); |
| } |
| |
| /** |
| * bch_coalesce - coalesce adjacent nodes with low occupancy |
| */ |
| void bch2_coalesce(struct bch_fs *c) |
| { |
| enum btree_id id; |
| |
| down_read(&c->gc_lock); |
| trace_gc_coalesce_start(c); |
| |
| for (id = 0; id < BTREE_ID_NR; id++) { |
| int ret = c->btree_roots[id].b |
| ? bch2_coalesce_btree(c, id) |
| : 0; |
| |
| if (ret) { |
| if (ret != -ESHUTDOWN) |
| bch_err(c, "btree coalescing failed: %d", ret); |
| return; |
| } |
| } |
| |
| trace_gc_coalesce_end(c); |
| up_read(&c->gc_lock); |
| } |
| |
| static int bch2_gc_thread(void *arg) |
| { |
| struct bch_fs *c = arg; |
| struct io_clock *clock = &c->io_clock[WRITE]; |
| unsigned long last = atomic_long_read(&clock->now); |
| unsigned last_kick = atomic_read(&c->kick_gc); |
| int ret; |
| |
| set_freezable(); |
| |
| while (1) { |
| while (1) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| if (kthread_should_stop()) { |
| __set_current_state(TASK_RUNNING); |
| return 0; |
| } |
| |
| if (atomic_read(&c->kick_gc) != last_kick) |
| break; |
| |
| if (c->btree_gc_periodic) { |
| unsigned long next = last + c->capacity / 16; |
| |
| if (atomic_long_read(&clock->now) >= next) |
| break; |
| |
| bch2_io_clock_schedule_timeout(clock, next); |
| } else { |
| schedule(); |
| } |
| |
| try_to_freeze(); |
| } |
| __set_current_state(TASK_RUNNING); |
| |
| last = atomic_long_read(&clock->now); |
| last_kick = atomic_read(&c->kick_gc); |
| |
| ret = bch2_gc(c, NULL, false); |
| if (ret) |
| bch_err(c, "btree gc failed: %i", ret); |
| |
| debug_check_no_locks_held(); |
| } |
| |
| return 0; |
| } |
| |
| void bch2_gc_thread_stop(struct bch_fs *c) |
| { |
| struct task_struct *p; |
| |
| p = c->gc_thread; |
| c->gc_thread = NULL; |
| |
| if (p) { |
| kthread_stop(p); |
| put_task_struct(p); |
| } |
| } |
| |
| int bch2_gc_thread_start(struct bch_fs *c) |
| { |
| struct task_struct *p; |
| |
| BUG_ON(c->gc_thread); |
| |
| p = kthread_create(bch2_gc_thread, c, "bch_gc"); |
| if (IS_ERR(p)) |
| return PTR_ERR(p); |
| |
| get_task_struct(p); |
| c->gc_thread = p; |
| wake_up_process(p); |
| return 0; |
| } |
| |
| /* Initial GC computes bucket marks during startup */ |
| |
| int bch2_initial_gc(struct bch_fs *c, struct list_head *journal) |
| { |
| int ret = bch2_gc(c, journal, true); |
| |
| /* |
| * Skip past versions that might have possibly been used (as nonces), |
| * but hadn't had their pointers written: |
| */ |
| if (c->sb.encryption_type) |
| atomic64_add(1 << 16, &c->key_version); |
| |
| return ret; |
| } |