| /* |
| * linux/drivers/mtd/onenand/onenand_base.c |
| * |
| * Copyright © 2005-2009 Samsung Electronics |
| * Copyright © 2007 Nokia Corporation |
| * |
| * Kyungmin Park <kyungmin.park@samsung.com> |
| * |
| * Credits: |
| * Adrian Hunter <ext-adrian.hunter@nokia.com>: |
| * auto-placement support, read-while load support, various fixes |
| * |
| * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com> |
| * Flex-OneNAND support |
| * Amul Kumar Saha <amul.saha at samsung.com> |
| * OTP support |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/jiffies.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/onenand.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <asm/io.h> |
| |
| /* |
| * Multiblock erase if number of blocks to erase is 2 or more. |
| * Maximum number of blocks for simultaneous erase is 64. |
| */ |
| #define MB_ERASE_MIN_BLK_COUNT 2 |
| #define MB_ERASE_MAX_BLK_COUNT 64 |
| |
| /* Default Flex-OneNAND boundary and lock respectively */ |
| static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 }; |
| |
| module_param_array(flex_bdry, int, NULL, 0400); |
| MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND" |
| "Syntax:flex_bdry=DIE_BDRY,LOCK,..." |
| "DIE_BDRY: SLC boundary of the die" |
| "LOCK: Locking information for SLC boundary" |
| " : 0->Set boundary in unlocked status" |
| " : 1->Set boundary in locked status"); |
| |
| /* Default OneNAND/Flex-OneNAND OTP options*/ |
| static int otp; |
| |
| module_param(otp, int, 0400); |
| MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP" |
| "Syntax : otp=LOCK_TYPE" |
| "LOCK_TYPE : Keys issued, for specific OTP Lock type" |
| " : 0 -> Default (No Blocks Locked)" |
| " : 1 -> OTP Block lock" |
| " : 2 -> 1st Block lock" |
| " : 3 -> BOTH OTP Block and 1st Block lock"); |
| |
| /* |
| * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page |
| * For now, we expose only 64 out of 80 ecc bytes |
| */ |
| static struct nand_ecclayout flexonenand_oob_128 = { |
| .eccbytes = 64, |
| .eccpos = { |
| 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, |
| 102, 103, 104, 105 |
| }, |
| .oobfree = { |
| {2, 4}, {18, 4}, {34, 4}, {50, 4}, |
| {66, 4}, {82, 4}, {98, 4}, {114, 4} |
| } |
| }; |
| |
| /* |
| * onenand_oob_128 - oob info for OneNAND with 4KB page |
| * |
| * Based on specification: |
| * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010 |
| * |
| * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout) |
| * |
| * oobfree uses the spare area fields marked as |
| * "Managed by internal ECC logic for Logical Sector Number area" |
| */ |
| static struct nand_ecclayout onenand_oob_128 = { |
| .eccbytes = 64, |
| .eccpos = { |
| 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 87, 88, 89, 90, 91, 92, 93, 94, 95, |
| 103, 104, 105, 106, 107, 108, 109, 110, 111, |
| 119 |
| }, |
| .oobfree = { |
| {2, 3}, {18, 3}, {34, 3}, {50, 3}, |
| {66, 3}, {82, 3}, {98, 3}, {114, 3} |
| } |
| }; |
| |
| /** |
| * onenand_oob_64 - oob info for large (2KB) page |
| */ |
| static struct nand_ecclayout onenand_oob_64 = { |
| .eccbytes = 20, |
| .eccpos = { |
| 8, 9, 10, 11, 12, |
| 24, 25, 26, 27, 28, |
| 40, 41, 42, 43, 44, |
| 56, 57, 58, 59, 60, |
| }, |
| .oobfree = { |
| {2, 3}, {14, 2}, {18, 3}, {30, 2}, |
| {34, 3}, {46, 2}, {50, 3}, {62, 2} |
| } |
| }; |
| |
| /** |
| * onenand_oob_32 - oob info for middle (1KB) page |
| */ |
| static struct nand_ecclayout onenand_oob_32 = { |
| .eccbytes = 10, |
| .eccpos = { |
| 8, 9, 10, 11, 12, |
| 24, 25, 26, 27, 28, |
| }, |
| .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} } |
| }; |
| |
| static const unsigned char ffchars[] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ |
| }; |
| |
| /** |
| * onenand_readw - [OneNAND Interface] Read OneNAND register |
| * @param addr address to read |
| * |
| * Read OneNAND register |
| */ |
| static unsigned short onenand_readw(void __iomem *addr) |
| { |
| return readw(addr); |
| } |
| |
| /** |
| * onenand_writew - [OneNAND Interface] Write OneNAND register with value |
| * @param value value to write |
| * @param addr address to write |
| * |
| * Write OneNAND register with value |
| */ |
| static void onenand_writew(unsigned short value, void __iomem *addr) |
| { |
| writew(value, addr); |
| } |
| |
| /** |
| * onenand_block_address - [DEFAULT] Get block address |
| * @param this onenand chip data structure |
| * @param block the block |
| * @return translated block address if DDP, otherwise same |
| * |
| * Setup Start Address 1 Register (F100h) |
| */ |
| static int onenand_block_address(struct onenand_chip *this, int block) |
| { |
| /* Device Flash Core select, NAND Flash Block Address */ |
| if (block & this->density_mask) |
| return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); |
| |
| return block; |
| } |
| |
| /** |
| * onenand_bufferram_address - [DEFAULT] Get bufferram address |
| * @param this onenand chip data structure |
| * @param block the block |
| * @return set DBS value if DDP, otherwise 0 |
| * |
| * Setup Start Address 2 Register (F101h) for DDP |
| */ |
| static int onenand_bufferram_address(struct onenand_chip *this, int block) |
| { |
| /* Device BufferRAM Select */ |
| if (block & this->density_mask) |
| return ONENAND_DDP_CHIP1; |
| |
| return ONENAND_DDP_CHIP0; |
| } |
| |
| /** |
| * onenand_page_address - [DEFAULT] Get page address |
| * @param page the page address |
| * @param sector the sector address |
| * @return combined page and sector address |
| * |
| * Setup Start Address 8 Register (F107h) |
| */ |
| static int onenand_page_address(int page, int sector) |
| { |
| /* Flash Page Address, Flash Sector Address */ |
| int fpa, fsa; |
| |
| fpa = page & ONENAND_FPA_MASK; |
| fsa = sector & ONENAND_FSA_MASK; |
| |
| return ((fpa << ONENAND_FPA_SHIFT) | fsa); |
| } |
| |
| /** |
| * onenand_buffer_address - [DEFAULT] Get buffer address |
| * @param dataram1 DataRAM index |
| * @param sectors the sector address |
| * @param count the number of sectors |
| * @return the start buffer value |
| * |
| * Setup Start Buffer Register (F200h) |
| */ |
| static int onenand_buffer_address(int dataram1, int sectors, int count) |
| { |
| int bsa, bsc; |
| |
| /* BufferRAM Sector Address */ |
| bsa = sectors & ONENAND_BSA_MASK; |
| |
| if (dataram1) |
| bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ |
| else |
| bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ |
| |
| /* BufferRAM Sector Count */ |
| bsc = count & ONENAND_BSC_MASK; |
| |
| return ((bsa << ONENAND_BSA_SHIFT) | bsc); |
| } |
| |
| /** |
| * flexonenand_block- For given address return block number |
| * @param this - OneNAND device structure |
| * @param addr - Address for which block number is needed |
| */ |
| static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr) |
| { |
| unsigned boundary, blk, die = 0; |
| |
| if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { |
| die = 1; |
| addr -= this->diesize[0]; |
| } |
| |
| boundary = this->boundary[die]; |
| |
| blk = addr >> (this->erase_shift - 1); |
| if (blk > boundary) |
| blk = (blk + boundary + 1) >> 1; |
| |
| blk += die ? this->density_mask : 0; |
| return blk; |
| } |
| |
| inline unsigned onenand_block(struct onenand_chip *this, loff_t addr) |
| { |
| if (!FLEXONENAND(this)) |
| return addr >> this->erase_shift; |
| return flexonenand_block(this, addr); |
| } |
| |
| /** |
| * flexonenand_addr - Return address of the block |
| * @this: OneNAND device structure |
| * @block: Block number on Flex-OneNAND |
| * |
| * Return address of the block |
| */ |
| static loff_t flexonenand_addr(struct onenand_chip *this, int block) |
| { |
| loff_t ofs = 0; |
| int die = 0, boundary; |
| |
| if (ONENAND_IS_DDP(this) && block >= this->density_mask) { |
| block -= this->density_mask; |
| die = 1; |
| ofs = this->diesize[0]; |
| } |
| |
| boundary = this->boundary[die]; |
| ofs += (loff_t)block << (this->erase_shift - 1); |
| if (block > (boundary + 1)) |
| ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1); |
| return ofs; |
| } |
| |
| loff_t onenand_addr(struct onenand_chip *this, int block) |
| { |
| if (!FLEXONENAND(this)) |
| return (loff_t)block << this->erase_shift; |
| return flexonenand_addr(this, block); |
| } |
| EXPORT_SYMBOL(onenand_addr); |
| |
| /** |
| * onenand_get_density - [DEFAULT] Get OneNAND density |
| * @param dev_id OneNAND device ID |
| * |
| * Get OneNAND density from device ID |
| */ |
| static inline int onenand_get_density(int dev_id) |
| { |
| int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; |
| return (density & ONENAND_DEVICE_DENSITY_MASK); |
| } |
| |
| /** |
| * flexonenand_region - [Flex-OneNAND] Return erase region of addr |
| * @param mtd MTD device structure |
| * @param addr address whose erase region needs to be identified |
| */ |
| int flexonenand_region(struct mtd_info *mtd, loff_t addr) |
| { |
| int i; |
| |
| for (i = 0; i < mtd->numeraseregions; i++) |
| if (addr < mtd->eraseregions[i].offset) |
| break; |
| return i - 1; |
| } |
| EXPORT_SYMBOL(flexonenand_region); |
| |
| /** |
| * onenand_command - [DEFAULT] Send command to OneNAND device |
| * @param mtd MTD device structure |
| * @param cmd the command to be sent |
| * @param addr offset to read from or write to |
| * @param len number of bytes to read or write |
| * |
| * Send command to OneNAND device. This function is used for middle/large page |
| * devices (1KB/2KB Bytes per page) |
| */ |
| static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int value, block, page; |
| |
| /* Address translation */ |
| switch (cmd) { |
| case ONENAND_CMD_UNLOCK: |
| case ONENAND_CMD_LOCK: |
| case ONENAND_CMD_LOCK_TIGHT: |
| case ONENAND_CMD_UNLOCK_ALL: |
| block = -1; |
| page = -1; |
| break; |
| |
| case FLEXONENAND_CMD_PI_ACCESS: |
| /* addr contains die index */ |
| block = addr * this->density_mask; |
| page = -1; |
| break; |
| |
| case ONENAND_CMD_ERASE: |
| case ONENAND_CMD_MULTIBLOCK_ERASE: |
| case ONENAND_CMD_ERASE_VERIFY: |
| case ONENAND_CMD_BUFFERRAM: |
| case ONENAND_CMD_OTP_ACCESS: |
| block = onenand_block(this, addr); |
| page = -1; |
| break; |
| |
| case FLEXONENAND_CMD_READ_PI: |
| cmd = ONENAND_CMD_READ; |
| block = addr * this->density_mask; |
| page = 0; |
| break; |
| |
| default: |
| block = onenand_block(this, addr); |
| if (FLEXONENAND(this)) |
| page = (int) (addr - onenand_addr(this, block))>>\ |
| this->page_shift; |
| else |
| page = (int) (addr >> this->page_shift); |
| if (ONENAND_IS_2PLANE(this)) { |
| /* Make the even block number */ |
| block &= ~1; |
| /* Is it the odd plane? */ |
| if (addr & this->writesize) |
| block++; |
| page >>= 1; |
| } |
| page &= this->page_mask; |
| break; |
| } |
| |
| /* NOTE: The setting order of the registers is very important! */ |
| if (cmd == ONENAND_CMD_BUFFERRAM) { |
| /* Select DataRAM for DDP */ |
| value = onenand_bufferram_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); |
| |
| if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) |
| /* It is always BufferRAM0 */ |
| ONENAND_SET_BUFFERRAM0(this); |
| else |
| /* Switch to the next data buffer */ |
| ONENAND_SET_NEXT_BUFFERRAM(this); |
| |
| return 0; |
| } |
| |
| if (block != -1) { |
| /* Write 'DFS, FBA' of Flash */ |
| value = onenand_block_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); |
| |
| /* Select DataRAM for DDP */ |
| value = onenand_bufferram_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); |
| } |
| |
| if (page != -1) { |
| /* Now we use page size operation */ |
| int sectors = 0, count = 0; |
| int dataram; |
| |
| switch (cmd) { |
| case FLEXONENAND_CMD_RECOVER_LSB: |
| case ONENAND_CMD_READ: |
| case ONENAND_CMD_READOOB: |
| if (ONENAND_IS_4KB_PAGE(this)) |
| /* It is always BufferRAM0 */ |
| dataram = ONENAND_SET_BUFFERRAM0(this); |
| else |
| dataram = ONENAND_SET_NEXT_BUFFERRAM(this); |
| break; |
| |
| default: |
| if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) |
| cmd = ONENAND_CMD_2X_PROG; |
| dataram = ONENAND_CURRENT_BUFFERRAM(this); |
| break; |
| } |
| |
| /* Write 'FPA, FSA' of Flash */ |
| value = onenand_page_address(page, sectors); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); |
| |
| /* Write 'BSA, BSC' of DataRAM */ |
| value = onenand_buffer_address(dataram, sectors, count); |
| this->write_word(value, this->base + ONENAND_REG_START_BUFFER); |
| } |
| |
| /* Interrupt clear */ |
| this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); |
| |
| /* Write command */ |
| this->write_word(cmd, this->base + ONENAND_REG_COMMAND); |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_read_ecc - return ecc status |
| * @param this onenand chip structure |
| */ |
| static inline int onenand_read_ecc(struct onenand_chip *this) |
| { |
| int ecc, i, result = 0; |
| |
| if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this)) |
| return this->read_word(this->base + ONENAND_REG_ECC_STATUS); |
| |
| for (i = 0; i < 4; i++) { |
| ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2); |
| if (likely(!ecc)) |
| continue; |
| if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) |
| return ONENAND_ECC_2BIT_ALL; |
| else |
| result = ONENAND_ECC_1BIT_ALL; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * onenand_wait - [DEFAULT] wait until the command is done |
| * @param mtd MTD device structure |
| * @param state state to select the max. timeout value |
| * |
| * Wait for command done. This applies to all OneNAND command |
| * Read can take up to 30us, erase up to 2ms and program up to 350us |
| * according to general OneNAND specs |
| */ |
| static int onenand_wait(struct mtd_info *mtd, int state) |
| { |
| struct onenand_chip * this = mtd->priv; |
| unsigned long timeout; |
| unsigned int flags = ONENAND_INT_MASTER; |
| unsigned int interrupt = 0; |
| unsigned int ctrl; |
| |
| /* The 20 msec is enough */ |
| timeout = jiffies + msecs_to_jiffies(20); |
| while (time_before(jiffies, timeout)) { |
| interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); |
| |
| if (interrupt & flags) |
| break; |
| |
| if (state != FL_READING && state != FL_PREPARING_ERASE) |
| cond_resched(); |
| } |
| /* To get correct interrupt status in timeout case */ |
| interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); |
| |
| ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); |
| |
| /* |
| * In the Spec. it checks the controller status first |
| * However if you get the correct information in case of |
| * power off recovery (POR) test, it should read ECC status first |
| */ |
| if (interrupt & ONENAND_INT_READ) { |
| int ecc = onenand_read_ecc(this); |
| if (ecc) { |
| if (ecc & ONENAND_ECC_2BIT_ALL) { |
| printk(KERN_ERR "%s: ECC error = 0x%04x\n", |
| __func__, ecc); |
| mtd->ecc_stats.failed++; |
| return -EBADMSG; |
| } else if (ecc & ONENAND_ECC_1BIT_ALL) { |
| printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n", |
| __func__, ecc); |
| mtd->ecc_stats.corrected++; |
| } |
| } |
| } else if (state == FL_READING) { |
| printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n", |
| __func__, ctrl, interrupt); |
| return -EIO; |
| } |
| |
| if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) { |
| printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n", |
| __func__, ctrl, interrupt); |
| return -EIO; |
| } |
| |
| if (!(interrupt & ONENAND_INT_MASTER)) { |
| printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n", |
| __func__, ctrl, interrupt); |
| return -EIO; |
| } |
| |
| /* If there's controller error, it's a real error */ |
| if (ctrl & ONENAND_CTRL_ERROR) { |
| printk(KERN_ERR "%s: controller error = 0x%04x\n", |
| __func__, ctrl); |
| if (ctrl & ONENAND_CTRL_LOCK) |
| printk(KERN_ERR "%s: it's locked error.\n", __func__); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * onenand_interrupt - [DEFAULT] onenand interrupt handler |
| * @param irq onenand interrupt number |
| * @param dev_id interrupt data |
| * |
| * complete the work |
| */ |
| static irqreturn_t onenand_interrupt(int irq, void *data) |
| { |
| struct onenand_chip *this = data; |
| |
| /* To handle shared interrupt */ |
| if (!this->complete.done) |
| complete(&this->complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * onenand_interrupt_wait - [DEFAULT] wait until the command is done |
| * @param mtd MTD device structure |
| * @param state state to select the max. timeout value |
| * |
| * Wait for command done. |
| */ |
| static int onenand_interrupt_wait(struct mtd_info *mtd, int state) |
| { |
| struct onenand_chip *this = mtd->priv; |
| |
| wait_for_completion(&this->complete); |
| |
| return onenand_wait(mtd, state); |
| } |
| |
| /* |
| * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait |
| * @param mtd MTD device structure |
| * @param state state to select the max. timeout value |
| * |
| * Try interrupt based wait (It is used one-time) |
| */ |
| static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state) |
| { |
| struct onenand_chip *this = mtd->priv; |
| unsigned long remain, timeout; |
| |
| /* We use interrupt wait first */ |
| this->wait = onenand_interrupt_wait; |
| |
| timeout = msecs_to_jiffies(100); |
| remain = wait_for_completion_timeout(&this->complete, timeout); |
| if (!remain) { |
| printk(KERN_INFO "OneNAND: There's no interrupt. " |
| "We use the normal wait\n"); |
| |
| /* Release the irq */ |
| free_irq(this->irq, this); |
| |
| this->wait = onenand_wait; |
| } |
| |
| return onenand_wait(mtd, state); |
| } |
| |
| /* |
| * onenand_setup_wait - [OneNAND Interface] setup onenand wait method |
| * @param mtd MTD device structure |
| * |
| * There's two method to wait onenand work |
| * 1. polling - read interrupt status register |
| * 2. interrupt - use the kernel interrupt method |
| */ |
| static void onenand_setup_wait(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int syscfg; |
| |
| init_completion(&this->complete); |
| |
| if (this->irq <= 0) { |
| this->wait = onenand_wait; |
| return; |
| } |
| |
| if (request_irq(this->irq, &onenand_interrupt, |
| IRQF_SHARED, "onenand", this)) { |
| /* If we can't get irq, use the normal wait */ |
| this->wait = onenand_wait; |
| return; |
| } |
| |
| /* Enable interrupt */ |
| syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); |
| syscfg |= ONENAND_SYS_CFG1_IOBE; |
| this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); |
| |
| this->wait = onenand_try_interrupt_wait; |
| } |
| |
| /** |
| * onenand_bufferram_offset - [DEFAULT] BufferRAM offset |
| * @param mtd MTD data structure |
| * @param area BufferRAM area |
| * @return offset given area |
| * |
| * Return BufferRAM offset given area |
| */ |
| static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) |
| { |
| struct onenand_chip *this = mtd->priv; |
| |
| if (ONENAND_CURRENT_BUFFERRAM(this)) { |
| /* Note: the 'this->writesize' is a real page size */ |
| if (area == ONENAND_DATARAM) |
| return this->writesize; |
| if (area == ONENAND_SPARERAM) |
| return mtd->oobsize; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area |
| * @param mtd MTD data structure |
| * @param area BufferRAM area |
| * @param buffer the databuffer to put/get data |
| * @param offset offset to read from or write to |
| * @param count number of bytes to read/write |
| * |
| * Read the BufferRAM area |
| */ |
| static int onenand_read_bufferram(struct mtd_info *mtd, int area, |
| unsigned char *buffer, int offset, size_t count) |
| { |
| struct onenand_chip *this = mtd->priv; |
| void __iomem *bufferram; |
| |
| bufferram = this->base + area; |
| |
| bufferram += onenand_bufferram_offset(mtd, area); |
| |
| if (ONENAND_CHECK_BYTE_ACCESS(count)) { |
| unsigned short word; |
| |
| /* Align with word(16-bit) size */ |
| count--; |
| |
| /* Read word and save byte */ |
| word = this->read_word(bufferram + offset + count); |
| buffer[count] = (word & 0xff); |
| } |
| |
| memcpy(buffer, bufferram + offset, count); |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode |
| * @param mtd MTD data structure |
| * @param area BufferRAM area |
| * @param buffer the databuffer to put/get data |
| * @param offset offset to read from or write to |
| * @param count number of bytes to read/write |
| * |
| * Read the BufferRAM area with Sync. Burst Mode |
| */ |
| static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area, |
| unsigned char *buffer, int offset, size_t count) |
| { |
| struct onenand_chip *this = mtd->priv; |
| void __iomem *bufferram; |
| |
| bufferram = this->base + area; |
| |
| bufferram += onenand_bufferram_offset(mtd, area); |
| |
| this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); |
| |
| if (ONENAND_CHECK_BYTE_ACCESS(count)) { |
| unsigned short word; |
| |
| /* Align with word(16-bit) size */ |
| count--; |
| |
| /* Read word and save byte */ |
| word = this->read_word(bufferram + offset + count); |
| buffer[count] = (word & 0xff); |
| } |
| |
| memcpy(buffer, bufferram + offset, count); |
| |
| this->mmcontrol(mtd, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area |
| * @param mtd MTD data structure |
| * @param area BufferRAM area |
| * @param buffer the databuffer to put/get data |
| * @param offset offset to read from or write to |
| * @param count number of bytes to read/write |
| * |
| * Write the BufferRAM area |
| */ |
| static int onenand_write_bufferram(struct mtd_info *mtd, int area, |
| const unsigned char *buffer, int offset, size_t count) |
| { |
| struct onenand_chip *this = mtd->priv; |
| void __iomem *bufferram; |
| |
| bufferram = this->base + area; |
| |
| bufferram += onenand_bufferram_offset(mtd, area); |
| |
| if (ONENAND_CHECK_BYTE_ACCESS(count)) { |
| unsigned short word; |
| int byte_offset; |
| |
| /* Align with word(16-bit) size */ |
| count--; |
| |
| /* Calculate byte access offset */ |
| byte_offset = offset + count; |
| |
| /* Read word and save byte */ |
| word = this->read_word(bufferram + byte_offset); |
| word = (word & ~0xff) | buffer[count]; |
| this->write_word(word, bufferram + byte_offset); |
| } |
| |
| memcpy(bufferram + offset, buffer, count); |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode |
| * @param mtd MTD data structure |
| * @param addr address to check |
| * @return blockpage address |
| * |
| * Get blockpage address at 2x program mode |
| */ |
| static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int blockpage, block, page; |
| |
| /* Calculate the even block number */ |
| block = (int) (addr >> this->erase_shift) & ~1; |
| /* Is it the odd plane? */ |
| if (addr & this->writesize) |
| block++; |
| page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; |
| blockpage = (block << 7) | page; |
| |
| return blockpage; |
| } |
| |
| /** |
| * onenand_check_bufferram - [GENERIC] Check BufferRAM information |
| * @param mtd MTD data structure |
| * @param addr address to check |
| * @return 1 if there are valid data, otherwise 0 |
| * |
| * Check bufferram if there is data we required |
| */ |
| static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int blockpage, found = 0; |
| unsigned int i; |
| |
| if (ONENAND_IS_2PLANE(this)) |
| blockpage = onenand_get_2x_blockpage(mtd, addr); |
| else |
| blockpage = (int) (addr >> this->page_shift); |
| |
| /* Is there valid data? */ |
| i = ONENAND_CURRENT_BUFFERRAM(this); |
| if (this->bufferram[i].blockpage == blockpage) |
| found = 1; |
| else { |
| /* Check another BufferRAM */ |
| i = ONENAND_NEXT_BUFFERRAM(this); |
| if (this->bufferram[i].blockpage == blockpage) { |
| ONENAND_SET_NEXT_BUFFERRAM(this); |
| found = 1; |
| } |
| } |
| |
| if (found && ONENAND_IS_DDP(this)) { |
| /* Select DataRAM for DDP */ |
| int block = onenand_block(this, addr); |
| int value = onenand_bufferram_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); |
| } |
| |
| return found; |
| } |
| |
| /** |
| * onenand_update_bufferram - [GENERIC] Update BufferRAM information |
| * @param mtd MTD data structure |
| * @param addr address to update |
| * @param valid valid flag |
| * |
| * Update BufferRAM information |
| */ |
| static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, |
| int valid) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int blockpage; |
| unsigned int i; |
| |
| if (ONENAND_IS_2PLANE(this)) |
| blockpage = onenand_get_2x_blockpage(mtd, addr); |
| else |
| blockpage = (int) (addr >> this->page_shift); |
| |
| /* Invalidate another BufferRAM */ |
| i = ONENAND_NEXT_BUFFERRAM(this); |
| if (this->bufferram[i].blockpage == blockpage) |
| this->bufferram[i].blockpage = -1; |
| |
| /* Update BufferRAM */ |
| i = ONENAND_CURRENT_BUFFERRAM(this); |
| if (valid) |
| this->bufferram[i].blockpage = blockpage; |
| else |
| this->bufferram[i].blockpage = -1; |
| } |
| |
| /** |
| * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information |
| * @param mtd MTD data structure |
| * @param addr start address to invalidate |
| * @param len length to invalidate |
| * |
| * Invalidate BufferRAM information |
| */ |
| static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, |
| unsigned int len) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int i; |
| loff_t end_addr = addr + len; |
| |
| /* Invalidate BufferRAM */ |
| for (i = 0; i < MAX_BUFFERRAM; i++) { |
| loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; |
| if (buf_addr >= addr && buf_addr < end_addr) |
| this->bufferram[i].blockpage = -1; |
| } |
| } |
| |
| /** |
| * onenand_get_device - [GENERIC] Get chip for selected access |
| * @param mtd MTD device structure |
| * @param new_state the state which is requested |
| * |
| * Get the device and lock it for exclusive access |
| */ |
| static int onenand_get_device(struct mtd_info *mtd, int new_state) |
| { |
| struct onenand_chip *this = mtd->priv; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| /* |
| * Grab the lock and see if the device is available |
| */ |
| while (1) { |
| spin_lock(&this->chip_lock); |
| if (this->state == FL_READY) { |
| this->state = new_state; |
| spin_unlock(&this->chip_lock); |
| if (new_state != FL_PM_SUSPENDED && this->enable) |
| this->enable(mtd); |
| break; |
| } |
| if (new_state == FL_PM_SUSPENDED) { |
| spin_unlock(&this->chip_lock); |
| return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; |
| } |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&this->wq, &wait); |
| spin_unlock(&this->chip_lock); |
| schedule(); |
| remove_wait_queue(&this->wq, &wait); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_release_device - [GENERIC] release chip |
| * @param mtd MTD device structure |
| * |
| * Deselect, release chip lock and wake up anyone waiting on the device |
| */ |
| static void onenand_release_device(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| |
| if (this->state != FL_PM_SUSPENDED && this->disable) |
| this->disable(mtd); |
| /* Release the chip */ |
| spin_lock(&this->chip_lock); |
| this->state = FL_READY; |
| wake_up(&this->wq); |
| spin_unlock(&this->chip_lock); |
| } |
| |
| /** |
| * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer |
| * @param mtd MTD device structure |
| * @param buf destination address |
| * @param column oob offset to read from |
| * @param thislen oob length to read |
| */ |
| static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column, |
| int thislen) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct nand_oobfree *free; |
| int readcol = column; |
| int readend = column + thislen; |
| int lastgap = 0; |
| unsigned int i; |
| uint8_t *oob_buf = this->oob_buf; |
| |
| free = this->ecclayout->oobfree; |
| for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { |
| if (readcol >= lastgap) |
| readcol += free->offset - lastgap; |
| if (readend >= lastgap) |
| readend += free->offset - lastgap; |
| lastgap = free->offset + free->length; |
| } |
| this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); |
| free = this->ecclayout->oobfree; |
| for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { |
| int free_end = free->offset + free->length; |
| if (free->offset < readend && free_end > readcol) { |
| int st = max_t(int,free->offset,readcol); |
| int ed = min_t(int,free_end,readend); |
| int n = ed - st; |
| memcpy(buf, oob_buf + st, n); |
| buf += n; |
| } else if (column == 0) |
| break; |
| } |
| return 0; |
| } |
| |
| /** |
| * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data |
| * @param mtd MTD device structure |
| * @param addr address to recover |
| * @param status return value from onenand_wait / onenand_bbt_wait |
| * |
| * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has |
| * lower page address and MSB page has higher page address in paired pages. |
| * If power off occurs during MSB page program, the paired LSB page data can |
| * become corrupt. LSB page recovery read is a way to read LSB page though page |
| * data are corrupted. When uncorrectable error occurs as a result of LSB page |
| * read after power up, issue LSB page recovery read. |
| */ |
| static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int i; |
| |
| /* Recovery is only for Flex-OneNAND */ |
| if (!FLEXONENAND(this)) |
| return status; |
| |
| /* check if we failed due to uncorrectable error */ |
| if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR) |
| return status; |
| |
| /* check if address lies in MLC region */ |
| i = flexonenand_region(mtd, addr); |
| if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) |
| return status; |
| |
| /* We are attempting to reread, so decrement stats.failed |
| * which was incremented by onenand_wait due to read failure |
| */ |
| printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n", |
| __func__); |
| mtd->ecc_stats.failed--; |
| |
| /* Issue the LSB page recovery command */ |
| this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); |
| return this->wait(mtd, FL_READING); |
| } |
| |
| /** |
| * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band |
| * @param mtd MTD device structure |
| * @param from offset to read from |
| * @param ops: oob operation description structure |
| * |
| * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram. |
| * So, read-while-load is not present. |
| */ |
| static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct mtd_ecc_stats stats; |
| size_t len = ops->len; |
| size_t ooblen = ops->ooblen; |
| u_char *buf = ops->datbuf; |
| u_char *oobbuf = ops->oobbuf; |
| int read = 0, column, thislen; |
| int oobread = 0, oobcolumn, thisooblen, oobsize; |
| int ret = 0; |
| int writesize = this->writesize; |
| |
| pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, |
| (int)len); |
| |
| if (ops->mode == MTD_OOB_AUTO) |
| oobsize = this->ecclayout->oobavail; |
| else |
| oobsize = mtd->oobsize; |
| |
| oobcolumn = from & (mtd->oobsize - 1); |
| |
| /* Do not allow reads past end of device */ |
| if (from + len > mtd->size) { |
| printk(KERN_ERR "%s: Attempt read beyond end of device\n", |
| __func__); |
| ops->retlen = 0; |
| ops->oobretlen = 0; |
| return -EINVAL; |
| } |
| |
| stats = mtd->ecc_stats; |
| |
| while (read < len) { |
| cond_resched(); |
| |
| thislen = min_t(int, writesize, len - read); |
| |
| column = from & (writesize - 1); |
| if (column + thislen > writesize) |
| thislen = writesize - column; |
| |
| if (!onenand_check_bufferram(mtd, from)) { |
| this->command(mtd, ONENAND_CMD_READ, from, writesize); |
| |
| ret = this->wait(mtd, FL_READING); |
| if (unlikely(ret)) |
| ret = onenand_recover_lsb(mtd, from, ret); |
| onenand_update_bufferram(mtd, from, !ret); |
| if (ret == -EBADMSG) |
| ret = 0; |
| if (ret) |
| break; |
| } |
| |
| this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); |
| if (oobbuf) { |
| thisooblen = oobsize - oobcolumn; |
| thisooblen = min_t(int, thisooblen, ooblen - oobread); |
| |
| if (ops->mode == MTD_OOB_AUTO) |
| onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); |
| else |
| this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); |
| oobread += thisooblen; |
| oobbuf += thisooblen; |
| oobcolumn = 0; |
| } |
| |
| read += thislen; |
| if (read == len) |
| break; |
| |
| from += thislen; |
| buf += thislen; |
| } |
| |
| /* |
| * Return success, if no ECC failures, else -EBADMSG |
| * fs driver will take care of that, because |
| * retlen == desired len and result == -EBADMSG |
| */ |
| ops->retlen = read; |
| ops->oobretlen = oobread; |
| |
| if (ret) |
| return ret; |
| |
| if (mtd->ecc_stats.failed - stats.failed) |
| return -EBADMSG; |
| |
| return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; |
| } |
| |
| /** |
| * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band |
| * @param mtd MTD device structure |
| * @param from offset to read from |
| * @param ops: oob operation description structure |
| * |
| * OneNAND read main and/or out-of-band data |
| */ |
| static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct mtd_ecc_stats stats; |
| size_t len = ops->len; |
| size_t ooblen = ops->ooblen; |
| u_char *buf = ops->datbuf; |
| u_char *oobbuf = ops->oobbuf; |
| int read = 0, column, thislen; |
| int oobread = 0, oobcolumn, thisooblen, oobsize; |
| int ret = 0, boundary = 0; |
| int writesize = this->writesize; |
| |
| pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, |
| (int)len); |
| |
| if (ops->mode == MTD_OOB_AUTO) |
| oobsize = this->ecclayout->oobavail; |
| else |
| oobsize = mtd->oobsize; |
| |
| oobcolumn = from & (mtd->oobsize - 1); |
| |
| /* Do not allow reads past end of device */ |
| if ((from + len) > mtd->size) { |
| printk(KERN_ERR "%s: Attempt read beyond end of device\n", |
| __func__); |
| ops->retlen = 0; |
| ops->oobretlen = 0; |
| return -EINVAL; |
| } |
| |
| stats = mtd->ecc_stats; |
| |
| /* Read-while-load method */ |
| |
| /* Do first load to bufferRAM */ |
| if (read < len) { |
| if (!onenand_check_bufferram(mtd, from)) { |
| this->command(mtd, ONENAND_CMD_READ, from, writesize); |
| ret = this->wait(mtd, FL_READING); |
| onenand_update_bufferram(mtd, from, !ret); |
| if (ret == -EBADMSG) |
| ret = 0; |
| } |
| } |
| |
| thislen = min_t(int, writesize, len - read); |
| column = from & (writesize - 1); |
| if (column + thislen > writesize) |
| thislen = writesize - column; |
| |
| while (!ret) { |
| /* If there is more to load then start next load */ |
| from += thislen; |
| if (read + thislen < len) { |
| this->command(mtd, ONENAND_CMD_READ, from, writesize); |
| /* |
| * Chip boundary handling in DDP |
| * Now we issued chip 1 read and pointed chip 1 |
| * bufferram so we have to point chip 0 bufferram. |
| */ |
| if (ONENAND_IS_DDP(this) && |
| unlikely(from == (this->chipsize >> 1))) { |
| this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); |
| boundary = 1; |
| } else |
| boundary = 0; |
| ONENAND_SET_PREV_BUFFERRAM(this); |
| } |
| /* While load is going, read from last bufferRAM */ |
| this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); |
| |
| /* Read oob area if needed */ |
| if (oobbuf) { |
| thisooblen = oobsize - oobcolumn; |
| thisooblen = min_t(int, thisooblen, ooblen - oobread); |
| |
| if (ops->mode == MTD_OOB_AUTO) |
| onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); |
| else |
| this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); |
| oobread += thisooblen; |
| oobbuf += thisooblen; |
| oobcolumn = 0; |
| } |
| |
| /* See if we are done */ |
| read += thislen; |
| if (read == len) |
| break; |
| /* Set up for next read from bufferRAM */ |
| if (unlikely(boundary)) |
| this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); |
| ONENAND_SET_NEXT_BUFFERRAM(this); |
| buf += thislen; |
| thislen = min_t(int, writesize, len - read); |
| column = 0; |
| cond_resched(); |
| /* Now wait for load */ |
| ret = this->wait(mtd, FL_READING); |
| onenand_update_bufferram(mtd, from, !ret); |
| if (ret == -EBADMSG) |
| ret = 0; |
| } |
| |
| /* |
| * Return success, if no ECC failures, else -EBADMSG |
| * fs driver will take care of that, because |
| * retlen == desired len and result == -EBADMSG |
| */ |
| ops->retlen = read; |
| ops->oobretlen = oobread; |
| |
| if (ret) |
| return ret; |
| |
| if (mtd->ecc_stats.failed - stats.failed) |
| return -EBADMSG; |
| |
| return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; |
| } |
| |
| /** |
| * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band |
| * @param mtd MTD device structure |
| * @param from offset to read from |
| * @param ops: oob operation description structure |
| * |
| * OneNAND read out-of-band data from the spare area |
| */ |
| static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct mtd_ecc_stats stats; |
| int read = 0, thislen, column, oobsize; |
| size_t len = ops->ooblen; |
| unsigned int mode = ops->mode; |
| u_char *buf = ops->oobbuf; |
| int ret = 0, readcmd; |
| |
| from += ops->ooboffs; |
| |
| pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, |
| (int)len); |
| |
| /* Initialize return length value */ |
| ops->oobretlen = 0; |
| |
| if (mode == MTD_OOB_AUTO) |
| oobsize = this->ecclayout->oobavail; |
| else |
| oobsize = mtd->oobsize; |
| |
| column = from & (mtd->oobsize - 1); |
| |
| if (unlikely(column >= oobsize)) { |
| printk(KERN_ERR "%s: Attempted to start read outside oob\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Do not allow reads past end of device */ |
| if (unlikely(from >= mtd->size || |
| column + len > ((mtd->size >> this->page_shift) - |
| (from >> this->page_shift)) * oobsize)) { |
| printk(KERN_ERR "%s: Attempted to read beyond end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| stats = mtd->ecc_stats; |
| |
| readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; |
| |
| while (read < len) { |
| cond_resched(); |
| |
| thislen = oobsize - column; |
| thislen = min_t(int, thislen, len); |
| |
| this->command(mtd, readcmd, from, mtd->oobsize); |
| |
| onenand_update_bufferram(mtd, from, 0); |
| |
| ret = this->wait(mtd, FL_READING); |
| if (unlikely(ret)) |
| ret = onenand_recover_lsb(mtd, from, ret); |
| |
| if (ret && ret != -EBADMSG) { |
| printk(KERN_ERR "%s: read failed = 0x%x\n", |
| __func__, ret); |
| break; |
| } |
| |
| if (mode == MTD_OOB_AUTO) |
| onenand_transfer_auto_oob(mtd, buf, column, thislen); |
| else |
| this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); |
| |
| read += thislen; |
| |
| if (read == len) |
| break; |
| |
| buf += thislen; |
| |
| /* Read more? */ |
| if (read < len) { |
| /* Page size */ |
| from += mtd->writesize; |
| column = 0; |
| } |
| } |
| |
| ops->oobretlen = read; |
| |
| if (ret) |
| return ret; |
| |
| if (mtd->ecc_stats.failed - stats.failed) |
| return -EBADMSG; |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_read - [MTD Interface] Read data from flash |
| * @param mtd MTD device structure |
| * @param from offset to read from |
| * @param len number of bytes to read |
| * @param retlen pointer to variable to store the number of read bytes |
| * @param buf the databuffer to put data |
| * |
| * Read with ecc |
| */ |
| static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct mtd_oob_ops ops = { |
| .len = len, |
| .ooblen = 0, |
| .datbuf = buf, |
| .oobbuf = NULL, |
| }; |
| int ret; |
| |
| onenand_get_device(mtd, FL_READING); |
| ret = ONENAND_IS_4KB_PAGE(this) ? |
| onenand_mlc_read_ops_nolock(mtd, from, &ops) : |
| onenand_read_ops_nolock(mtd, from, &ops); |
| onenand_release_device(mtd); |
| |
| *retlen = ops.retlen; |
| return ret; |
| } |
| |
| /** |
| * onenand_read_oob - [MTD Interface] Read main and/or out-of-band |
| * @param mtd: MTD device structure |
| * @param from: offset to read from |
| * @param ops: oob operation description structure |
| |
| * Read main and/or out-of-band |
| */ |
| static int onenand_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int ret; |
| |
| switch (ops->mode) { |
| case MTD_OOB_PLACE: |
| case MTD_OOB_AUTO: |
| break; |
| case MTD_OOB_RAW: |
| /* Not implemented yet */ |
| default: |
| return -EINVAL; |
| } |
| |
| onenand_get_device(mtd, FL_READING); |
| if (ops->datbuf) |
| ret = ONENAND_IS_4KB_PAGE(this) ? |
| onenand_mlc_read_ops_nolock(mtd, from, ops) : |
| onenand_read_ops_nolock(mtd, from, ops); |
| else |
| ret = onenand_read_oob_nolock(mtd, from, ops); |
| onenand_release_device(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * onenand_bbt_wait - [DEFAULT] wait until the command is done |
| * @param mtd MTD device structure |
| * @param state state to select the max. timeout value |
| * |
| * Wait for command done. |
| */ |
| static int onenand_bbt_wait(struct mtd_info *mtd, int state) |
| { |
| struct onenand_chip *this = mtd->priv; |
| unsigned long timeout; |
| unsigned int interrupt, ctrl, ecc, addr1, addr8; |
| |
| /* The 20 msec is enough */ |
| timeout = jiffies + msecs_to_jiffies(20); |
| while (time_before(jiffies, timeout)) { |
| interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); |
| if (interrupt & ONENAND_INT_MASTER) |
| break; |
| } |
| /* To get correct interrupt status in timeout case */ |
| interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); |
| ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); |
| addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1); |
| addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8); |
| |
| if (interrupt & ONENAND_INT_READ) { |
| ecc = onenand_read_ecc(this); |
| if (ecc & ONENAND_ECC_2BIT_ALL) { |
| printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x " |
| "intr 0x%04x addr1 %#x addr8 %#x\n", |
| __func__, ecc, ctrl, interrupt, addr1, addr8); |
| return ONENAND_BBT_READ_ECC_ERROR; |
| } |
| } else { |
| printk(KERN_ERR "%s: read timeout! ctrl 0x%04x " |
| "intr 0x%04x addr1 %#x addr8 %#x\n", |
| __func__, ctrl, interrupt, addr1, addr8); |
| return ONENAND_BBT_READ_FATAL_ERROR; |
| } |
| |
| /* Initial bad block case: 0x2400 or 0x0400 */ |
| if (ctrl & ONENAND_CTRL_ERROR) { |
| printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x " |
| "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); |
| return ONENAND_BBT_READ_ERROR; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan |
| * @param mtd MTD device structure |
| * @param from offset to read from |
| * @param ops oob operation description structure |
| * |
| * OneNAND read out-of-band data from the spare area for bbt scan |
| */ |
| int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int read = 0, thislen, column; |
| int ret = 0, readcmd; |
| size_t len = ops->ooblen; |
| u_char *buf = ops->oobbuf; |
| |
| pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from, |
| len); |
| |
| /* Initialize return value */ |
| ops->oobretlen = 0; |
| |
| /* Do not allow reads past end of device */ |
| if (unlikely((from + len) > mtd->size)) { |
| printk(KERN_ERR "%s: Attempt read beyond end of device\n", |
| __func__); |
| return ONENAND_BBT_READ_FATAL_ERROR; |
| } |
| |
| /* Grab the lock and see if the device is available */ |
| onenand_get_device(mtd, FL_READING); |
| |
| column = from & (mtd->oobsize - 1); |
| |
| readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; |
| |
| while (read < len) { |
| cond_resched(); |
| |
| thislen = mtd->oobsize - column; |
| thislen = min_t(int, thislen, len); |
| |
| this->command(mtd, readcmd, from, mtd->oobsize); |
| |
| onenand_update_bufferram(mtd, from, 0); |
| |
| ret = this->bbt_wait(mtd, FL_READING); |
| if (unlikely(ret)) |
| ret = onenand_recover_lsb(mtd, from, ret); |
| |
| if (ret) |
| break; |
| |
| this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); |
| read += thislen; |
| if (read == len) |
| break; |
| |
| buf += thislen; |
| |
| /* Read more? */ |
| if (read < len) { |
| /* Update Page size */ |
| from += this->writesize; |
| column = 0; |
| } |
| } |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| onenand_release_device(mtd); |
| |
| ops->oobretlen = read; |
| return ret; |
| } |
| |
| #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE |
| /** |
| * onenand_verify_oob - [GENERIC] verify the oob contents after a write |
| * @param mtd MTD device structure |
| * @param buf the databuffer to verify |
| * @param to offset to read from |
| */ |
| static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) |
| { |
| struct onenand_chip *this = mtd->priv; |
| u_char *oob_buf = this->oob_buf; |
| int status, i, readcmd; |
| |
| readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; |
| |
| this->command(mtd, readcmd, to, mtd->oobsize); |
| onenand_update_bufferram(mtd, to, 0); |
| status = this->wait(mtd, FL_READING); |
| if (status) |
| return status; |
| |
| this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); |
| for (i = 0; i < mtd->oobsize; i++) |
| if (buf[i] != 0xFF && buf[i] != oob_buf[i]) |
| return -EBADMSG; |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_verify - [GENERIC] verify the chip contents after a write |
| * @param mtd MTD device structure |
| * @param buf the databuffer to verify |
| * @param addr offset to read from |
| * @param len number of bytes to read and compare |
| */ |
| static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int ret = 0; |
| int thislen, column; |
| |
| column = addr & (this->writesize - 1); |
| |
| while (len != 0) { |
| thislen = min_t(int, this->writesize - column, len); |
| |
| this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); |
| |
| onenand_update_bufferram(mtd, addr, 0); |
| |
| ret = this->wait(mtd, FL_READING); |
| if (ret) |
| return ret; |
| |
| onenand_update_bufferram(mtd, addr, 1); |
| |
| this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); |
| |
| if (memcmp(buf, this->verify_buf + column, thislen)) |
| return -EBADMSG; |
| |
| len -= thislen; |
| buf += thislen; |
| addr += thislen; |
| column = 0; |
| } |
| |
| return 0; |
| } |
| #else |
| #define onenand_verify(...) (0) |
| #define onenand_verify_oob(...) (0) |
| #endif |
| |
| #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) |
| |
| static void onenand_panic_wait(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| unsigned int interrupt; |
| int i; |
| |
| for (i = 0; i < 2000; i++) { |
| interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); |
| if (interrupt & ONENAND_INT_MASTER) |
| break; |
| udelay(10); |
| } |
| } |
| |
| /** |
| * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context |
| * @param mtd MTD device structure |
| * @param to offset to write to |
| * @param len number of bytes to write |
| * @param retlen pointer to variable to store the number of written bytes |
| * @param buf the data to write |
| * |
| * Write with ECC |
| */ |
| static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int column, subpage; |
| int written = 0; |
| int ret = 0; |
| |
| if (this->state == FL_PM_SUSPENDED) |
| return -EBUSY; |
| |
| /* Wait for any existing operation to clear */ |
| onenand_panic_wait(mtd); |
| |
| pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, |
| (int)len); |
| |
| /* Initialize retlen, in case of early exit */ |
| *retlen = 0; |
| |
| /* Do not allow writes past end of device */ |
| if (unlikely((to + len) > mtd->size)) { |
| printk(KERN_ERR "%s: Attempt write to past end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Reject writes, which are not page aligned */ |
| if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { |
| printk(KERN_ERR "%s: Attempt to write not page aligned data\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| column = to & (mtd->writesize - 1); |
| |
| /* Loop until all data write */ |
| while (written < len) { |
| int thislen = min_t(int, mtd->writesize - column, len - written); |
| u_char *wbuf = (u_char *) buf; |
| |
| this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); |
| |
| /* Partial page write */ |
| subpage = thislen < mtd->writesize; |
| if (subpage) { |
| memset(this->page_buf, 0xff, mtd->writesize); |
| memcpy(this->page_buf + column, buf, thislen); |
| wbuf = this->page_buf; |
| } |
| |
| this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); |
| this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); |
| |
| this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); |
| |
| onenand_panic_wait(mtd); |
| |
| /* In partial page write we don't update bufferram */ |
| onenand_update_bufferram(mtd, to, !ret && !subpage); |
| if (ONENAND_IS_2PLANE(this)) { |
| ONENAND_SET_BUFFERRAM1(this); |
| onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage); |
| } |
| |
| if (ret) { |
| printk(KERN_ERR "%s: write failed %d\n", __func__, ret); |
| break; |
| } |
| |
| written += thislen; |
| |
| if (written == len) |
| break; |
| |
| column = 0; |
| to += thislen; |
| buf += thislen; |
| } |
| |
| *retlen = written; |
| return ret; |
| } |
| |
| /** |
| * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer |
| * @param mtd MTD device structure |
| * @param oob_buf oob buffer |
| * @param buf source address |
| * @param column oob offset to write to |
| * @param thislen oob length to write |
| */ |
| static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, |
| const u_char *buf, int column, int thislen) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct nand_oobfree *free; |
| int writecol = column; |
| int writeend = column + thislen; |
| int lastgap = 0; |
| unsigned int i; |
| |
| free = this->ecclayout->oobfree; |
| for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { |
| if (writecol >= lastgap) |
| writecol += free->offset - lastgap; |
| if (writeend >= lastgap) |
| writeend += free->offset - lastgap; |
| lastgap = free->offset + free->length; |
| } |
| free = this->ecclayout->oobfree; |
| for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { |
| int free_end = free->offset + free->length; |
| if (free->offset < writeend && free_end > writecol) { |
| int st = max_t(int,free->offset,writecol); |
| int ed = min_t(int,free_end,writeend); |
| int n = ed - st; |
| memcpy(oob_buf + st, buf, n); |
| buf += n; |
| } else if (column == 0) |
| break; |
| } |
| return 0; |
| } |
| |
| /** |
| * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band |
| * @param mtd MTD device structure |
| * @param to offset to write to |
| * @param ops oob operation description structure |
| * |
| * Write main and/or oob with ECC |
| */ |
| static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int written = 0, column, thislen = 0, subpage = 0; |
| int prev = 0, prevlen = 0, prev_subpage = 0, first = 1; |
| int oobwritten = 0, oobcolumn, thisooblen, oobsize; |
| size_t len = ops->len; |
| size_t ooblen = ops->ooblen; |
| const u_char *buf = ops->datbuf; |
| const u_char *oob = ops->oobbuf; |
| u_char *oobbuf; |
| int ret = 0, cmd; |
| |
| pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, |
| (int)len); |
| |
| /* Initialize retlen, in case of early exit */ |
| ops->retlen = 0; |
| ops->oobretlen = 0; |
| |
| /* Do not allow writes past end of device */ |
| if (unlikely((to + len) > mtd->size)) { |
| printk(KERN_ERR "%s: Attempt write to past end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Reject writes, which are not page aligned */ |
| if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { |
| printk(KERN_ERR "%s: Attempt to write not page aligned data\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Check zero length */ |
| if (!len) |
| return 0; |
| |
| if (ops->mode == MTD_OOB_AUTO) |
| oobsize = this->ecclayout->oobavail; |
| else |
| oobsize = mtd->oobsize; |
| |
| oobcolumn = to & (mtd->oobsize - 1); |
| |
| column = to & (mtd->writesize - 1); |
| |
| /* Loop until all data write */ |
| while (1) { |
| if (written < len) { |
| u_char *wbuf = (u_char *) buf; |
| |
| thislen = min_t(int, mtd->writesize - column, len - written); |
| thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); |
| |
| cond_resched(); |
| |
| this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); |
| |
| /* Partial page write */ |
| subpage = thislen < mtd->writesize; |
| if (subpage) { |
| memset(this->page_buf, 0xff, mtd->writesize); |
| memcpy(this->page_buf + column, buf, thislen); |
| wbuf = this->page_buf; |
| } |
| |
| this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); |
| |
| if (oob) { |
| oobbuf = this->oob_buf; |
| |
| /* We send data to spare ram with oobsize |
| * to prevent byte access */ |
| memset(oobbuf, 0xff, mtd->oobsize); |
| if (ops->mode == MTD_OOB_AUTO) |
| onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); |
| else |
| memcpy(oobbuf + oobcolumn, oob, thisooblen); |
| |
| oobwritten += thisooblen; |
| oob += thisooblen; |
| oobcolumn = 0; |
| } else |
| oobbuf = (u_char *) ffchars; |
| |
| this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); |
| } else |
| ONENAND_SET_NEXT_BUFFERRAM(this); |
| |
| /* |
| * 2 PLANE, MLC, and Flex-OneNAND do not support |
| * write-while-program feature. |
| */ |
| if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) { |
| ONENAND_SET_PREV_BUFFERRAM(this); |
| |
| ret = this->wait(mtd, FL_WRITING); |
| |
| /* In partial page write we don't update bufferram */ |
| onenand_update_bufferram(mtd, prev, !ret && !prev_subpage); |
| if (ret) { |
| written -= prevlen; |
| printk(KERN_ERR "%s: write failed %d\n", |
| __func__, ret); |
| break; |
| } |
| |
| if (written == len) { |
| /* Only check verify write turn on */ |
| ret = onenand_verify(mtd, buf - len, to - len, len); |
| if (ret) |
| printk(KERN_ERR "%s: verify failed %d\n", |
| __func__, ret); |
| break; |
| } |
| |
| ONENAND_SET_NEXT_BUFFERRAM(this); |
| } |
| |
| this->ongoing = 0; |
| cmd = ONENAND_CMD_PROG; |
| |
| /* Exclude 1st OTP and OTP blocks for cache program feature */ |
| if (ONENAND_IS_CACHE_PROGRAM(this) && |
| likely(onenand_block(this, to) != 0) && |
| ONENAND_IS_4KB_PAGE(this) && |
| ((written + thislen) < len)) { |
| cmd = ONENAND_CMD_2X_CACHE_PROG; |
| this->ongoing = 1; |
| } |
| |
| this->command(mtd, cmd, to, mtd->writesize); |
| |
| /* |
| * 2 PLANE, MLC, and Flex-OneNAND wait here |
| */ |
| if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) { |
| ret = this->wait(mtd, FL_WRITING); |
| |
| /* In partial page write we don't update bufferram */ |
| onenand_update_bufferram(mtd, to, !ret && !subpage); |
| if (ret) { |
| printk(KERN_ERR "%s: write failed %d\n", |
| __func__, ret); |
| break; |
| } |
| |
| /* Only check verify write turn on */ |
| ret = onenand_verify(mtd, buf, to, thislen); |
| if (ret) { |
| printk(KERN_ERR "%s: verify failed %d\n", |
| __func__, ret); |
| break; |
| } |
| |
| written += thislen; |
| |
| if (written == len) |
| break; |
| |
| } else |
| written += thislen; |
| |
| column = 0; |
| prev_subpage = subpage; |
| prev = to; |
| prevlen = thislen; |
| to += thislen; |
| buf += thislen; |
| first = 0; |
| } |
| |
| /* In error case, clear all bufferrams */ |
| if (written != len) |
| onenand_invalidate_bufferram(mtd, 0, -1); |
| |
| ops->retlen = written; |
| ops->oobretlen = oobwritten; |
| |
| return ret; |
| } |
| |
| |
| /** |
| * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band |
| * @param mtd MTD device structure |
| * @param to offset to write to |
| * @param len number of bytes to write |
| * @param retlen pointer to variable to store the number of written bytes |
| * @param buf the data to write |
| * @param mode operation mode |
| * |
| * OneNAND write out-of-band |
| */ |
| static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int column, ret = 0, oobsize; |
| int written = 0, oobcmd; |
| u_char *oobbuf; |
| size_t len = ops->ooblen; |
| const u_char *buf = ops->oobbuf; |
| unsigned int mode = ops->mode; |
| |
| to += ops->ooboffs; |
| |
| pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, |
| (int)len); |
| |
| /* Initialize retlen, in case of early exit */ |
| ops->oobretlen = 0; |
| |
| if (mode == MTD_OOB_AUTO) |
| oobsize = this->ecclayout->oobavail; |
| else |
| oobsize = mtd->oobsize; |
| |
| column = to & (mtd->oobsize - 1); |
| |
| if (unlikely(column >= oobsize)) { |
| printk(KERN_ERR "%s: Attempted to start write outside oob\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* For compatibility with NAND: Do not allow write past end of page */ |
| if (unlikely(column + len > oobsize)) { |
| printk(KERN_ERR "%s: Attempt to write past end of page\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Do not allow reads past end of device */ |
| if (unlikely(to >= mtd->size || |
| column + len > ((mtd->size >> this->page_shift) - |
| (to >> this->page_shift)) * oobsize)) { |
| printk(KERN_ERR "%s: Attempted to write past end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| oobbuf = this->oob_buf; |
| |
| oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; |
| |
| /* Loop until all data write */ |
| while (written < len) { |
| int thislen = min_t(int, oobsize, len - written); |
| |
| cond_resched(); |
| |
| this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); |
| |
| /* We send data to spare ram with oobsize |
| * to prevent byte access */ |
| memset(oobbuf, 0xff, mtd->oobsize); |
| if (mode == MTD_OOB_AUTO) |
| onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); |
| else |
| memcpy(oobbuf + column, buf, thislen); |
| this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); |
| |
| if (ONENAND_IS_4KB_PAGE(this)) { |
| /* Set main area of DataRAM to 0xff*/ |
| memset(this->page_buf, 0xff, mtd->writesize); |
| this->write_bufferram(mtd, ONENAND_DATARAM, |
| this->page_buf, 0, mtd->writesize); |
| } |
| |
| this->command(mtd, oobcmd, to, mtd->oobsize); |
| |
| onenand_update_bufferram(mtd, to, 0); |
| if (ONENAND_IS_2PLANE(this)) { |
| ONENAND_SET_BUFFERRAM1(this); |
| onenand_update_bufferram(mtd, to + this->writesize, 0); |
| } |
| |
| ret = this->wait(mtd, FL_WRITING); |
| if (ret) { |
| printk(KERN_ERR "%s: write failed %d\n", __func__, ret); |
| break; |
| } |
| |
| ret = onenand_verify_oob(mtd, oobbuf, to); |
| if (ret) { |
| printk(KERN_ERR "%s: verify failed %d\n", |
| __func__, ret); |
| break; |
| } |
| |
| written += thislen; |
| if (written == len) |
| break; |
| |
| to += mtd->writesize; |
| buf += thislen; |
| column = 0; |
| } |
| |
| ops->oobretlen = written; |
| |
| return ret; |
| } |
| |
| /** |
| * onenand_write - [MTD Interface] write buffer to FLASH |
| * @param mtd MTD device structure |
| * @param to offset to write to |
| * @param len number of bytes to write |
| * @param retlen pointer to variable to store the number of written bytes |
| * @param buf the data to write |
| * |
| * Write with ECC |
| */ |
| static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct mtd_oob_ops ops = { |
| .len = len, |
| .ooblen = 0, |
| .datbuf = (u_char *) buf, |
| .oobbuf = NULL, |
| }; |
| int ret; |
| |
| onenand_get_device(mtd, FL_WRITING); |
| ret = onenand_write_ops_nolock(mtd, to, &ops); |
| onenand_release_device(mtd); |
| |
| *retlen = ops.retlen; |
| return ret; |
| } |
| |
| /** |
| * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band |
| * @param mtd: MTD device structure |
| * @param to: offset to write |
| * @param ops: oob operation description structure |
| */ |
| static int onenand_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| int ret; |
| |
| switch (ops->mode) { |
| case MTD_OOB_PLACE: |
| case MTD_OOB_AUTO: |
| break; |
| case MTD_OOB_RAW: |
| /* Not implemented yet */ |
| default: |
| return -EINVAL; |
| } |
| |
| onenand_get_device(mtd, FL_WRITING); |
| if (ops->datbuf) |
| ret = onenand_write_ops_nolock(mtd, to, ops); |
| else |
| ret = onenand_write_oob_nolock(mtd, to, ops); |
| onenand_release_device(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad |
| * @param mtd MTD device structure |
| * @param ofs offset from device start |
| * @param allowbbt 1, if its allowed to access the bbt area |
| * |
| * Check, if the block is bad. Either by reading the bad block table or |
| * calling of the scan function. |
| */ |
| static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct bbm_info *bbm = this->bbm; |
| |
| /* Return info from the table */ |
| return bbm->isbad_bbt(mtd, ofs, allowbbt); |
| } |
| |
| |
| static int onenand_multiblock_erase_verify(struct mtd_info *mtd, |
| struct erase_info *instr) |
| { |
| struct onenand_chip *this = mtd->priv; |
| loff_t addr = instr->addr; |
| int len = instr->len; |
| unsigned int block_size = (1 << this->erase_shift); |
| int ret = 0; |
| |
| while (len) { |
| this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size); |
| ret = this->wait(mtd, FL_VERIFYING_ERASE); |
| if (ret) { |
| printk(KERN_ERR "%s: Failed verify, block %d\n", |
| __func__, onenand_block(this, addr)); |
| instr->state = MTD_ERASE_FAILED; |
| instr->fail_addr = addr; |
| return -1; |
| } |
| len -= block_size; |
| addr += block_size; |
| } |
| return 0; |
| } |
| |
| /** |
| * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase |
| * @param mtd MTD device structure |
| * @param instr erase instruction |
| * @param region erase region |
| * |
| * Erase one or more blocks up to 64 block at a time |
| */ |
| static int onenand_multiblock_erase(struct mtd_info *mtd, |
| struct erase_info *instr, |
| unsigned int block_size) |
| { |
| struct onenand_chip *this = mtd->priv; |
| loff_t addr = instr->addr; |
| int len = instr->len; |
| int eb_count = 0; |
| int ret = 0; |
| int bdry_block = 0; |
| |
| instr->state = MTD_ERASING; |
| |
| if (ONENAND_IS_DDP(this)) { |
| loff_t bdry_addr = this->chipsize >> 1; |
| if (addr < bdry_addr && (addr + len) > bdry_addr) |
| bdry_block = bdry_addr >> this->erase_shift; |
| } |
| |
| /* Pre-check bbs */ |
| while (len) { |
| /* Check if we have a bad block, we do not erase bad blocks */ |
| if (onenand_block_isbad_nolock(mtd, addr, 0)) { |
| printk(KERN_WARNING "%s: attempt to erase a bad block " |
| "at addr 0x%012llx\n", |
| __func__, (unsigned long long) addr); |
| instr->state = MTD_ERASE_FAILED; |
| return -EIO; |
| } |
| len -= block_size; |
| addr += block_size; |
| } |
| |
| len = instr->len; |
| addr = instr->addr; |
| |
| /* loop over 64 eb batches */ |
| while (len) { |
| struct erase_info verify_instr = *instr; |
| int max_eb_count = MB_ERASE_MAX_BLK_COUNT; |
| |
| verify_instr.addr = addr; |
| verify_instr.len = 0; |
| |
| /* do not cross chip boundary */ |
| if (bdry_block) { |
| int this_block = (addr >> this->erase_shift); |
| |
| if (this_block < bdry_block) { |
| max_eb_count = min(max_eb_count, |
| (bdry_block - this_block)); |
| } |
| } |
| |
| eb_count = 0; |
| |
| while (len > block_size && eb_count < (max_eb_count - 1)) { |
| this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE, |
| addr, block_size); |
| onenand_invalidate_bufferram(mtd, addr, block_size); |
| |
| ret = this->wait(mtd, FL_PREPARING_ERASE); |
| if (ret) { |
| printk(KERN_ERR "%s: Failed multiblock erase, " |
| "block %d\n", __func__, |
| onenand_block(this, addr)); |
| instr->state = MTD_ERASE_FAILED; |
| instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
| return -EIO; |
| } |
| |
| len -= block_size; |
| addr += block_size; |
| eb_count++; |
| } |
| |
| /* last block of 64-eb series */ |
| cond_resched(); |
| this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); |
| onenand_invalidate_bufferram(mtd, addr, block_size); |
| |
| ret = this->wait(mtd, FL_ERASING); |
| /* Check if it is write protected */ |
| if (ret) { |
| printk(KERN_ERR "%s: Failed erase, block %d\n", |
| __func__, onenand_block(this, addr)); |
| instr->state = MTD_ERASE_FAILED; |
| instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
| return -EIO; |
| } |
| |
| len -= block_size; |
| addr += block_size; |
| eb_count++; |
| |
| /* verify */ |
| verify_instr.len = eb_count * block_size; |
| if (onenand_multiblock_erase_verify(mtd, &verify_instr)) { |
| instr->state = verify_instr.state; |
| instr->fail_addr = verify_instr.fail_addr; |
| return -EIO; |
| } |
| |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase |
| * @param mtd MTD device structure |
| * @param instr erase instruction |
| * @param region erase region |
| * @param block_size erase block size |
| * |
| * Erase one or more blocks one block at a time |
| */ |
| static int onenand_block_by_block_erase(struct mtd_info *mtd, |
| struct erase_info *instr, |
| struct mtd_erase_region_info *region, |
| unsigned int block_size) |
| { |
| struct onenand_chip *this = mtd->priv; |
| loff_t addr = instr->addr; |
| int len = instr->len; |
| loff_t region_end = 0; |
| int ret = 0; |
| |
| if (region) { |
| /* region is set for Flex-OneNAND */ |
| region_end = region->offset + region->erasesize * region->numblocks; |
| } |
| |
| instr->state = MTD_ERASING; |
| |
| /* Loop through the blocks */ |
| while (len) { |
| cond_resched(); |
| |
| /* Check if we have a bad block, we do not erase bad blocks */ |
| if (onenand_block_isbad_nolock(mtd, addr, 0)) { |
| printk(KERN_WARNING "%s: attempt to erase a bad block " |
| "at addr 0x%012llx\n", |
| __func__, (unsigned long long) addr); |
| instr->state = MTD_ERASE_FAILED; |
| return -EIO; |
| } |
| |
| this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); |
| |
| onenand_invalidate_bufferram(mtd, addr, block_size); |
| |
| ret = this->wait(mtd, FL_ERASING); |
| /* Check, if it is write protected */ |
| if (ret) { |
| printk(KERN_ERR "%s: Failed erase, block %d\n", |
| __func__, onenand_block(this, addr)); |
| instr->state = MTD_ERASE_FAILED; |
| instr->fail_addr = addr; |
| return -EIO; |
| } |
| |
| len -= block_size; |
| addr += block_size; |
| |
| if (region && addr == region_end) { |
| if (!len) |
| break; |
| region++; |
| |
| block_size = region->erasesize; |
| region_end = region->offset + region->erasesize * region->numblocks; |
| |
| if (len & (block_size - 1)) { |
| /* FIXME: This should be handled at MTD partitioning level. */ |
| printk(KERN_ERR "%s: Unaligned address\n", |
| __func__); |
| return -EIO; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * onenand_erase - [MTD Interface] erase block(s) |
| * @param mtd MTD device structure |
| * @param instr erase instruction |
| * |
| * Erase one or more blocks |
| */ |
| static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct onenand_chip *this = mtd->priv; |
| unsigned int block_size; |
| loff_t addr = instr->addr; |
| loff_t len = instr->len; |
| int ret = 0; |
| struct mtd_erase_region_info *region = NULL; |
| loff_t region_offset = 0; |
| |
| pr_debug("%s: start=0x%012llx, len=%llu\n", __func__, |
| (unsigned long long)instr->addr, |
| (unsigned long long)instr->len); |
| |
| /* Do not allow erase past end of device */ |
| if (unlikely((len + addr) > mtd->size)) { |
| printk(KERN_ERR "%s: Erase past end of device\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (FLEXONENAND(this)) { |
| /* Find the eraseregion of this address */ |
| int i = flexonenand_region(mtd, addr); |
| |
| region = &mtd->eraseregions[i]; |
| block_size = region->erasesize; |
| |
| /* Start address within region must align on block boundary. |
| * Erase region's start offset is always block start address. |
| */ |
| region_offset = region->offset; |
| } else |
| block_size = 1 << this->erase_shift; |
| |
| /* Start address must align on block boundary */ |
| if (unlikely((addr - region_offset) & (block_size - 1))) { |
| printk(KERN_ERR "%s: Unaligned address\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* Length must align on block boundary */ |
| if (unlikely(len & (block_size - 1))) { |
| printk(KERN_ERR "%s: Length not block aligned\n", __func__); |
| return -EINVAL; |
| } |
| |
| instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
| |
| /* Grab the lock and see if the device is available */ |
| onenand_get_device(mtd, FL_ERASING); |
| |
| if (ONENAND_IS_4KB_PAGE(this) || region || |
| instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { |
| /* region is set for Flex-OneNAND (no mb erase) */ |
| ret = onenand_block_by_block_erase(mtd, instr, |
| region, block_size); |
| } else { |
| ret = onenand_multiblock_erase(mtd, instr, block_size); |
| } |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| onenand_release_device(mtd); |
| |
| /* Do call back function */ |
| if (!ret) { |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * onenand_sync - [MTD Interface] sync |
| * @param mtd MTD device structure |
| * |
| * Sync is actually a wait for chip ready function |
| */ |
| static void onenand_sync(struct mtd_info *mtd) |
| { |
| pr_debug("%s: called\n", __func__); |
| |
| /* Grab the lock and see if the device is available */ |
| onenand_get_device(mtd, FL_SYNCING); |
| |
| /* Release it and go back */ |
| onenand_release_device(mtd); |
| } |
| |
| /** |
| * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad |
| * @param mtd MTD device structure |
| * @param ofs offset relative to mtd start |
| * |
| * Check whether the block is bad |
| */ |
| static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| int ret; |
| |
| /* Check for invalid offset */ |
| if (ofs > mtd->size) |
| return -EINVAL; |
| |
| onenand_get_device(mtd, FL_READING); |
| ret = onenand_block_isbad_nolock(mtd, ofs, 0); |
| onenand_release_device(mtd); |
| return ret; |
| } |
| |
| /** |
| * onenand_default_block_markbad - [DEFAULT] mark a block bad |
| * @param mtd MTD device structure |
| * @param ofs offset from device start |
| * |
| * This is the default implementation, which can be overridden by |
| * a hardware specific driver. |
| */ |
| static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct bbm_info *bbm = this->bbm; |
| u_char buf[2] = {0, 0}; |
| struct mtd_oob_ops ops = { |
| .mode = MTD_OOB_PLACE, |
| .ooblen = 2, |
| .oobbuf = buf, |
| .ooboffs = 0, |
| }; |
| int block; |
| |
| /* Get block number */ |
| block = onenand_block(this, ofs); |
| if (bbm->bbt) |
| bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); |
| |
| /* We write two bytes, so we don't have to mess with 16-bit access */ |
| ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); |
| /* FIXME : What to do when marking SLC block in partition |
| * with MLC erasesize? For now, it is not advisable to |
| * create partitions containing both SLC and MLC regions. |
| */ |
| return onenand_write_oob_nolock(mtd, ofs, &ops); |
| } |
| |
| /** |
| * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad |
| * @param mtd MTD device structure |
| * @param ofs offset relative to mtd start |
| * |
| * Mark the block as bad |
| */ |
| static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int ret; |
| |
| ret = onenand_block_isbad(mtd, ofs); |
| if (ret) { |
| /* If it was bad already, return success and do nothing */ |
| if (ret > 0) |
| return 0; |
| return ret; |
| } |
| |
| onenand_get_device(mtd, FL_WRITING); |
| ret = this->block_markbad(mtd, ofs); |
| onenand_release_device(mtd); |
| return ret; |
| } |
| |
| /** |
| * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) |
| * @param mtd MTD device structure |
| * @param ofs offset relative to mtd start |
| * @param len number of bytes to lock or unlock |
| * @param cmd lock or unlock command |
| * |
| * Lock or unlock one or more blocks |
| */ |
| static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int start, end, block, value, status; |
| int wp_status_mask; |
| |
| start = onenand_block(this, ofs); |
| end = onenand_block(this, ofs + len) - 1; |
| |
| if (cmd == ONENAND_CMD_LOCK) |
| wp_status_mask = ONENAND_WP_LS; |
| else |
| wp_status_mask = ONENAND_WP_US; |
| |
| /* Continuous lock scheme */ |
| if (this->options & ONENAND_HAS_CONT_LOCK) { |
| /* Set start block address */ |
| this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); |
| /* Set end block address */ |
| this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS); |
| /* Write lock command */ |
| this->command(mtd, cmd, 0, 0); |
| |
| /* There's no return value */ |
| this->wait(mtd, FL_LOCKING); |
| |
| /* Sanity check */ |
| while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) |
| & ONENAND_CTRL_ONGO) |
| continue; |
| |
| /* Check lock status */ |
| status = this->read_word(this->base + ONENAND_REG_WP_STATUS); |
| if (!(status & wp_status_mask)) |
| printk(KERN_ERR "%s: wp status = 0x%x\n", |
| __func__, status); |
| |
| return 0; |
| } |
| |
| /* Block lock scheme */ |
| for (block = start; block < end + 1; block++) { |
| /* Set block address */ |
| value = onenand_block_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); |
| /* Select DataRAM for DDP */ |
| value = onenand_bufferram_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); |
| /* Set start block address */ |
| this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); |
| /* Write lock command */ |
| this->command(mtd, cmd, 0, 0); |
| |
| /* There's no return value */ |
| this->wait(mtd, FL_LOCKING); |
| |
| /* Sanity check */ |
| while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) |
| & ONENAND_CTRL_ONGO) |
| continue; |
| |
| /* Check lock status */ |
| status = this->read_word(this->base + ONENAND_REG_WP_STATUS); |
| if (!(status & wp_status_mask)) |
| printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", |
| __func__, block, status); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_lock - [MTD Interface] Lock block(s) |
| * @param mtd MTD device structure |
| * @param ofs offset relative to mtd start |
| * @param len number of bytes to unlock |
| * |
| * Lock one or more blocks |
| */ |
| static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| int ret; |
| |
| onenand_get_device(mtd, FL_LOCKING); |
| ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); |
| onenand_release_device(mtd); |
| return ret; |
| } |
| |
| /** |
| * onenand_unlock - [MTD Interface] Unlock block(s) |
| * @param mtd MTD device structure |
| * @param ofs offset relative to mtd start |
| * @param len number of bytes to unlock |
| * |
| * Unlock one or more blocks |
| */ |
| static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| int ret; |
| |
| onenand_get_device(mtd, FL_LOCKING); |
| ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); |
| onenand_release_device(mtd); |
| return ret; |
| } |
| |
| /** |
| * onenand_check_lock_status - [OneNAND Interface] Check lock status |
| * @param this onenand chip data structure |
| * |
| * Check lock status |
| */ |
| static int onenand_check_lock_status(struct onenand_chip *this) |
| { |
| unsigned int value, block, status; |
| unsigned int end; |
| |
| end = this->chipsize >> this->erase_shift; |
| for (block = 0; block < end; block++) { |
| /* Set block address */ |
| value = onenand_block_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); |
| /* Select DataRAM for DDP */ |
| value = onenand_bufferram_address(this, block); |
| this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); |
| /* Set start block address */ |
| this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); |
| |
| /* Check lock status */ |
| status = this->read_word(this->base + ONENAND_REG_WP_STATUS); |
| if (!(status & ONENAND_WP_US)) { |
| printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", |
| __func__, block, status); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * onenand_unlock_all - [OneNAND Interface] unlock all blocks |
| * @param mtd MTD device structure |
| * |
| * Unlock all blocks |
| */ |
| static void onenand_unlock_all(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| loff_t ofs = 0; |
| loff_t len = mtd->size; |
| |
| if (this->options & ONENAND_HAS_UNLOCK_ALL) { |
| /* Set start block address */ |
| this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); |
| /* Write unlock command */ |
| this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); |
| |
| /* There's no return value */ |
| this->wait(mtd, FL_LOCKING); |
| |
| /* Sanity check */ |
| while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) |
| & ONENAND_CTRL_ONGO) |
| continue; |
| |
| /* Don't check lock status */ |
| if (this->options & ONENAND_SKIP_UNLOCK_CHECK) |
| return; |
| |
| /* Check lock status */ |
| if (onenand_check_lock_status(this)) |
| return; |
| |
| /* Workaround for all block unlock in DDP */ |
| if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { |
| /* All blocks on another chip */ |
| ofs = this->chipsize >> 1; |
| len = this->chipsize >> 1; |
| } |
| } |
| |
| onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); |
| } |
| |
| #ifdef CONFIG_MTD_ONENAND_OTP |
| |
| /** |
| * onenand_otp_command - Send OTP specific command to OneNAND device |
| * @param mtd MTD device structure |
| * @param cmd the command to be sent |
| * @param addr offset to read from or write to |
| * @param len number of bytes to read or write |
| */ |
| static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr, |
| size_t len) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int value, block, page; |
| |
| /* Address translation */ |
| switch (cmd) { |
| case ONENAND_CMD_OTP_ACCESS: |
| block = (int) (addr >> this->erase_shift); |
| page = -1; |
| break; |
| |
| default: |
| block = (int) (addr >> this->erase_shift); |
| page = (int) (addr >> this->page_shift); |
| |
| if (ONENAND_IS_2PLANE(this)) { |
| /* Make the even block number */ |
| block &= ~1; |
| /* Is it the odd plane? */ |
| if (addr & this->writesize) |
| block++; |
| page >>= 1; |
| } |
| page &= this->page_mask; |
| break; |
| } |
| |
| if (block != -1) { |
| /* Write 'DFS, FBA' of Flash */ |
| value = onenand_block_address(this, block); |
| this->write_word(value, this->base + |
| ONENAND_REG_START_ADDRESS1); |
| } |
| |
| if (page != -1) { |
| /* Now we use page size operation */ |
| int sectors = 4, count = 4; |
| int dataram; |
| |
| switch (cmd) { |
| default: |
| if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) |
| cmd = ONENAND_CMD_2X_PROG; |
| dataram = ONENAND_CURRENT_BUFFERRAM(this); |
| break; |
| } |
| |
| /* Write 'FPA, FSA' of Flash */ |
| value = onenand_page_address(page, sectors); |
| this->write_word(value, this->base + |
| ONENAND_REG_START_ADDRESS8); |
| |
| /* Write 'BSA, BSC' of DataRAM */ |
| value = onenand_buffer_address(dataram, sectors, count); |
| this->write_word(value, this->base + ONENAND_REG_START_BUFFER); |
| } |
| |
| /* Interrupt clear */ |
| this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); |
| |
| /* Write command */ |
| this->write_word(cmd, this->base + ONENAND_REG_COMMAND); |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP |
| * @param mtd MTD device structure |
| * @param to offset to write to |
| * @param len number of bytes to write |
| * @param retlen pointer to variable to store the number of written bytes |
| * @param buf the data to write |
| * |
| * OneNAND write out-of-band only for OTP |
| */ |
| static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int column, ret = 0, oobsize; |
| int written = 0; |
| u_char *oobbuf; |
| size_t len = ops->ooblen; |
| const u_char *buf = ops->oobbuf; |
| int block, value, status; |
| |
| to += ops->ooboffs; |
| |
| /* Initialize retlen, in case of early exit */ |
| ops->oobretlen = 0; |
| |
| oobsize = mtd->oobsize; |
| |
| column = to & (mtd->oobsize - 1); |
| |
| oobbuf = this->oob_buf; |
| |
| /* Loop until all data write */ |
| while (written < len) { |
| int thislen = min_t(int, oobsize, len - written); |
| |
| cond_resched(); |
| |
| block = (int) (to >> this->erase_shift); |
| /* |
| * Write 'DFS, FBA' of Flash |
| * Add: F100h DQ=DFS, FBA |
| */ |
| |
| value = onenand_block_address(this, block); |
| this->write_word(value, this->base + |
| ONENAND_REG_START_ADDRESS1); |
| |
| /* |
| * Select DataRAM for DDP |
| * Add: F101h DQ=DBS |
| */ |
| |
| value = onenand_bufferram_address(this, block); |
| this->write_word(value, this->base + |
| ONENAND_REG_START_ADDRESS2); |
| ONENAND_SET_NEXT_BUFFERRAM(this); |
| |
| /* |
| * Enter OTP access mode |
| */ |
| this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); |
| this->wait(mtd, FL_OTPING); |
| |
| /* We send data to spare ram with oobsize |
| * to prevent byte access */ |
| memcpy(oobbuf + column, buf, thislen); |
| |
| /* |
| * Write Data into DataRAM |
| * Add: 8th Word |
| * in sector0/spare/page0 |
| * DQ=XXFCh |
| */ |
| this->write_bufferram(mtd, ONENAND_SPARERAM, |
| oobbuf, 0, mtd->oobsize); |
| |
| onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); |
| onenand_update_bufferram(mtd, to, 0); |
| if (ONENAND_IS_2PLANE(this)) { |
| ONENAND_SET_BUFFERRAM1(this); |
| onenand_update_bufferram(mtd, to + this->writesize, 0); |
| } |
| |
| ret = this->wait(mtd, FL_WRITING); |
| if (ret) { |
| printk(KERN_ERR "%s: write failed %d\n", __func__, ret); |
| break; |
| } |
| |
| /* Exit OTP access mode */ |
| this->command(mtd, ONENAND_CMD_RESET, 0, 0); |
| this->wait(mtd, FL_RESETING); |
| |
| status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); |
| status &= 0x60; |
| |
| if (status == 0x60) { |
| printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); |
| printk(KERN_DEBUG "1st Block\tLOCKED\n"); |
| printk(KERN_DEBUG "OTP Block\tLOCKED\n"); |
| } else if (status == 0x20) { |
| printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); |
| printk(KERN_DEBUG "1st Block\tLOCKED\n"); |
| printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n"); |
| } else if (status == 0x40) { |
| printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); |
| printk(KERN_DEBUG "1st Block\tUN-LOCKED\n"); |
| printk(KERN_DEBUG "OTP Block\tLOCKED\n"); |
| } else { |
| printk(KERN_DEBUG "Reboot to check\n"); |
| } |
| |
| written += thislen; |
| if (written == len) |
| break; |
| |
| to += mtd->writesize; |
| buf += thislen; |
| column = 0; |
| } |
| |
| ops->oobretlen = written; |
| |
| return ret; |
| } |
| |
| /* Internal OTP operation */ |
| typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len, |
| size_t *retlen, u_char *buf); |
| |
| /** |
| * do_otp_read - [DEFAULT] Read OTP block area |
| * @param mtd MTD device structure |
| * @param from The offset to read |
| * @param len number of bytes to read |
| * @param retlen pointer to variable to store the number of readbytes |
| * @param buf the databuffer to put/get data |
| * |
| * Read OTP block area. |
| */ |
| static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct mtd_oob_ops ops = { |
| .len = len, |
| .ooblen = 0, |
| .datbuf = buf, |
| .oobbuf = NULL, |
| }; |
| int ret; |
| |
| /* Enter OTP access mode */ |
| this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); |
| this->wait(mtd, FL_OTPING); |
| |
| ret = ONENAND_IS_4KB_PAGE(this) ? |
| onenand_mlc_read_ops_nolock(mtd, from, &ops) : |
| onenand_read_ops_nolock(mtd, from, &ops); |
| |
| /* Exit OTP access mode */ |
| this->command(mtd, ONENAND_CMD_RESET, 0, 0); |
| this->wait(mtd, FL_RESETING); |
| |
| return ret; |
| } |
| |
| /** |
| * do_otp_write - [DEFAULT] Write OTP block area |
| * @param mtd MTD device structure |
| * @param to The offset to write |
| * @param len number of bytes to write |
| * @param retlen pointer to variable to store the number of write bytes |
| * @param buf the databuffer to put/get data |
| * |
| * Write OTP block area. |
| */ |
| static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct onenand_chip *this = mtd->priv; |
| unsigned char *pbuf = buf; |
| int ret; |
| struct mtd_oob_ops ops; |
| |
| /* Force buffer page aligned */ |
| if (len < mtd->writesize) { |
| memcpy(this->page_buf, buf, len); |
| memset(this->page_buf + len, 0xff, mtd->writesize - len); |
| pbuf = this->page_buf; |
| len = mtd->writesize; |
| } |
| |
| /* Enter OTP access mode */ |
| this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); |
| this->wait(mtd, FL_OTPING); |
| |
| ops.len = len; |
| ops.ooblen = 0; |
| ops.datbuf = pbuf; |
| ops.oobbuf = NULL; |
| ret = onenand_write_ops_nolock(mtd, to, &ops); |
| *retlen = ops.retlen; |
| |
| /* Exit OTP access mode */ |
| this->command(mtd, ONENAND_CMD_RESET, 0, 0); |
| this->wait(mtd, FL_RESETING); |
| |
| return ret; |
| } |
| |
| /** |
| * do_otp_lock - [DEFAULT] Lock OTP block area |
| * @param mtd MTD device structure |
| * @param from The offset to lock |
| * @param len number of bytes to lock |
| * @param retlen pointer to variable to store the number of lock bytes |
| * @param buf the databuffer to put/get data |
| * |
| * Lock OTP block area. |
| */ |
| static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct onenand_chip *this = mtd->priv; |
| struct mtd_oob_ops ops; |
| int ret; |
| |
| if (FLEXONENAND(this)) { |
| |
| /* Enter OTP access mode */ |
| this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); |
| this->wait(mtd, FL_OTPING); |
| /* |
| * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of |
| * main area of page 49. |
| */ |
| ops.len = mtd->writesize; |
| ops.ooblen = 0; |
| ops.datbuf = buf; |
| ops.oobbuf = NULL; |
| ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops); |
| *retlen = ops.retlen; |
| |
| /* Exit OTP access mode */ |
| this->command(mtd, ONENAND_CMD_RESET, 0, 0); |
| this->wait(mtd, FL_RESETING); |
| } else { |
| ops.mode = MTD_OOB_PLACE; |
| ops.ooblen = len; |
| ops.oobbuf = buf; |
| ops.ooboffs = 0; |
| ret = onenand_otp_write_oob_nolock(mtd, from, &ops); |
| *retlen = ops.oobretlen; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * onenand_otp_walk - [DEFAULT] Handle OTP operation |
| * @param mtd MTD device structure |
| * @param from The offset to read/write |
| * @param len number of bytes to read/write |
| * @param retlen pointer to variable to store the number of read bytes |
| * @param buf the databuffer to put/get data |
| * @param action do given action |
| * @param mode specify user and factory |
| * |
| * Handle OTP operation. |
| */ |
| static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf, |
| otp_op_t action, int mode) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int otp_pages; |
| int density; |
| int ret = 0; |
| |
| *retlen = 0; |
| |
| density = onenand_get_density(this->device_id); |
| if (density < ONENAND_DEVICE_DENSITY_512Mb) |
| otp_pages = 20; |
| else |
| otp_pages = 50; |
| |
| if (mode == MTD_OTP_FACTORY) { |
| from += mtd->writesize * otp_pages; |
| otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages; |
| } |
| |
| /* Check User/Factory boundary */ |
| if (mode == MTD_OTP_USER) { |
| if (mtd->writesize * otp_pages < from + len) |
| return 0; |
| } else { |
| if (mtd->writesize * otp_pages < len) |
| return 0; |
| } |
| |
| onenand_get_device(mtd, FL_OTPING); |
| while (len > 0 && otp_pages > 0) { |
| if (!action) { /* OTP Info functions */ |
| struct otp_info *otpinfo; |
| |
| len -= sizeof(struct otp_info); |
| if (len <= 0) { |
| ret = -ENOSPC; |
| break; |
| } |
| |
| otpinfo = (struct otp_info *) buf; |
| otpinfo->start = from; |
| otpinfo->length = mtd->writesize; |
| otpinfo->locked = 0; |
| |
| from += mtd->writesize; |
| buf += sizeof(struct otp_info); |
| *retlen += sizeof(struct otp_info); |
| } else { |
| size_t tmp_retlen; |
| |
| ret = action(mtd, from, len, &tmp_retlen, buf); |
| |
| buf += tmp_retlen; |
| len -= tmp_retlen; |
| *retlen += tmp_retlen; |
| |
| if (ret) |
| break; |
| } |
| otp_pages--; |
| } |
| onenand_release_device(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info |
| * @param mtd MTD device structure |
| * @param buf the databuffer to put/get data |
| * @param len number of bytes to read |
| * |
| * Read factory OTP info. |
| */ |
| static int onenand_get_fact_prot_info(struct mtd_info *mtd, |
| struct otp_info *buf, size_t len) |
| { |
| size_t retlen; |
| int ret; |
| |
| ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY); |
| |
| return ret ? : retlen; |
| } |
| |
| /** |
| * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area |
| * @param mtd MTD device structure |
| * @param from The offset to read |
| * @param len number of bytes to read |
| * @param retlen pointer to variable to store the number of read bytes |
| * @param buf the databuffer to put/get data |
| * |
| * Read factory OTP area. |
| */ |
| static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, u_char *buf) |
| { |
| return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY); |
| } |
| |
| /** |
| * onenand_get_user_prot_info - [MTD Interface] Read user OTP info |
| * @param mtd MTD device structure |
| * @param buf the databuffer to put/get data |
| * @param len number of bytes to read |
| * |
| * Read user OTP info. |
| */ |
| static int onenand_get_user_prot_info(struct mtd_info *mtd, |
| struct otp_info *buf, size_t len) |
| { |
| size_t retlen; |
| int ret; |
| |
| ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER); |
| |
| return ret ? : retlen; |
| } |
| |
| /** |
| * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area |
| * @param mtd MTD device structure |
| * @param from The offset to read |
| * @param len number of bytes to read |
| * @param retlen pointer to variable to store the number of read bytes |
| * @param buf the databuffer to put/get data |
| * |
| * Read user OTP area. |
| */ |
| static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, u_char *buf) |
| { |
| return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER); |
| } |
| |
| /** |
| * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area |
| * @param mtd MTD device structure |
| * @param from The offset to write |
| * @param len number of bytes to write |
| * @param retlen pointer to variable to store the number of write bytes |
| * @param buf the databuffer to put/get data |
| * |
| * Write user OTP area. |
| */ |
| static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, u_char *buf) |
| { |
| return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER); |
| } |
| |
| /** |
| * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area |
| * @param mtd MTD device structure |
| * @param from The offset to lock |
| * @param len number of bytes to unlock |
| * |
| * Write lock mark on spare area in page 0 in OTP block |
| */ |
| static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len) |
| { |
| struct onenand_chip *this = mtd->priv; |
| u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf; |
| size_t retlen; |
| int ret; |
| unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET; |
| |
| memset(buf, 0xff, FLEXONENAND(this) ? this->writesize |
| : mtd->oobsize); |
| /* |
| * Write lock mark to 8th word of sector0 of page0 of the spare0. |
| * We write 16 bytes spare area instead of 2 bytes. |
| * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of |
| * main area of page 49. |
| */ |
| |
| from = 0; |
| len = FLEXONENAND(this) ? mtd->writesize : 16; |
| |
| /* |
| * Note: OTP lock operation |
| * OTP block : 0xXXFC XX 1111 1100 |
| * 1st block : 0xXXF3 (If chip support) XX 1111 0011 |
| * Both : 0xXXF0 (If chip support) XX 1111 0000 |
| */ |
| if (FLEXONENAND(this)) |
| otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET; |
| |
| /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */ |
| if (otp == 1) |
| buf[otp_lock_offset] = 0xFC; |
| else if (otp == 2) |
| buf[otp_lock_offset] = 0xF3; |
| else if (otp == 3) |
| buf[otp_lock_offset] = 0xF0; |
| else if (otp != 0) |
| printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n"); |
| |
| ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER); |
| |
| return ret ? : retlen; |
| } |
| |
| #endif /* CONFIG_MTD_ONENAND_OTP */ |
| |
| /** |
| * onenand_check_features - Check and set OneNAND features |
| * @param mtd MTD data structure |
| * |
| * Check and set OneNAND features |
| * - lock scheme |
| * - two plane |
| */ |
| static void onenand_check_features(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| unsigned int density, process, numbufs; |
| |
| /* Lock scheme depends on density and process */ |
| density = onenand_get_density(this->device_id); |
| process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; |
| numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8; |
| |
| /* Lock scheme */ |
| switch (density) { |
| case ONENAND_DEVICE_DENSITY_4Gb: |
| if (ONENAND_IS_DDP(this)) |
| this->options |= ONENAND_HAS_2PLANE; |
| else if (numbufs == 1) { |
| this->options |= ONENAND_HAS_4KB_PAGE; |
| this->options |= ONENAND_HAS_CACHE_PROGRAM; |
| /* |
| * There are two different 4KiB pagesize chips |
| * and no way to detect it by H/W config values. |
| * |
| * To detect the correct NOP for each chips, |
| * It should check the version ID as workaround. |
| * |
| * Now it has as following |
| * KFM4G16Q4M has NOP 4 with version ID 0x0131 |
| * KFM4G16Q5M has NOP 1 with versoin ID 0x013e |
| */ |
| if ((this->version_id & 0xf) == 0xe) |
| this->options |= ONENAND_HAS_NOP_1; |
| } |
| |
| case ONENAND_DEVICE_DENSITY_2Gb: |
| /* 2Gb DDP does not have 2 plane */ |
| if (!ONENAND_IS_DDP(this)) |
| this->options |= ONENAND_HAS_2PLANE; |
| this->options |= ONENAND_HAS_UNLOCK_ALL; |
| |
| case ONENAND_DEVICE_DENSITY_1Gb: |
| /* A-Die has all block unlock */ |
| if (process) |
| this->options |= ONENAND_HAS_UNLOCK_ALL; |
| break; |
| |
| default: |
| /* Some OneNAND has continuous lock scheme */ |
| if (!process) |
| this->options |= ONENAND_HAS_CONT_LOCK; |
| break; |
| } |
| |
| /* The MLC has 4KiB pagesize. */ |
| if (ONENAND_IS_MLC(this)) |
| this->options |= ONENAND_HAS_4KB_PAGE; |
| |
| if (ONENAND_IS_4KB_PAGE(this)) |
| this->options &= ~ONENAND_HAS_2PLANE; |
| |
| if (FLEXONENAND(this)) { |
| this->options &= ~ONENAND_HAS_CONT_LOCK; |
| this->options |= ONENAND_HAS_UNLOCK_ALL; |
| } |
| |
| if (this->options & ONENAND_HAS_CONT_LOCK) |
| printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); |
| if (this->options & ONENAND_HAS_UNLOCK_ALL) |
| printk(KERN_DEBUG "Chip support all block unlock\n"); |
| if (this->options & ONENAND_HAS_2PLANE) |
| printk(KERN_DEBUG "Chip has 2 plane\n"); |
| if (this->options & ONENAND_HAS_4KB_PAGE) |
| printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); |
| if (this->options & ONENAND_HAS_CACHE_PROGRAM) |
| printk(KERN_DEBUG "Chip has cache program feature\n"); |
| } |
| |
| /** |
| * onenand_print_device_info - Print device & version ID |
| * @param device device ID |
| * @param version version ID |
| * |
| * Print device & version ID |
| */ |
| static void onenand_print_device_info(int device, int version) |
| { |
| int vcc, demuxed, ddp, density, flexonenand; |
| |
| vcc = device & ONENAND_DEVICE_VCC_MASK; |
| demuxed = device & ONENAND_DEVICE_IS_DEMUX; |
| ddp = device & ONENAND_DEVICE_IS_DDP; |
| density = onenand_get_density(device); |
| flexonenand = device & DEVICE_IS_FLEXONENAND; |
| printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", |
| demuxed ? "" : "Muxed ", |
| flexonenand ? "Flex-" : "", |
| ddp ? "(DDP)" : "", |
| (16 << density), |
| vcc ? "2.65/3.3" : "1.8", |
| device); |
| printk(KERN_INFO "OneNAND version = 0x%04x\n", version); |
| } |
| |
| static const struct onenand_manufacturers onenand_manuf_ids[] = { |
| {ONENAND_MFR_SAMSUNG, "Samsung"}, |
| {ONENAND_MFR_NUMONYX, "Numonyx"}, |
| }; |
| |
| /** |
| * onenand_check_maf - Check manufacturer ID |
| * @param manuf manufacturer ID |
| * |
| * Check manufacturer ID |
| */ |
| static int onenand_check_maf(int manuf) |
| { |
| int size = ARRAY_SIZE(onenand_manuf_ids); |
| char *name; |
| int i; |
| |
| for (i = 0; i < size; i++) |
| if (manuf == onenand_manuf_ids[i].id) |
| break; |
| |
| if (i < size) |
| name = onenand_manuf_ids[i].name; |
| else |
| name = "Unknown"; |
| |
| printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); |
| |
| return (i == size); |
| } |
| |
| /** |
| * flexonenand_get_boundary - Reads the SLC boundary |
| * @param onenand_info - onenand info structure |
| **/ |
| static int flexonenand_get_boundary(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| unsigned die, bdry; |
| int ret, syscfg, locked; |
| |
| /* Disable ECC */ |
| syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); |
| this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); |
| |
| for (die = 0; die < this->dies; die++) { |
| this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); |
| this->wait(mtd, FL_SYNCING); |
| |
| this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); |
| ret = this->wait(mtd, FL_READING); |
| |
| bdry = this->read_word(this->base + ONENAND_DATARAM); |
| if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) |
| locked = 0; |
| else |
| locked = 1; |
| this->boundary[die] = bdry & FLEXONENAND_PI_MASK; |
| |
| this->command(mtd, ONENAND_CMD_RESET, 0, 0); |
| ret = this->wait(mtd, FL_RESETING); |
| |
| printk(KERN_INFO "Die %d boundary: %d%s\n", die, |
| this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); |
| } |
| |
| /* Enable ECC */ |
| this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); |
| return 0; |
| } |
| |
| /** |
| * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info |
| * boundary[], diesize[], mtd->size, mtd->erasesize |
| * @param mtd - MTD device structure |
| */ |
| static void flexonenand_get_size(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int die, i, eraseshift, density; |
| int blksperdie, maxbdry; |
| loff_t ofs; |
| |
| density = onenand_get_density(this->device_id); |
| blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); |
| blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; |
| maxbdry = blksperdie - 1; |
| eraseshift = this->erase_shift - 1; |
| |
| mtd->numeraseregions = this->dies << 1; |
| |
| /* This fills up the device boundary */ |
| flexonenand_get_boundary(mtd); |
| die = ofs = 0; |
| i = -1; |
| for (; die < this->dies; die++) { |
| if (!die || this->boundary[die-1] != maxbdry) { |
| i++; |
| mtd->eraseregions[i].offset = ofs; |
| mtd->eraseregions[i].erasesize = 1 << eraseshift; |
| mtd->eraseregions[i].numblocks = |
| this->boundary[die] + 1; |
| ofs += mtd->eraseregions[i].numblocks << eraseshift; |
| eraseshift++; |
| } else { |
| mtd->numeraseregions -= 1; |
| mtd->eraseregions[i].numblocks += |
| this->boundary[die] + 1; |
| ofs += (this->boundary[die] + 1) << (eraseshift - 1); |
| } |
| if (this->boundary[die] != maxbdry) { |
| i++; |
| mtd->eraseregions[i].offset = ofs; |
| mtd->eraseregions[i].erasesize = 1 << eraseshift; |
| mtd->eraseregions[i].numblocks = maxbdry ^ |
| this->boundary[die]; |
| ofs += mtd->eraseregions[i].numblocks << eraseshift; |
| eraseshift--; |
| } else |
| mtd->numeraseregions -= 1; |
| } |
| |
| /* Expose MLC erase size except when all blocks are SLC */ |
| mtd->erasesize = 1 << this->erase_shift; |
| if (mtd->numeraseregions == 1) |
| mtd->erasesize >>= 1; |
| |
| printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); |
| for (i = 0; i < mtd->numeraseregions; i++) |
| printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x," |
| " numblocks: %04u]\n", |
| (unsigned int) mtd->eraseregions[i].offset, |
| mtd->eraseregions[i].erasesize, |
| mtd->eraseregions[i].numblocks); |
| |
| for (die = 0, mtd->size = 0; die < this->dies; die++) { |
| this->diesize[die] = (loff_t)blksperdie << this->erase_shift; |
| this->diesize[die] -= (loff_t)(this->boundary[die] + 1) |
| << (this->erase_shift - 1); |
| mtd->size += this->diesize[die]; |
| } |
| } |
| |
| /** |
| * flexonenand_check_blocks_erased - Check if blocks are erased |
| * @param mtd_info - mtd info structure |
| * @param start - first erase block to check |
| * @param end - last erase block to check |
| * |
| * Converting an unerased block from MLC to SLC |
| * causes byte values to change. Since both data and its ECC |
| * have changed, reads on the block give uncorrectable error. |
| * This might lead to the block being detected as bad. |
| * |
| * Avoid this by ensuring that the block to be converted is |
| * erased. |
| */ |
| static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int i, ret; |
| int block; |
| struct mtd_oob_ops ops = { |
| .mode = MTD_OOB_PLACE, |
| .ooboffs = 0, |
| .ooblen = mtd->oobsize, |
| .datbuf = NULL, |
| .oobbuf = this->oob_buf, |
| }; |
| loff_t addr; |
| |
| printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); |
| |
| for (block = start; block <= end; block++) { |
| addr = flexonenand_addr(this, block); |
| if (onenand_block_isbad_nolock(mtd, addr, 0)) |
| continue; |
| |
| /* |
| * Since main area write results in ECC write to spare, |
| * it is sufficient to check only ECC bytes for change. |
| */ |
| ret = onenand_read_oob_nolock(mtd, addr, &ops); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < mtd->oobsize; i++) |
| if (this->oob_buf[i] != 0xff) |
| break; |
| |
| if (i != mtd->oobsize) { |
| printk(KERN_WARNING "%s: Block %d not erased.\n", |
| __func__, block); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * flexonenand_set_boundary - Writes the SLC boundary |
| * @param mtd - mtd info structure |
| */ |
| int flexonenand_set_boundary(struct mtd_info *mtd, int die, |
| int boundary, int lock) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int ret, density, blksperdie, old, new, thisboundary; |
| loff_t addr; |
| |
| /* Change only once for SDP Flex-OneNAND */ |
| if (die && (!ONENAND_IS_DDP(this))) |
| return 0; |
| |
| /* boundary value of -1 indicates no required change */ |
| if (boundary < 0 || boundary == this->boundary[die]) |
| return 0; |
| |
| density = onenand_get_density(this->device_id); |
| blksperdie = ((16 << density) << 20) >> this->erase_shift; |
| blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; |
| |
| if (boundary >= blksperdie) { |
| printk(KERN_ERR "%s: Invalid boundary value. " |
| "Boundary not changed.\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* Check if converting blocks are erased */ |
| old = this->boundary[die] + (die * this->density_mask); |
| new = boundary + (die * this->density_mask); |
| ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new)); |
| if (ret) { |
| printk(KERN_ERR "%s: Please erase blocks " |
| "before boundary change\n", __func__); |
| return ret; |
| } |
| |
| this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); |
| this->wait(mtd, FL_SYNCING); |
| |
| /* Check is boundary is locked */ |
| this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); |
| ret = this->wait(mtd, FL_READING); |
| |
| thisboundary = this->read_word(this->base + ONENAND_DATARAM); |
| if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { |
| printk(KERN_ERR "%s: boundary locked\n", __func__); |
| ret = 1; |
| goto out; |
| } |
| |
| printk(KERN_INFO "Changing die %d boundary: %d%s\n", |
| die, boundary, lock ? "(Locked)" : "(Unlocked)"); |
| |
| addr = die ? this->diesize[0] : 0; |
| |
| boundary &= FLEXONENAND_PI_MASK; |
| boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); |
| |
| this->command(mtd, ONENAND_CMD_ERASE, addr, 0); |
| ret = this->wait(mtd, FL_ERASING); |
| if (ret) { |
| printk(KERN_ERR "%s: Failed PI erase for Die %d\n", |
| __func__, die); |
| goto out; |
| } |
| |
| this->write_word(boundary, this->base + ONENAND_DATARAM); |
| this->command(mtd, ONENAND_CMD_PROG, addr, 0); |
| ret = this->wait(mtd, FL_WRITING); |
| if (ret) { |
| printk(KERN_ERR "%s: Failed PI write for Die %d\n", |
| __func__, die); |
| goto out; |
| } |
| |
| this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); |
| ret = this->wait(mtd, FL_WRITING); |
| out: |
| this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); |
| this->wait(mtd, FL_RESETING); |
| if (!ret) |
| /* Recalculate device size on boundary change*/ |
| flexonenand_get_size(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * onenand_chip_probe - [OneNAND Interface] The generic chip probe |
| * @param mtd MTD device structure |
| * |
| * OneNAND detection method: |
| * Compare the values from command with ones from register |
| */ |
| static int onenand_chip_probe(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int bram_maf_id, bram_dev_id, maf_id, dev_id; |
| int syscfg; |
| |
| /* Save system configuration 1 */ |
| syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); |
| /* Clear Sync. Burst Read mode to read BootRAM */ |
| this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1); |
| |
| /* Send the command for reading device ID from BootRAM */ |
| this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); |
| |
| /* Read manufacturer and device IDs from BootRAM */ |
| bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); |
| bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); |
| |
| /* Reset OneNAND to read default register values */ |
| this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); |
| /* Wait reset */ |
| this->wait(mtd, FL_RESETING); |
| |
| /* Restore system configuration 1 */ |
| this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); |
| |
| /* Check manufacturer ID */ |
| if (onenand_check_maf(bram_maf_id)) |
| return -ENXIO; |
| |
| /* Read manufacturer and device IDs from Register */ |
| maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); |
| dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); |
| |
| /* Check OneNAND device */ |
| if (maf_id != bram_maf_id || dev_id != bram_dev_id) |
| return -ENXIO; |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_probe - [OneNAND Interface] Probe the OneNAND device |
| * @param mtd MTD device structure |
| */ |
| static int onenand_probe(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| int maf_id, dev_id, ver_id; |
| int density; |
| int ret; |
| |
| ret = this->chip_probe(mtd); |
| if (ret) |
| return ret; |
| |
| /* Read manufacturer and device IDs from Register */ |
| maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); |
| dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); |
| ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); |
| this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); |
| |
| /* Flash device information */ |
| onenand_print_device_info(dev_id, ver_id); |
| this->device_id = dev_id; |
| this->version_id = ver_id; |
| |
| /* Check OneNAND features */ |
| onenand_check_features(mtd); |
| |
| density = onenand_get_density(dev_id); |
| if (FLEXONENAND(this)) { |
| this->dies = ONENAND_IS_DDP(this) ? 2 : 1; |
| /* Maximum possible erase regions */ |
| mtd->numeraseregions = this->dies << 1; |
| mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info) |
| * (this->dies << 1), GFP_KERNEL); |
| if (!mtd->eraseregions) |
| return -ENOMEM; |
| } |
| |
| /* |
| * For Flex-OneNAND, chipsize represents maximum possible device size. |
| * mtd->size represents the actual device size. |
| */ |
| this->chipsize = (16 << density) << 20; |
| |
| /* OneNAND page size & block size */ |
| /* The data buffer size is equal to page size */ |
| mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); |
| /* We use the full BufferRAM */ |
| if (ONENAND_IS_4KB_PAGE(this)) |
| mtd->writesize <<= 1; |
| |
| mtd->oobsize = mtd->writesize >> 5; |
| /* Pages per a block are always 64 in OneNAND */ |
| mtd->erasesize = mtd->writesize << 6; |
| /* |
| * Flex-OneNAND SLC area has 64 pages per block. |
| * Flex-OneNAND MLC area has 128 pages per block. |
| * Expose MLC erase size to find erase_shift and page_mask. |
| */ |
| if (FLEXONENAND(this)) |
| mtd->erasesize <<= 1; |
| |
| this->erase_shift = ffs(mtd->erasesize) - 1; |
| this->page_shift = ffs(mtd->writesize) - 1; |
| this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1; |
| /* Set density mask. it is used for DDP */ |
| if (ONENAND_IS_DDP(this)) |
| this->density_mask = this->chipsize >> (this->erase_shift + 1); |
| /* It's real page size */ |
| this->writesize = mtd->writesize; |
| |
| /* REVISIT: Multichip handling */ |
| |
| if (FLEXONENAND(this)) |
| flexonenand_get_size(mtd); |
| else |
| mtd->size = this->chipsize; |
| |
| /* |
| * We emulate the 4KiB page and 256KiB erase block size |
| * But oobsize is still 64 bytes. |
| * It is only valid if you turn on 2X program support, |
| * Otherwise it will be ignored by compiler. |
| */ |
| if (ONENAND_IS_2PLANE(this)) { |
| mtd->writesize <<= 1; |
| mtd->erasesize <<= 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_suspend - [MTD Interface] Suspend the OneNAND flash |
| * @param mtd MTD device structure |
| */ |
| static int onenand_suspend(struct mtd_info *mtd) |
| { |
| return onenand_get_device(mtd, FL_PM_SUSPENDED); |
| } |
| |
| /** |
| * onenand_resume - [MTD Interface] Resume the OneNAND flash |
| * @param mtd MTD device structure |
| */ |
| static void onenand_resume(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| |
| if (this->state == FL_PM_SUSPENDED) |
| onenand_release_device(mtd); |
| else |
| printk(KERN_ERR "%s: resume() called for the chip which is not " |
| "in suspended state\n", __func__); |
| } |
| |
| /** |
| * onenand_scan - [OneNAND Interface] Scan for the OneNAND device |
| * @param mtd MTD device structure |
| * @param maxchips Number of chips to scan for |
| * |
| * This fills out all the not initialized function pointers |
| * with the defaults. |
| * The flash ID is read and the mtd/chip structures are |
| * filled with the appropriate values. |
| */ |
| int onenand_scan(struct mtd_info *mtd, int maxchips) |
| { |
| int i, ret; |
| struct onenand_chip *this = mtd->priv; |
| |
| if (!this->read_word) |
| this->read_word = onenand_readw; |
| if (!this->write_word) |
| this->write_word = onenand_writew; |
| |
| if (!this->command) |
| this->command = onenand_command; |
| if (!this->wait) |
| onenand_setup_wait(mtd); |
| if (!this->bbt_wait) |
| this->bbt_wait = onenand_bbt_wait; |
| if (!this->unlock_all) |
| this->unlock_all = onenand_unlock_all; |
| |
| if (!this->chip_probe) |
| this->chip_probe = onenand_chip_probe; |
| |
| if (!this->read_bufferram) |
| this->read_bufferram = onenand_read_bufferram; |
| if (!this->write_bufferram) |
| this->write_bufferram = onenand_write_bufferram; |
| |
| if (!this->block_markbad) |
| this->block_markbad = onenand_default_block_markbad; |
| if (!this->scan_bbt) |
| this->scan_bbt = onenand_default_bbt; |
| |
| if (onenand_probe(mtd)) |
| return -ENXIO; |
| |
| /* Set Sync. Burst Read after probing */ |
| if (this->mmcontrol) { |
| printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); |
| this->read_bufferram = onenand_sync_read_bufferram; |
| } |
| |
| /* Allocate buffers, if necessary */ |
| if (!this->page_buf) { |
| this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); |
| if (!this->page_buf) { |
| printk(KERN_ERR "%s: Can't allocate page_buf\n", |
| __func__); |
| return -ENOMEM; |
| } |
| #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE |
| this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); |
| if (!this->verify_buf) { |
| kfree(this->page_buf); |
| return -ENOMEM; |
| } |
| #endif |
| this->options |= ONENAND_PAGEBUF_ALLOC; |
| } |
| if (!this->oob_buf) { |
| this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); |
| if (!this->oob_buf) { |
| printk(KERN_ERR "%s: Can't allocate oob_buf\n", |
| __func__); |
| if (this->options & ONENAND_PAGEBUF_ALLOC) { |
| this->options &= ~ONENAND_PAGEBUF_ALLOC; |
| kfree(this->page_buf); |
| } |
| return -ENOMEM; |
| } |
| this->options |= ONENAND_OOBBUF_ALLOC; |
| } |
| |
| this->state = FL_READY; |
| init_waitqueue_head(&this->wq); |
| spin_lock_init(&this->chip_lock); |
| |
| /* |
| * Allow subpage writes up to oobsize. |
| */ |
| switch (mtd->oobsize) { |
| case 128: |
| if (FLEXONENAND(this)) { |
| this->ecclayout = &flexonenand_oob_128; |
| mtd->subpage_sft = 0; |
| } else { |
| this->ecclayout = &onenand_oob_128; |
| mtd->subpage_sft = 2; |
| } |
| if (ONENAND_IS_NOP_1(this)) |
| mtd->subpage_sft = 0; |
| break; |
| case 64: |
| this->ecclayout = &onenand_oob_64; |
| mtd->subpage_sft = 2; |
| break; |
| |
| case 32: |
| this->ecclayout = &onenand_oob_32; |
| mtd->subpage_sft = 1; |
| break; |
| |
| default: |
| printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n", |
| __func__, mtd->oobsize); |
| mtd->subpage_sft = 0; |
| /* To prevent kernel oops */ |
| this->ecclayout = &onenand_oob_32; |
| break; |
| } |
| |
| this->subpagesize = mtd->writesize >> mtd->subpage_sft; |
| |
| /* |
| * The number of bytes available for a client to place data into |
| * the out of band area |
| */ |
| this->ecclayout->oobavail = 0; |
| for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && |
| this->ecclayout->oobfree[i].length; i++) |
| this->ecclayout->oobavail += |
| this->ecclayout->oobfree[i].length; |
| mtd->oobavail = this->ecclayout->oobavail; |
| |
| mtd->ecclayout = this->ecclayout; |
| |
| /* Fill in remaining MTD driver data */ |
| mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; |
| mtd->flags = MTD_CAP_NANDFLASH; |
| mtd->erase = onenand_erase; |
| mtd->point = NULL; |
| mtd->unpoint = NULL; |
| mtd->read = onenand_read; |
| mtd->write = onenand_write; |
| mtd->read_oob = onenand_read_oob; |
| mtd->write_oob = onenand_write_oob; |
| mtd->panic_write = onenand_panic_write; |
| #ifdef CONFIG_MTD_ONENAND_OTP |
| mtd->get_fact_prot_info = onenand_get_fact_prot_info; |
| mtd->read_fact_prot_reg = onenand_read_fact_prot_reg; |
| mtd->get_user_prot_info = onenand_get_user_prot_info; |
| mtd->read_user_prot_reg = onenand_read_user_prot_reg; |
| mtd->write_user_prot_reg = onenand_write_user_prot_reg; |
| mtd->lock_user_prot_reg = onenand_lock_user_prot_reg; |
| #endif |
| mtd->sync = onenand_sync; |
| mtd->lock = onenand_lock; |
| mtd->unlock = onenand_unlock; |
| mtd->suspend = onenand_suspend; |
| mtd->resume = onenand_resume; |
| mtd->block_isbad = onenand_block_isbad; |
| mtd->block_markbad = onenand_block_markbad; |
| mtd->owner = THIS_MODULE; |
| mtd->writebufsize = mtd->writesize; |
| |
| /* Unlock whole block */ |
| if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) |
| this->unlock_all(mtd); |
| |
| ret = this->scan_bbt(mtd); |
| if ((!FLEXONENAND(this)) || ret) |
| return ret; |
| |
| /* Change Flex-OneNAND boundaries if required */ |
| for (i = 0; i < MAX_DIES; i++) |
| flexonenand_set_boundary(mtd, i, flex_bdry[2 * i], |
| flex_bdry[(2 * i) + 1]); |
| |
| return 0; |
| } |
| |
| /** |
| * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device |
| * @param mtd MTD device structure |
| */ |
| void onenand_release(struct mtd_info *mtd) |
| { |
| struct onenand_chip *this = mtd->priv; |
| |
| /* Deregister partitions */ |
| mtd_device_unregister(mtd); |
| |
| /* Free bad block table memory, if allocated */ |
| if (this->bbm) { |
| struct bbm_info *bbm = this->bbm; |
| kfree(bbm->bbt); |
| kfree(this->bbm); |
| } |
| /* Buffers allocated by onenand_scan */ |
| if (this->options & ONENAND_PAGEBUF_ALLOC) { |
| kfree(this->page_buf); |
| #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE |
| kfree(this->verify_buf); |
| #endif |
| } |
| if (this->options & ONENAND_OOBBUF_ALLOC) |
| kfree(this->oob_buf); |
| kfree(mtd->eraseregions); |
| } |
| |
| EXPORT_SYMBOL_GPL(onenand_scan); |
| EXPORT_SYMBOL_GPL(onenand_release); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); |
| MODULE_DESCRIPTION("Generic OneNAND flash driver code"); |