| /* |
| * Some of the code in this file has been gleaned from the 64 bit |
| * discontigmem support code base. |
| * |
| * Copyright (C) 2002, IBM Corp. |
| * |
| * All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Send feedback to Pat Gaughen <gone@us.ibm.com> |
| */ |
| #include <linux/mm.h> |
| #include <linux/bootmem.h> |
| #include <linux/mmzone.h> |
| #include <linux/acpi.h> |
| #include <linux/nodemask.h> |
| #include <asm/srat.h> |
| #include <asm/topology.h> |
| #include <asm/smp.h> |
| |
| /* |
| * proximity macros and definitions |
| */ |
| #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */ |
| #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */ |
| #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit)) |
| #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit))) |
| /* bitmap length; _PXM is at most 255 */ |
| #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8) |
| static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */ |
| |
| #define MAX_CHUNKS_PER_NODE 3 |
| #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES) |
| struct node_memory_chunk_s { |
| unsigned long start_pfn; |
| unsigned long end_pfn; |
| u8 pxm; // proximity domain of node |
| u8 nid; // which cnode contains this chunk? |
| u8 bank; // which mem bank on this node |
| }; |
| static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS]; |
| |
| static int num_memory_chunks; /* total number of memory chunks */ |
| static u8 __initdata apicid_to_pxm[MAX_APICID]; |
| |
| /* Identify CPU proximity domains */ |
| static void __init parse_cpu_affinity_structure(char *p) |
| { |
| struct acpi_srat_cpu_affinity *cpu_affinity = |
| (struct acpi_srat_cpu_affinity *) p; |
| |
| if ((cpu_affinity->flags & ACPI_SRAT_CPU_ENABLED) == 0) |
| return; /* empty entry */ |
| |
| /* mark this node as "seen" in node bitmap */ |
| BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain_lo); |
| |
| apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo; |
| |
| printk("CPU 0x%02X in proximity domain 0x%02X\n", |
| cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo); |
| } |
| |
| /* |
| * Identify memory proximity domains and hot-remove capabilities. |
| * Fill node memory chunk list structure. |
| */ |
| static void __init parse_memory_affinity_structure (char *sratp) |
| { |
| unsigned long long paddr, size; |
| unsigned long start_pfn, end_pfn; |
| u8 pxm; |
| struct node_memory_chunk_s *p, *q, *pend; |
| struct acpi_srat_mem_affinity *memory_affinity = |
| (struct acpi_srat_mem_affinity *) sratp; |
| |
| if ((memory_affinity->flags & ACPI_SRAT_MEM_ENABLED) == 0) |
| return; /* empty entry */ |
| |
| pxm = memory_affinity->proximity_domain & 0xff; |
| |
| /* mark this node as "seen" in node bitmap */ |
| BMAP_SET(pxm_bitmap, pxm); |
| |
| /* calculate info for memory chunk structure */ |
| paddr = memory_affinity->base_address; |
| size = memory_affinity->length; |
| |
| start_pfn = paddr >> PAGE_SHIFT; |
| end_pfn = (paddr + size) >> PAGE_SHIFT; |
| |
| |
| if (num_memory_chunks >= MAXCHUNKS) { |
| printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n", |
| size/(1024*1024), paddr); |
| return; |
| } |
| |
| /* Insertion sort based on base address */ |
| pend = &node_memory_chunk[num_memory_chunks]; |
| for (p = &node_memory_chunk[0]; p < pend; p++) { |
| if (start_pfn < p->start_pfn) |
| break; |
| } |
| if (p < pend) { |
| for (q = pend; q >= p; q--) |
| *(q + 1) = *q; |
| } |
| p->start_pfn = start_pfn; |
| p->end_pfn = end_pfn; |
| p->pxm = pxm; |
| |
| num_memory_chunks++; |
| |
| printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n", |
| start_pfn, end_pfn, |
| memory_affinity->memory_type, |
| pxm, |
| ((memory_affinity->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ? |
| "enabled and removable" : "enabled" ) ); |
| } |
| |
| /* |
| * The SRAT table always lists ascending addresses, so can always |
| * assume that the first "start" address that you see is the real |
| * start of the node, and that the current "end" address is after |
| * the previous one. |
| */ |
| static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk) |
| { |
| /* |
| * Only add present memory as told by the e820. |
| * There is no guarantee from the SRAT that the memory it |
| * enumerates is present at boot time because it represents |
| * *possible* memory hotplug areas the same as normal RAM. |
| */ |
| if (memory_chunk->start_pfn >= max_pfn) { |
| printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n", |
| memory_chunk->start_pfn, memory_chunk->end_pfn); |
| return; |
| } |
| if (memory_chunk->nid != nid) |
| return; |
| |
| if (!node_has_online_mem(nid)) |
| node_start_pfn[nid] = memory_chunk->start_pfn; |
| |
| if (node_start_pfn[nid] > memory_chunk->start_pfn) |
| node_start_pfn[nid] = memory_chunk->start_pfn; |
| |
| if (node_end_pfn[nid] < memory_chunk->end_pfn) |
| node_end_pfn[nid] = memory_chunk->end_pfn; |
| } |
| |
| /* Parse the ACPI Static Resource Affinity Table */ |
| static int __init acpi20_parse_srat(struct acpi_table_srat *sratp) |
| { |
| u8 *start, *end, *p; |
| int i, j, nid; |
| |
| start = (u8 *)(&(sratp->reserved) + 1); /* skip header */ |
| p = start; |
| end = (u8 *)sratp + sratp->header.length; |
| |
| memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */ |
| memset(node_memory_chunk, 0, sizeof(node_memory_chunk)); |
| |
| num_memory_chunks = 0; |
| while (p < end) { |
| switch (*p) { |
| case ACPI_SRAT_TYPE_CPU_AFFINITY: |
| parse_cpu_affinity_structure(p); |
| break; |
| case ACPI_SRAT_TYPE_MEMORY_AFFINITY: |
| parse_memory_affinity_structure(p); |
| break; |
| default: |
| printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]); |
| break; |
| } |
| p += p[1]; |
| if (p[1] == 0) { |
| printk("acpi20_parse_srat: Entry length value is zero;" |
| " can't parse any further!\n"); |
| break; |
| } |
| } |
| |
| if (num_memory_chunks == 0) { |
| printk("could not finy any ACPI SRAT memory areas.\n"); |
| goto out_fail; |
| } |
| |
| /* Calculate total number of nodes in system from PXM bitmap and create |
| * a set of sequential node IDs starting at zero. (ACPI doesn't seem |
| * to specify the range of _PXM values.) |
| */ |
| /* |
| * MCD - we no longer HAVE to number nodes sequentially. PXM domain |
| * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically |
| * 32, so we will continue numbering them in this manner until MAX_NUMNODES |
| * approaches MAX_PXM_DOMAINS for i386. |
| */ |
| nodes_clear(node_online_map); |
| for (i = 0; i < MAX_PXM_DOMAINS; i++) { |
| if (BMAP_TEST(pxm_bitmap, i)) { |
| int nid = acpi_map_pxm_to_node(i); |
| node_set_online(nid); |
| } |
| } |
| BUG_ON(num_online_nodes() == 0); |
| |
| /* set cnode id in memory chunk structure */ |
| for (i = 0; i < num_memory_chunks; i++) |
| node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm); |
| |
| printk("pxm bitmap: "); |
| for (i = 0; i < sizeof(pxm_bitmap); i++) { |
| printk("%02X ", pxm_bitmap[i]); |
| } |
| printk("\n"); |
| printk("Number of logical nodes in system = %d\n", num_online_nodes()); |
| printk("Number of memory chunks in system = %d\n", num_memory_chunks); |
| |
| for (i = 0; i < MAX_APICID; i++) |
| apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]); |
| |
| for (j = 0; j < num_memory_chunks; j++){ |
| struct node_memory_chunk_s * chunk = &node_memory_chunk[j]; |
| printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n", |
| j, chunk->nid, chunk->start_pfn, chunk->end_pfn); |
| node_read_chunk(chunk->nid, chunk); |
| add_active_range(chunk->nid, chunk->start_pfn, chunk->end_pfn); |
| } |
| |
| for_each_online_node(nid) { |
| unsigned long start = node_start_pfn[nid]; |
| unsigned long end = node_end_pfn[nid]; |
| |
| memory_present(nid, start, end); |
| node_remap_size[nid] = node_memmap_size_bytes(nid, start, end); |
| } |
| return 1; |
| out_fail: |
| return 0; |
| } |
| |
| struct acpi_static_rsdt { |
| struct acpi_table_rsdt table; |
| u32 padding[7]; /* Allow for 7 more table entries */ |
| }; |
| |
| int __init get_memcfg_from_srat(void) |
| { |
| struct acpi_table_header *header = NULL; |
| struct acpi_table_rsdp *rsdp = NULL; |
| struct acpi_table_rsdt *rsdt = NULL; |
| acpi_native_uint rsdp_address = 0; |
| struct acpi_static_rsdt saved_rsdt; |
| int tables = 0; |
| int i = 0; |
| |
| rsdp_address = acpi_os_get_root_pointer(); |
| if (!rsdp_address) { |
| printk("%s: System description tables not found\n", |
| __FUNCTION__); |
| goto out_err; |
| } |
| |
| printk("%s: assigning address to rsdp\n", __FUNCTION__); |
| rsdp = (struct acpi_table_rsdp *)(u32)rsdp_address; |
| if (!rsdp) { |
| printk("%s: Didn't find ACPI root!\n", __FUNCTION__); |
| goto out_err; |
| } |
| |
| printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision, |
| rsdp->oem_id); |
| |
| if (strncmp(rsdp->signature, ACPI_SIG_RSDP,strlen(ACPI_SIG_RSDP))) { |
| printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__); |
| goto out_err; |
| } |
| |
| rsdt = (struct acpi_table_rsdt *) |
| early_ioremap(rsdp->rsdt_physical_address, sizeof(struct acpi_table_rsdt)); |
| |
| if (!rsdt) { |
| printk(KERN_WARNING |
| "%s: ACPI: Invalid root system description tables (RSDT)\n", |
| __FUNCTION__); |
| goto out_err; |
| } |
| |
| header = &rsdt->header; |
| |
| if (strncmp(header->signature, ACPI_SIG_RSDT, strlen(ACPI_SIG_RSDT))) { |
| printk(KERN_WARNING "ACPI: RSDT signature incorrect\n"); |
| goto out_err; |
| } |
| |
| /* |
| * The number of tables is computed by taking the |
| * size of all entries (header size minus total |
| * size of RSDT) divided by the size of each entry |
| * (4-byte table pointers). |
| */ |
| tables = (header->length - sizeof(struct acpi_table_header)) / 4; |
| |
| if (!tables) |
| goto out_err; |
| |
| memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt)); |
| |
| if (saved_rsdt.table.header.length > sizeof(saved_rsdt)) { |
| printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n", |
| saved_rsdt.table.header.length); |
| goto out_err; |
| } |
| |
| printk("Begin SRAT table scan....\n"); |
| |
| for (i = 0; i < tables; i++) { |
| /* Map in header, then map in full table length. */ |
| header = (struct acpi_table_header *) |
| early_ioremap(saved_rsdt.table.table_offset_entry[i], sizeof(struct acpi_table_header)); |
| if (!header) |
| break; |
| header = (struct acpi_table_header *) |
| early_ioremap(saved_rsdt.table.table_offset_entry[i], header->length); |
| if (!header) |
| break; |
| |
| if (strncmp((char *) &header->signature, ACPI_SIG_SRAT, 4)) |
| continue; |
| |
| /* we've found the srat table. don't need to look at any more tables */ |
| return acpi20_parse_srat((struct acpi_table_srat *)header); |
| } |
| out_err: |
| remove_all_active_ranges(); |
| printk("failed to get NUMA memory information from SRAT table\n"); |
| return 0; |
| } |