| /******************************************************************************* |
| This contains the functions to handle the normal descriptors. |
| |
| Copyright (C) 2007-2009 STMicroelectronics Ltd |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> |
| *******************************************************************************/ |
| |
| #include <linux/stmmac.h> |
| #include "common.h" |
| #include "descs_com.h" |
| |
| static int ndesc_get_tx_status(void *data, struct stmmac_extra_stats *x, |
| struct dma_desc *p, void __iomem *ioaddr) |
| { |
| struct net_device_stats *stats = (struct net_device_stats *)data; |
| unsigned int tdes0 = le32_to_cpu(p->des0); |
| unsigned int tdes1 = le32_to_cpu(p->des1); |
| int ret = tx_done; |
| |
| /* Get tx owner first */ |
| if (unlikely(tdes0 & TDES0_OWN)) |
| return tx_dma_own; |
| |
| /* Verify tx error by looking at the last segment. */ |
| if (likely(!(tdes1 & TDES1_LAST_SEGMENT))) |
| return tx_not_ls; |
| |
| if (unlikely(tdes0 & TDES0_ERROR_SUMMARY)) { |
| if (unlikely(tdes0 & TDES0_UNDERFLOW_ERROR)) { |
| x->tx_underflow++; |
| stats->tx_fifo_errors++; |
| } |
| if (unlikely(tdes0 & TDES0_NO_CARRIER)) { |
| x->tx_carrier++; |
| stats->tx_carrier_errors++; |
| } |
| if (unlikely(tdes0 & TDES0_LOSS_CARRIER)) { |
| x->tx_losscarrier++; |
| stats->tx_carrier_errors++; |
| } |
| if (unlikely((tdes0 & TDES0_EXCESSIVE_DEFERRAL) || |
| (tdes0 & TDES0_EXCESSIVE_COLLISIONS) || |
| (tdes0 & TDES0_LATE_COLLISION))) { |
| unsigned int collisions; |
| |
| collisions = (tdes0 & TDES0_COLLISION_COUNT_MASK) >> 3; |
| stats->collisions += collisions; |
| } |
| ret = tx_err; |
| } |
| |
| if (tdes0 & TDES0_VLAN_FRAME) |
| x->tx_vlan++; |
| |
| if (unlikely(tdes0 & TDES0_DEFERRED)) |
| x->tx_deferred++; |
| |
| return ret; |
| } |
| |
| static int ndesc_get_tx_len(struct dma_desc *p) |
| { |
| return (le32_to_cpu(p->des1) & RDES1_BUFFER1_SIZE_MASK); |
| } |
| |
| /* This function verifies if each incoming frame has some errors |
| * and, if required, updates the multicast statistics. |
| * In case of success, it returns good_frame because the GMAC device |
| * is supposed to be able to compute the csum in HW. */ |
| static int ndesc_get_rx_status(void *data, struct stmmac_extra_stats *x, |
| struct dma_desc *p) |
| { |
| int ret = good_frame; |
| unsigned int rdes0 = le32_to_cpu(p->des0); |
| struct net_device_stats *stats = (struct net_device_stats *)data; |
| |
| if (unlikely(rdes0 & RDES0_OWN)) |
| return dma_own; |
| |
| if (unlikely(!(rdes0 & RDES0_LAST_DESCRIPTOR))) { |
| stats->rx_length_errors++; |
| return discard_frame; |
| } |
| |
| if (unlikely(rdes0 & RDES0_ERROR_SUMMARY)) { |
| if (unlikely(rdes0 & RDES0_DESCRIPTOR_ERROR)) |
| x->rx_desc++; |
| if (unlikely(rdes0 & RDES0_SA_FILTER_FAIL)) |
| x->sa_filter_fail++; |
| if (unlikely(rdes0 & RDES0_OVERFLOW_ERROR)) |
| x->overflow_error++; |
| if (unlikely(rdes0 & RDES0_IPC_CSUM_ERROR)) |
| x->ipc_csum_error++; |
| if (unlikely(rdes0 & RDES0_COLLISION)) { |
| x->rx_collision++; |
| stats->collisions++; |
| } |
| if (unlikely(rdes0 & RDES0_CRC_ERROR)) { |
| x->rx_crc_errors++; |
| stats->rx_crc_errors++; |
| } |
| ret = discard_frame; |
| } |
| if (unlikely(rdes0 & RDES0_DRIBBLING)) |
| x->dribbling_bit++; |
| |
| if (unlikely(rdes0 & RDES0_LENGTH_ERROR)) { |
| x->rx_length++; |
| ret = discard_frame; |
| } |
| if (unlikely(rdes0 & RDES0_MII_ERROR)) { |
| x->rx_mii++; |
| ret = discard_frame; |
| } |
| #ifdef STMMAC_VLAN_TAG_USED |
| if (rdes0 & RDES0_VLAN_TAG) |
| x->vlan_tag++; |
| #endif |
| return ret; |
| } |
| |
| static void ndesc_init_rx_desc(struct dma_desc *p, int disable_rx_ic, int mode, |
| int end, int bfsize) |
| { |
| int bfsize1; |
| |
| p->des0 |= cpu_to_le32(RDES0_OWN); |
| |
| bfsize1 = min(bfsize, BUF_SIZE_2KiB - 1); |
| p->des1 |= cpu_to_le32(bfsize & RDES1_BUFFER1_SIZE_MASK); |
| |
| if (mode == STMMAC_CHAIN_MODE) |
| ndesc_rx_set_on_chain(p, end); |
| else |
| ndesc_rx_set_on_ring(p, end, bfsize); |
| |
| if (disable_rx_ic) |
| p->des1 |= cpu_to_le32(RDES1_DISABLE_IC); |
| } |
| |
| static void ndesc_init_tx_desc(struct dma_desc *p, int mode, int end) |
| { |
| p->des0 &= cpu_to_le32(~TDES0_OWN); |
| if (mode == STMMAC_CHAIN_MODE) |
| ndesc_tx_set_on_chain(p); |
| else |
| ndesc_end_tx_desc_on_ring(p, end); |
| } |
| |
| static int ndesc_get_tx_owner(struct dma_desc *p) |
| { |
| return (le32_to_cpu(p->des0) & TDES0_OWN) >> 31; |
| } |
| |
| static void ndesc_set_tx_owner(struct dma_desc *p) |
| { |
| p->des0 |= cpu_to_le32(TDES0_OWN); |
| } |
| |
| static void ndesc_set_rx_owner(struct dma_desc *p, int disable_rx_ic) |
| { |
| p->des0 |= cpu_to_le32(RDES0_OWN); |
| } |
| |
| static int ndesc_get_tx_ls(struct dma_desc *p) |
| { |
| return (le32_to_cpu(p->des1) & TDES1_LAST_SEGMENT) >> 30; |
| } |
| |
| static void ndesc_release_tx_desc(struct dma_desc *p, int mode) |
| { |
| int ter = (le32_to_cpu(p->des1) & TDES1_END_RING) >> 25; |
| |
| memset(p, 0, offsetof(struct dma_desc, des2)); |
| if (mode == STMMAC_CHAIN_MODE) |
| ndesc_tx_set_on_chain(p); |
| else |
| ndesc_end_tx_desc_on_ring(p, ter); |
| } |
| |
| static void ndesc_prepare_tx_desc(struct dma_desc *p, int is_fs, int len, |
| bool csum_flag, int mode, bool tx_own, |
| bool ls, unsigned int tot_pkt_len) |
| { |
| unsigned int tdes1 = le32_to_cpu(p->des1); |
| |
| if (is_fs) |
| tdes1 |= TDES1_FIRST_SEGMENT; |
| else |
| tdes1 &= ~TDES1_FIRST_SEGMENT; |
| |
| if (likely(csum_flag)) |
| tdes1 |= (TX_CIC_FULL) << TDES1_CHECKSUM_INSERTION_SHIFT; |
| else |
| tdes1 &= ~(TX_CIC_FULL << TDES1_CHECKSUM_INSERTION_SHIFT); |
| |
| if (ls) |
| tdes1 |= TDES1_LAST_SEGMENT; |
| |
| p->des1 = cpu_to_le32(tdes1); |
| |
| if (mode == STMMAC_CHAIN_MODE) |
| norm_set_tx_desc_len_on_chain(p, len); |
| else |
| norm_set_tx_desc_len_on_ring(p, len); |
| |
| if (tx_own) |
| p->des0 |= cpu_to_le32(TDES0_OWN); |
| } |
| |
| static void ndesc_set_tx_ic(struct dma_desc *p) |
| { |
| p->des1 |= cpu_to_le32(TDES1_INTERRUPT); |
| } |
| |
| static int ndesc_get_rx_frame_len(struct dma_desc *p, int rx_coe_type) |
| { |
| unsigned int csum = 0; |
| |
| /* The type-1 checksum offload engines append the checksum at |
| * the end of frame and the two bytes of checksum are added in |
| * the length. |
| * Adjust for that in the framelen for type-1 checksum offload |
| * engines |
| */ |
| if (rx_coe_type == STMMAC_RX_COE_TYPE1) |
| csum = 2; |
| |
| return (((le32_to_cpu(p->des0) & RDES0_FRAME_LEN_MASK) |
| >> RDES0_FRAME_LEN_SHIFT) - |
| csum); |
| |
| } |
| |
| static void ndesc_enable_tx_timestamp(struct dma_desc *p) |
| { |
| p->des1 |= cpu_to_le32(TDES1_TIME_STAMP_ENABLE); |
| } |
| |
| static int ndesc_get_tx_timestamp_status(struct dma_desc *p) |
| { |
| return (le32_to_cpu(p->des0) & TDES0_TIME_STAMP_STATUS) >> 17; |
| } |
| |
| static void ndesc_get_timestamp(void *desc, u32 ats, u64 *ts) |
| { |
| struct dma_desc *p = (struct dma_desc *)desc; |
| u64 ns; |
| |
| ns = le32_to_cpu(p->des2); |
| /* convert high/sec time stamp value to nanosecond */ |
| ns += le32_to_cpu(p->des3) * 1000000000ULL; |
| |
| *ts = ns; |
| } |
| |
| static int ndesc_get_rx_timestamp_status(void *desc, void *next_desc, u32 ats) |
| { |
| struct dma_desc *p = (struct dma_desc *)desc; |
| |
| if ((le32_to_cpu(p->des2) == 0xffffffff) && |
| (le32_to_cpu(p->des3) == 0xffffffff)) |
| /* timestamp is corrupted, hence don't store it */ |
| return 0; |
| else |
| return 1; |
| } |
| |
| static void ndesc_display_ring(void *head, unsigned int size, bool rx) |
| { |
| struct dma_desc *p = (struct dma_desc *)head; |
| int i; |
| |
| pr_info("%s descriptor ring:\n", rx ? "RX" : "TX"); |
| |
| for (i = 0; i < size; i++) { |
| u64 x; |
| |
| x = *(u64 *)p; |
| pr_info("%03d [0x%x]: 0x%x 0x%x 0x%x 0x%x", |
| i, (unsigned int)virt_to_phys(p), |
| (unsigned int)x, (unsigned int)(x >> 32), |
| p->des2, p->des3); |
| p++; |
| } |
| pr_info("\n"); |
| } |
| |
| static void ndesc_get_addr(struct dma_desc *p, unsigned int *addr) |
| { |
| *addr = le32_to_cpu(p->des2); |
| } |
| |
| static void ndesc_set_addr(struct dma_desc *p, dma_addr_t addr) |
| { |
| p->des2 = cpu_to_le32(addr); |
| } |
| |
| static void ndesc_clear(struct dma_desc *p) |
| { |
| p->des2 = 0; |
| } |
| |
| const struct stmmac_desc_ops ndesc_ops = { |
| .tx_status = ndesc_get_tx_status, |
| .rx_status = ndesc_get_rx_status, |
| .get_tx_len = ndesc_get_tx_len, |
| .init_rx_desc = ndesc_init_rx_desc, |
| .init_tx_desc = ndesc_init_tx_desc, |
| .get_tx_owner = ndesc_get_tx_owner, |
| .release_tx_desc = ndesc_release_tx_desc, |
| .prepare_tx_desc = ndesc_prepare_tx_desc, |
| .set_tx_ic = ndesc_set_tx_ic, |
| .get_tx_ls = ndesc_get_tx_ls, |
| .set_tx_owner = ndesc_set_tx_owner, |
| .set_rx_owner = ndesc_set_rx_owner, |
| .get_rx_frame_len = ndesc_get_rx_frame_len, |
| .enable_tx_timestamp = ndesc_enable_tx_timestamp, |
| .get_tx_timestamp_status = ndesc_get_tx_timestamp_status, |
| .get_timestamp = ndesc_get_timestamp, |
| .get_rx_timestamp_status = ndesc_get_rx_timestamp_status, |
| .display_ring = ndesc_display_ring, |
| .get_addr = ndesc_get_addr, |
| .set_addr = ndesc_set_addr, |
| .clear = ndesc_clear, |
| }; |